

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF STRUCTURE OF SMALL SCALE ROV FOR EDUCATIONAL PURPOSES (SERVICE MODULE)

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Mechanical Engineering Technology

MOHAMMAD AZIMIN BIN ABDULL AZIZISKA

B091810140

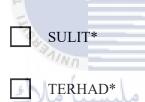
supervised by

MUHAMMED NOOR BIN HASHIM

FACULTY OF MECHANICAL AND MANUFACTURING ENGINEERING TECHNOLOGY

2021/22 Semester 1

UNIVERSITI TEKNIKAL MALAYSIA MELAKA


BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

TAJUK: DEVELOPMENT OF STRUCTURE OF SMALL SCALE ROV FOR EDUCATIONAL PURPOSES (SERVICE MODULE)

Sesi Pengajian: 2021/22 Semester 1

Saya **MOHAMMAD AZIMIN BIN ABDULL AZIZIS** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan (X)

TIDAK TERHAD Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972. Mengandungi maklumat TERHAD yang telah

ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

Yang benar,

Tarikh: 25/1/2022

Disahkan oleh penyelia:

(NIKAL MALAYSIA MELAKA

ÓOŘ BIN HASHIM

MOHAMMAD AZIMIN BIN ABDULL AZIZIS Alamat Tetap: LOT 1477, JALAN PUJUT 1 A, PUJUT NANGKA 3 , MIRI, SARAWAK, 98000

Cop penyelia TS. MUHAMMED NOOR BIN HASHIM JURUTERA PENGAJAR KANAN FAK. TEK. KEJ. MEKANIKAL DAN PEMBUATAN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Tarikh: 25/01/2022

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report titled DEVELOPMENT OF STRUCTURE OF SMALL SCALE ROV FOR EDUCATIONAL PURPOSES (SERVICE MODULE) is the results of my research except as cited in references.

m

Signature: Author's Name : MOHAMMAD AZIMIN BIN ABDULL AZIZIS Date: 25/1/2022

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Maintenance Technology) with Honours. The member of the supervisory is as follow:

MUHAMMED NOOR BIN HASHIM TS. MUHAMMED NOOR BIN HASHIM JURUTERA PENGAJAR KANAN FAK. TEK. KEJ. MEKANIKAL DAN PEMBUATAN UNIVERSITI TEKNIKAL MALAYSIA MELAKA Stamp & Date: 25/01/2022

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Pada masa hadapan, teknologi kita akan berkembang dengan lebih canggih untuk menangani segala tugas yang kita lakukan, akan selalu ada mesin atau jenis teknologi bahagian yang akan membantu kita dalam kehidupan seharian. Di sini kami menetapkan prototaip Mini ROV untuk tujuan pelajar, untuk membantu pelajar memahami proses yang harus diambil ROV, dan mekanisme bagaimana ia berfungsi. Ia memberi tumpuan kepada Modul Perkhidmatan. Objektif makalah ini adalah untuk mengembangkan modul perkhidmatan ROV mini dan membuat modul perkhidmatan ROV berskala kecil yang sesuai untuk tujuan pendidikan, di mana ia memberi tumpuan kepada pengajaran pelajar sekolah menengah untuk memperoleh pengetahuan mengenai komponen, sumber tenaga Mini ROV. Modul perkhidmatan ROV berskala kecil ini dirancang berdasarkan kaedah membuat reka bentuk Lebih-lebih lagi, reka bentuk silinder ROV berskala kecil dipilih kerana jika ciri kejuruteraan, yang penting untuk daya apung dan selamat dimasukkan semua komponen elektronik, juga memungkinkan untuk menyelam di bawah air tanpa merosakkan komponen ini. Mesin SLS digunakan untuk menghasilkan dan membuat keseluruhan komponen termasuk proses penggerudian dan pemutaran. Hasil kajian yang diharapkan adalah pengembangan modul perkhidmatan untuk ROV skala kecil untuk tujuan pendidikan, menggunakan bahan plastik nilon. Sebagai hasilnya, kriteria khusus diterapkan untuk memilih modul perkhidmatan ROV yang paling tepat. Yang merangkumi bentuk, bahan yang digunakan, fabrikasi atau kaedah pembuatannya.

ABSTRACT

In the near future later on, our technology will be developing in more upscale and sophisticated to handle regarding any task we do, there will always a machine or a technology type of part that will help us in our daily life. Here we designated a prototype Mini ROV for student purposes, to help the student understand the process of the ROV have to take, and the mechanism of how it works. This paper describes the development executing or the making of mini ROV which in this paper focusing on certain part. It focusing on Service Module. The objective of this paper is to develop a mini ROV service module and to fabricate a small-scale ROV service module which suited for educational purposes, where it is focusing on teaching the high school student to gain knowledge regarding the component, the power source of Mini ROV. This small-scale ROV service module designed based on engineering design. The final dimension of the small-scale ROV was 400 mm x 110 mm x 110 mm in size. Moreover, the small-scale ROV cylinder design IS chosen because if engineering features, which is important for buoyancy and safe to be inserted all the electronic component, also allowing it to dive underwater without damaging this component attach to it. The SLS was utilize to produce and fabricate the entire component including drilling and threading process. The study expected outcome is the development of a service module for a small-scale ROV for educational purposes, using a nylon plastic material. Which as a result, specific criteria were applied to select the most appropriate ROV service module. Which include their shape, material used, fabrication or manufacturing method.

DEDICATION

I dedicate all of my work to my family and to my friends. In this semester, I realize that once you have someone who is trust of you and believe in you will give us the strength to move forward and accomplishing our goal. Every challenge that I face today may not be compare what I am going to face in the real world. But I know for a fact, that I will always have their support in anything I may do in future. Apart from that, with a humble heart, I would to sincerely dedicate my work to my supervisor who guided me from beginning until now. Last but not least, to all my amazing wonderful helpful friends, thank you for the information you have gave me thorough out this semester and completing this project, regarding my PSM Project, they also help in giving mt guidance and helpful tips to complete this PSM Project. Without their support, and guidance I wouldn't be here today finishing this PSM Project and be where I am now, almost in the end of the Journey of Degree student. Thank you once again.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENTS

Firstly, I want to express my utmost gratitude to Allah S.W.T The almighty who giving me his blessing and giving me the health in order to finish this project. Making it smooth journey with a lot of experiences and knowledge that I can use in the future later on. Secondly, I would like to express my utmost gratitude my PSM Supervisor, TS Muhammed Noor Bin Hashim and my Co-Supervisor, Dr Mohd Khairi Mohamed Nor. Thank you for all your support and guidance regarding this PSM project. While thank you for understanding and the blessing they have gave me and my team mates regarding this PSM project. Giving us a full trust to finish this Project. Without the guidance and assistance, I and my fellow team mates may not finish this PSM project by our own. Also thank you to all my friends, team mates who are dearly helpful by helping me to finish this project, guiding me where I do wrong in the making of PSM project or executing this PSM report. Without their guidance and helps, I won't be able to finish the project on my own. Thank you for all the information they have share either directly or indirectly to complete this PSM Project. Thank you. Once again.

TABLE OF CONTENTS

		PAGE
DECI	LARATION	iii
APPF	ROVAL	iv
ABST	ГКАК	v
ABST	ΓRACT	vi
DEDI	ICATION	vii
ACK	NOWLEDGEMENTS	viii
TABI	LE OF CONTENTS	ix
LIST	OF TABLES	xiii
LIST	OF FIGURES	XV
LIST	OF APPENDICES	xviii
LIST	OF SYMBOLS	xix
LIST	OF ABBREVIATIONS	XX
LIST	OF PUBLICATIONS	xxi
CHA	PTER YERSITI TEKNIKAL MALAYSIA MELAKA	1
1.1	Introduction	1
1.2	Background	3
1.3	Problem Statement	4
1.4	Objective Of Research	5
1.5	Scope Of Research	5
CHA	PTER 2	6
2.1	Overview	6
2.2	History Of Remotely Operated Vehicle	6
	2.2.1 ROV of Intermediate Level	8
	2.2.2 ROV At Malaysia	9
2.3	Housing System	10

	2.3.1	Design Affordable Waterproof Housing	11
	2.3.2	Coating Electronic Materials for Housing System	11
	2.3.3	Underwater Camera Housing System	12
	2.3.4	Choosing a low-cost underwater camera housing	12
2.4	ROV	Basic Component	14
	2.4.1	Frame	15
	2.4.2	Camera	15
	2.4.3	Ballast Weight	16
	2.4.4	Tether	16
	2.4.5	Thruster	17
	2.4.6	Propeller	17
2.5	Floata	tion	19
2.6	Power	Transmission	19
	2.6.1	Power Source	20
	2.6.2	Arrangement Of Power System	20
	2.6.3	Vehicle Control For Power System	21
2.7	Engin	eering Design	22
	2.7.1	Morphological Chart	22
2.8	Manut	facturing Process	23
	2.8.1	Cutting Process	23
	2.8.2	Laser Cutting	24
	2.8.3	Selective Laser Sintering (SLS)	24
CHA	PTER 3	ERSITI TEKNIKAL MALAYSIA MELAKA	27
3.1	Introd		27
3.2	Design	nated Design of Service Module for Mini ROV (Sealing Compartment)	30
	3.2.1	Assembled Design	30
3.3	Assem	nbled Part Design	31
	3.3.1	Air Tight Seal Container Box	31
	3.3.2	Air Tight Top Cap	32
3.4	Electro	onic Component Uses	33
	3.4.1	Electronic Speed Control (ESC)	34
	3.4.2	Lithium Polymer Battery	35
	3.4.3	Power Distribution Board (PDB)	36
	3.4.4	Receiver	37
	3.4.5	Transmitter (Controller)	38

3.5	Soldering Process 3		
3.6	Waterproof the component		
3.7	Summary		
CHA	PTER 4	43	
4.1	Introduction	43	
4.2	Floatation	43	
	4.2.1 Requirements to float	44	
	4.2.2 Sealing Options	45	
4.3	Waterproof Housing	46	
	4.3.1 Requirement to Waterproof the Housing	46	
	4.3.2 Options for waterproof the housing	47	
	4.3.3 Test onto air tight seal container	48	
4.4	Power source for Mini ROV	51	
	4.4.1 Requirement needed	51	
	4.4.2 Option Given for Power Source	51	
	4.4.3 Testing Power Source	53	
4.5	Propulsion of Mini ROV	54	
	4.5.1 Thruster	54	
	4.5.2 Requirement for thruster	54	
	4.5.3 Option for thruster	55	
	4.5.4 Testing Thruster	56	
4.6	Motor Controller (Transmitter)	57	
	4.6.1 Requirement for Motor Controller	57	
	4.6.2 Option for motor controller	57	
	4.6.3 Test on the Motor Controller (Transmitter)	59	
4.7	System Level Overview	59	
	4.7.1 Component Block Diagram	60	
4.8	Wireless camera test	69	
	4.8.1 Camera test	72	
4.9	Transmitter Overview	74	
	4.9.1 Transmitter Specification	75	
4.10	Receiver Overview	76	
4.11	Electronic Speed Controller (ESC) Overview	77 79	
4.12			
4.13	Respond time of the Receiver		

4.14	Air tight seal analysis (Using Inventor Stress Analysis)	
	4.14.1 Safety Factor of Air Tight Seal Container	87
4.15	Cost Analysis	88
4.16	Gantt Chart (Progressed Scheduled on PSM 1)	89
4.17	Gantt Chart (Progressed Scheduled on PSM 2)	91
СНА	PTER 5	93
5.1	Conclusion	93
5.2	Recommendation	94
REFI	ERENCES	96
APPENDIX		99

LIST OF TABLES

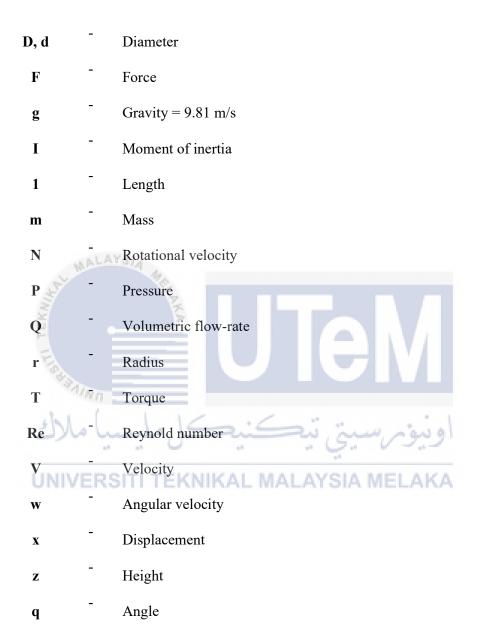
TABLE	TITLE	PAGE
Table 4.1: Buoya	ncy condition	44
Table 4.2 : Sealin	g Option for Mini ROV	45
Table 4.3.1: Opti	on for waterproof the housing	47
Table 4.4.2: Adva	antages and Disadvantages of seal	47
Table 4.5: Tissue	dryness test	49
1. D. P	ent option of power source	52
Table 4.7: Power	on each component	53
Table 4.8: Power	source calculation	54
Table 4.9: Differe	ent type of thruster	55
Table 4.10: Differ	rent type of motor controller (Transmitter)	57
Table 4.11: Com	ponent A Description L MALAYSIA MELAKA	62
Table 4.12: Com	ponent B Description	63
Table 4.13: Com	ponent C Description	64
Table 4.14: Comj	ponent D Description	65
Table 4.15: Com	ponent E Description	66
Table 4.16: Comj	ponent E Description	67
Table 4.17: Differ	rent type of camera option	69
Table 4.18: Resul	lt in distance test	72

Table 4.19: Command from the transmitter to the Mini ROV	75
Table 4.20: Result for distance and respond time (Underwater)	81
Table 4.21: Result for Distance and respond time (Outside surface)	82
Table 4.22: Cost Analysis of whole Component	88
Table 4.23: Gantt Chart for PSM 1	89
Table 4.24: Gantt Chart for PSM 2	91

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1 : PVC ROV made	by SCU	8
Figure 2.2 : Satria 102 Model		9
Figure 2.3 : Disassembled can	nera housing showing all the component	13
Figure 2.4 : Remotely Operate	ed Vehicle submersible component	14
Figure 2.5 : ROV Prototype F	rame	15
Figure 2.6 : Characteristic of	Thruster within a ROV	17
Figure 2.7 : Air Foil Speed		18
Figure 2.8 : Selective Laser Si	ntering inside chamber	25
Figure 3.1:Process of flow cha	urt for Service Module of Mini ROV	28
Figure 3.2 : Assembled Design		30
UNIVERSITI TEI Figure 3.3: Air Tight Seal Box	KNIKAL MALAYSIA MELAKA	31
Figure 3.4: Air tight Top Cap		32
Figure 3.5: Air Tight Seal Co	ntainer for Mini ROV	33
Figure 3.6: Electronic Speed (Control (ESC) for Mini ROV	34
Figure 3.7: Lithium Polymer	(LiPo Battery) for Mini ROV	35
Figure 3.8: Power Distribution	n Board (PDB) for Mini ROV	36
Figure 3.9: FlySky 6 Channel	RC Receiver for Mini ROV	37
Figure 3.10: Transmitter for M	Mini ROV	38

Figure 3.11: Soldering process onto the Mini ROV system component	39
Figure 3.12: Waterproofing the component	40
Figure 4.1: Air Tight Seal Container	48
Figure 4.2: Air tight seal testing	49
Figure 4.3: Air tight seal dryness test	50
Figure 4.4: Lithium Polymer Battery	52
Figure 4.5: Brushless Motor 20A 12V Underwater Thruster	56
Figure 4.6: Testing the transmitter	59
Figure 4.7: Ecosystem of the Mini ROV	60
Figure 4.8: Mini ROV mechanism system without the battery inserted	61
Figure 4.9: Component Layout Overview	61
Figure 4.10: Mini ROV system overview	68
اونيوس سيتي تيڪنيڪ Mini Camera	70
Figure 4.12: Captured photo from camera ALAYSIA MELAKA	71
Figure 4.13: Distance of station	72
Figure 4.14:Transmitter Overview Front Diagram	74
Figure 4.15Transmitter Overview Back Diagram	74
Figure 4.16: Transmitter Specification	75
Figure 4.17:Receiver diagram	76
Figure 4.18: Electronic Speed Control Overview system	77
Figure 4.19:Simple electronic speed control diagram	78


Figure 4.20:Main Circuit of ESC	78
Figure 4.21: PDB system overview	79
Figure 4.22: ESC wire soldered to the PDB	80
Figure 4.23: Testing distance between receiver and transmitter	81
Figure 4.24: Distance versus time taken to respond (underwater surface)	82
Figure 4.25: Distance versus time taken to respond (outside surface)	83
Figure 4.26:Contact Pressure direction exerted onto the air tight seal	84
Figure 4.27:Von-mises stress result	85
Figure 4.28: Max Displacement	86
Figure 4.29: Air Tight Seal Safety Factor	87
اويوم سيتي بيڪنيڪل مليسيا ملاك	
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	SMALL SCALE ROV COMPLETED	100-103
В	STRESS ANALYSIS FOR AIR TIGHT SEAL	104-124

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

ROV	Remotely Operated Vehicle	
DC	Direct Current	
AC	Alternate Current	
LiPo	Lithium Polymer	
НОQ	House Of Quality	
3D	Three Dimension	
CNC WALAYSIA	Computer Numeric Control	
CURV US PVC GTM SSC کل ملیب ا ملاک SSC	Able-controlled Underwater Research Vehicle United State Polyvinyl Chloride Global tech Serve Marine Seahorse Service Work Class	
LWROV	Light Work Class	
SLS	Selective Laser Sintering	
PDB	Power Distribution Board	
ESC	Electronic Speed Control	

LIST OF PUBLICATIONS

CHAPTER 1

INTRODUCTION

1.1 Introduction

In the past year, ROV has being used and have increase in uses following their usefulness in getting job done. Many of the vehicles being used for underwater activities of in many different genre of companies such as oil and gas installations, structures pipeline and as surveillance of the underwater surrounding (M.Said, 2015). For starter, the vehicle being stated are ROV which indicated remotely operated vehicles which are operated by a crew either aboard or floating vessel on proximate land. These vehicles are used for research and observation of underwater activities. Recently, several works on ROV have been reported for applications in ocean research. While this may have been the focus of application being used, some use ROVs to capture underwater images, of which nowadays there are open research line. However, despite the significant advance that has being achieved in different areas of application and development of ROVs, it is more likely having a wide range of specialties that come into play in achieving optimal functionality. (Aguirre-Castro, 2019). None to say the least, ROVs are unoccupied, highly useful and can be operated by one person where they can be safe from any dangerous surrounding. Moreover, ROVs is essential where its action as surveillance for the human eyes in watery region are helpful in getting data analysis based on the picture that they take where, the ROV is imparted with cameras and recording data. In addition, the ROVs are built in many different ways, either from their sizes or shape their main features is still act as monitoring devices towards the human to help understand better the aquatic life. The main point for having ROV is having the view of underwater surrounding while

being safe from danger. (Azis, 2012). In addition, most of ROVs are equipped with buoyancy units that provide sufficient lift force and vehicle stability, and a number of thruster/ impellers provide manipulation of movement of the whole units. While the above-mentioned units of the ROV, though in many cases, the effective accomplishment of specific task highly depend on the effective design of the manipulator units. The design of ROVs in designated in terms of diverse specifications such as minimum outreach, lifting capacity and wrist torque. Mostly during underwater task such as picking objects and manipulating mechanical parts or turning handles to close or opening the valves, for instance cannot be conducted without an appropriated designated and regulated manipulator. Thus, particular focus in onto the designation of the ROVs body and its mechanical properties. This does include manipulator arm, water sampler, instrument that measure clarity, light penetration, temperature and depth. (Oygarden, 2016).

In addition, small ROVs are especially suited for underwater natural resources agencies and academic institutions operating with affordable prices and easy to get resources. A small ROV can be operated from vessels as small as six meters with a minimum of equipment and crew. In contrast, unlike a large ROVs that typically require large, dedicated support vessel, a small ROV can be deployed from range of platforms that can be tailored to match the scale of operations and expected working conditions. More research being stated that small ROVs are capable of working at depth beyond scuba safe limits (~25 m) and also in complex habitats inaccessible to other nets, furthermore can be transported promptly and deployed in response towards acute or very short –term events. In any case, small ROV is perfect to conduct non-destructive sampling for monitored rare or fragile species. (Pacunski, 2008). Either way, the Value of ROVs for educational purposes is widely recognized as "ROV in a bag". Educational kits and international student ROV competition. (Stefanie Rettig, 2009). Never the less, ROV play a major part in researching and many more uses of it. One thing for sure is that the ROV making live better for those marine incorporation while going towards it, the ROV provided varies option to help in discovered more hidden places between the ocean. While at it, it helps in development of engineering problem such as reaching towards part which the diver unable to submerge into the depth. With the help ROV, they should be able to monitored and explore the subsea to go in deeper than one hundred meters. In addition, ROVs have so many advantages of it when It comes to inspection, capturing image of underwater level and many more, this project created due to obtaining knowledge that the student able to apply and understand the mechanism of ROV itself. The way it moves and how to operated it. Building and operating ROVs uniquely combines element of physics, science, engineering, programming, oceanography, and biology.

1.2 Background

Remotely Operated Vehicle (ROV) is a tethered robot, often employed for underwater operations. ROV is performed through a remote control while the pilot who is in control is far away from the scene. For example, on onshore or on a floating vessel. Below is description of a basic of Remotely Operated Vehicle which consists of:

- i. Control Navigation and Control System
- ii. Thruster (Propulsion)

iii. Light

- iv. Camera
- v. Body Structure
- vi. Service Module