DESIGN OF PLANAR MICROWAVE SENSOR RESONATOR FOR MATERIAL CHARACTERIZATION

LIM QI JEFF

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN OF PLANAR MICROWAVE SENSOR RESONATOR FOR MATERIAL CHARACTERIZATION

LIM QI JEFF

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

2022

UNIVE ونيۇرسىنى تىكنىك مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	RSITI TEKNIKAL MALAYSIA MELAKA jteraan elektronik dan kejuruteraan komputer borang pengesahan status laporan PROJEK SARJANA MUDA II
Taiuk Projek : DESIG	N OF PLANAR MICROWAVE SENSOR
Sesi Pengajian : 2021/2	NATOR FOR MATERIAL ACTERIZATION 022
Saya <u>LIM QI JEFF</u> mengaku me disimpan di Perpustakaan dengan	mbenarkan laporan Projek Sarjana Muda ini syarat-syarat kegunaan seperti berikut:
 Laporan adalah hakmilik Univ Perpustakaan dibenarkan mem Perpustakaan dibenarkan mempertukaran antara institusi pengentukaran antara institusi peng	ersiti Teknikal Malaysia Melaka. buat salinan untuk tujuan pengajian sahaja. embuat salinan laporan ini sebagai bahan gajian tinggi.
4. Sila tandakan (✓):	
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.
√ TIDAK TERHAD	
	Disahkan oleh:
IFF	
(TANDATANGAN PENULIS)	PREESOR DR. ZAHNILAD (A BIN ZAKARIA (COP DAN TANDATANGAN PENYELIA) Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer Universiti Texhikal Matavisia Melaku (UTEM)
Alamat Tetap: <u>19, JLN MADU</u> TAMAN MAD 83700, YON PENG, JOHOR.	Hang Tuah Jaya 76100 Durian Tunggal, Melaka U.
Tarikh : <u>10 June 2022</u>	Tarikh : <u>10 June 2022</u>

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with

Date : 10 June 2022

DEDICATION

Specially dedicated to my beloved family and friends for supporting me to finish this project. A huge thanks for my supervisor Professor Dr. Zahriladha bin Zakaria giving me the guidance and treat me with full patience throughout the process to finish my final year project.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Nowadays, microwave sensor are gaining popularity in applications of food industry, agriculture and biomedical. Among the potential techniques, microwave resonant technique has been commonly applied in dielectric material characterization measurement. Conventionally, non-planar sensors such as waveguide, dielectric and coaxial resonators which provide high sensitivity and accuracy are being used in the measurement. However, the sensors have drawbacks including bulky in size, high cost manufacturing and consume high volume for detection of the previous sample of material under test (MUT). Hence, planar microwave resonator sensors which are compact in size, low cost and ease of fabrication are invented. However, the planar sensors suffer with low sensitivity and Q-factor value which limits the range for material characterization. As a result, this project designs a planar microwave sensor resonator with the operating frequency between 2GHz and 5GHz via computer simulation technology (CST) software and overcome the weakness of the sensor. The design of the structure resonator based on the mathematical equation and optimization of the parameter value.

ABSTRAK

Kini, penderia gelombang mikro semakin popular dalam aplikasi industri makanan, pertanian dan bioperubatan. Antara teknik yang berpotensi, teknik resonan gelombang mikro telah biasa digunakan dalam pengukuran pencirian bahan dielektrik. Secara konvensional, penderia bukan satah seperti pandu gelombang, resonator dielektrik dan sepaksi yang memberikan kepekaan dan ketepatan tinggi sedang digunakan dalam pengukuran. Walau bagaimanapun, penderia mempunyai kelemahan termasuk saiz besar, pembuatan kos tinggi dan menggunakan volum tinggi untuk pengesanan sampel bahan dalam ujian (MUT) sebelumnya. Oleh itu, penderia resonator gelombang mikro planar yang bersaiz padat, kos rendah dan kemudahan fabrikasi dicipta. Walau bagaimanapun, penderia planar mengalami kepekaan rendah dan nilai faktor Q yang mengehadkan julat untuk pencirian bahan. Hasilnya, projek ini mereka bentuk resonator penderia gelombang mikro satah dengan frekuensi operasi antara 2GHz dan 5GHz melalui perisian teknologi simulasi komputer (CST) dan mengatasi kelemahan penderia tersebut. Reka bentuk resonator struktur berdasarkan persamaan matematik dan pengoptimuman nilai parameter.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to all people that have been encouraged me to complete this thesis. I am ineffably indebted to my main supervisor Professor Dr. Zahriladha bin Zakaria from Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), whose advice, help, stimulating suggestions and encouragement me in all the time of final year project and writing of this thesis.

ويوبر سيتي تتكنيه

I also acknowledge with a deep sense of reverence towards my precious

parents and member of my family, who has always supported me morally and as well as economically through all my journey of my final year to complete this final year project.

Special thanks to all my colleagues and friends for their moral support in completing this final year. Lastly, thank you to everyone who had getting involved directly or indirectly helped me to complete the crucial parts of this project.

TABLE OF CONTENTS

Declaration Approval Dedication i Abstract Abstrak ii Acknowledgements iii **Table of Contents** iv **List of Figures** viii EKNIKAL MALAYSIA MELAKA UNIVERSITI т **List of Tables** xi List of Symbols and Abbreviations xiii List of Appendices XV **CHAPTER 1 INTRODUCTION** 1 1.1 Project Background 1 **Problem Statement** 2 1.2 Objectives 1.3 3 1.4 Scope of Work 3

1.5	Thesis Outline	4
СНА	PTER 2 LITERATURE REVIEW	5
2.1	Background Study	5
2.2	Theory	7
	2.2.1 Microwave Theory and Techniques for Material Characterization	7
	2.2.1.1 Non Resonant Methods	8
	2.2.1.2 Resonant Methods	9
	2.2.2 Fundamental Concepts for Material Characterization	13
	2.2.2.1 Resonant Perturbation Theory	13
	2.2.2.2 Dielectric Properties	15
	2.2.2.3 Dielectric Measuring Technique	16
2.3	Previous Research	22
	2.3.1 Bridge multiple split ring resonator (BMSSR)[5]	22
	2.3.2 Differential Microwave Resonator Sensor[7]	25
	2.3.3 Symmetrical split ring resonator (SSRR)[8]	29
	2.3.4 A Modified Microstrip Ring Resonator Sensor with Lumped Eleme	ent
	Modeling[6]	35
	2.3.5 Dual-mode Split Ring Resonator[3]	38
	2.3.6 Comparison of Previous Research	41
СНА	PTER 3 METHODOLOGY	44
3.1	Introduction	44

v

3.2	Flowchart	45
3.3	Microwave Sensor Resonator Design	47
3.4	Mathematical Analysis	48
	3.4.1 Microwave resonator patch calculation	48
	3.4.2 Transmission line calculation	49
	3.4.3 Q-Factor	50
	3.4.4 Coupling Gap	51
3.5	Simulation Process	52
	3.5.1 Computer Simulation Technology (CST) software	53
	3.5.2 CorelDRAW software	53
3.6	Material Specification	54
	3.6.1 Rogers RT/duroid 5880	54
	3.6.2 SMA-Connector NIKAL MALAYSIA MELAKA	55
3.7	Fabrication Process	56
3.8	Measurement Process	57
3.9	Vector Network Analyzer (VNA)	58
СНА	PTER 4 RESULTS AND DISCUSSION	60
4.1	Results of Microwave Resonator Sensor	60
	4.1.1 Resonant frequency analysis	61
	4.1.1.1 Simulation result and measurement results without Material	
	Under Test (MUT)	61

vi

	4.1.1.2 Simulation and measurement results with Material Under T	est
	(MUT)	61
	4.1.2 Q-Factor Analysis	64
	4.1.3 Dielectric and tangent loss analysis	64
4.2	Comparison with Commercialized and Existing Sensor	66
СНА	PTER 5 CONCLUSION AND FUTURE WORKS	69
5.1	Conclusion	69
5.2	Suggestion for Future Work	71
REF]	ERENCES AY SIA	72
APPI	ENDIX A	76
APPI		79
APPI	اونيومرسيتي تيڪنيڪل مليسيا ملاك	82
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

vii

LIST OF FIGURES

Figure 2. 1: Non-resonant method boundaries condition.	8
Figure 2. 2: A sandwiched cylindrical dielectric sample between two plates.	10
Figure 2. 3: Configuration of surface resistance.	11
Figure 2. 4: Specimen placed at center of resonant cavity.	12
Figure 2. 5: Changes of resonance with and without sampling.	12
Figure 2. 6: Circulating current generates a magnetic field.	15
Figure 2. 7: Coaxial-open end of liquid method.	18
Figure 2. 8: Transmission Line method.	19
Figure 2. 9: Resonant Cavity method.	19
Figure 2. 10: Free space method.	20
Figure 2. 11: Parallel plat (electrode) method.	20
Figure 2. 12: BMSRR sensor model. (a) 3D view and close up bridge structu Electric field distribution on the sensor.	ure. (b) 23
Figure 2. 13: Simulated and measured frequency response of BMSRR sensor.	23
Figure 2. 14: Measured and simulated for common solvents testing.	24
Figure 2. 15: Polynomial graph from known permittivity measurement data.	25
Figure 2. 16: Simulated and measured responses in HFSS.	26
Figure 2. 17: (a) Comparison of the response under power divider. (b) Measu setup.	rement 27

Figure 2. 18: Measured resonant amplitude difference between sensing and reference resonators depicting growth profiles of E. coli for different glucose concentrations in LB agar with microscope images at constant time intervals. (a) 0% glucose. (b) 2% glucose. (c) 5% glucose. (d) 10% glucose. 28

Figure 2. 19: Design of SSRR (a) without overlay sample of meat (b) with overlay sample of meat. 29

0
0
\$1
g, 12
;2
3
\$4
)) 34
c) 6
28 86
at 87
8
13 19
)) 19

Figure 2. 34: (a) Fine resonant frequency shifts from RH change for various samples. (b) Simplistic calibration curve with RH = 0% for permittivity range of 1–80. 40

Figure 2. 35: Modified surface plot calibration curve considering Δf_{1-Fin}	ne. 41
Figure 3. 1: Process flow of sensor.	45
Figure 3. 2: Validation using Vector Network Analyzer (VNA).	47
Figure 3. 3: The design microwave resonator sensor	47
Figure 3. 4: Q-factor measurement for S ₂₁ .	51
Figure 3. 5: Flowchart of software development.	52
Figure 3. 6: Designation in CST.	53
Figure 3. 7: Printed Circuit Board (PCB) - Rogers RT/duroid 5880.	55
Figure 3. 8: Example of SMA-Connector.	56
Figure 3. 9: Process flow of fabrication.	57
Figure 3. 10: Measurement setup.	58
Figure 3. 11: Material Under Test (MUT).	58
Figure 3. 12: Process flow of VNA.	59
اونيوس سيني نيڪ Figure 3. 13: Transmission coefficients.	59
Figure 4. 1: Comparison between the simulation result and the measu without MUT.	arement result 61

Figure 4. 2: Comparison between the simulation result and the measurement result with MUT.

Figure 4. 3: Polynomial curve fitting of permittivity, ε_r .	65

Figure 4. 4: Third order polynomial curve fitting of Loss Tangent, tan δ . 66

LIST OF TABLES

Table 2. 1: Comparison for each material characterization method	20
Table 2. 2: Comparison of measured and simulated data.	23
Table 2. 3: Comparison of simulated and measured real part permittivity.	24
Table 2. 4: Comparison between the measured results and the HFSS simulatedresults.Table 2. 5: Measured growth phase and rate of bacteria culture for difconcentrations of glucose in LB agar.	26 ferent 27
Table 2. 6: Comparison between loose and Quasi-linear coupling in term of Q-1 S11, and S21.	factor, 31
Table 2. 7: Comparison between loose and Quasi-linear coupling gap.	31
Table 2. 8: Before and after optimization for loose coupling scheme.	33
Table 2. 9: Before and after optimization for loose coupling scheme.	33
Table 2. 10: Comparison of the previous research.	41
Table 3. 1: Parameters of the design sensor resonator.	48
Table 4. 1: Comparison between the simulation result and the measurement result	ult.63
Table 4. 2: Comparison between the permittivity value based on the reference a measurement.	nd the 65
Table 4. 3: Comparison between the tangent value based on the reference ar measurement.	nd the 66

Table 4. 4: Comparison with previous sensor.

67

LIST OF SYMBOLS AND ABBREVIATIONS

Computer Simulation Technology
Vector Network Analyzer
Printed Circuit Board
Perturbation Method
Transverse Magnetic
Transverse Electric
Empty Cavity
Specimen Volume
Giga Hertz
Mega Hertz
اونيۇم سىتى تېكنىكل Hertz
High Frequency Structure Simulator
Water Holding Capacity
Complementary Split Ring Resonator
Symmetrical Split Ring Resonator
Bridge Multiple Split Ring Resonator
Defected Ground Structure
Sub Miniature version A
Electromagnetic
Ultraviolet
Device Under Test
System Under Test
Graphical User Interface

Material Under Test

RM : Ringgit Malaysi

MUT :

S21(dB):	Insertion Loss
S11(dB):	Return Loss
μo :	Permeability
<i>BW</i> :	Bandwidth
f_c :	Resonant Frequency without Sample
f_s :	Resonant Frequency with Sample
Q:	Quality Factor
f_r :	Resonance Frequency
Δfr :	Resonance Frequency Shifting
$\Delta \mu$:	Permeability Changes
$\Delta arepsilon$:	Permittivity Changes
V:	Perturbed Volume
E_0, H_0 :	Field Distribution without Perturbation
$E_1, H_1:$	Field Distribution with Perturbation
ε _r :	Dielectric Constant
ε_r' :	Actual Permittivity
εr":	Imaginary Part of Permittivity
μm: *****	Micrometer
سا ملاك است	Millimeter
fo:	Operating Frequency
Eeff : UNIVERS	Effective Permittivity ALAYSIA MELAKA
c :	Speed of Light
<i>W</i> :	Width of Transmission Line
L :	Length of Transmission Line
h :	Height of Substrate in Datasheet
λg :	Wavelength of Coupling Gap
L_s :	Length of Substrate
W_s :	Width of Substrate

LIST OF APPENDICES

Appendix A: ROGER RT/DUROID 5880	90
Appendix B: ROGER DUROID RO4350B	93
Appendix C: FR-4	96

CHAPTER 1

INTRODUCTION

Microwave resonator sensor are one of the most widely used groups of people and have been extensively used for the material characterization in the field of agriculture, medications and industrial. Material characterization is playing an important role in investigating the properties of the material, which can be characterized depending on the sensitivity of a microwave sensor resonator.

This project is aimed to design a sensor with high precision, high sensitivity and narrow band frequency. The advantages of this sensor which are low cost, more accurate, high sensitivity, compact size, ease of handling, and environmentally friendly make this type of microwave resonator sensor can compete with the previous research studies. In order to validate the performance of the proposed sensor, different types of materials with a known dielectric constant will be tested. This microwave resonator sensor aiming of high Q-factor > 100 value with a better performance. This propose sensor will be extracting with mathematical analysis for determining the specifications parameter of designing the sensor. Then, it will simulate through the computer simulation technology (CST) software.

Therefore, this proposed sensor is ease handling of fabrication process and lowcost project with greater accuracy and sensitivity which make this microwave resonator sensor specials than others. The material used for the substrate prototype sensor is low cost and environmentally friendly. By comparing the S-parameter of simulation and vector network analyzer (VNA) measurement, the sensor will validate through the 50 SMA-Connector port at the microwave resonator sensor transmission line.

1.2 Problem Statement

In order to popularize the usage of microwave sensor resonator, the sensors need to have low manufacturing cost and simple design structure. In addition, the sensors also need to be small in size to bring more convenient to the users.

Non-planar microwave resonator sensor is basically possing high sensitive detection and precise measurement. However, drawbacks such as high manufacturing cost, complex design structure, and bulky size do exist.[1][4] If non-planar microwave resonator sensor is applied in industrial applications, it will be a waste of money due to the high cost, difficulty in mass production due to the complex design structure and space consuming because of the uncontrollable large size of it.[1][2]

Definitely, planar microwave resonator structure has become the alternative method in sensor developing to produce a sensor which are compact, low cost, and easy to integrate with other electronic components.[1][3][[4] However, this structure suffers from poor quality factor and low sensitivity,[3] which restrict the usage in

industrial application of monitoring quality and safety of food, pharmaceutical and etc. Therefore, in this project, a planar microwave sensor resonator with high sensitivity and accurate measurement is designed in the material characterization. By applying a narrow bandwidth of insertion loss, high quality factor can be produced and hence the limitations of conventional planar microwave resonator sensor can be solved.

1.3 Objectives

This project's main goal is to design a resonator sensor with high quality factor for the material characterization. The specific objective of the project has been stated as below:

- To design a planar microwave sensor resonator.
- To fabricate the sensor designed on a printed circuit board.
- To validate and analyze the sensor designed.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The prototype of the microwave sensor is produced by using microstrip planar transmission line technique which are compact in size, ease of fabrication, low cost and easy handling. The propose sensor will be operate at 3.5 GHz in ranges from 2 GHz to 5 GHz. Computer Simulation Technology (CST) software will be used to design and simulate the planar microwave sensor resonator. The sensor designed is more focus on solid material characterization. The base area of the prototype made should be within $6\text{cm} \times 6\text{cm}$. The prototype will be fabricated by using RT 5880, and then validated through experimental measurement via Vector Network Analyzer

^{1.4} Scope of Work