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ABSTRACT 

Vibrations are an inherent part of machinery. If not monitored or lowered to a safe level, the 

magnitude of this vibration rises over time and becomes damaging to the apparatus. 

Researchers worldwide are always conducting research on gear vibrations in order to 

enhance or suggest solutions to difficulties caused by the vibrations. Numerous components, 

particularly gears, can create these vibrations, which cause the machinery to shake at a 

specific frequency and might impair the machine's function if left unnoticed and 

undiagnosed. Vibrations of a high magnitude indicate that the gear is malfunctioning and 

should be evaluated; if left untreated, they can raise the cost of repairing the failure and 

shorten the machine's life. Gears typically face an increase in vibration magnitude when they 

sustain damage over time due to continual motion during operation. When a defective rolling 

element makes contact with another element's surface, impact force is generated, resulting 

in an impulsive gear response. Machinery performs poorly as a result of this increase in 

vibration magnitude. As a result, it is critical to monitor the gear's vibration status at all times 

and to diagnose any increase in its vibration amplitude immediately. To address this, 

vibration signal analysis can be used as an effective vibration monitoring technique, as 

demonstrated in this thesis. This thesis examines spur gear and helical gear vibrations under 

normal and fault conditions by conducting an experiment at speeds of 500 rpm, 1000 rpm, 

1500 rpm, and 2000 rpm under four different gear conditions to determine the vibration 

levels associated with each condition. Vibration Statistical Analysis (VSA) was then used to 

examine the vibration of this gear using MATLAB and Excel tools. As a result of the results, 

there is an increase in the transient components, which increases in lockstep with the running 

speed. Additionally, the graphs demonstrate that as the speed increases, the vibration with 

frequency increases in amplitude. By examining the scattering of z-freq data and its 

coefficient. It is visible that the dots spread throughout the affix and annex frequency, 

indicating that the scattered data exhibits a distinct pattern when the RMS speed increases 

for all conditions. To summarise, time domain is less suitable for fault prediction than the 

R-Squared approach because the graph difference between the defective and excellent 

situations is similar to the graph difference between the frequency domain graphs. The RMS 

and R-squared values in this thesis are used to predict the condition that creates the specific 

vibration. 

. 
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ABSTRAK 

 

 

Getaran adalah sebahagian daripada peralatan mesin. Jika tidak dipantau atau diturunkan ke 

tahap yang selamat, magnitud getaran ini meningkat dari semasa ke semasa dan menjadi 

merosakkan radas. Penyelidik di seluruh dunia sentiasa menjalankan penyelidikan tentang 

getaran gear untuk meningkatkan atau mencadangkan penyelesaian kepada kesukaran yang 

disebabkan oleh getaran. Banyak komponen, terutamanya gear, boleh mencipta getaran ini, 

yang menyebabkan jentera bergegar pada frekuensi tertentu dan mungkin menjejaskan 

fungsi mesin jika dibiarkan tanpa disedari dan tidak didiagnosis. Getaran dengan magnitud 

tinggi menunjukkan bahawa gear tidak berfungsi dan harus dinilai; jika tidak dirawat, 

mereka boleh meningkatkan kos membaiki kegagalan dan memendekkan hayat mesin. Gear 

biasanya menghadapi peningkatan dalam magnitud getaran apabila ia mengalami kerosakan 

dari semasa ke semasa akibat gerakan berterusan semasa operasi. Apabila elemen gelek yang 

rosak bersentuhan dengan permukaan elemen lain, daya hentaman dijana, menghasilkan 

tindak balas gear impulsif. Jentera berprestasi lemah akibat peningkatan magnitud getaran 

ini. Akibatnya, adalah penting untuk memantau status getaran gear pada setiap masa dan 

untuk mendiagnosis sebarang peningkatan dalam amplitud getarannya dengan segera. Untuk 

menangani perkara ini, analisis isyarat getaran boleh digunakan sebagai teknik pemantauan 

getaran yang berkesan, seperti yang ditunjukkan dalam tesis ini. Tesis ini mengkaji getaran 

gear memacu dan gear heliks di bawah keadaan normal dan kerosakan dengan menjalankan 

eksperimen pada kelajuan 500 rpm, 1000 rpm, 1500 rpm dan 2000 rpm di bawah empat 

keadaan gear yang berbeza untuk menentukan tahap getaran yang berkaitan dengan setiap 

keadaan. Analisis Statistik Getaran (VSA) kemudiannya digunakan untuk memeriksa 

getaran gear ini menggunakan alat MATLAB dan Excel. Hasil daripada keputusan, terdapat 

peningkatan dalam komponen sementara, yang meningkat dalam lockstep dengan kelajuan 

berjalan. Selain itu, graf menunjukkan bahawa apabila kelajuan meningkat, getaran dengan 

frekuensi meningkat dalam amplitud. Dengan meneliti taburan data z-freq dan pekalinya. 

Kelihatan bahawa titik-titik tersebar di seluruh frekuensi imbuhan dan lampiran, 

menunjukkan bahawa data yang berselerak mempamerkan corak yang berbeza apabila 

kelajuan RMS meningkat untuk semua keadaan. Ringkasnya, domain masa kurang sesuai 

untuk ramalan kesalahan berbanding pendekatan R-Squared kerana perbezaan graf antara 

situasi rosak dan cemerlang adalah serupa dengan perbezaan graf antara graf domain 

frekuensi. Nilai RMS dan R kuasa dua dalam tesis ini digunakan untuk meramalkan keadaan 

yang mewujudkan getaran tertentu. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

In engineering, Vibration is a crucial topic to examine since it occurs as a result of 

movement. This oscillatory movement exhibits features such as frequency, velocity, 

amplitude, displacement, acceleration, phase, and period. Physical vibration components 

include mass, stiffness, and damping, which are all comparable to acceleration, amplitude, 

velocity, and displacement, respectively. Vibration is classified into three types: forced 

vibration, free vibration, and damped/undamped vibration. Vibration are being quantified 

using frequency and amplitude measurements. The frequency specifies the duration of one 

single rotation. While amplitude can be defined as the range of motion of a weight all over 

a rotation. The frequencies of a vibration is measured in Hertz (Hz) units, or the number of 

cycles divided by time (second). The frequency of a vibration can also be expressed in cycles 

per minute. Additionally, cycles per minute is referred to as revolution per minute. Large or 

extreme vibration can have a detrimental effect on the effectiveness of a system or piece of 

equipment, and if not addressed or controlled, excessive vibration can result in errors. 

Reduced it can result in catastrophic failure, and increasing unnecessary costs (Systems & 

Bone, 2017). 

Statistical signal process is an approach that treats signals as stochastic processes and 

uses their statistical features to perform signals. In signal processing applications, statistical 

techniques are widely used. For example, when you photograph an image you can map the 
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probability distribution of noise and build techniques using the image model to reduce 

noise(Hong & Singh, 2014). 

Machine learning is a type of data analytics that automates the process of developing 

analytical models. It is a subfield of artificial intelligence predicated on the premise that 

systems could exhibit intelligent behavior, recognize designs, and make decisions without 

much human interaction. According to advancements in information technology, modern 

machine learning is not comparable to previous machine learning. It was predicated on object 

recognition and the assumption that computers may learn to execute particular jobs without 

being instructed; the creators, who were concerned in artificial intelligence, sought to 

determine whether computers can learn from data. The iterative nature of machine learning 

is critical because it allows models to alter independently as they are exposed to fresh data. 

If prior calculations yielded dependable, reproducible results. It is not a true technology, but 

one that is gaining new traction. While numerous machine learning methods have existed 

for a long period of time, the capacity to apply sophisticated mathematical computations to 

large amounts of data automatically and rapidly is a relatively recent development 

(Szymański, 2020). 
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1.2 Problem Statement 

Gears are a major element of rotating equipment and may be classified into three 

types: tooth, manufacturing method, and material. To identify a defective gear, it is nearly 

difficult to do so using simply human ears. Misalignment, out of position, fractures, and 

fractured gears are all frequent gear defects that must be detected prior to failure. When all 

of the machinery's parts and components are fully operational, noise and vibration may 

occur. In the long term, this condition may have a direct effect on the regular operation of 

all of the equipment. 

Additionally, not everyone has access to appropriate equipment or machinery 

capable of tracking down a malfunctioning piece of equipment in a timely manner. Vibration 

Analysis (VA) is a technique that may be used to discover early failures of parts or 

components such as gears, shafts, bearings, and belts. Gears, on the other hand, are prone to 

deteriorate over time if left untreated. If the spinning machinery breaks in this situation, it 

may quickly result in significant injuries and jeopardise the personal safety of the employees 

involved. Thus, severe loss of life and property can be avoided if the rotor system's noise 

and vibration can be detected and analysed. 

1.3 Research Objective 

i). To measure the vibrations of normal and faulty gear using accelerometer sensor. 

ii). To analyze the vibration data of the gears via various of vibration Statistical Analysis 

Methods. 

iii). To verify the analysis done by R-squared and Distribution method via Z-freq. 
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1.4 Scope of Research 

The following are the scope of this Faulty Gear Vibration Diagnostic and Monitoring 

research: 

• Helical gears and spur gears are all utilised in this research. 

• Two different gear situations were chosen for this research: a regular gear and 

a malfunctioning gear, in order to compare the outcomes between them. 

• Create a simulation model in MATLAB. 

• Conduct a vibration analysis utilising the Vibration Signal Analysis (VSA), 

the Fast Fourier Transform (FFT), the Time Domain, the Root Mean Square 

(RMS), and the Z-Freq Coefficient. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 

2.1 Introduction 

The literature review on condition monitoring and diagnostics, fault detection, signal 

processing, and vibration analysis will be discussed in this chapter. This study's references 

come from journals, books, and the internet. The goal of going over prior articles about faults 

in spur gear and helical gear is to obtain a better grasp of how to conduct faulty gear vibration 

diagnostic and monitoring. 
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Figure 2.1  Literature Review K-Chart 

 Faulty Gear Vibration Diagnostic and 

monitoring 

Gears 

Variety 

Condition 

Monitoring and 

Diagnostics 

Machine 

Learning 

Statistical 

Analysis 
Software 

Rack and 

Pinion 

Gears 

Worm 

Gears 

Bevel 

Gears 

Helical 

Gears 

Spur 

Gear Vibration 

Analysis 

Mean Absolute Percentage 

Error (MAPE) 

Z-Freq 

Coefficient 

Root Mean Squared 

Error (RMSE) 

Crest 

Factor 

Kurtosis 

Skewness 

Root Mean 

Squared (RMS) 

Standard 

Error 

Standard 

Deviation 

Variance 

Mode 

Median 

Mean 

LabVIEW 

MATLAB 



7 

2.2 Gears Variety 

Gears are widely used in industrial machinery, vehicles, and a variety of other 

applications. Mechanics can then be used to categories gear. It is most commonly 

categorized by the shape and size of the teeth, as well as the manufacturing process and the 

substance. In addition, shifting the axis position of the gears could be used. Spur Gear, 

Helical Gear, Worm Gear, Bevel Gear, and Rack and Pinion Gears are the most commonly 

used gears.  

2.2.1 Spur Gear 

     Gears with direct teeth are built on circular or cylindrical bodies with teeth inserted 

in parallel to the shaft. Transmission of motion and power is accomplished through the 

mating of parallel axes in matted pairs. For example, if the application is a planetary gear 

system or rack and pinion gear pair, then a Spur Gear can be used in conjunction with another 

Spur Gear, such as an internal gear (OuYang et al., 2015). Because of the spur gears' simple 

tooth design, they are both extremely accurate and simple to produce. Because of its 

simplicity, it is also one of the most commonly used gears in the manufacturing industry. 

For axial loads such as thrust power parallel to the shaft, high speeds and bulky maneuvers, 

and high efficiency ratings, spur gears are an excellent choice. 

The teeth of spur gears are subjected to more stress and vibration when operating at 

high speeds. When operating at high speeds, spur gears produce a high-pitched squealing 

noise. With their multiple speed ratios (see Fig. 2.2), spur gears can be used in many 

mechanical applications. There are many uses for this technology, including clocks, watering 

systems for pumps, washers, dryers, and other pumps, as well as gear trains that can provide 

a higher gear reduction. 



8 

 

2.2.2 Helical Gears 

It is possible to use helical gears to drive shafts that are not parallel or intersecting, 

just like spur gears. Due to the fact that helical gears have teeth curved around the cylindrical 

transmission at an angle to its front. The teeth of the helical gear are angled in the same 

direction on both the right and left gears in each gear pair. Because of the helical teeth' angled 

design, they work differently than the significant teeth of the spur gears when paired with 

other gears(Wei & Lin, 2011). When helical gears make contact, the total number of tooth-

to-tooth contact gradually increases rather than using the entire tooth at once. Allows the 

teeth to be loaded less and the operation to be smoother and smoother. Additionally, helical 

gears can be far more efficient than spur gears when it comes to distributing the load. They 

have a lower level of productivity. 

Because of the helical design's complexity and the axial thrust it generates, helical 

gears (Figure 2.3) have a number of drawbacks, such as the need for thrust bearings in every 

application where a single helical gear is used. As a result, the overall cost of using helical 

gears is also increased. Due to helical gears' ability to handle high speeds and heavy loads, 

Figure 2.2  Spur Gear  

 



9 

they are ideal for pump and generator applications. The smooth, leisurely operation of this 

gear is also well-suited to automobile transmissions when spur gears aren't present. 

 

2.2.3 Bevel Gears 

Cone-shaped gears with cone-shaped teeth are known as bevel gears. Power and 

movement are transferred between shafts using these devices in applications where the 

rotational axis must be adjusted. For 90-degree shaft combinations, bevel gears are typically 

used, but they can also be used for less- and larger-angled combinations. Many of its tooth 

shape distinguishes between bevel gears of the same type. Figure 2.4 shows the most 

common type of bevel gear: the straight and spiral. In terms of bevel gear designs, straight 

bevel gears are most common because of their simplicity and ease of production. 

A significant impact on noise levels, load pressure on gears, and overall gear 

reliability and performance can be expected when straight bevel gears are used. It's easier 

for teeth to come into contact with each other in spiral-shaped bevel gears because the teeth 

are curved, allowing for more gradual contact and engagement between teeth. Similarly, 

spiral bevel gears with teeth that are either right or left angled are open. Helical gears, which 

are more difficult and expensive to make because of their complexity, are also a challenge 

Figure 2.3  Helical Gear  
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(Padmanabhan et al., 2011). However, it is quieter and has a higher tooth strength than 

straight bevel gears when in operation. 

 

2.2.4 Worm Gears 

Using a worm wheel or a cylindrical gear, which is then attached to a worm and a 

scaffolded gear, worm gear pairs are created for various applications. Non-parallel shafts 

can be moved and powered together with this gear by turning it counter-clockwise. They 

have large gear ratios and the ability to reduce speed significantly while maintaining quiet 

and smooth operation. Due to differences in the worm gears' angular positions, the worm 

wheel may not be capable of rotating around the worm, and vice versa (Melnikov & 

Schegoleva, 2019). 

Self-locking devices benefit from this feature. Worm gears have a number of 

drawbacks, including low signal transmission and the need for constant lubrication between 

the worm wheel and the worm gears ( Figure 2.5). 

Figure 2.4  Bevel Gear  
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2.2.5 Rack and Pinion Gears 

There are two gears in the rack and pinion gear (Figure 2.6), which are referred to as 

both the rack and the pinion. The gear shelf could be used as a straight-toothed unending 

gear, whether cut out or mounted on the plate's surface. When mating a spur gear to a helical 

gear, the teeth of the gear rack are either parallel or cornered, depending on the spindle gear. 

It is possible to convert rotational motion into linear motion or the other way around for 

either of these rack designs. A rack and pinion gear combination's ease of construction, low 

development costs, and lower load capacity are some of its advantages (Vempati et al., 

2021). Gears using this approach are limited in number due to its advantages. The distance 

of the gear rack, for example, limits the transmission's ability to move in any direction. 

Figure 2.5  Worm Gear  
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2.3 Condition Monitoring and Diagnostics 

The electrical control components, the tooth, and the gearbox itself are the areas 

where gear systems have been documented to have suffered the most damage. This will 

demonstrate that the monitoring of gears utilising vibration condition is a significant 

advantage to the gear systems in operation. Vibration analysis methods are widely used for 

condition monitoring, and they aid in the diagnosis of machine damage as well as the 

prevention of unwanted and expensive consequential damages by detecting them in a timely 

manner.  

There were a number of conventional methods that were used most frequently in 

early studies for condition monitoring that were based on the cumulative probability 

characteristics of the vibration, such as the Fourier spectrum method (Inalpolat & Kahraman, 

2010), modulation sidebands, skewness, kurtosis (Zhang et al., 2016), and finally a Cestrum 

Analysis Method (CAM) . This explains why such approaches were extensively employed 

for monitoring systems in the past, and why they have been found to perform effectively in 

such circumstances. The gear system for the gearboxes was subjected to constant loading 

Figure 2.6  Rack and Pinion Gears 
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under these conditions. It goes without saying that a gearbox signal, for example, will have 

spectral characteristics that change over time in the majority of instances. Because the 

Fourier transform basically extends a signal as a linear combination of single frequencies 

that occur across time, the output will not be accurate when employing the Fourier transform. 

The monitoring of vibratory conditions, on the other hand, is primarily based on the 

concept that the rotating machinery has a specific vibration pattern for its usual state, which 

varies with the progression of damage over time (Antoni, 2006). To give an example, the 

gearboxes inside a wind turbine will have a vibration pattern that will change when the 

environment changes, such as when the wind speed, turbulence, and temperature change, as 

well a time fluctuation in the loads while the wind turbine operates (Ertek & Kailas, 2021). 

Furthermore, it can be concluded that when the gear system is working in a steady 

state, it will be a quick and convenient method for monitoring the vibration conditions. In 

general, condition monitoring methods are similar to other ways of harm detection in that 

they do not require the knowledge of correct conclusions about the frequency bands 

associated with the damage of the gears or any other components to be used in conjunction 

with them. 

2.3.1 Vibration Analysis 

     The vibration analysis approach is among the condition monitoring strategies It is the 

principal diagnostic tool for the vast majority of mechanical systems, regardless of whether 

they are spinning, reciprocating, or exhibiting other mechanical movement. There are many 

different types of vibration analysis techniques that can be used depending on their function. 

Many researchers have used various types of vibration analysis, as shown in Table 2.1. 

Vibration analysis is a technique for determining the operational and mechanical condition 

of rotating machinery. Several studies have used vibration analysis to monitor the condition 
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of a machine, whether it is rotating or reciprocating, such as a gear, motor, pump, or vehicle 

engine. 

No Types of vibration analysis 

1 Frequency Domain Analysis 

2  Time-Domain Analysis 

3 Time-Frequency Analysis 

4 Non-Linear Analysis 

5  Cepstral Analysis 

Table 2.1 Types of vibration analysis 

The advantages of vibration analysis include a quick response to changes, the ability 

to be used for both continuous and periodic monitoring, pointing to the real faulty 

component, and identifying developing problems before they become too significant and 

cause unplanned downtime. Finally, vibration analysis can be used as part of a larger 

programmed to improve equipment reliability dramatically. On a larger number of machines, 

periodic monitoring is used to provide long-term warning of developing faults. The factor of 

implementing periodic monitoring technique focuses on productivity losses rather than 

equipment cost.  

The vibration signal was measured using two different type of gear. The frequency 

spectrum and time waveform are the two main components used in vibration analysis. 

Understanding the relationship between time waveform and frequency spectrum is critical 

because it will aid in the analysis of vibration energy. The time waveform is a complex 

vibrational indication that shows how alternating current (AC) varies with time (Jiang et al., 

2017).  

As a result, the vibration spectrum is used to represent the vibration waveform in a 

more understandable way by displaying the frequency on the x-axis and the amplitude on 

the y-axis. The use of the Fast Fourier Transform can be used to convert a time waveform to 

a frequency spectrum (FFT). FFT as the number of resolution lines (Peters, n.d.). The use of 
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FFT to study the vibration behavior of an faulty gear for condition monitoring has been 

proposed (Sun & Han, 2020). Time waveform analysis can be used to detect faulty gears, 

engine, looseness, rubs, and beats. The use of fast dynamic time warping and correlated 

kurtosis has resulted in the development of a new time-domain diagnostic technique for fault 

identification (Sun & Han, 2020). 

2.4 Machine Learning 

     Since this world progresses continually to improve humanity, many scientists 

explore a technology that requires less human effort, or better. This means that the world is 

directed towards the intelligence (robotic systems and machineries), or that other people can 

say that they are “artificial intelligent” (AI). AI is like a machine or computer which has a 

human nature that can think like human beings and make decisions like human beings. 

Machine learning is, on the other hand, the subset of AI that forms a learning machine. 

Machine learning model searches the recognition of patterns in a data for conclusion 

determination. The example input in your system helps you to learn.  

Mechanical learning is also used in the industry as a tool to identify the problem in a 

machine. As a tool for conditionally maintained maintenance, Machine learning and data 

mining algorithm can detect abnormalities on a machine before failure happens. Machine 

training, supervised learning, unattended learning and strengthened training exist in three 

different ways. Learning is monitored when an algorithm is learned by example. 

Uncontrolled learning is a self-contained learning in which no response is provided. A simple 

example shows the algorithm itself. While enhancement is an algorithm, this example shows 

that there are no data or that there's no human trial or error (Accorsi et al., 2017). 



16 

2.5 Statistical Analysis 

Data collection and interpretation to uncover patterns and trends is statistical 

analysis. It is a data analysis component. In situations such as research interpretations 

collection, statistical modelling or survey and studies design, the statistical analysis can be 

used. The statistical analysis is used to calculate the measured signal coefficient (Nuawi et 

al., 2013). During gear operation, the input data is obtained during signal acquisition. The 

vibration statistical analysis is a mathematical platform approach. Applied statistical method 

in real time to analyze the performance of the proposed technique for irrelevant environment 

failure detection. The following are certain statistical measurements. 

2.5.1 Mean 

     The average of whole data points as shown in Equation 2.1 is known more 

commonly. It can be calculated by adding together all data numbers and dividing them with 

the total numbers. In other words it is the sum divided by the count (Sharma et al., 2014). 

�̅� =  
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1   (2.1) 

Where �̅� is indicating the mean value, ∑ 𝑥𝑖
𝑛
𝑖=1  total numbers of data and 𝑛 are the total 

numbers amounts. 
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2.5.2 Median 

     Median is the value that separates the higher half from the lower half of the statistical 

analysis data sample, populations or distribution of probabilities. It can be considered as a 

"middle" value for a data set. The median's basic feature when describing data is that it is 

not skewed by an extremely more or less proportion and provides more accurate analysis of 

a "typical" value. For example, middle income could be better for suggesting what is a 

"typical" income, as distribution of income can be very skewed. The median, as the most 

resistant statistical median with a breakdown point of 50%, is of central importance in 

statistical data. If less than half of the data is tainted, the median would not be excessively 

large or tiny (Sharma et al., 2014). 

2.5.3 Mode 

     The mode is the value that occurs most frequently in a collection of data values. 

When X becomes a random discrete variable, mode indicates the value of the probability 

mass function that is closest to its greatest value. In other words, it is the most frequently 

sampled value. Like the mean and median, mode means that important information on a 

random variable or a population is expressed in a usual single number. The mode value is 

identical to the mean and median values in a normal distribution, but may be significantly 

different in highly skewed distributions (Sharma et al., 2014). 
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2.5.4 Variance 

     Variation is the expectation in statistics analysis that a random variable deviates 

squarely from its mean. In other words, it measures the extent to which a number is divided 

between its average value (Jiang et al., 2017). Variance as stated in Equations 2.2 and 2.3 

is the measure of how the data sets are distributed. 

𝜎2 =  
∑( 𝑥 −  𝜇 )2

𝑛
 (2.2) 

Where 𝜎2 is the variance in population, 𝑥 is the data value, 𝜇 the mean population and 𝑛 the 

total point of data quantities. 

𝑠2 =  
∑( 𝑥−�̅� )2

𝑛
  (2.3) 

Where 𝑠2 is the standard variance in sample, 𝑥 is the data value, 𝑥 ̅is the sample mean of 

data point, and 𝑛 is the total quantities of data points. 
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2.5.5 Standard Deviation 

     In statistical analysis, the standard deviation is used to calculate the extent of 

variation or dispersion of values. The lower number indicates that the values are often close 

to the set's mean, whereas a higher number indicates that the values span a greater range 

(Sharma et al., 2014). As shown in Equation 2.4 and 2.5, the standard deviation is the 

measure of distribution. It shows the extent of variety provided in the sets of data. It indicates 

variation. 

𝜎 =  √
∑( 𝑥 −  𝜇 )2

𝑛
 

(2.4) 

Where 𝜎 is the population standard deviation, 𝑥 is the data value, 𝜇 is the mean of population 

data point, and 𝑛 is the total quantities of data points. 

𝑆 =  √
∑( 𝑥 −  �̅� )2

𝑛 − 1
 

(2.5) 

When 𝑆 is the standard deviation in sample, x is the data value, 𝑥 is the mean of sample data 

point and 𝑛 are the total quantities of data points. 
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2.5.6 Standard Error 

     The standard error of a statistical is that a statistical sample population 

standard deviation approximately by default. The standard error is a statistical term used to 

refer to the correctness of a sample distribution and population as measured by the standard 

deviation. Statistics demonstrate that the sample mean deviates from the population mean 

(Sharma et al., 2014). The population standard error is shown in Equation 2.6, and Equation 

2.7 is the sample standard error. 

𝜎�̅� =
𝜎

√𝑛
 (2.6) 

Where 𝜎 is standard deviation of the population and 𝑛 is the size of sample. 

𝑆�̅� =
𝑆

√𝑛
 (2.7) 

Where 𝑆 is standard deviation of the sample and 𝑛 is the size of sample. 
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2.5.7 Crest Factor 

     The Crest Factor is a waveform parameter that shows the ratio of summit values to 

actual value, for example the alternative current and sound. Higher crest factors indicate high 

peaks, such as high crest, for example sound waves. The Crest factor is the connection 

between current peak and current RMS (Taghizadeh-alisaraei et al., 2016). Crest factor is 

also referred to as the ratio of peak to rms, or the factor of peak or amplitude. A crest factor 

of 1.414 is the perfect sine wave. Crest factor can be used to monitor the trend of machine 

condition. Equation 2.8 shows the Crest factor formula (Alkhadafe et al., 2016).  

𝐶𝐹 =  |
𝑋𝑖 𝑚𝑎𝑥

𝑟. 𝑚. 𝑠
| (2.8) 

 

2.5.8 Skewness 

     The degree of asymmetry in the probability distribution is skewness in statistics 

(Sharma et al., 2014). Apart from positive and negative skew, distributions are also stated to 

have null or undefined skew on the normal distribution. Data mostly on right side of the 

curve can drop in a different direction than the data on the left side of the curve. The "tails" 

is known as these tapering’s. Negative skew indicates a longer or fatter tail on the left, 

whereas positive skew indicates a longer or fatter tail on the right (Sun & Han, 2020). The 

skewness of Equation 2.9 shows whether the average number of data is positive or negative. 

𝑆𝐾 =  
1

𝑁
∑ (

𝑥𝑖−�̅�

𝜎
)

3
𝑁
𝑖 =1   (2.9) 
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2.5.9 Kurtosis 

     Kurtosis is a statistical term that refers to the difference between a distribution's tails 

and the tails of a normal distribution. In other terms, kurtosis indicates rather or not a 

distribution's tails contain extreme values. If it is a positive kurtosis the normal distribution 

can be described as pointer or flatter, it will have a pointer bell form, and if it is negative it 

will be shaped flatter. The formula of kurtosis is shown in equation 2.10 (Alkhadafe et al., 

2016). Noise is very sensitive to it and can be detected by Kurtosis. In the direction of these 

overall performance indicators, signal filtering however is extremely important. 

𝐾 =  
1

𝑛𝜎4
∑ (𝑥𝑖 − �̅�)4𝑛

𝑖=1   (2.10) 

 

2.5.10 Root Mean Squared (RMS) 

     In statistics, the root mean square is the square root of the mean square. The RMS is 

sometimes known as the quadratic mean, whereas the generalized mean would be special 

instance with an exponent of two. For a continuously variable function, RMS can also be 

defined as an integral of the squares of peak value throughout a cycle. For the sine wave, 

the root mean value is 0.707. It provides a way to analyses a signal in a vibration analysis 

instantly. The area under the curve also increases when the RMS value increases. In general, 

the positive peak is the negative curve of a sinus wave, which averages the RMS value. The 

root mean square (RMS) shown in Equation 2.11 (John Mathey, 2013). 

𝑅𝑀𝑆 =  √[
1

𝑛
(𝑥1

2 + 𝑥2
2 + ⋯ + 𝑥𝑛

2)] (2.11) 
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2.5.11 Root Mean Squared Error (RMSE) 

     Root Mean Square Error is the standard deviation of residuals (prediction error). The 

term "residuals" refers to the distance between the data points and the regression line; the 

term "RMSE" refers to the spread of the residues. In other words, it indicates how the facts 

are organised optimally (Hong & Singh, 2014). The root mean square error (RMSE) shown 

in Equation 2.12. 

𝑅𝑀𝑆𝐸 =  √
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
 

(2.12) 

Where 𝑛 is the size of sample, �̂�𝑖 is the value of predicted, and 𝑦𝑖 is value of observed. 

2.5.12 Mean Absolute Percentage Error (MAPE) 

     The mean absolute percentage error is a metric used to determine the accuracy of a 

forecasting system. This accuracy is expressed as a percentage and can be calculated by 

dividing actual data by the absolute average percent inaccuracy by each time. Using Equation 

2.13, MAPE may be calculated. 

𝑀 =  
1

𝑁
∑ |

𝐴𝑡− 𝐹𝑡

𝐴𝑡
|𝑁

𝑡=1   (2.13) 

Where 𝐴𝑡 is actual value, 𝐹𝑡 is the value of forecast, and 𝑁 is the observation number. 
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2.5.13 Z-Freq Coefficient 

Numerous regular measurement signals are random or exhibit non-deterministic 

properties, posing a barrier for analysis using signal processing techniques. The majority of 

gear vibration signals are non-deterministic, meaning that the statistical value over a time 

range is more essential than a value at a specific instantaneous time. To extract information 

from this random signal, the Z-freq statistical approach was suggested. The signal generated 

by the acquired data is then converted to the frequency domain using the Fast Fourier 

Transform (FFT) and evaluated using the derived statistical approach to determine the Z-

freq coefficient value. The Z-freq approach generates a two-dimensional graphical 

representation of the observed signal's frequency distribution based on its kurtosis value. The 

time domain signal is divided into two frequency bands, with the x-axis representing low 

frequency (affix) and the y-axis representing high frequency (affix) (annex). Affix mob is 

composed of frequencies ranging from 0 to 0.5fmax, whereas annex mob is composed of 

frequencies ranging from 0.5fmax to 1.0fmax. The Z-freq coefficient measures the distance 

between each data point and the signal centroid in order to determine the distribution of the 

scattered data. The coefficient of Z-freq is defined as follows: 

 

𝑍𝑓 =  
1

𝑛
√𝐾𝑎𝑓𝑥𝑠4

𝑎𝑓𝑥 +  𝐾𝑎𝑛𝑥𝑠4
𝑎𝑛𝑥  (2.14) 

where 𝐾𝑎𝑓𝑥 and 𝑠𝑎𝑓𝑥 are the kurtosis and standard deviation, respectively, for the 

low-frequency range, and 𝐾𝑎𝑛𝑥 and 𝑠𝑎𝑛𝑥 are the kurtosis and standard deviation, 

respectively, for the high-frequency range. On the basis of the normal order of Daubechies 

signal decomposition, the 𝑍𝑓 coefficient is derived. 
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2.6 Software 

     Software is used widely for vibration analysis in numerous engineering industries 

including manufacturing, automotive industry, machinery, and even structural engineering. 

The use of software for vibration analysis is also important since it can be used to analyze 

the system's vibrational behavior and to detect early fault prior to severe damage. There is a 

lot of software that manufacturers can use to perform vibration analysis. For example, the 

most popular researchers recommend MATLAB (Matrix Laboratory) and LabVIEW 

(Laboratory Virtual Instrumentation Engineering Workbench) because it could integrated 

with the DAQ system in which vibration data from various machine elements can be 

acquired, analysed and interpreted.  

2.6.1 MATLAB (Matrix Laboratory)  

     MATLAB is an engineering and scientist programming platform designed to 

analyses and design systems and products which are transforming our world. MATLAB's 

core is the MATLAB language, a matrix language that allows computational mathematics 

to be most naturally expressed like the manipulation of metrics, function plotting and 

algorithm data implementation. Researchers use the MATLAB software to analyse the signal 

response time- and frequency domain in engineering perform a vibration analysis of the 

rotating shaft. In applicational areas like embedded systems, data analytics, robotics, 

wireless communication, image processing and computer vision, the MATLAB can also be 

used (Gopinath & Periyasamy, 2016). Data processing using MATLAB is widely used in 

engineering, in which data collected can be easily understood and processed in a much 

simpler form. Uses MATLAB to convert the time domain to the Fast Fourier transform 

domain (Nuawi et al., 2013). 



26 

2.6.2 LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) 

     LabVIEW is a platform for system design and development for visual programming. 

LabVIEW function for data acquisition systems testing and measurement (Hamel & 

Mohellebi, 2020). Otherwise, the device and instrument can be controlled, data processed, 

data analysed and the instrument can acquire data. This great feature is achieved through 

graphical programming techniques in a simple environment. To detect breakage in materials 

using LabVIEW to acquire data in real time (Hamel & Mohellebi, 2020). This could make 

very complex routines relatively easy for engineers and researchers to use. 
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CHAPTER 3  

 

 

METHODOLOGY 

3.1 Introduction 

A flow chart shows the process of this research in Figure 3.1. As mentioned in the 

preceding chapter, the gear fault may occur over time. Consequently, if a fault has not been 

previously recognized, it becomes a serious concern if the gear is failing or if it fails. The 

costs of upkeep will be increased. There were a lot of explanations about how this project 

went from the start to the end in this chapter. It took a long time to find the best way to do 

this research. There are programme called MATLAB that can help us do this variable 

analysis on gear faults. We can use these programme to make a model simulation for this 

variable analysis. This chapter can also tell how well the Vibration Analysis (VA) works 

based on the method and steps of the project. Next, to figure out how vibration works, you 

need to use a MATLAB programme to show how sound and vibration affect the parts you 

choose. These parts are usually inside a transportation component. 
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Figure 3.1 Project Flow Chart 
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3.2 Research Design 

There are two types of gear used in this study: Spur Gear and Helical Gear. The 

vibration signals from both of these types of gear are compared in MATLAB software for 

vibration analysis. It will be compared to the ISO 13373:2017 standard (condition 

monitoring and diagnostic of machines vibration condition monitoring). Next, we have ISO 

18431-2:2004. (Mechanical vibration and Shock-Signal Processing-Part 3: time domain 

windows for Fourier Transform Analysis). ISO 18431-3:2014 is also important (Mechanical 

vibration and shock-signal processing-part 3: methods of time frequency analysis). 

3.3 Experimental Setup  

The configuration utilises two distinct types of gears: Spur Gear and Helical Gear. 

Both pieces of equipment operate autonomously. A mix of defective and normal gears in 

two distinct sizes, Large Fault (Lf) and Small Normal (Sn), are used in this experiment. For 

all types of gear, other combinations include Large Normal (Ln) and Small Normal (Sn), 

Large Fault (Lf) and Small Fault (Sf), and Large Normal (Ln) and Small Fault (Sf). 

 

Figure 3.2  Experimental Setup 
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Figure 3.3  Large Gear Used 

 

 

 

 

Figure 3.4  Small Gear Used 
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Figure 3.5  Data Acquisition ( DAQ ) 
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3.3.1 Signal Processing 

The vibration signal is generated using a gear experimental setup that includes two 

different types of gears: Spur Gear and Helical Gear. Both pieces of equipment operate 

autonomously. A mix of defective and normal gears in two distinct sizes, Large Fault (Lf) 

and Small Normal (Sn), is used in this experiment. For all types of gear, other combinations 

include Large Normal (Ln) and Small Normal (Sn), Large Fault (Lf) and Small Fault (Sf), 

and Large Normal (Ln) and Small Fault (Sf). The accelerometer will then be linked to the 

closest equipment base or motor and to the DAQ in order to create the signal. The signal 

express is used in conjunction with a computer to produce Time Domain and Frequency 

Domain signals. There are two locations for sensors: Sensor 1 (S1) and Sensor 2 (S2). 

 

 

 

Figure 3.6  Accelerometer sensor1 (S1) and sensor 2 (S2) 
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3.3.2 Signal Analysis 

The setup consists of a simulation of a gear fault's real vibration. To begin, a model 

is created in MATLAB to serve as the basis for the simulation. Then, using the output of the 

simulation, do a vibration signal analysis. If the procedure does not succeed the first time, 

repeat it until it does. Following that, gather data based on the accurate findings from the 

simulation of the vibration signal analysis; this is a critical stage in order to compare it later 

to results from statistical method approaches. The first step is to collect signal processing 

data in the Time Domain and Frequency Domain for a combination of faulty and normal 

gears from Spur Gears and Helical Gears. These gears are available in two different sizes: 

Large Fault (Lf) and Small Normal (Sn), and contribute to this experiment at speeds of 500 

rpm, 1000 rpm, 1500 rpm, and 2000 rpm. After signal processing is complete, do a signal 

analysis utilising RMS, Z-freq Coeffiency, Standard Deviation, Skewness, and Kurtosis. It 

is carried out in Excel, which is used to compute and compare the gears and speed. Finally, 

draw a conclusion based on the comparison of the simulation to the data obtained throughout 

the process. 

3.4 Parameters 

The parameters used in this experiment include the machine's rotating speed, the 

sample rate, and the duration of the data collection period. Its purpose is to determine the 

difference in vibration between normal and defective gears. The data is taken during a 5 

second period at the speeds of 500 rpm, 1000 rpm, 1500 rpm, and 2000 rpm at which the 

machine must work. Spur Gear and Helical Gear are utilised in this experiment. 
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Components 

 

 

Speed  

(500 rpm) 

 

 

Speed  

(1000 rpm) 

 

Speed  

(1500 rpm) 

 

Speed  

(2000 rpm) 

 

Normal Gear 

 

    

 

Faulty Gear 

 

    

After that, the experiment is done again for the second and third time to make sure 

that the results are accurate. 

Table 3.2 Second test for a parameter that is used in simulations and to get data on how 

well it works 

 

 

Components 

 

 

Speed  

(500 rpm) 

 

 

Speed  

(1000 rpm) 

 

Speed  

(1500 rpm) 

 

Speed  

(2000 rpm) 

 

Normal Gear 

 

    

 

Faulty Gear 

 

    

 

 

Components 

 

 

Speed  

(500 rpm) 

 

 

Speed  

(1000 rpm) 

 

Speed  

(1500 rpm) 

 

Speed  

(2000 rpm) 

 

Normal Gear 

 

    

 

Faulty Gear 

 

    

Table 3.1 First test for a parameter that is used in simulations and to get data on how well it 

works 

 

Table 3.3 Third test for a parameter that is used in simulations and to get data on how well it 

works 

 



35 

There will then be an average of the data from all three tests to figure out how much 

data there is. To get the correct results, you need to do this step first. Finally, a graph of 

rotations per minute (rpm) vs. time (mins) between a normal gear and a faulty gear with three 

lines is shown. Each graph has three lines. Each line has 500 rpm, 1000 rpm, 1500 rpm, and 

2000 rpm. 

 

Components 

 

 

Average Speed  

(500 rpm) 

 

 

Averange Speed  

(1000 rpm) 

 

Average Speed  

(1500 rpm) 

 

Average Speed  

(2000 rpm) 

 

Normal Gear 

 

    

 

Faulty Gear 

 

    

 

3.5 Data Verification 

This is a method that enhances the vibrational measurements gathered in order to 

gain a better comprehension of the data provided. The R-Squared values and the data 

distribution graph were maintained using Excel software. R2 had to be more than 0.9 in order 

for it to be considered dependable. 

 

 

 

Table 3.4: An average of the parameters that were used in the simulation and the data that was 

gathered 
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CHAPTER 4  

 

 

RESULTS AND DISCUSSION 

4.1 Introduction 

Expected outcomes from this experiment will be discussed in this chapter, which is 

based on the technique that has been proposed. Once a model has been constructed, the 

results will be assessed using Vibration Signal Analysis (VSA) in MATLAB and the 

National Instrument Signal Express, with the parameters specified by the researcher. 

Furthermore, using the R-Squared approach, the results are compared and confirmed. Spur 

gears and Helical gears are the two types of gears that exist. It is possible to run both gears 

in parallel. Combining defective gear with non defective gear, which is available in two 

distinct sizes, namely Large Fault (Lf) and Small Normal (Sn), contributes to the success of 

this experiment. Other possible combinations include Large Normal (Ln) and Small Normal 

(Sn), Large Fault (Lf) and Small Fault (Sf), Large Normal (Ln) and Small Fault (Sf), Large 

Normal (Ln) and Small Fault (Sf), Large Normal (Ln) and Small Fault (Sf) for both types of 

gear, and Large Normal (Ln) and Small Fault (Sf) for one type of gear and Small Fault (Sf). 

Next, the experiment is carried out at four different speeds: 500rpm, 1000rpm, 1500rpm, and 

2000rpm. The results are presented in figures below. In order to verify accuracy, the run will 

be performed. 
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4.2 Calibration Result 

As for the first phase prior to conducting the analysis. Calibration of the sensor is 

performed to guarantee that no error occurs during the procedure. The calibration process is 

carried out using a calibration sensor metre, namely the Calibration Exciter Type 4294, 

which operates at 159.15Hz and has a maximum amplitude of nearly 160 Hz. All sensors 

have been calibrated and consistently produce the same result. This step is critical to ensuring 

that the accelerometer sensor provides correct readings during the data collection procedure. 

4.3 Spur Gear Monitoring 

Spur Gear Monitoring of time domain, frequency domain, and Z-Freq coefficients 

for this experiment. This experiment makes use of two sensors: Sensor 1 (S1) and Sensor 2. 

(S2). However, the time domain, frequency domain, and Z-Freq plots displayed below are 

from Sensor 2(S2) data alone. The particular sensor was chosen to represent the average 

outcome of the particular job. This is because the values of the data gathered from the two 

sensors are identical. 

4.3.1 Large Normal and Small Normal 
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Figure 4.1 Z-freq scattering for 500rpm, 1000rpm, 1500rpm, 2000rpm at Large Normal 

and Small Normal spur gears. 

 

The time domain and frequency domain experimental results for four different speeds 

in the Large Normal and Small Normal spur gear situation are shown in Figure 4.1. The time 

waveform data demonstrate the increase in transient components as the Spur Gear speed 

increases. The signal is filtered in the frequency domain using the Butterworth filter. Low 

frequency components, particularly those related to the spur gear speed, are eliminated. The 
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fluctuation at high frequencies is statistically more significant for Z-freq analysis. When a 

spur gear fails, it generates high frequency vibration components that can be exploited to 

detect the fault in the Z-freq. As the gear speed increases, the amplitudes below 1000Hz 

increase. The scattering of Z-freq coefficients for the Large Normal and Small Normal spur 

gears at 500 rpm, 1000 rpm, 1500 rpm, and 2000 rpm is shown in Figure 4.1, along with the 

time and frequency domains for each gear speed. As the gear speed increases, the red and 

yellow dots, in particular, expand over the affix frequency. Additionally, all of the dots can 

be seen to split from one another at a high affix frequency relative to the annex frequency. 

4.3.2 Large Normal and Small Fault 
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Figure 4.2 Z-freq scattering for 500rpm, 1000rpm, 1500rpm, 2000rpm at Large Normal 

and Small Fault spur gears. 

 

The time domain and frequency domain experimental results for four different speeds 

in the Large Normal and Small Fault spur gear situation are shown in Figure 4.2. The time 

waveform data demonstrate the increase in transient components as the Spur Gear speed 

increases. The signal is filtered in the frequency domain using the Butterworth filter. Low 

frequency components, particularly those related to the spur gear speed, are eliminated. The 

fluctuation at high frequencies is statistically more significant for Z-freq analysis. When a 

spur gear fails, it generates high frequency vibration components that can be exploited to 

detect the fault in the Z-freq. As the gear speed increases, the amplitudes below 1200 Hz 

increase. The scattering of Z-freq coefficients for the Large Normal and Small Fault spur 

gears at 500 rpm, 1000 rpm, 1500 rpm, and 2000 rpm is shown in Figure 4.2, along with the 

time and frequency domains for each gear speed. As the gear speed increases, the red and 
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yellow dots, in particular, expand over the affix frequency. Additionally, all of the dots can 

be seen to split from one another at a high affix frequency relative to the annex frequency. 

4.3.3 Large Fault and Small Normal 
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Figure 4.3 Z-freq scattering for 500rpm, 1000rpm, 1500rpm, 2000rpm at Large Fault and 

Small Normal spur gears. 

 

The time domain and frequency domain experimental results for four different speeds 

in the Large Fault and Small Normal spur gear situation are shown in Figure 4.3. The time 

waveform data demonstrate the increase in transient components as the Spur Gear speed 

increases. The signal is filtered in the frequency domain using the Butterworth filter. Low 

frequency components, particularly those related to the spur gear speed, are eliminated. The 

fluctuation at high frequencies is statistically more significant for Z-freq analysis. When a 

spur gear fails, it generates high frequency vibration components that can be exploited to 

detect the fault in the Z-freq. As the gear speed increases, the amplitudes below 1400 Hz 

increase. The scattering of Z-freq coefficients for the Large Fault and Small Normal spur 

gears at 500 rpm, 1000 rpm, 1500 rpm, and 2000 rpm is shown in Figure 4.3, along with the 

time and frequency domains for each gear speed. As the gear speed increases, the red and 

yellow dots, in particular, expand over the affix frequency. Additionally, all of the dots can 

be seen to split from one another at a high affix frequency relative to the annex frequency. 
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4.3.4 Large Fault and Small Fault 
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Figure 4.4 Z-freq scattering for 500rpm, 1000rpm, 1500rpm, 2000rpm at Large Fault and 

Small Fault spur gears. 

The time domain and frequency domain experimental results for four different speeds 

in the Large Fault and Small Fault spur gear situation are shown in Figure 4.4. The time 

waveform data demonstrate the increase in transient components as the Spur Gear speed 

increases. The signal is filtered in the frequency domain using the Butterworth filter. Low 

frequency components, particularly those related to the spur gear speed, are eliminated. The 

fluctuation at high frequencies is statistically more significant for Z-freq analysis. When a 

spur gear fails, it generates high frequency vibration components that can be exploited to 

detect the fault in the Z-freq. As the gear speed increases, the amplitudes below 1600 Hz 

increase. The scattering of Z-freq coefficients for the Large Fault and Small Fault spur gears 

at 500 rpm, 1000 rpm, 1500 rpm, and 2000 rpm is shown in Figure 4.4, along with the time 

and frequency domains for each gear speed. As the gear speed increases, the red and yellow 

dots, in particular, expand over the affix frequency. Additionally, all of the dots can be seen 

to split from one another at a high affix frequency relative to the annex frequency. 
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4.4 Helical Gear Monitoring 

Helical Gear Monitoring of time domain, frequency domain, and Z-Freq coefficients 

for this experiment. This experiment makes use of two sensors: Sensor 1 (S1) and Sensor 2. 

(S2). However, the time domain, frequency domain, and Z-Freq plots displayed below are 

from Sensor 2(S2) data alone. The particular sensor was chosen to represent the average 

outcome of the particular job. This is because the values of the data gathered from the two 

sensors are identical. 

4.4.1 Large Normal and Small Normal 
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Figure 4.5 Z-freq scattering for 500rpm, 1000rpm, 1500rpm, 2000rpm at Large Normal 

and Small Normal helical gears. 

The time domain and frequency domain experimental results for four distinct speeds 

in the Large Normal and Small Normal helical gear condition are shown in Figure 4.5. The 

time waveform data demonstrate the rise in transient components as the Helical Gear speed 

increases, as demonstrated by the spikes. The signal is filtered in the frequency domain using 

the Butterworth filter. Low frequency components, particularly those linked to the Helical 

gear speed, are eliminated. The fluctuation at high frequencies is statistically more 

significant for Z-freq analysis. In the instance of a malfunctioning helical gear, the flaws 

induce high frequency vibration components, which can be used to detect the fault in the Z-

freq. As the helical gear speed increases, the amplitudes below 1200 Hz increase. The 

scattering of Z-freq coefficients for the Large Normal and Small Normal helical gears at 500 

rpm, 1000 rpm, 1500 rpm, and 2000 rpm is shown in Figure 4.5, along with the time and 

frequency domains for each gear speed. As the gear speed increases, the green and yellow 
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dots, in particular, expand over the affix frequency. Additionally, all of the dots can be seen 

to split from one another at a high affix frequency relative to the annex frequency. 

 

4.4.2 Large Normal and Small Fault 
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Figure 4.6 Z-freq scattering for 500rpm, 1000rpm, 1500rpm, 2000rpm at Large Normal 

and Small Fault helical gears. 

The time domain and frequency domain experimental results for four distinct speeds 

in the Large Normal and Small Fault helical gear condition are shown in Figure 4.6. The 

time waveform data demonstrate the rise in transient components as the Helical Gear speed 

increases, as demonstrated by the spikes. The signal is filtered in the frequency domain using 

the Butterworth filter. Low frequency components, particularly those linked to the Helical 

gear speed, are eliminated. The fluctuation at high frequencies is statistically more 

significant for Z-freq analysis. In the instance of a malfunctioning helical gear, the flaws 

induce high frequency vibration components, which can be used to detect the fault in the Z-

freq. As the helical gear speed increases, the amplitudes below 1600 Hz increase. The 

scattering of Z-freq coefficients for the Large Normal and Small Fault helical gears at 500 

rpm, 1000 rpm, 1500 rpm, and 2000 rpm is shown in Figure 4.6, along with the time and 

frequency domains for each gear speed. As the gear speed increases, the green and yellow 

dots, in particular, expand over the affix frequency. Additionally, all of the dots can be seen 

to split from one another at a high affix frequency relative to the annex frequency. 
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4.4.3 Large Fault and Small Normal 
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Figure 4.7 Z-freq scattering for 500rpm, 1000rpm, 1500rpm, 2000rpm at Large Fault and 

Small Normal helical gears. 

The time domain and frequency domain experimental results for four distinct speeds 

in the Large Fault and Small Normal helical gear condition are shown in Figure 4.7. The 

time waveform data demonstrate the rise in transient components as the Helical Gear speed 

increases, as demonstrated by the spikes. The signal is filtered in the frequency domain using 

the Butterworth filter. Low frequency components, particularly those linked to the Helical 

gear speed, are eliminated. The fluctuation at high frequencies is statistically more 

significant for Z-freq analysis. In the instance of a malfunctioning helical gear, the flaws 

induce high frequency vibration components, which can be used to detect the fault in the Z-

freq. As the helical gear speed increases, the amplitudes below 1600 Hz increase. The 

scattering of Z-freq coefficients for the Large Fault and Small Normal helical gears at 500 

rpm, 1000 rpm, 1500 rpm, and 2000 rpm is shown in Figure 4.7, along with the time and 

frequency domains for each gear speed. As the gear speed increases, the green and yellow 

dots, in particular, expand over the affix frequency. Additionally, all of the dots can be seen 

to split from one another at a high affix frequency relative to the annex frequency. 
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4.4.4 Large Fault and Small Fault 
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Figure 4.8 Z-freq scattering for 500rpm, 1000rpm, 1500rpm, 2000rpm at Large Fault and 

Small Fault helical gears. 

The time domain and frequency domain experimental results for four distinct speeds 

in the Large Fault and Small Fault helical gear condition are shown in Figure 4.8. The time 

waveform data demonstrate the rise in transient components as the Helical Gear speed 

increases, as demonstrated by the spikes. The signal is filtered in the frequency domain using 

the Butterworth filter. Low frequency components, particularly those linked to the Helical 

gear speed, are eliminated. The fluctuation at high frequencies is statistically more 

significant for Z-freq analysis. In the instance of a malfunctioning helical gear, the flaws 

induce high frequency vibration components, which can be used to detect the fault in the Z-

freq. As the helical gear speed increases, the amplitudes below 1600 Hz increase. The 

scattering of Z-freq coefficients for the Large Fault and Small Fault helical gears at 500 rpm, 

1000 rpm, 1500 rpm, and 2000 rpm is shown in Figure 4.8, along with the time and frequency 

domains for each gear speed. As the gear speed increases, the green and yellow dots, in 

particular, expand over the affix frequency. Additionally, all of the dots can be seen to split 

from one another at a high affix frequency relative to the annex frequency. 
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4.5 Root Mean Square ( RMS ) 

In terms of RMS, the figure below uses data from Sensor 2(S2) to represent the 

average of the collected data. This is because the values of all the data collected from both 

sensors are similar. As for the trend depicted on the image, it indicates that the greater the 

running speed, the greater the RMS value. As the speed increases, the RMS value of both 

types of gear increases. The graph plots (y-axis) against (x-axis), i.e. RMS vs Speed (rpm). 
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Speed (rpm)  Large F / Small F Large F / Small N Large N / Small F Large N / Small N 

500 0.3004 0.3492 0.2891 0.2454 

1000 0.6188 0.6455 0.4422 0.2426 

1500 1.1989 1.3376 0.5833 0.3617 

2000 1.3664 1.2172 0.8624 0.4762 

 

 

 

Figure 4.9  RMS of Spur Gear 

 

 

 

 
Table 4.1 RMS of Spur Gear 
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Speed (rpm)  Large F / Small F Large F / Small N Large N / Small F Large N / Small N 

500 0.3256 0.2028 0.2282 0.2209 

1000 0.3706 0.381 0.3488 0.2419 

1500 0.4536 0.508 0.4511 0.318 

2000 0.6476 0.6608 0.5779 0.4338 

 

 

 

Figure 4.10 RMS of Helical Gear 

Table 4.2 RMS of Helical Gear 
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4.6 Z-Freq 

The Z-freq coefficient obtained is plotted in Figure 4.11 for each speed between 500 

and 2000 rpm for spur gear condition. For speeds between 500 and 1000 rpm, the Z-freq 

coefficient is nearly constant across the all condition. The Z-freq fluctuation is illustrated for 

the Large F/Small F and Large F/Small N. This could be a result of the spur gear state being 

unstable. This is also suggested by the fact that the Z-freq coefficient increased significantly 

from 1000 to 2000 rpm. 

 

 

Speed (rpm)  Large F / Small F Large F / Small N Large N / Small F Large N / Small N 

500 0.2131 0.3682 0.2089 0.1745 

1000 0.9913 0.4487 0.5908 0.1856 

1500 2.5972 0.919 0.991 0.509 

2000 2.7006 3.9421 1.5494 0.7967 

 

Figure 4.11 Z-Freq of Spur Gear 

 

Table 4.3 Z-Freq of Spur Gear 
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The Z-freq coefficient obtained is plotted in Figure 4.12 for each speed between 500 

and 2000 rpm for Helical gear condition. For speeds between 500 and 1000 rpm, the Z-freq 

coefficient is nearly constant across the all condition. The Z-freq fluctuation is illustrated for 

the Large F/Small F only. This could be a result of the helical gear state being unstable. This 

is also suggested by the fact that the Z-freq coefficient increased significantly from 1000 to 

2000 rpm. 

 

 

Speed (rpm)  Large F / Small F Large F / Small N Large N / Small F Large N / Small N 

500 0.1732 0.1175 0.117 0.1085 

1000 0.2501 0.3858 0.2683 0.1633 

1500 0.5981 0.7329 0.6065 0.2898 

2000 1.5124 0.8611 0.735 0.499 

 

 

Figure 4.12  Z-Freq of Helical Gear 

 

Table 4.4 Z-Freq of Helical Gear 
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4.7 R-Squared 

R-squared is a statistical measure that indicates how near the data is to the fitted 

regression line. It is also known as the coefficient of determination or, in the case of multiple 

regression, the coefficient of multiple determination. 
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Figure 4.13 R-Squared of Spur Gear  
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Figure 4.13 shows that the data collected from each Speed ( RPM ) and Z-freq is 

used to make the comparison by predict the statistical method. The polynomial regression 

has an R-squared value of 0.999, which is higher on Large Normal (Ln) and Small fault (Sf) 

spur gear condition because speed increase significantly on constant gear vibration at Spur 

gear condition. Due to the fact that the R-Square value exceeds 0.9, the data collected and 

analysis performed can be considered reliable in terms of predicting the outcome of spur 

gear vibration. 
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Figure 4.14 shows that the data collected from the each Speed ( RPM ) and Z-freq is 

used to make the comparison by predict the statistical method. The polynomial regression 

has an R-squared value of 0.999, which is higher on Large Normal (Ln) and Small Normal 

(Sn) helical gear condition because speed increase significantly on constant gear vibration. 

Due to the fact that the R-Squared value exceeds 0.9, the data collected and analysis 

performed can be considered reliable in terms of predicting the outcome of Helical gear 

vibration. 

4.8 Distribution 

In terms of distribution, the distribution procedure compares the accuracy of data 

acquired from the RMS and Z-Freq coefficients. All of the data presented is from both Spur 

Gear and Helical Gear, which includes a variety of faulty gear and normal gear in two sizes, 

Large Fault (Lf) and Small Normal (Sn), which contribute to this experiment. Other 

combinations include Large Normal (Ln) and Small Normal (Sn), Large Fault (Lf) and Small 

Fault (Sf), Large Normal (Ln) and Small Fault (Sf), Large Normal (Ln) and Small Fault (Sf) 

for both types of gear. The data is then processed at four separate speeds: 500rpm, 1000rpm, 

1500rpm, and 2000rpm, in that order. 
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Figure 4.15 Distribution of Spur Gear  
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Based on the distribution result from figure 4.15, it can be seen that speeds of 500rpm 

and 1000rpm have the closest accuracy among the other types of spur gear speed, indicating 

an accurate distribution. The next speeds are 1500 rpm and 2000 rpm, which have a 

substantially lesser accuracy than the earlier distribution speeds. 

Based on the distribution result from figure 4.16, it can be seen that speeds of 

500rpm, 1000rpm and 1500rpm have the closest accuracy among the other types of helical 

gear speed, indicating an accurate distribution. The next speed are 2000 rpm, which have a 

substantially lesser accuracy than the earlier distribution speeds. 
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CHAPTER 5  

 

 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

For the sake of conclusion, it can be stated that the fault diagnosis of gears using 

condition monitoring techniques is one of the most significant studies or analyses in the 

subject of rotating equipment. When normal gears and faulty gears such as Spur Gears and 

Helical Gears are used in this experiment with multiple speeds and multiple combinations 

of faulty and normal gears that are carried out, and when the efficiency classification is used, 

this can aid in the ability to identify a variety of gear faults that can be used for further fault 

diagnosis and can be used for further fault diagnosis. As a result of the analysis performed 

using MATLAB software to obtain the results, it has been determined that the time domain 

is not suitable for fault prediction when compared to frequency domain because the graph 

difference between fault and good condition is similar to the graph shown in the frequency 

domain. Then, the signal analysis that has been utilised in this experiment, which is RMS 

and Z-freq coefficiency, is useful for assessing the validity of the data acquired, as it 

demonstrates in greater or greater detail the behaviour of the normal and faulty gears based 

on the graph data. Finally, the research is concluded with the application of R-Squared and 

scatter distribution for the verification of the vibration signal for both types of gears through 

the use of the statistical method to verify the vibration signal for each type of gear. The 

primary goal of this research has been achieved, and it can also aid in a better understanding 

of the verification process of vibration analysis through the use of statistical methods, as well 

as a better understanding of the approach Vibration Signal Analysis (VSA) in the 

experiment, which are both beneficial. 
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5.2 Recommendation 

For the recommendation on this study, other varieties of gear and many more 

combinations of faulty and normal gears can be employed to acquire a better understanding 

of Vibration Signal Analysis (VSA). For instance, it can make use of Bevel Gears, Worm 

Gears, or Rack Gears to aid in the analysis's comprehension. Then, the laboratory's 

equipment can be improved by utilising a more advanced sort of machine that collects data 

more quickly or a machine that collects data more accurately. This is to ensure that time is 

saved and data obtained is more accurate, which results in increased efficiency for the 

individual doing the experiment or conducting the research. 
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APPENDICES 

APPENDIX A PSM 1 Gantt Chart. 

 

Progress Weeks 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Project briefing                    

Project Title Selection & Report 
Preparation                 

Chapter 1                    

Chapter 2                     

Chapter 3                  

Report Completion and Draft 
Submission                 

Report Submission and Presentation 
Video Submission                 

BDP Weekly Logbook        
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APPENDIX B  PSM 2 Gantt Chart. 

 

 

 

 

 

PROGRESS W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 

PROJECT BRIEFING COMPLETED               COMPLETED             

EXPERIMENTAL SETUP   COMPLETED                         

DATA COLLECTION       COMPLETED                     

RESULT ANALYSIS           COMPLETED             

RESULT VERIFICATION                   COMPLETED         

CONCLUSION & 
RECOMMENDATION 

                      COMPLETED        

WEEKLY BDP REPORTING 
(LOGBOOK) 

COMPLETED 

PROJECT REPORTING         COMPLETED      

4 PAGES SUMMARY                           COMPLETED 

PRESENTATION & SLIDES                           COMPLETED 
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APPENDIX C  Coding used in MATLAB to obtain Time Domain and Frequency Domain. 
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sebagai TIDAK TERHAD untuk tempoh LIMA tahun dari tarikh surat ini. Butiran lanjut laporan 
PSM tersebut adalah seperti berikut:  
 
Nama pelajar: RUTTIRAN A/L ANBUALAGAN (B091810371) 
Tajuk PSM: FAULTY GEAR VIBRATION DIAGNOSTIC AND MONITORING . 
 
3. Hal ini adalah kerana IANYA MERUPAKAN PROJEK YANG TIDAK DITAJA OLEH 
SYARIKAT LUAR DAN HASIL KAJIANNYA ADALAH SULIT. 
 
Sekian, terima kasih. 
  
“BERKHIDMAT UNTUK NEGARA” 
“KOMPETENSI TERAS KEGEMILANGAN” 
 
Saya yang menjalankan amanah, 
 
 
 
Ts Dr Nor Azazi Bin Ngatiman 
Penyelia Utama / Pensyarah Kanan   
Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan 
Universiti Teknikal Malaysia Melaka 
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