DESIGN OF ULTRAWIDEBAND MICROSTRIP ARRAY ANTENNA FOR 5G COMMUNICATION

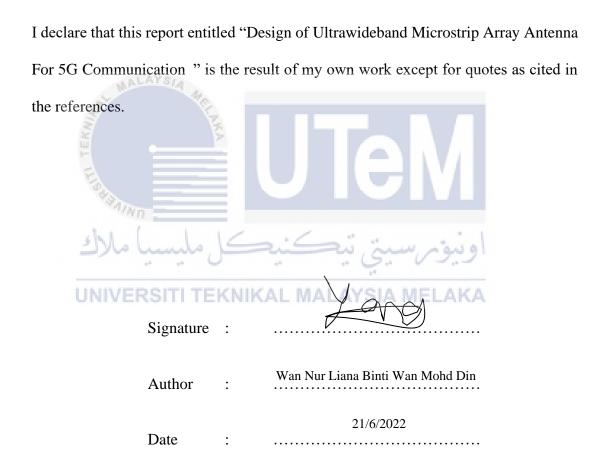
WAN NUR LIANA BINTI WAN MOHD DIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN OF ULTRAWIDEBAND MICROSTRIP ARRAY ANTENNA FOR 5G COMMUNICATION

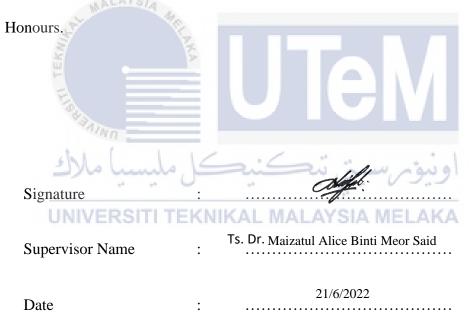
WAN NUR LIANA BINTI WAN MOHD DIN

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours



UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2022


FAKULTI KEJUTERA اونيۇر،سىينى تيكنىكل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	I TEKNIKAL MALAYSIA MELAKA AAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER NG PENGESAHAN STATUS LAPORAN COJEK SARJANA MUDA II Iltrawideband Microstrip Array Antenna hmunication
Sesi Pengajian : <u>2021/2022</u>	
	AN MOHD DIN mengaku membenarkan pan di Perpustakaan dengan syarat-syarat
 Perpustakaan dibenarkan membu pertukaran antara institusi pengajiat Sila tandakan (✓): 	salinan untuk tujuan pengajian sahaja. at salinan laporan ini sebagai bahan
TERHAD*	(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
/ TIDAK TERHAD	
(TANDATANGAN PENULIS)	Disahkan oleh:
Alamat Tetap: Simpang Empat Kampung Gerong Palekbang 16040 Tumpat Kelantan	(COP DAN TANDATANGAN PENYELIA) DR. MAIZATUL ALICE BT MBOR SAID Penyarah Kanan Fakulti Kejuruteman Elektronik Dan Kejuruteman Kemputer Universiti Tekultai Malaysia Melaka (UTeM) Hang Tuah Jaya 76100 Durian Tunggal, Melaka
Tarikh : 21 Jun 2022	Tarikh : 21 Jun 2022

DECLARATION

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with

DEDICATION

This project is devoted to myself, as an engineer student, and this is the first of my projects ever, as I am currently studying and attempting to accomplish this project. It is also dedicated to my mother and father, who showed me that even the most difficult endeavour can be finished if approached patiently and one step at a time. Finally, I would want to express my heartfelt gratitude to my project supervisor, Dr. Maizatul Alice Binti Meor Said, and to all my friends for being such pillars of support throughout this project's journey.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Wireless technology is currently a rapidly evolving technology that has a significant impact on social life. This non-wired technology necessitates an examination of the need for antenna development, as the antenna is the primary device for this technology. In the current research trend, antenna research is rapidly progressing, resulting in many antennas designs in modern wireless technology because it allows a single antenna to be used in multiple systems. Five Generation (5G) wireless technology is currently the next generation of wireless technology, with many advantages such as higher data rates, greater reliability, network scalability and flexibility, incredibly fast, super real time, improved efficiency, and excellent service in congested areas. This research focuses on an array antenna operating at 3.5 GHz. In this study, several designs for an optimal antenna will be chosen and manufactured. The design, which is light in weight, low in cost, and has a wider coverage area, will be tested to ensure that it meets the requirements so that it can be used by our local rescuers in the future. CST Studio Suite has been used as the simulator and the results was measured through Network analyzer.

ABSTRAK

Teknologi tanpa wayar pada masa ini merupakan teknologi yang berkembang pesat yang mempunyai kesan yang besar terhadap kehidupan sosial. Teknologi bukan berwayar ini memerlukan pemeriksaan tentang keperluan untuk pembangunan antena, kerana antena adalah peranti utama untuk teknologi ini. Dalam aliran penyelidikan semasa, penyelidikan antena sedang berkembang pesat, menghasilkan banyak reka bentuk antena dalam teknologi wayarles moden kerana ia membenarkan satu antena digunakan dalam berbilang sistem. Teknologi wayarles Lima Generasi (5G) kini merupakan generasi teknologi wayarles yang akan datang, dengan banyak kelebihan seperti kadar data yang lebih tinggi, kebolehpercayaan yang lebih tinggi, kebolehskalaan dan fleksibiliti rangkaian, sangat pantas, masa nyata super, kecekapan yang dipertingkatkan dan perkhidmatan cemerlang di kawasan yang sesak. Penyelidikan ini memfokuskan pada antena tatasusunan yang beroperasi pada 3.5 GHz. Dalam kajian ini, beberapa reka bentuk untuk antena yang optimum akan dipilih dan dihasilkan. Reka bentuk yang ringan, kos rendah, dan mempunyai kawasan liputan yang lebih luas, akan diuji untuk memastikan ia memenuhi keperluan supaya ia boleh digunakan oleh penyelamat tempatan kami pada masa hadapan. CST Studio Suite telah digunakan sebagai simulator dan hasilnya diukur melalui Penganalisis Rangkaian.

ACKNOWLEDGEMENTS

In Allah's name, the Most Gracious, the Most Merciful. First and foremost, I would like to express my gratitude to Allah SWT for His Rahmat, mercy, and guidance in my life. Finally, with His blessing, I was able to complete my thesis on " Design Of Ultrawideband Microstrip Array Antenna For 5G Communication."

Second, I'd like to thank my family for always being there for me and motivating me to finish my final year project. They have given me so much hope that I will be able to complete this thesis. When I feel like giving up, this thesis would not be complete without their encouragement and support. Next, a special thanks to my Supervisor, Dr Maizatul Alice Binti Meor Said, for his encouragement, guidance, and great ideas on my study and research involving the theoretical and development process of constructing the hardware. This thesis would not have been the same without his ongoing support and interest.

Finally, I'd like to thank all of my friends who assisted me in making this thesis a success. I appreciate all of their encouragement and motivation until I completed this project completely.

TABLE OF CONTENTS

Declaration	
Approval	
Dedication	
Abstract MALAYSIA	i
Abstrak	ii
Acknowledgements	iii
اونيون سيخ تنڪنڪ مليسيا مارڪ	V
List of Figures	ix
UNIVERSITI TEKNIKAL MALAYSIA MELAKA List of Tables	xii
List of Symbols and Abbreviations	xiii
List of Appendices	xiv
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1-2
1.2 Problem Statement	3-4
1.3 Objective	4

1.4	Scope Of Project	4-5
CHA	APTER 2 BACKGROUND STUDY	6
2.1	General Overview	6
2.2	Return Loss	7
2.3	Gain	7
2.4	Bandwidth	7-8
2.5	Radiation Pattern	8
2.6	Literature Review	9-12
CHA	APTER 3 METHODOLOGY	13
3.1	General Overview اونيونر،سيتي تيڪنيڪل مليسيا ملاک	13
3.2	Development Procedure IKAL MALAYSIA MELAKA	14-15
3.3	Preliminary Calculation	16
3.4	Process for Fabrication	17
3.5	Design Specification	18
3.6	Design Process for Patch Antenna	18-20
3.6.1	Single Element Antenna Design	20-24
3.6.2	Two Element Antenna Design	25

3.6.3	Four Element Antenna Design	26-27
3.6.4	Eight Element Antenna Design	27-29
3.7	Antenna Fabrication	30-32
3.8	Antenna Measurement and Testing	32
3.8.1	Return Loss Measurement	33
3.8.2	Far Field Measurement	34-35
3.8.3	Antenna Gain Measurement	35-36
СНАР	TER 4 RESULTS AND DISCUSSION	37
4.1	General Overview	37
4.2	Simulation Result Antenna	38
4.2.1	Single Element Antenna UNIVERSITI TEKNIKAL MALAYSIA MELAKA	38-40
4.2.1	Two Element Antenna(2x1)	41-43
4.2.2	Four Element Antenna(4x1)	43-45
4.2.3	Eight Element Antenna(8x1)	46-48
4.3	Experimental Results	49
4.3.1	Return Loss Measurement	49-52
4.4	Result Measure	53-54

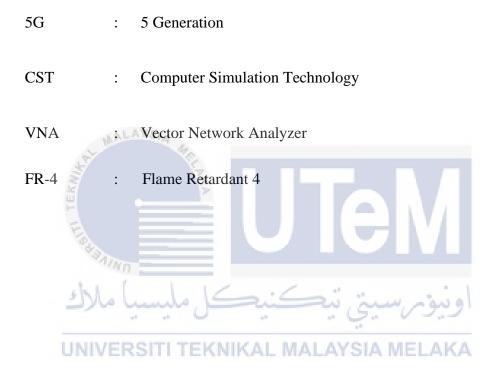
vii

CHAI	TER 5 CONCLUSION AND FUTURE WORKS	55
5.1	General Overview	55
5.2	Future Work	56
REFE	RENCES	57-58
APPE	NDICES	59-60

LIST OF FIGURES

Figure 1: 5G	2
Figure 3.1: Flow chart of project implementation	14
Figure 3.2: Flow chart of simulation project	15
Figure 3.3: Flow chart of fabrication process	17
Figure 3.4: Setup of CST Workspace: (a) Template; (b) Workflow.	20
(c) Solver; (d) Units; (e) Settings; and (f) Summary. Figure 3.5: Value of Parameter	20
Figure 3.6: Antenna Structure	21
اونيوم سيني نيڪ: Figure 3.7: Brick function from CST	21
Figure 3.8 Brick dimension for: (a) Ground; (b) Substrate; (c) Patch;	22
(d) Insert feedline	
Figure 3.9: Top conductive layer is added using Boolean	23
Figure 3.10: Waveguide port: (a) button; (b) port dimension configured;	24
and (c) final port structure	
Figure 3.11: 2x1 array antenna	25
Figure 3.12: 4x1 array antenna	26
Figure 3.13: Translate, scale, rotate, and mirror	27
Figure 3.14: 8x1 array antenna	28

Figure 3.15 shows the parameters of slot cylinder	28
Figure 3.16: (a) antenna printed; (b) vacuum uv expose; (c) etching tank disposal; (d) acid tank; (e)heating machine; (f) port soldering	32
Figure 3.17: (a) using Agilent Technologies N5242A PNA-X Network	33
analyzer (10MHz – 26.5 GHz); (b) electronic calibration module	55
Figure 3.18: (a) horn antenna as transmitter; (b) AUT as receiver; and (c)	35
measurement equipment located outside of anechoic chamber	55
Figure 3.19: (a) Receiver; (b) Transmitter	36
For the substrate, Figure 4.1 shows a graph of S11. a) Graph of S11	39
magnitude vs frequency; b) Far field gain abs (phi 0); c) Far field gain	
abs (phi 90); and (d) Far field gain abs (theta 90)	
at MALAISIA MA	
For the substrate, Figure 4.2 shows a graph of S11. a) Graph of S11	42
magnitude vs frequency; b) Far field gain abs (phi 0); c) Far field gain	
abs (phi 90); and (d) Far field gain abs (theta 90)	
For the substrate, Figure 4.3 shows a graph of S11. a) Graph of S11	45
magnitude vs frequency; b) Far field gain abs (phi 0); c) Far field gain	
abs (phi 90); and (d) Far field gain abs (theta 90) SIA MELAKA	
For the substrate, Figure 4.4 shows a graph of S11. a) Graph of S11	48
magnitude vs frequency; b) Far field gain abs (phi 0); c) Far field gain	
abs (phi 90); and (d) Far field gain abs (theta 90)	
Figure 4.5: Graph of experimental and simulated S11Magnitude	49
vs frequency for single antenna	
Figure 4.6: Graph of experimental and simulated S11Magnitude	50
vs frequency for two array antenna	
Figure 4.7: Graph of experimental and simulated S11Magnitude	51
vs frequency for four array antenna	


Figure 4.8: Graph of experimental and simulated S11Magnitude	52
vs frequency for eight array antenna	
Figure 4.9: Comparison graph of simulation(a) and measured(b)	54

LIST OF TABLES

Table 2.1: Literature Review	12
Table 3.1: Specifications of patch antenna	18
Table 3.2 Parameters for 2x1 array configuration	25
Table 3.3 Parameters for 4x1 array configuration	26
Table 3.4 Parameters for 8x1 array configuration	29
Table 4.1: Results Single Element Antenna	40
Table 4.2: Results Two Element Antenna	43
Table 4.3: Results Four Element Antenna UNIVERSITI TEKNIKAL MALAYSIA MELAKA	45
Table 4.4: Results Eight Element Antenna	48
Table 4.5: Value of measured	53

LIST OF SYMBOLS AND ABBREVIATIONS

LIST OF APPENDICES

Appendix A: fr4 data sheet	57
Appendix B: array antenna specification sheet	58

CHAPTER 1

INTRODUCTION

1.1 Introduction UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The advancement from first generation (1G), second generation (2G), third generation (3G), fourth generation (4G) (LTE-A), and fifth generation (5G) wireless technologies has increased their popularity in recent years (5G). Demand for high-speed data drives this revolution and progress. Antennas are used as a front-end in the creation of communication networks.

Currently, the world is moving towards 5G communication technology. This 5G technology capable of delivering a It provides 10 to 100 times faster internet than 4G technology, as well as improved connection. The older antenna version may not be able to meet the requirements for 5G mobile communications. The efficiency of

mobile internet connections via 5G makes energy consumption lower on devices. Determining the gain, bandwidth, return loss, and radiation pattern of an ultrawideband microstrip array antenna for 5G communication is the purpose of this study. The antenna is designed using CST studio software, which is then manufactured using etching and UV printing techniques. This project is concentrating on 5G communication at 3.5 GHz.

1.2 Problem Statement

Due to reduced latency, high speed data transfer, and tremendous traffic, 5G antennas are in high demand. Celcom, TM Net, and Umobile in Malaysia conduct 5G experiments. In addition, communications antennas must be thin and compact to fit in electronic gadgets.

The Internet of Things (IoT) will improve our quality of life. Things will be outfitted with sensors, allowing them to communicate, share data, and act. Taking this a step further, the 4G cellular network will soon be unable to handle an overburdened network due to a projected surge in the number of devices connected to the internet. Therefore, 5G technology is required to implement a faster, more reliable, and more efficient mobile network. 'In addition, it is necessary to enhance the overall quality of the experience.

It is important to note that 5G is the future, and study into it is incredibly vital. Despite this, no worldwide standard for 5G technology has been established yet. When Since 5G antennas only operate if they are compatible with the Soon, real 5G technology and architecture will be used, but there are still a lot of problems that need to be solved.

Currently, demand for various types of advanced and high-performance antennas is increasing, and most antennas on the market are unable to meet those high requirements for 5G applications. As a result, by upgrading 4G cell frameworks to 5G cell frameworks that use high-frequency transmissions, remarkable transmission capabilities, and considerable data rates are more easily achieved. Second, a UWB antenna was chosen to meet the project's requirements because it can operate between 3.0GHz and 10GHz, which is compatible with 5G characteristics. Furthermore, ultrawide band (UWB) systems have recently gained popularity due to their advantages, which include the ability to transfer large amounts of data at a low cost and in a compact form factor. Furthermore, UWB is used to replace the multi narrow band antenna, which can be effective. Hence, the purpose of this project is to design an antenna which can fulfil the 5G requirement. Furthermore, the ultrawideband antenna used because its more coverage and not just focused on one frequency only. The array antenna be used to increase the overall gain.

1.3 Objective

There are two main objectives of this project work enlisted as follows:

I. To design the Ultrawideband Microstrip Array antenna at 3.5Ghz for 5G applications

II. To analyze the performance of the array antenna including gain, return loss, bandwidth and radiation pattern through fabrication and measurement results.

1.4 UNIVERSIT TEKNIKAL MALAYSIA MELAKA

The work is divided into five stages:

Stage 1: Review of Literature

This stage entails revising and analyzing previous works on substrate materials and their impact on antenna characteristics and performance.

Stage 2: Specifications and synthesis of materials

Based on the antenna principle, as well as ultrawideband antenna and its applications in a variety of industries.