

THE STRENGTH AND HYGROSCOPIC STUDY OF AGING FS3200PA NYLON MATERIAL USING SS402P SLS MACHINE FOR HYDRO QUALITY SURVEY SYSTEM (HydroQS) HOUSING

BACHELOR OF MECHANICAL ENGINEERING TECHNOLOGY (AUTOMOTIVE TECHNOLOGY) WITH HONOURS

2022

Faculty of Mechanical and Manufacturing Engineering Technology

THE STRENGTH AND HYGROSCOPIC STUDY OF AGING FS3200PA NYLON MATERIAL USING SS402P SLS MACHINE FOR HYDRO QUALITY SURVEY SYSTEM (HydroQS) HOUSING

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Ainuryusra Binti Mohamad Zawawi

Bachelor of Mechanical Engineering Technology (Automotive Technology) with Honours

(2022)

THE STRENGTH AND HYGROSCOPIC STUDY OF AGING FS3200PA NYLON MATERIAL USING SS402P SLS MACHINE FOR HYDRO QUALITY SURVEY SYSTEM (HydroQS) HOUSING

AINURYUSRA BINTI MOHAMAD ZAWAWI

Faculty of Mechanical and Manufacturing Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2022

DECLARATION

I hereby, declared this report entitled THE STRENGTH AND HYGROSCOPIC STUDY OF AGING FS3200PA NYLON MATERIAL USING SS402P SLS MACHINE FOR HYDRO QUALITY SURVEY SYSTEM (HydroQS) HOUSING is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

DEDICATION

To my beloved parents, family, and friends.

ABSTRACT

Water resources have been depleting in recent years. Statistics show that India, China, and Nigeria are the top three countries with a large number of deaths each year regarding water pollution. Water pollution can have negative effects on the health, environment, and economy. Furthermore, it can also bring impact on climate change that, resulting in higher water level, can cause floods and bad weather. In Malaysia, the beverage industries are one of the main water pollution contributors. All of these problems have also happened in Melaka. Sungai Melaka is currently being contaminated that has caused the death of fish diversity. Law enforcement, water recourse regulations, religious and moral education regarding the importance of rivers have all been implemented by the Melaka state government. However, the implementation of such initiatives has not resulted in lower levels of water contamination. The issue has progressed to a greater level, and it has grown more serious. Therefore, the main pollutants emitted by the major sources of pollution should be studied and identified, particularly in terms of spatial variation in Sungai Melaka. In this study, a Hydro Quality Survey System or HydroQS device will be implemented based on the best selection of material which is PA-12 Nylon powder, FS3200PA. The reason why PA-12 is chosen is that it suits the SS402P SLS 3D Printing machine that has been selected for printing HydroQS housing. This study will perform a field test to determine the mechanical properties and hygroscopic growth of the aging FS3200PA and to measure the dimension stability of the sintering samples. This study is to test the HydroQS housing based on the sample shape to be sent to 50KN Universal Tensile Machine (UTM) and the sample shape will be tested in Sungai Melaka. The HydroQS housing that will be produced is expected to have a lightweight, high strength, and low drag coefficient and fulfill all PPSPM concerns and requirements.

ونيؤم سيتي تيكنيكل مليسيا ملا UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Sumber air telah berkurangan semenjak beberapa tahun yang lalu. Statistik menunjukkan bahawa negara India, China, dan Nigeria adalah tiga negara teratas yang mengalami masalah pencemaran air dan telah menyebabkan kematian yang besar setiap tahun. Pencemaran air boleh mendatangkan kesan yang negatif kepada kesihatan, persekitaran dan ekonomi. Selain itu, hal ini juga bakal memberikan kesan perubahan iklim yang akan mengakibatkan penigkatan permukaan air, banjir dan cuaca buruk. Di Malavsia, industri minuman adalah salah satu penyumbang pencemaran air. Masalah yang dinyatakan juga telah berlaku di Melaka. Pada masa ini, Sungai Melaka telah dilaporkan tercemar dan menyebabkan kematian kepada pelbagai spesies ikan. Kerajaan negeri Melaka telah mengambil tindakan undang-udang, dasar sumber air, pendedahan melalui pendidikan agama dan moral tentang kepentingan sungai. Namun begitu, pelaksanaan projek-projek untuk menjaga kualiti air sungai tersebut masih belum mengubah tahap pencemaran air ke peringkat yang lebih rendah. Masalah ini berlanjutan sehingga tahap yang lebih tinggi dan menjadi lebih berbahaya. Oleh itu, punca pencemaran air yang utama perlulah dikaji dan ditentukan, terutamanya dalam variasi ruang di Sungai Melaka. Dalam kajian ini, Hydro Quality Survey System atau peranti HydroQS akan dilaksanakan berdasarkan pemilihan bahan yang terbaik iaitu serbuk nilon PA-12, FS3200PA. Antara sebab pemilihan bahan ini adalah kerana ia sesuai untuk digunakan pada mesin percetakan SLS 3D SS402P yang telah dipilih untuk mencetak 'HydroOS housing'. Kajian ini akan melaksanakan ujian lapangan untuk menentukan sifat mekanikal dan perkembangan hygroscopic untuk FS3200PA yang telah digunakan semula dan ujian ini juga untuk mengukur kestabilan dimensi pada sampel pensinteran. Kajian ini adalah untuk menguji 'HydroQS housing' berdasarkan bentuk sampel yang akan dihantar pada 50KN Universal Tensile Machine dan bentuk sampel akan diuji di Sungai Melaka. Projek HydroQS yang akan dijalankan ini diharapkan akan mempunyai jisim yang ringan namun kuat dari segi ketahanannya dan mempunyai koefisien seret pekali yang rendah.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENT

First and foremost, I would like to thank to my supervisor, Ts. Mohd Idain Fahmi bin Rosley, for the opportunity to be under his supervision. I appreciate all his contributions of time and guidance. Without his assistance and dedicated involvement in every step throughout the process, this Final Year Project would have never been accomplished. I would like to thank to my family for their love and encouragement. To my friends, Siti Aisyah binti Badrul Hisham, Siti Nur Amirah binti Azizi and Muhamad Ariff Hilmi bin Mokhtar Amat, thank you for all their support and ideas to complete my study.

TABLE OF CONTENTS

DEDI	ICATION	vi
ACK	NOWLEDGEMENT	ix
TABI	LE OF CONTENTS	Х
LIST	OF TABLES	xiv
LIST	OF FIGURES	XV
LIST	OF SYMBOLS	xxviii
LIST	OF ABBREVIATIONS	xxix
LIST	OF APPENDICES	XXX
CHA	PTER 1 INTRODUCTION	1
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Aims and Objectives	7
1.4	Research's Scope UNIVERSITI TEKNIKAL MALAYSIA MELAKA	8
CHA	PTER 2 LITERATURE REVIEW	9
2.1	Introduction	9
2.2	Water Pollution	9
2.2.1	Water Pollution in Sungai Melaka	12
2.3	Water Quality Monitoring Device	13
2.3.1	Past Product Background	13
2.4	Introduction to HydroQS	16
2.4.1	Material Properties for HydroQS	18
2.4.2	Types of PA-12 Material	20
2.4.3	Tensile Test for HydroQS Mechanical Properties	24
	2.4.3.1 Young's Modulus	24
	2.4.3.2 Yield Strength of the Material	25

	2.4.3.3 Ultimate Tensile Strength	25
	2.4.3.4 Fracture Strength	26
	2.4.3.5 Percent of Elongation	26
2.4.4	"Orange Peel" Texture	26
2.4.5	SLS Ageing Powder Hygroscopic Growth Water Effect	29
2.5	SLS Machine Farsoon SS402P	30
2.6	Summary of Research Gap	32
СНАР	PTER 3 METHODOLOGY	34
3.1	Introduction	34
3.2	Field Testing Process	34
3.3	Data Gathering Process Before and After Field Testing for Samples	35
3.4	Flow Chart	37
3.4.1	Project Flow Chart for Evaluation of Housing for Hydro Quality Survey System	m 27
2 / 2	The Planed Testing That Will be Conducted During This Study	38
3.4.2	50KN Universal Tensile Machine	30
3.5 3.5 1	50KN Universal Tensile Machine Equipment	39
3.5.1	50KN Universal Tensile Machine Procedure	<i>39</i> <i>4</i> 0
3.5.2	Gantt Chart	40
3.0	Chapter Summary	42
5.7	اويوم سيتي بيكنيكل مليكشيا الفارطية	
CHAP	TER 4 VERRESULT AND DISCUSSION VSIA MELAKA	45
4.1	Introduction	45
4.2	3D SLS Printing Process	45
4.3	Measurement on Hygroscopic Growth	51
4.3.1	The result on Dimension of Hygroscopic Growth vs Sample 1 for Rainwater	55
4.3.2	The result on Dimension of Hygroscopic Growth vs Sample 2 for Rainwater	58
4.3.3	The result on Dimension of Hygroscopic Growth vs Sample 3 for Rainwater	61
4.3.4	The result on Dimension of Hygroscopic Growth vs Sample 4 for Rainwater	64
4.3.5	The result on Dimension of Hygroscopic Growth vs Sample 5 for Rainwater	67
4.3.6	The result on Dimension of Hygroscopic Growth vs Sample 6 for Rainwater	70
4.3.7	The result on Dimension of Hygroscopic Growth vs Sample 7 for Rainwater	73
4.3.8	The result on Dimension of Hygroscopic Growth vs Sample 8 for Rainwater	76
4.3.9	The result on Dimension of Hygroscopic Growth vs Sample 9 for Rainwater	79
4.3.10	The result on Dimension of Hygroscopic Growth vs Sample 10 for Rainwater	82

4.3.11 Result on Dimension of Hygroscopic Growth vs Sample 11 for Distilled Water 85 4.3.12 The result on Dimension of Hygroscopic Growth vs Sample 12 for Distilled Water 87 4.3.13 The result on Dimension of Hygroscopic Growth vs Sample 13 for Distilled Water 90 4.3.14 The result on Dimension of Hygroscopic Growth vs Sample 14 for Distilled Water 93 4.3.15 The result on Dimension of Hygroscopic Growth vs Sample 15 for Distilled Water 96 4.3.16 The result on Dimension of Hygroscopic Growth vs Sample 16 for Distilled Water 98 4.3.17 The result on Dimension of Hygroscopic Growth vs Sample 17 for Distilled Water 101 4.3.18 The result on Dimension of Hygroscopic Growth vs Sample 18 for Distilled Water 1044.3.19 The result on Dimension of Hygroscopic Growth vs Sample 19 for Distilled Water 1064.3.20 The result on Dimension of Hygroscopic Growth vs Sample 20 for Distilled Water 109 4.3.21 The result on Dimension of Hygroscopic Growth vs Sample 21 for Seawater 112 4.3.22 The result on Dimension of Hygroscopic Growth vs Sample 22 for Seawater 115 4.3.23 The result on Dimension of Hygroscopic Growth vs Sample 23 for Seawater 118 4.3.24 The result on Dimension of Hygroscopic Growth vs Sample 24 for Seawater 121 4.3.25 The result on Dimension of Hygroscopic Growth vs Sample 25 for Seawater 124 4.3.26 The result on Dimension of Hygroscopic Growth vs Sample 26 for Seawater 127 4.3.27 The result on Dimension of Hygroscopic Growth vs Sample 28 for Seawater 130 4.3.28 The result on Dimension of Hygroscopic Growth vs Sample 29 for Seawater 133 4.3.29 The result on Dimension of Hygroscopic Growth vs Sample 31 for River Water136 4.3.30 The result on Dimension of Hygroscopic Growth vs Sample 32 for River Water139 4.3.31 The Result on Dimension of Hygroscopic Growth vs Sample 33 for River Water 142 4.3.32 The Result on Dimension of Hygroscopic Growth vs Sample 34 for River Water 145 4.3.33 The Result on Dimension of Hygroscopic Growth vs Sample 35 for River Water 148 4.3.34 The Result on Dimension of Hygroscopic Growth vs Sample 36 for River Water 150 4.3.35 The Result on Dimension of Hygroscopic Growth vs Sample 37 for River Water 153

4.3.36	The Result on Dimension of Hygroscopic Growth vs Sample 38 for River Wa	ter 156
4.3.37	The Result on Dimension of Hygroscopic Growth vs Sample 39 for River Wa	ter 159
4.3.38	The Result on Dimension of Hygroscopic Growth vs Sample 40 for River Wa	ter 162
4.3.39	Summary of The Result on Dimension of Hygroscopic Growth vs Sample	165
4.4 Quality	The Result for pH Water Level and Total Dissolve Solids (TDS) on Water y Tester	167
4.5	The Result for Tensile Strength (MPa)	171
СНАР	TER 5 CONCLUSION AND RECOMMENDATION	174
5.1	Conclusion	174
5.2	Recommendation	175
APPE REFE	RENCES UTEN	176 181
	اونيۈم سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2-1	DOE Water Quality Index 1 (Huang et al., 2015)	10
Table 3-1	Material properties of FS3200PA powder (FS3200PA - Farsoon	I
	Technologies - datasheet, 2021)	35

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1-1 Jet	ty at estuary Melaka River Cruise (Go Admin, 2013)	4
Figure 1-2 Th	e fish carcasses that found floating after Sungai Melaka has been	
	contaminated (Nurul Fhatihah Zakinan, 2019)	5
Figure 1-3 Ba	tu Hampar water barrage	5
	ALAYSIA	
Figure 1-4 Ba	ndar Hilir water barrage	6
Kult		-
Figure 2-1 Ri	ver water quality trend for 2008-2017 (Lee Goi, 2020)	11
FIG		
Figure 2-2 Ri	ver water Quality by States from 2008 to 2017 (Lee Goi, 2020)	11
Figure 2-3 De	esign for RTCS (Mukhtar et al., 2020)	14
UN	VERSITI TEKNIKAL MALAYSIA MELAKA	
Figure 2-4 Br	istol Is Open (Chen & Han, 2018)	15
-		
Figure 2-5 W	ater Ouality Monitoring System (Chen & Han, 2018)	15
8		
Figure 2-6 Hy	droQS System Functioning	17
0,		
Figure 2-7 Po	wder Bed Fusion Type (How Powder Bed Fusion Works	
		10
	Engineering Product design, 2019)	19
Figure 2-8 (Se	elective) laser sintering process comprised of (a) vertically	
	Freedow comprised of (a) vertically	
	movable build platform, (b) powder bed with embedded,	

sintered model layers, (c) laser source and (d) laser optics, (e)	
powder feedstock and deposition hopper, and (f) blade for	
powder distribution and leveling (Ligon et al., 2017)	20
Figure 2-9 Scanning electron microscopy (SEM) images of experimental	
samples (a) fresh polyamide (PA)-12 and detail of crack; (b)	
scrap PA12 and crack detail with melted bridges on the edge of	
the crack in detail.	21
Figure 2-10 (c) recycled PA12 particle with observed polyhedrons and (d)	
renewed with detail sample. Images captured at 25 kV in	
COMPO mode. This is a figure. Schemes follow the same	
formatting (Martynková et al., 2021)	22
Figure 2-11 Schematic Illustration of the two PBF processes: (a) SLS and (b)	
اونيوم سيتي تيڪنيڪي MJF (Cai et al., 2021) مارك	22
Figure 2-12 Tensile, Young's modulus and elongation value graph versus	
recycling times of PA-12 aging powder and test sample position	
during laser sintering process (Yao et al., 2020)	23
Figure 2-13 Stress-Strain curve for (a) SLS vs (b) MJF (Cai et al., 2021)	24
Figure 2-14 SEM images of (a) virgin and (b) aged PA12 powder used for SLS	
showing cracking on the particle (Dadbakhsh et al., 2017)	27
Figure 2-15 SEM test results of polyamide 12 powders (a) and parts using	
polyamide 12 powders (b) (Yang et al., 2021)	28

Figure 2-16 Laser sintering part with 'Orange Peel' texture (Pham, Dotchev and	
Yusoff, 2007)	28
Figure 2-17 Farsoon SS402P Selective Laser Sintering (SLS) machine (Farsoon	
Technologies, 2017)	30
Figure 2-18 Sintering process flow using Farsoon SS403P machine	31
Figure 3-1 Flow chart for evaluation of housing for HydroQS	37
Figure 3-2 The Planned Testing That Will be Conducted During This Study	38
Figure 3-3 Tensile Machine	39
Figure 3-4 Tensile Specimen	40
Figure 3-5 Gantt Chart HydroQS 1	42
اونبوم، سبني نيڪ، Figure 3-6 Gantt Chart HydroQS 2	43
Figure 4-1 The Powder is Dispersed to Feeder TankYSIA MELAKA	46
Figure 4-2 Preheat Process	47
Figure 4-3 Summary Generated After Parts Being Checked by Slicer Tools	47
Figure 4-4 The Excess Powder is Removed at Powder Purify Station	48
Figure 4-5 Tensile Test Specimen Dimension	51
Figure 4-6 The Length Measurement for the Samples	52
Figure 4-7 pH Water Calibration	53

Figure 4-8 Different Types of Water for the Sample to be Tested	53
Figure 4-9 SLS Samples to be Put Under Water	54
Figure 4-10 Measuring Water using the Measuring Cup	54
Figure 4-11 The Graph for Dimension A vs Sample 1	55
Figure 4-12 The Graph for Dimension D vs Sample 1	56
Figure 4-13 The Graph for Dimension H and I vs Sample 1	57
Figure 4-14 The Graph for Dimension J vs Sample 1	57
Figure 4-15 The Graph for Dimension A vs Sample 2	58
Figure 4-16 The Graph for Dimension D vs Sample 2	59
Figure 4-17 The Graph for Dimension H and I vs Sample 2	59
Figure 4-18 The Graph for Dimension J vs Sample 2 UNIVERSITI TEKNIKAL MALAYSIA MELAKA	60
Figure 4-19 The Graph for Dimension A vs Sample 3	61
Figure 4-20 The Graph for Dimension D vs Sample 3	62
Figure 4-21 The Graph for Dimension H and I vs Sample 3	62
Figure 4-22 The Graph for Dimension J vs Sample 3	63
Figure 4-23 The Graph for Dimension A vs Sample 4	64
Figure 4-24 The Graph for Dimension D vs Sample 4	65

Figure 4-25 The Graph for Dimension H and I vs Sample 4	65
Figure 4-26 The Graph for Dimension J vs Sample 4	66
Figure 4-27 The Graph for Dimension A vs Sample 5	67
Figure 4-28 The Graph for Dimension D vs Sample 5	68
Figure 4-29 The Graph for Dimension H and I vs Sample 5	68
Figure 4-30 The Graph for Dimension J vs Sample 5	69
Figure 4-31 The Graph for Dimension A vs Sample 6	70
Figure 4-32 The Graph for Dimension D vs Sample 6	71
Figure 4-33 The Graph for Dimension H and I vs Sample 6	71
Figure 4-34 The Graph for Dimension J vs Sample 6	72
Figure 4-35 The Graph for Dimension A vs Sample 7	73
Figure 4-36 The Graph for Dimension D vs Sample 7	74
Figure 4-37 The Graph for Dimension H and I vs Sample 7	74
Figure 4-38 The Graph for Dimension J vs Sample 7	75
Figure 4-39 The Graph for Dimension A vs Sample 8	76
Figure 4-40 The Graph for Dimension D vs Sample 8	77
Figure 4-41 The Graph for Dimension H and I vs Sample 8	78

Figure 4-42 The Graph for Dimension J vs Sample 8	78
Figure 4-43 The Graph for Dimension A vs Sample 9	79
Figure 4-44 The Graph for Dimension D vs Sample 9	80
Figure 4-45 The Graph for Dimension H and I vs Sample 9	80
Figure 4-46 The Graph for Dimension J vs Sample 9	81
Figure 4-47 The Graph for Dimension A vs Sample 10	82
Figure 4-48 The Graph for Dimension D vs Sample 10	82
Figure 4-49 The Graph for Dimension H and I vs Sample 10	83
Figure 4-50 The Graph for Dimension J vs Sample 10	84
Figure 4-51 The Graph for Dimension A vs Sample 11	85
Figure 4-52 The Graph for Dimension D vs Sample 11 UNIVERSITI TEKNIKAL MALAYSIA MELAKA	85
Figure 4-53 The Graph for Dimension H and I vs Sample 11	86
Figure 4-54 The Graph for Dimension J vs Sample 11	87
Figure 4-55 The Graph for Dimension A vs Sample 12	87
Figure 4-56 The Graph for Dimension D vs Sample 12	88
Figure 4-57 The Graph for Dimension H and I vs Sample 12	89
Figure 4-58 The Graph for Dimension J vs Sample 12	89

Figure 4-59 The Graph for Dimension A vs Sample 13	90
Figure 4-60 The Graph for Dimension D vs Sample 13	91
Figure 4-61 The Graph for Dimension H and I vs Sample 13	92
Figure 4-62 The Graph for Dimension J vs Sample 13	92
Figure 4-63 The Graph for Dimension A vs Sample 14	93
Figure 4-64 The Graph for Dimension D vs Sample 14	94
Figure 4-65 The Graph for Dimension H and I vs Sample 14	94
Figure 4-66 The Graph for Dimension J vs Sample 14	95
Figure 4-67 The Graph for Dimension A vs Sample 15	96
Figure 4-68 The Graph for Dimension D vs Sample 15	96
Figure 4-69 The Graph for Dimension H and I vs Sample 15 UNIVERSITI TEKNIKAL MALAYSIA MELAKA	97
Figure 4-70 The Graph for Dimension J vs Sample 15	98
Figure 4-71 The Graph for Dimension A vs Sample 16	98
Figure 4-72 The Graph for Dimension D vs Sample 16	99
Figure 4-73 The Graph for Dimension H and I vs Sample 16	100
Figure 4-74 The Graph for Dimension J vs Sample 16	100
Figure 4-75 The Graph for Dimension A vs Sample 17	101

Figure 4-76 The Graph for Dimension D vs Sample 17	102
Figure 4-77 The Graph for Dimension H and I vs Sample 17	102
Figure 4-78 The Graph for Dimension J vs Sample 17	103
Figure 4-79 The Graph for Dimension A vs Sample 18	104
Figure 4-80 The Graph for Dimension D vs Sample 18	104
Figure 4-81 The Graph for Dimension H and I vs Sample 18	105
Figure 4-82 The Graph for Dimension J vs Sample 18	106
Figure 4-83 The Graph for Dimension A vs Sample 19	106
Figure 4-84 The Graph for Dimension D vs Sample 19	107
Figure 4-85 The Graph for Dimension H and I vs Sample 19	108
Figure 4-86 The Graph for Dimension J vs Sample 19	108
Figure 4-87 The Graph for Dimension A vs Sample 20	109
Figure 4-88 The Graph for Dimension D vs Sample 20	110
Figure 4-89 The Graph for Dimension H and I vs Sample 20	110
Figure 4-90 The Graph for Dimension J vs Sample 20	111
Figure 4-91 The Graph for Dimension A vs Sample 21	112
Figure 4-92 The Graph for Dimension D vs Sample 21	113

Figure 4-93 The Graph for Dimension H and I vs Sample 21	113
Figure 4-94 The Graph for Dimension J vs Sample 21	114
Figure 4-95 The Graph for Dimension A vs Sample 22	115
Figure 4-96 The Graph for Dimension D vs Sample 22	115
Figure 4-97 The Graph for Dimension H and I vs Sample 22	116
Figure 4-98 The Graph for Dimension J vs Sample 22	117
Figure 4-99 The Graph for Dimension A vs Sample 23	118
Figure 4-100 The Graph for Dimension D vs Sample 23	119
Figure 4-101 The Graph for Dimension H and I vs Sample 23	119
Figure 4-102 The Graph for Dimension J vs Sample 23	120
Figure 4-103 The Graph for Dimension A vs Sample 24 UNIVERSITI TEKNIKAL MALAYSIA MELAKA	121
Figure 4-104 The Graph for Dimension D vs Sample 24	122
Figure 4-105 The Graph for Dimension H and I vs Sample 24	122
Figure 4-106 The Graph for Dimension J vs Sample 24	123
Figure 4-107 The Graph for Dimension A vs Sample 25	124
Figure 4-108 The Graph for Dimension D vs Sample 25	124
Figure 4-109 The Graph for Dimension H and I vs Sample 25	125

Figure 4-110 The Graph for Dimension J vs Sample 25	126
Figure 4-111 The Graph for Dimension A vs Sample 26	127
Figure 4-112 The Graph for Dimension D vs Sample 26	127
Figure 4-113 The Graph for Dimension H and I vs Sample 26	128
Figure 4-114 The Graph for Dimension J vs Sample 26	129
Figure 4-115 The Graph for Dimension A vs Sample 28	130
Figure 4-116 The Graph for Dimension D vs Sample 28	131
Figure 4-117 The Graph for Dimension H and I vs Sample 28	131
Figure 4-118 The Graph for Dimension J vs Sample 28	132
Figure 4-119 The Graph for Dimension A vs Sample 29	133
Figure 4-120 The Graph for Dimension D vs Sample 29	134
Figure 4-121 The Graph for Dimension H and I vs Sample 29	134
Figure 4-122 The Graph for Dimension J vs Sample 29	135
Figure 4-123 The Graph for Dimension A vs Sample 31	136
Figure 4-124 The Graph for Dimension D vs Sample 31	137
Figure 4-125 The Graph for Dimension H and I vs Sample 31	137
Figure 4-126 The Graph for Dimension J vs Sample 31	138