

ENVIRONMENTAL PROPERTIES OF BIODEGRADABLE PACKAGING TRAY FROM COCONUT LEAF

BACHELOR OF MANUFACTURING ENGINEERING TECHNOLOGY (PROCESS & TECHNOLOGY) WITH HONOURS

Faculty of Mechanical and Manufacturing Engineering Technology

Bachelor of Manufacturing Engineering Technology ($\ensuremath{\mathsf{Process}}$ & Technology) with Honours

ENVIRONMENTAL PROPERTIES OF BIODEGRADABLE PACKAGING TRAY FROM COCONUT LEAF

SHAMSU HAZMIRULL BIN SHAMSUDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this thesis entitled "Environmental Properties of Biodegradable Packaging Tray From Coconut Leaf" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in terms of scope and quality for the award of the Bachelor of Manufacturing Engineering Technology (Process & Technology) with Honours.

Signature : Dr. Ridhwan Bin umaidin Date : 18/01/2022 المنابع المنابع

DEDICATION

To Al-Quran, the greatest source of knowledge

آتُونِي زُبَرَ الْحَدِيدِ حَتَّى إِذَا سَاوَى بَيْنَ الصَّدَفَيْنِ قَالَ الْفُخُوا حَتَّى إِذَا جَعَلَهُ نَارًا قَالَ آتُونِي أُفْرِغْ عَلَيْهِ قِطْرًا

Bring me sheets of iron" - until, when he had leveled [them] between the two mountains walls, he said, "Blow [with bellows]," until when he had made it [like] fire, he said, "Bring me, that I may pour over it molten copper." (Al-Kahf: Verse 96)

> & To my beloved father and mother & To my beloved siblings

ABSTRACT

In recent, the demand for biodegradable materials has become a significant challenge due to the accumulation of non-biodegradable plastic waste. Among several biodegradable materials, thermoplastic cassava starch has been identified as the renewable, biodegradable, also has low-cost resources. However, thermoplastic cassava starch has some drawback such as poor dimensional stability due to highly hydrophilic character. Meanwhile, extensive fall of coconut trees has resulted in waste since only certain parts of the coconut tree were utilised, while other part such as the leaf were often discarded as waste. Hence, the aim of this study is to utilised the coconut leaf in the development of a biodegradable packaging from thermoplastic cassava starch reinforced with coconut leaf fibre. In this study, coconut leaf fibre will be used to enhance the shortcomings of cassava starch biopolymer in various fiber content i.e 0 wt%, 10wt%, 20wt%, 30wt% and 40wt%. The effect of coconut leaf fibre on the environmental, water affinity, and morphological properties will be investigated. All of the materials were blended together uniformly before being manufactured by utilizing hot compression moulding. Following that, the properties of TPCS/coconut leaf fibre biopolymer composites were investigated in order to assess their potential as biodegradable reinforcements. The finding shows that the highest percentage of fibre at 40wt% shows the the lowest moisture content which idicates indicates improvement in the stability of the materials. The incorporation of coconut leaf fiber was found to decrease the water absorption and thickness swelling of the composite. In terms of water solubility, it was discovered that the weight reduction decreases as the fibre content increases. Meanwhile, biodegradation was determined by the soil burial and results show decreased weight loss after increased loading of coconut leaf fiber in the polymeric matrix. According to the FTIR analysis, the result demonstrates the presence of bonding between the fiber and TPCS, while the SEM demonstrates the changing microstructure of the composite as the fibre concentration increases which is the appearance of more coconut leaf fibre and void on the surface. In term of development of packaging product, composite with fiber content of 20% was used. The product developed has length of 13 cm, thickness 0.3 cm and width of 8cm. Generally, the product was successfully developed and functioning as a tray. In conclusion, TPCS/coconut leaf fibre biopolymer composites have shown improved properties in terms of lower water affinity behavior and better dimensional stability compare to the TPCS a wide range of potential particularly in packaging matrix. This material has applications. Therefore, this material can become an alternative for non-biodegradable bioplastic in the future and the natural waste can be fully utilized.

ABSTRAK

Sejak kebelakangan ini, permintaan untuk bahan biodegradasi telah menjadi cabaran besar kerana pengumpulan sampah plastik yang tidak terbiodegradasi. Di antara beberapa bahan terbiodegradasi, termoplastik kanji telah dikenalpasti sebagai bahan terbaru, terbiodegradasi, dan mempunyai sumber kos rendah. Walaubagaimanapun, pati ubi kayu termoplastik mempunyai beberapa kekurangan seperti kestabilan dimensi yang buruk kerana sifat hidrofilik yang sangat tinggi. Sementara itu, sisa pohon kelapa yang gugur mengakibatkan sampah tatkala hanya beberapa bahagian pokok kelapa yang digunakan, sementara beberapa bahagian lain seperti daun sering dibuang sebagai sampah. Oleh itu, tujuan kajian ini adalah untuk memanfaatkan daun kelapa dalam pengembangan kemasan yang dapat terurai dari pati ubi kayu termoplastik yang diperkuat dengan serat daun kelapa. Dalam kajian ini, serat daun kelapa akan digunakan untuk memperbaiki kekurangan biopolimer pati ubi kayu dalam pelbagai kandungan serat iaitu 0% berat, 10% berat%, 20% berat, 30% berat dan 40% berat. Kesan serat daun kelapa terhadap persekitaran adalah seperti pertalian air, dan sifat morfologi akan diteliti. Semua bahan telah diadun bersama secara seragam sebelum dihasilkan menggunakan acuan mampatan panas. Berikutan itu, sifat-sifat komposit biopolimer gentian daun kelapa TPCS telah disiasat untuk menilai potensinya sebagai tetulang biodegradasi. Dapatan kajian menunjukkan peratusan tertinggi pada 40% berat menunjukkan kandungan lembapan yang paling rendah, yang menunjukkan peningkatan dalam kestabilan bahan. Penggabungan dengan serat daun kelapa didapati pengurangan penyerapan air dan bengkak ketebalan komposit. Dari segi ketelarutan air, apabila ujian keterlarutan air dilakukan, didapati bahawa pengurangan berat berkurangan apabila kandungan serat meningkat. Sementara itu, biodegradasi telah ditentukan melalui pengebumian tanah dan hasilnya menunjukkan penurunan berat sampel selepas memuatkan serat daun kelap dalam matriks polimer. Menurut analisis FTIR, menunjukkan kehadiran ikatan antara serat dan sampel, manakala SEM menunjukkan perubahan struktur mikro komposit apabila kepekatan gentian meningkat iaitu structur penampilan serat daun kelapa yang lebih banyak dan lompang di permukaan sampel. Dari segi pembangunan produk pembungkusan komposit dengan, sebanyak 20% berat gentian digunakan. Produk yang dibangunkan mempunyai dalam ukuran panjang produk mempunyai 13cm, ketebalannya 0.3cm dan lebar 8cm. Secara amnya, produk in telah berjaya dibangunkan dan berfungsi sebagai dulang. Kesimpulannya, komposit biopolimer gentian serat daun kelapa TPCS/daun kelapa telah menunjukkan sifat yang lebih baik dari segi tingkah laku pertalian air yang lebih rendah dan kestabilan dimensi yang lebih baik berbanding dengan matrik TPCS. Bahan ini mempunyai potensi yang luas, terutamanya dalam aplikasi pembungkusan. Oleh itu, bahan ini boleh menjadi alternatif untuk bioplastik tidak terbiodegradasi pada masa hadapan dan sisa semula jadi boleh digunakan sepenuhnya.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

In the name of Allah, the Most Merciful and Gracious. Alhamdulillah, I am grateful to Almighty Allah (Subhanahu Wa Taa'la) for providing me with the power and spirit I needed to complete this research. Thank you for your blessing, advice, and kindness.

I would want to express my heartfelt gratitude to everyone who assisted me during the course of my research by extending a million thanks to them. I would like to convey my sincere gratitude to my respected supervisor Dr. Ridhwan Bin Jumaidin for his direction, criticism, and willingness to lend a helping hand and provide advice during this project. From the beginning of the semester till now, I have been really grateful for his hospitality, intelligence, and knowledge.

Finally, I would want to express my gratitude to my parents, Shamsudin bin Mohamad and Hanisah binti Nor, for their unwavering support. I am aware that this research would not have been possible without their assistance and encouragement. In advance, I'd want to express my gratitude to all the other anonymous individuals who assisted me in various ways in order to complete my study.

> اونيۈم سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

		PAGE
DEC	LARATION	
APPI	ROVAL	
DED	ICATION	
ABS	ГКАСТ	i
ABS	ГКАК	ii
ACK	NOWLEDGEMENTS	iii
TAB	LE OF CONTENTS	iv
LIST	OF TABLES	vii
LIST	OF FIGURES	ix
LIST	OF APPENDICES	xvi
СЦА	PTED 1 INTRODUCTION	1
CHA	Background	1 1
1.1	Problem Statement	3
1.3	Research Objective	5
1.4	Significance of Study	5
1.5	Scope of Research	5
1.6	Structure of Thesis	6
СНА	PTER 2 UNIVLITERATURE REVIEW MALAYSIA MELAKA	8
2.1	Introduction	8
2.2	Polymer	8
	2.2.1 Synthetic Polymer	9
	2.2.2 Application of Polymer	14
2.2	2.2.3 Biopolymer	14
2.3	Composite	10 10
	2.3.1 Polymer Marix Composite	19
24	Coconut	20
2.5	Coconut Leaf	20
2.6	Coconut Leaf Fiber	23
	2.6.1 Properties of coconut leaf fiber	25
	2.6.2 Application of coconut leaf fiber	27
2.7	Starch	28
	2.7.1 Starch Composition	29
	2.7.2 Application of starch	32
	2.7.3 Cassava Starch	33
_	2.7.4 Potato Starch	36
2.8	Thermoplastic Starch	41

	2.8.1 Polymerization of starch	42
	2.8.2 Thermoplastic Potato Starch	45
	2.8.3 Thermoplastic Cassava Starch	47
	2.8.4 Application of Thermoplastic	58
2.9	Thermoplastic Starch Composites	59
2.10	Waxes	61
	2.10.1 Synthetics Waxes	64
	2.10.2 Natural Waxes	65
	2.10.3 Application of Waxes	68
2.11	Plasticizer	70
	2.11.1 Glycerol	71
	2.11.2 Sorbitol	74
2.12	Packaging Material	77
	2.12.1 Packaging Material Types	79
2.13	Summary	81
СНАБ	ΣΤΕΡ 3 ΜΕΤΗΟΡΟΙ ΟΟΥ	87
3 1	Introduction	82
3.1	Material	84
5.2	3.2.1 Coconut Leaf Fiber	84
	3.2.2 Cassava Starch	85
	3.2.3 Glycerol	86
	3.2.4 Beeswax	87
33	Preparation of Sample	88
5.5	3.3.1 Preparation of Thermonlastic Cassava Starch	88
	3.3.2 Preparation of Thermoplastic Cassava Starch with Beeswax	90
	3.3.3 Preparation of Thermoplastic Cassava Starch with Beeswax	70
	Reinforced by Coconut Leaf Fiber	91
34	Characterization of Samples	93
5.1	3 4 1 Moisture of Content	93
	3.4.2 Water Absorption	94
	3.4.3 Thickness Swelling EKNIKAL MALAYSIA MELAKA	95
	3.4.4 Water Solubility	96
	3.4.5 Soil Burial	97
	3.4.6 Fourier Transform Infrared Spectroscopy (FTIR)	98
	3.4.7 Scanning Electron Microscopy (SEM)	99
	3.4.8 Density	99
3.5	Summary	100
~~~		
CHAP	TER 4 RESULTS AND DISCUSSION	101
4.1	Introduction	101
4.2	Moisture Content	101
4.3	Water Absorption	103
4.4	Thickness Swelling	105
4.5	Water Solubility	108
4.6	Soil Burial	109
4.7	Fourier-Transform Infrared Spectroscopy (FTIR)	111
4.8	Scanning Electron Microscopy (SEM)	114
4.9	Density E la sector (Den la sector)	118
4.10	Fabrication of Product	120
4.11	Summary	122

CHA	PTER 5	CONCLUSION AND RECOMMENDATION	123
5.1	Conclusion		123
5.2	Recommend	lation for Future Research	125
5.3	Project Pote	ntial	126
REFERENCES		130	
APP	APPENDICES		139



# LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Comparison between Thermoplastic and Thermosets	12
Table 2.2	The properties of commonly available thermosetting polymers	14
Table 2.3	The coconut fiber characteristic	26
Table 2.4	The several fibral/synthetic composite resin	26
Table 2.5	Amylose and amylopectin in starch	29
Table 2.6	Sources of starch corresponding to the amylose/amylopectin ratio and	
	crystallinity	31
Table 2.7	The commercially available starch and function	32
Table 2.8	The summary of the study from Thermoplastic Cassava Starch from	
	various sources of analysis.	35
Table 2.9	The Summary of Thermoplastic Potato Starch Composite from various	
	اوينوب سيني تيڪنيڪل مresource of references	41
Table 2.10	The most common polymers used in blends with thermoplastic	44
Table 2.11	Thermoplastic potato starch of composites from various resource of	
	references	47
Table 2.12	Thermoplastic cassava starch of composites from various resource of	
	references	49
Table 2.13	Analysis content of cassava roots from variety resources	50
Table 2.14	The main chemical composition of jute fiber and kapok fiber	52
Table 2.15	The general specifications of cassava starch are summarized	58
Table 2.16	The thermoplastic starch composites from various resource of references	s 60
Table 2.17	Characteristic beeswax	67

Table 2.18	Composition of unhydrolyzed beeswax	67
Table 2.19	The approximate composition of carnauba wax	68
Table 2.20	The classification of waxes	69
Table 2.21	The range of bio glycerol composition	71
Table 2.22	The Different physical and chemical glycerine properties	72
Table 2.23	The properties of sorbitol	75
Table 3.1	General properties of cassava starch	86
Table 3.2	The extracted starch composition	86
Table 3.3	Chemical composition of glycerol from QReC Chemical	87
Table 3.4	Provide general beeswax characteristics.	88
Table 3.5	The calculation for preparation of fiber and thermoplastic cassava starch	
	with beeswax at various percentages	92
Table 4.1	The analysis of variance (ANOVA) of moisture content	103
Table 4.2	The analysis of variance (ANOVA) of water absorption	105
Table 4.3	The analysis of variance (ANOVA) of thickness swelling	107
Table 4.4	The analysis of variance (ANOVA) of water solubility	109
Table 5.1	Material prices of biodegradable coconut leaf tray	127

## LIST OF FIGURES

FIGU	RE TITLE	PAGE
Figure	2.1 Molecular Structure of Polypropylene	10
Figure	2.2 Molecular structure of thermoset resins	11
Figure	2.3 Molecular structure of thermoplastic resins	12
Figure	2.4 The difference between thermoplastic and thermoset	13
Figure	2.5 The advantages of using bacillus in the production of biopolymers	16
Figure	2.6 The Structural Composite Material (Continuous)	17
Figure	2.7 The Structural Composite Material (Discontinuous)	17
Figure	2.8 The Major polymer matrix composite fabrication process	17
Figure	2.9 A typical group of composite materials	18
Figure	2.10 Types of composite materials (a) Random fiber (short fiber (b)	
	Continuous fiber (long fiber) (c) Particlers (Particulate composite) (d)	
	Flat flakes (Flake composite) (e) Filler (Filler composite)	19
Figure	2.11 Scope of FDM based polymers/composites in various applications	20
Figure	2.12 The coconut tree (Cocos nucifera)	21
Figure	2.13 the content in coconut tree	21
Figure	2.14 The fibers treated with NaOCl, NaOCl / NaOH, treated with NaOCl (c)	),
	and treatment with H2O2 (d) obtained with 10x objective in an optical	
	microscope	24
Figure	2.15 The stress-strain diagram of fibers of various coconut tree bits	24
Figure	2.16 The FTIR spectra of raw, H2O2-treated, NaOCl/NaOH-treated, and	
	NaOCl-treated green coconut fibre: (a) natural, (b) H2O2-treated, (c)	
	NaOCl/NaOH-treated, and (d) NaOCl-treated	25

Figure 2.17 The plant fiber classification	26
Figure 2.18 The surface of starch granules under scanning electron microscopy	29
Figure 2.19 The structure of amylose	30
Figure 2.20 The structure of amylopectin	30
Figure 2.21 A representation of starch structure (a) Corn-starch granules (30 $\mu$ m),	
(b) semi-crystalline and amorphous starch growth rings (120–500 nm),	
(c) crystalline and amorphous lamellae (9 nm), (d) growth rings and	
blocks internal structures (20–50 nm) (e) Double helices of amylopectin,	
(f) starch nanocrystals or called crystalline lamellae when starch	
nanocrystal produced via acid hydrolysis, (g) the molecular structure of	
amylopectin (0.1–1 nm), (h) the molecular structure of amylose (0.1–1	
nm)	31
Figure 2.22 (a) Cassava roots with conical, conical-cylindrical, cylindrical and	
furtificant allows (h) more pretion of concerns works and (c) drawing of	

fusiform shapes ; (b) cross-section of cassava roots; and (c) drawing of root cross-section containing different components including. (1) periderm or bark; (2) sclerenchyma; (3) cortical parenchyma; (4) phloem (1 to 4 = peel); (5) cambium; (6) parenchyma (starch reserves); (7) xylem vessels; and (8) xylem bundles and fibers and table 2.8 Analysis content of cassava roots from variety resources 34

- Figure 2.23 Schematic diagram of the structures which (a) linear amylose while (b) branched of amylose and amylopectin 37
- Figure 2.24 Illustrates the Scanning electron micrographs of starches separated from different sources: (a) rice, (b) wheat, (c) potato, and (d) maize (bar =  $10 \mu m$ ) 38

Figure 2.25 The Scanning electron micrographs featuring (a) the presence of some small nodules or protuberances on some potato starch granules and (b) surface fragmentation on some potato starch granules

Figure 2.26 The structures in potato starch granules: (a) Potato starch granules	
observed under polarized light showing the characteristic Maltese crosses	
and alternating amorphous and semi-crystalline rings. (b) Enlargement	
shows the structure of a semi-crystalline ring with amylose molecules	
embedded inside the amorphous lamellae and between the double helices	
of the amylopectin in the crystalline lamellae. (c) Transmission electron	
microscopy image of the crystalline residue obtained after hydrolyzing	
amylopectin-rich native A-type waxy maize starch granules with 2.2 N	
HCl for 18 days at 36 °C, and (d) B-type potato amylopectin starch	
granules. The preparations were negatively stained with uranyl acetate.	
Scale bars = $50 \text{ nm}$	40
Figure 2.27 The abstract graphic of starch potato processing	40
Figure 2.28 Schematic representation of the phase transitions of starch during	
thermal processing and aging	42
Figure 2.29 The starch granules from sugar palm starch	43
Figure 2.30 The biodegradable polymers—classifications	44
Figure 2.31 Graph reading of FT-IR spectra of (a) Thermoplastic cassava starch and	
jute fiber composite and (b) Thermoplastic cassava starch and kapok	
fiber composite by different contents of fiber	53
Figure 2.32 Graph pattern of X-ray diffraction for thermoplastic cassava starch and	

Figure	2.33 Graph pattern of X-ray diffraction for thermoplastic cassava starch and	
	kapok fiber composites by different fiber content	54
Figure	2.34 The Scanning Microscopy (SEM) of different composites ; (a)	
	TPCSTPCS/5% jute fiber, (b) TPCS/10% jute fiber, (c) TPCS/15% jute	
	fiber, (d) TPCS/5% kapok fiber, (e) TPCS/10% kapok fiber and (f)	
	TPCS/15% kapok fiber composites	55
Figure	2.35 Mechanical properties of thermoplastic cassava starch reinforced by jute	
	fiber and kapok fiber with different content of fibers (a) stress at	
	maximum load (MPa), (b) Young's modulus (MPa) and (c) strain at	
	maximum load (%)	56
Figure	2.36 Water absorption of (a) TPCS/jute fiber and (b) TPSC/kapok fiber	
	composites	57
Figure	2.37 The classification of waxes	63
Figure	2.38 FTIR spectra reading of (i) CS, (ii) CS-Gly, (iii) CS-Thy and (iv) CS-	
	اونيوم سيتي تيڪنيڪل مليسي Gly-Thy films	73
Figure	2.39 Glycerol and/or thymol mechanical properties of maize starch : (i)	
	Tensile strength (MPa), (ii) Elongation at break (%) and (iii) Young's	
	Modulus (MPa)	73
Figure	2.40 Thermogravimetric curves of CS, CS-Gly, CS-Thy and CS-Gly-Thy	
	films	74
Figure	2.41 Thickness screen for glycerol or sorbitol sugar palm starch	75
Figure	2.42 Glycerol and sorbitol impact on the density of PLC films	76
Figure	2.43 The glycerol and sorbitol impact on plasticized SPS films' solubility	76
Figure	2.44 The glycerol and sorbitol effect on plasticized SPS film moisture	
	content	77

Figure	2.45 SPS films plasticized by TGA curves of glycerol and sorbitol	77
Figure	2.46 The standard features required to pack foodstuffs	78
Figure	2.47 The packaging features include innovative packaging, active and smart	
	packaging	79
Figure	2.48 The various types of food packaging products flexibility	80
Figure	3.1 The Research Methodology's Flow	83
Figure	3.2 Process of extracting coconut leaf fiber	85
Figure	3.3 Cassava Starch	85
Figure	3.4 Glycerol contained 99.5% AR grade	86
Figure	3.5 Beeswax	87
Figure	3.6 Preparation The Mixture of Thermoplastic Cassava Starch (TPCS)	89
Figure	3.7 Fabrication The Mixture of Thermoplastic Cassava Starch (TPCS)	89
Figure	3.8 Process Preparation The Mixture of Thermoplastic Cassava Starch with	
	Beswax (TPCS)	91
Figure	3.9 Fabrication The Mixtureof Thermoplastic Cassava Starch with Beswax	
	(TPCS)	91
Figure	3.10 Fabrication of Thermoplastic Cassava Starch with Beeswax Reinforced	
	by Coconut Leaf Fiber	93
Figure	3.11 Methodology of Moisture Content	94
Figure	3.12 Methodology of Water Absorption	95
Figure	3.13 Methodology of Thickness Swelling	96
Figure	3.14 Methodology of Water Solubility	97
Figure	3.15 Methodology of Soil Burial	98
Figure	3.16 FTIR Spectroscopy Machine	99
Figure	3.17 Scanning Electron Microscopy (SEM) Machine	99

Figure 3.18 Methodology of Density	100
Figure 4.1 Percentage of Moisture Content of TPCS/Coconut Leaf Fiber with	
Different Fiber Loading	103
Figure 4.2 Percentage of Water Absorbed of TPCS/Coconut Leaf Fiber with	
Different Fiber Loading for 0.5 hour and 2 hours	105
Figure 4.3 Percentage of Thickness Swelling of TPCS/Coconut Leaf Fiber with	
Different Fiber Loading for 0.5 hour and 2 hours	107
Figure 4.4 Result of Water Solubility of TPCS/Coconut Leaf Fiber with different	
percentage of fiber loading	109
Figure 4.5 Percentage of mass reduction for soil burial testing of TPCS/Coconut	
Leaf Fiber in 4 weeks and 8 weeks	111
Figure 4.6 FTIR Spectroscopy of TPCS/Coconut Leaf Fiber composite with	
different percentage of fiber loading	113
Figure 4.7 SEM Micrograph of coconut leaf fiber	116
Figure 4.8 SEM Micrograph of TPCS with 0% coconut leaf fiber (A) 21X	
Magnification and (B) 100X Magnification	117
Figure 4.9 SEM Micrograph of TPCS with 10% coconut leaf fiber (A) 19X	
Magnification and (B) 300X Magnification	117
Figure 4.10 SEM Micrograph of TPCS with 30% coconut leaf fiber (A) 100X	
Magnification and (B) 100X Magnification	117
Figure 4.11 SEM Micrograph of TPCS with 40% coconut leaf fiber (A) 22X	
Magnification and (B) 100X Magnification	118
Figure 4.12 Density of TPCS/Coconut leaf fiber composite with different percentage	;e
of fiber loading	119
Figure 4.13 TPCS/Coconut leaf fiber sample tray	121

Figure	4.14 Application as container for tissue organizers	121
Figure	5.1 TPCS/Beeswas with 20% coconut leaf fiber sample tray	127
Figure	5.2 Application of Thermoplastic Cassava Starch/Beeswax with coconut leaf	
	fiber as skin care, make up and tissue organisers	127
Figure	5.3 Survey on Potential Product at Sayur & Buah (Himalaya & Frozen)	128
Figure	5.4 Survey on Potential Product at TM Jatikraf Group	129



# LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 5.1	Gantt Chart for PSM 1 Semester 2 2020/2021	139
Appendix 5.2	Gantt Chart for PSM 2 Semester 2 2020/2021 and Semester 2	140
Appendix 5.3	Turnitin Report	142



#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Background

In recent years, the environmental awareness and concern are spreading rapidly throughout the world. One of the factors that contributed to these changes was the enforcement of environmental law regulations (Prachayawarakorn et al.,2013). The use of non-biodegradable plastic contributes to environmental challenges such as water pollution, air pollution, and landfill problems. All of these difficulties have prompted fresh research into the production of biodegradable materials such as thermoplastic starch (TPS), which is derived from natural resources and is easily degradable.

Marichelvam et al., (2019), stated the plastic is widely employed in various industries, particularly the packaging industry; annual production of petroleum-based plastic reached more than 300 million tonnes until 2015, with just around one percent being bioplastic. Recently, around 50% of bioplastic preparations are made from starch because bioplastic-based starch is easy to manufacture and is frequently used in packaging applications. Due to the qualities of starch, as well suited for use in bioplastic manufacturing when combined with glycerol as a plasticizer (Marichelvam et al., 2019). The development of bioplastic has a favourable influence on the environment by lowering the use of fossil fuels and plastic waste, as well as the emission of carbon dioxide.

The usage of conventional thermoplastics has resulted in environmental issues, which has accelerated the development of biodegradable thermoplastic materials. Biodegradable materials are both safe for consumers and environmentally friendly. As a result, the commendable attempt to limit the use of non-biodegradable plastic and promote the use of biodegradable plastic.

Neat starch has several disadvantages, including a high solubility in water, brittleness, a low melting temperature, and inferior mechanical qualities when compared to synthetic polymer-based materials. Numerous physical and chemical modifications, including as plasticisation, mixing, derivation, and graft copolymerisation, were researched to improve the characteristics of starch. TPS is produced by infusing starch granules with mechanical and thermal energy and a plasticizer. Plasticisers are critical in the production of thermoplastic starch because they enhance starch behaviour by decreasing internal hydrogen bonding between polymer chains while increasing free volume. This results in increased flexibility and processability, as well as increased mobility of molecular chains. Plasticisers' effectiveness is dependent on the similarity of the polymer employed. Plasticisers are available in a variety of different forms, including glycerol, sorbitol, urea, fructose, sucrose, and glycol. However, the most often used plasticisers are those classified as polyols, including glycerol and sorbitol. Numerous studies have been undertaken recently to investigate the potential of specific ionic liquids (ILs) as new starch plasticisers (Jian et al., 2013). Additionally, in a recent study, fried sunflower oil was used as a plasticiser in thermoplastic starch composites. The characteristics of starch-based materials are improved, demonstrating that they are the most environmentally friendly option for bio-composites (Diyana et al., 2021).