

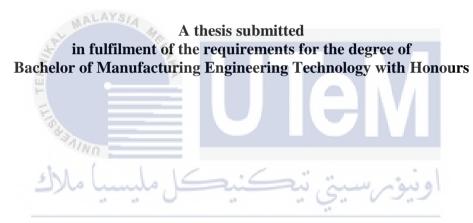
LOW VOLUME HIGH MIX MANUFACTURING SCHEDULING SYSYTEM WITH ODOO ERP OPEN SOFTWARE

BACHELOR OF MANUFACTURING ENGINEERING TECHNOLOGY WITH HONOURS

2021

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA


Rakeshkumar A/L Aplasamy

Bachelor of Manufacturing Engineering Technology with Honours

2021

LOW VOLUME HIGH MIX MANUFACTURING SCHEDULING SYSTEM WITH ODOO ERP OPEN SOFTWARE

RAKESHKUMAR A/L APLASAMY

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I declare that this Choose an item. entitled "Low Volume High Mix Manufacturing Scheduling System with Odoo ERP Open Software" is the result of my own research except as cited in the references. The Choose an item. has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

	MALAYSIA MADE	
Signature	i generation	
Name	Rakeshkumar A/L Aplasamy	
Date	26/01/2022	
	اونيۈم سيتي تيڪنيڪل مليسيا ملاك	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

APPROVAL

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor of Manufacturing Engineering Technology with Honours.

DEDICATION

For my beloved parents:

Aplasamy/L Nokal

Lalitha A/P Subrayan

And my treasured friends

Project team members

UTeM's students

ABSTRACT

This report addresses the issue of low volume high mix manufacturing scheduling faced by many production companies. Many businesses are attempting to increase profits by using competitive advantages such as cost reduction, speedy delivery, and distinctive high-quality items. Many companies utilise effective production-scheduling procedures to achieve these competitive advantages. Because the qualities of both parts and processes are continually changing, implementing scheduling strategies in high-mix low-volume (HMLV) manufacturing businesses, especially in Industry 4.0 environments, remains a challenge. Therefore, this project was carried out in Micro-Nano Precision Sdn. Bhd (MNPSB), a HMLV precision tool manufacturing company located at Ayer Keroh, Melaka. The company's issue is the production scheduling interruptions due to priorities changes, customer new requests, due date changes and equipment breakdowns causing the company to miss the committed customer delivery dates. The objectives were set to study the open-source software available in the market for the high mix low volume manufacturing scheduling in order to develop a suitable scheduling system the identified open-source software and test this software using the company's data. The Odoo open-source ERP software was chosen to aid MNPSB in boosting their business processes and technology. After studying the business process and obtaining the to-be business process, According to the conclusions of the study, the Odoo ERP system is appropriate for manufacturing industry business processes. Odoo is a versatile ERP software for business management for industry revolution 4.0.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Laporan ini menangani isu penjadualan pembuatan campuran tinggi volum rendah yang dihadapi oleh banyak syarikat pengeluaran. Banyak perniagaan cuba meningkatkan keuntungan dengan menggunakan kelebihan daya saing seperti pengurangan kos, penghantaran cepat dan item berkualiti tinggi yang tersendiri. Banyak syarikat menggunakan prosedur penjadualan pengeluaran yang berkesan untuk mencapai kelebihan daya saing ini. Oleh kerana kualiti kedua-dua bahagian dan proses sentiasa berubah, melaksanakan strategi penjadualan dalam perniagaan pembuatan campuran tinggi volum rendah (HMLV), terutamanya dalam persekitaran Industri 4.0, kekal sebagai cabaran. Oleh itu, projek ini telah dijalankan di Micro-Nano Precision Sdn. Bhd (MNPSB), sebuah syarikat pembuatan alat ketepatan HMLV yang terletak di Ayer Keroh, Melaka. Isu syarikat ialah gangguan penjadualan pengeluaran akibat perubahan keutamaan, permintaan baharu pelanggan, perubahan tarikh tamat dan kerosakan peralatan menyebabkan syarikat terlepas tarikh penghantaran pelanggan yang komited. Objektif ditetapkan untuk mengkaji perisian sumber terbuka yang tersedia di pasaran untuk penjadualan pembuatan volum rendah campuran tinggi untuk membangunkan sistem penjadualan yang sesuai perisian sumber terbuka yang dikenal pasti dan menguji perisian ini menggunakan data syarikat. Perisian ERP sumber terbuka Odoo telah dipilih untuk membantu MNPSB dalam meningkatkan proses dan teknologi perniagaan mereka. Selepas mengkaji proses perniagaan dan mendapatkan proses perniagaan yang akan datang, Menurut kesimpulan kajian, sistem ERP Odoo sesuai untuk proses perniagaan industri pembuatan. Odoo ialah perisian ERP serba boleh untuk pengurusan perniagaan untuk revolusi industri 4.0.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor Ts. Dr. Rohana Binti Abdullah from the Faculty of Mechanical and Manufacturing Engineering Technology Universiti Teknikal Malaysia Melaka (UTeM). She always provided guidance, discussion and encouragement throughout the final year project duration.

Besides that, thank to Micro Nano Precision Sdn Bhd (MNPSB) managing director Dr. Bong Cheng Siong for providing the company's data for this project. The project will not be completed and the report will not be as comprehensive without the details provided by the company.

Particularly, I thank my beloved family and project team members who were always encouraging me. This final year project would be hard to complete without their continuous supports.

Finally, I hope this report will benefit the readers.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

		PAGE
DEC	CLARATION	
APP	PROVAL	
DEL	DICATION	
ABS	STRACT	i
ABS	STRAK	ii
	KNOWLEDGEMENTS	iii
TAB	BLE OF CONTENTS AY SA	iv
LIST	T OF TABLE	vii
LIST	T OF FIGURES	viii
LIST	T OF SYMBOLS AND ABBREVIATIONS	xi
LIST	T OF APPENDICES	xii
CHA	APTER 1 UNTRODUCTION	1
1.1	Background	1
1.2	Problem Statement SITI TEKNIKAL MALAYSIA MELAKA	2
1.3	Project Objectives	5
1.4	Scope of Work	6
1.5	Final Year Report Framework	6
1.6	Summary	9
CHA	APTER 2 LITERATURE REVIEW	10
2.1	Introduction	10
2.2	Process Improvement	10
	2.2.1 High mix low volume (HMLV)	13
2.3	Traditional Method of Planning and Scheduling	14
	2.3.1 Planning	15
	2.3.2 Scheduling	15

	2.3.3 Material Requirement Planning (MRP)	16
2.4	Fourth Industrial Revolution	17
2.5	Advanced Planning and Scheduling	19
2.6	Enterprise Resource Planning (ERP)	21
	2.6.1 Cloud ERP	23
	2.6.2 Success Factor of ERP Implementation	24
2.7	Construction Scheduling in ERP Techniques	25
	2.7.1 Open-source software	25
	2.7.2 Comparison between ERP software	25
	2.7.3 Open source ERP	26
	2.7.4 Odoo Open source ERP	29
2.8	Case Study	31
	2.8.1 Case study 1: Implementation of The Odoo Point of Sale ERP Module at	
	Gordino Store	31
	2.8.2 Case study 2: Odoo ERP Implementation Point of Sale Module at Mc Cake	33
	2.8.3 Case study 3: Implementation of enterprise resource planning using Odoo	
	module sales and CRM at PT Ecosains Hayati	34
2.9	Summary	36
СНА	PTER 3 METHODOLOGY	37
3.1	او بنوم سيتي تيڪنيڪ مليسيا ملا او	37
3.2	Project Planning	37
3.3	Research Flowchart SITI TEKNIKAL MALAYSIA MELAKA	37
	3.3.1 Define Project Title	39
	3.3.2 Literature Review	39
	3.3.3 Industrial Visit	39
	3.3.4 Defining Problem Statement	39
	3.3.5 Data Collection	40
	3.3.6 System Development	40
	3.3.7 Final Report	42
3.4	FYP Gantt chart	43
3.5	Summary	46
СНА	PTER 4 RESULTS AND DISCUSSION	47
4.1	Introduction	47

4.2	Requirement Analysis	47
4.3	System Design	49
4.4	Implementation and Testing	52
4.5	Discussion	79
4.6	Maintenance	95
4.7	Summary	96
СНАР	TER 5 CONCLUSION AND RECOMMENDATIONS	97
5.1	Introduction	97
5.2	Conclusion	97
5.3	Recommendation	98
REFE	RENCES	100
APPE	NDICES	104

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE	TITLE		
Table 2.1	Comparison between Open ERP Vs Other ERP Systems		
Table 2.2	Overview of modules and functionalities in OSS ERP systems	27	
Table 2.3	Case Study 1	31	
Table 2.4	Case Study 2	33	
Table 2.5	Case Study 3	34	
Table 3.1	FYP 1 Gantt chart	44	
Table 3.2	FYP 2 Gantt chart	45	
Table 4.1	Overall Equipment Effectiveness Table	88	
	مرتبع بي تركيب المرتبع المرتبع المرتبع المرتبع الم مرتبع المرتبع الم		
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA		

LIST OF FIGURES

FIGURE

TITLE

PAGE

Figure 1.1 General Production Flow	4
Figure 1.2 Summary of the FYP Report Organization	8
Figure 2.1 MRP system (Hamid et al., 1991)	17
Figure 2.2 Industrial Revolution (Ooi et al., 2018)	19
Figure 2.3 CAPS pyramid(Abd Elmonem et al., 2016)	20
Figure 2.4 ERP Database (Abd Elmonem et al., 2016)	21
Figure 2.5 An overview of typical ERP system modules (Park et al., 2007)	23
Figure 2.6 Cloud ERP(Abd Elmonem et al., 2016)	24
Figure 2.7 Odoo Features (Ganesh et al., 2016b)	30
Figure 3.1 Research Flow Chart	38
Figure 3.2 Waterfall Method (Heriyanti & Ishak, 2020)	41
Figure 4.1 Microsoft Excel Data from MNPSB	48
Figure 4.2 System Design Flow	52
Figure 4.3 Odoo System Database	52
Figure 4.4 Sales Order Quotation	53
Figure 4.5 Sales Order by Customer	54
Figure 4.6 Safety block Sale Invoice	55
Figure 4.7 Customer Quotation in Odoo	55
Figure 4.8 WorkCentre	56
Figure 4.9 Example work centre- Assembly 1	56
Figure 4.10 Products Manufactured By MNPSB in Odoo Software	57
Figure 4.11 Example product- safety stock	58
Figure 4.12 Safety Block-Purchase	59
Figure 4.13 product barcode	59
Figure 4.14 Forecast demand before manufacturing order	60
Figure 4.15 Manufacturing Order	60

Figure 4.16 Manufacturing order - Safety Block	61
Figure 4.17 Request for Quotation	62
Figure 4.18 Request for Quotation from Vendor 1	62
Figure 4.19 Vendor Bill	63
Figure 4.20 Purchase Order	64
Figure 4.21 Register Payment	65
Figure 4.22 Payment Method	65
Figure 4.23 Complete Payment to Vendor 1	66
Figure 4.24 Payment receipt	67
Figure 4.25 purchased delivery	68
Figure 4.26 Product stored in warehouse	68
Figure 4.27 Manufacturing Order in Process	69
Figure 4.28 Quality check at manufacturing order	70
Figure 4.29 Quality check at Quality application	71
Figure 4.30 Quality check –passed	71
Figure 4.31 Passed quality check with green mark	72
Figure 4.32 Quality check status	72
Figure 4.33 payment complete by customer	73
Figure 4.34 payment completed invoice	74
Figure 4.35 sales order flow SITI TEKNIKAL MALAYSIA MELAKA	75
Figure 4.36 Product delivered to customer	76
Figure 4.37 stock out from warehouse	77
Figure 4.38 Product delivered - 1000 units	78
Figure 4.39 delivery completed to customer	78
Figure 4.40 Master Production Schedule	80
Figure 4.41 Work Order Planning Calendar	81
Figure 4.42 Work Centre Planning Gantt chart	81
Figure 4.43 Work Order Graph	82
Figure 4.44 Line Graph Quantity Verses WorkCentre	82
Figure 4.45 cost analysis report	83
Figure 4.46 costing per unit graph	84

Figure 4.47 Production Analysis	85
Figure 4.48 Work Oder Analysis Bar Graph	86
Figure 4.49 Manufacturing Order Analysis Bar Graph	86
Figure 4.50 Overall Equipment Effectiveness Chart	
Figure 4.51 Overall Equipment Effectiveness Chart with Percentage Value	88
Figure 4.52 Warehouse Analysis Line Graph	90
Figure 4.53 Warehouse Analysis	91
Figure 4.54 Stock on Hand Report	91
Figure 4.55 Inventory Count Sheet	92
Figure 4.56 Forecast Inventory Report	93
Figure 4.57 Forecast Inventory Line Graph.	93
Figure 4.58 Forecast Inventory Line Graph Product Reference	94
Figure 4.59 Product Move Report (safety block)	95

اونيوم سيتي تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS AND ABBREVIATIONS

HMLV	-	High-Mix Low-Volume
ERP	-	Enterprise Resource Planning
CAPS	-	Cloud-Based Advanced Planning And Scheduling
MNPSB	-	Micro-Nano Precision Sdn. Bhd
QC	-	Quality Control
CNC	-	Computer Numerical Control
Odoo	-	On Demand Open Object
FYP	-	Final Year Project
MRP	-	Material Requirement Planning
CPS	- 3	Cyber-Physical System
MPC	- 3	Manufacturing Planning And Control
IIoT	- H	Industrial Internet Of Things
SMEs	- 2	Small And Medium-Sized Manufacturing Enterprises
APS	-	Advanced Planning And Scheduling
SAP	- 31	Systems Applications And Products
OSI	-	Open -source Initiative
OSS	UN	Open-source Software AL MALAYSIA MELAKA
FSF	-	Free Software Foundation
CSS	-	Cascading Style Sheets
POS	-	Invoicing, Point Of Sale
SDLC	-	Software Development Life Cycle
CRM	-	Customer Relationship Management
MTTR	-	Mean Time To Repair
MTBF	-	Mean Time Between Failure
MO	-	Manufacturing Order
MPS	-	Master Poroduction Schedule
OEE	-	Overall Equipment Effectiveness

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
APPENDIX A	Microsoft Excel Data from MNPSB.	103
APPENDIX B	Odoo Software Product Analysis Report	122
APPENDIX C	Odoo Stock Valuation Layer	123
APPENDIX D	Odoo Warehouse Analysis Report	130
APPENDIX E	Odoo Product Move Report	132
APPENDIX F	Odoo Product Move Report	142

CHAPTER 1

INTRODUCTION

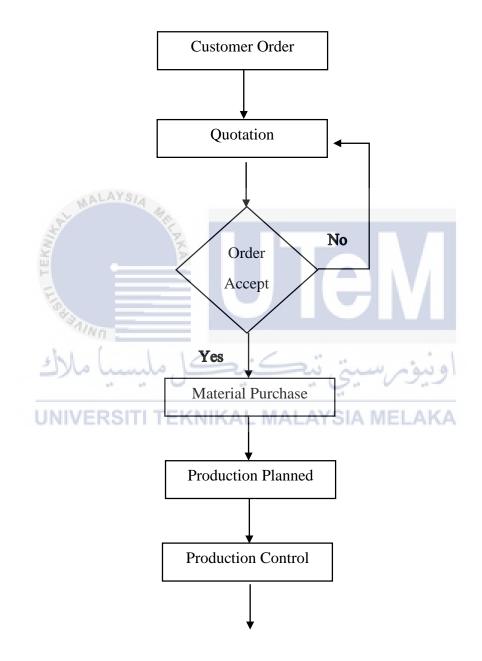
1.1 Background

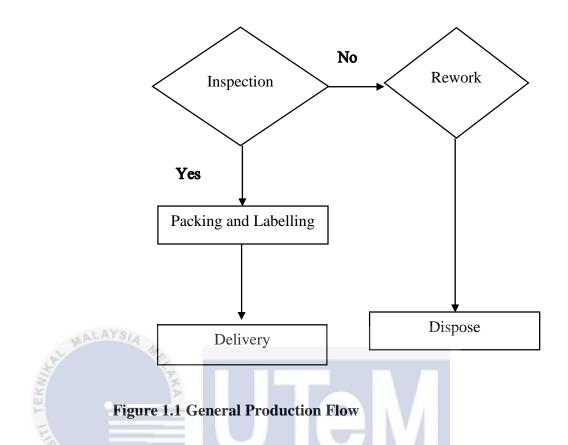
The manufacturing industry has recently been under a lot of stress as a result of the COVID-19 pandemic. To contain the infection, numerous factories were shut down on a large scale, and transportation links were disrupted. On the positive side, the pandemic has re-ignited interest in the advantages of Industry 4.0 and cloud manufacturing. Specifically, companies with a high mix, low volume demand that requires solution that allows demands, in different quantities, in response to orders placed at irregular intervals and in variable amounts each time.

Many high-mix low-volume (HMLV) firms are attempting to increase profits by using competitive advantages such as cost reduction, speedy delivery, and distinctive high-quality items. These companies utilise effective production-scheduling procedures to achieve these competitive advantages. Because the qualities of both components and processes are continually changing, implementing scheduling strategies in HMLV manufacturing businesses, especially in Industry 4.0 contexts, remains a difficulty. A new sophisticated and effective real-time production-scheduling decision-support system model was created in response to these issues in HMLV Industry 4.0 manufacturing (Kocsi et al., 2020).

The practise of allocating manufacturing resources over time to the set of manufacturing operations in the process plan is known as production scheduling. It calculates the best time to perform each operation, taking into consideration the temporal linkages between production processes as well as the capacity constraints of shared production resources. The assignments also have an impact on the optimality of a schedule in terms of cost, tardiness, and throughput (Svancara & Kralova, 2012).

In the revolution industry 4.0, cloud manufacturing is a new idea that refers to running manufacturing-related software in cloud infrastructure, or virtual factories in a larger sense. In this digital manufacturing environment, a cloud-based production scheduling system is introduced, which integrates inventory, sales, procurement, and shop-floor management into one programme. Enterprise resource planning (ERP) systems are commonly utilised nowadays to construct a cloud-based advanced planning and scheduling (CAPS) system (Liu et al., 2019).


ERP solutions boost efficiency and production. Because an ERP system connects data and operations across many departments and locations, it enables a firm to move items faster, process orders faster, maintain complete cost control, and have complete visibility (Arsovski et al., 2009). In making improvement by ERP solution, there was may open source software that will make perfect solution in production scheduling problem nowadays.


In a summary, under the umbrella of Industry 4.0 technologies, Digital Manufacturing is responsible for integrating technologies and information across the product life cycle. The upgrade of industry standard, the use software to make changes in collect scheduling data to improve the production in high mix low volume manufacturing industry.

1.2 Problem Statement

This project is carried out in Micro-Nano Precision Sdn. Bhd (MNPSB), a tool fabrication company at Ayer Keroh, Melaka. MNPSB fabricates products designed by the customers. The company manufacturing equipment include the trimming and moulding, cavities bar, precision punching and devices, decommissioning tools, die sets, plastics industry core, automotive components and machining items, cavity injection moulding, jigs, and fixtures. All the fabricated products with the design from customers have different processes. Figure 1.1 shows the production flow which begins with the product drawing by customer and receipt through e-mail. The materials procurement and distribution criteria are based on the process required and will determine the price quote for the final product. The decision making focused on the ability of the machine system and the company's supply capacities. The purchasing of materials as approved and the product begins to be fabricated through its own process requirement. During manufacture, the product quality is monitored internally after each process. The responsible person must monitor the product in time

and in good quality for the product to be completed. Then, the completed product must proceed through the QC department and the defected part has to be reprocessed or disposed of depending on the product condition. The final and good quality products are properly labelled and packed before being sent to customers.

Each drawing has varying quantities of tools and each of the products to be manufactured and generated by different processes in conventional machines or automated machines for each consumer. The machines used in the manufacturing of instruments such as wire cut, electrical discharge machining, CNC milling, turn milling, CNC grinding, jig grind, super drill and CNC grinding.

Based on the observation and discussion with MNPSB's management, MNPSB has an issue with the production delivery to the customer. The problems were identified due to the inability to decide when and how often capacity changes and to communicate with the key centre of work and every single resources. In addition, the processing of customer order sequence or the priority rules in the production line is not properly organized by the managers and responsible personnel. By not properly following the priority rule of the products often leads to the not being able to meet the customer due dates for some products. For example, the reworking of rejected products and reprioritizing highly urgent orders also interrupted the current order processing.

Besides that, two kinds of MNPSB inspections are internal inspections of procedures and QC inspections. The rejection of machine problem and human error operating the machine have different rates for each process. The program rejection takes place when programmer writes a faulty programme, leading to a defect on the product on the automated machine. The rejection at the assembly process occurred with an improper equipment set-up causing scratches on the product.

Quality management and inspection is also a concern found in MNPSB when inspection fails to comply with criteria, fitness of purpose, degree of preference, measure of promise requirement and degree of excellence, and all these items are regulated to meet specifications and expectations. The quality issue occurs due to the inspection is not in line with the specifications, fitness of intent, degree of preference, measure of promise requirement and degree of excellence including control of all of these items to meet the requirement and standards. This issue escalated especially when there are a surge in customer demand and also because of the lack of inspection tool at QC. Thus, plenty of the rejected product requires reworks causing high manufacturing time lost, which resulted in the company failing to meet customer due dates.

In summary, the major issue with the company is the order processing and prioritising. Therefore, the study aims to investigate a suitable open-source scheduling system to help the company with the order processing issue and improve the customer delivery time.

1.3 Project Objectives

The objectives of this study is set as the following:

- a) Study the existing open source software in high mix low volume manufacturing.
- b) Develop a scheduling system for MNPSB using the suitable open-source scheduling software.
- c) Validate the scheduling software using the high mix low volume manufacturing data.

1.4 Scope of Work

This research is carried out in Micro-Nano Precision Sdn. Bhd (MNPSB). This focuses mainly on studying the open-source scheduling software in HMLV manufacturing system. The software selected to be used in this study is the Odoo ERP open-source software. The evaluation criteria used were the number of orders, warehouse analysis report, stock on hand, average completion time, cost analysis report, and master production Schedule (MPS), work centre panning Ghats chart and overall equipment effectiveness (OEE). The study and analysis were conducted on the current target company production to determine a suitable scheduling technique to solve meeting the customer dateline issue. The suggestion to improve the production scheduling were also provided in this study. The conclusion and recommendation were discussed in the last chapter.

1.5 Final Year Report Framework

This final year project has been split into two parts; Final Year Project (FYP) 1 and 2. The five main chapters of this report is structured as follows. Chapter 1 describes the overall conduct of the study such as the project background, problem statement, objectives, and scope of work, final year report framework and the summary of this project. This chapter also includes the background of the company where the case study was conducted and the problem of company were investigated to define the aims of the final year project.

Chapter 2 includes the literature reviews to gain better knowledge on the HMLV manufacturing system, the scheduling concepts and the various open-source scheduling tools available in the market. Thus, this section covers the basic concepts of production planning, the definition of scheduling, and several methods of advanced planning and scheduling, the open-source software. Several case studies done using the open-source scheduling system were also summarized in this chapter. These information were important because these studies from the previous researchers can be used as a reference to guide the implementation of a similar open-source scheduling tool in this study.