DESIGN AND ANALYSIS OF IOT BASED INTEGRATED AIR QUALITY MONITORING SYSTEM

WONG MIN YUE

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF IOT BASED INTEGRATED AIR QUALITY MONITORING SYSTEM

WONG MIN YUE

This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering with Honours

2022

•

:

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek

DESIGN AND ANALYSIS OF IOT BASED INTEGRATED AIR QUALITY MONITORING SYSTEM 2021/2022

Sesi Pengajian

Saya <u>WONG MIN YUE</u> mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

SULIT*

(WONG MIN YUE)

A-19 KAMPUNG

BATU 12, JALAN

BIDOR, 36020

TELUK INTAN,

PERAK.

17 JUN 2022

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

\checkmark	TIDAK TERHAD

Alamat Tetap:

Tarikh :

Disahkan oleh:

(TS. MOHD SHAHRIL IZUAN BIN MOHD ZIN)

TS. MOHD SHAHRIL IZUAN BIN MOHD ZIN KETUA JABATAN PENGAJIAN DIPLOMA FAKULTI KEJURUTERAAN ELEKTRONIK & KEJURUTERAAN KOMPUTER UNIVERSITI TEKNIKAL MALAYSIA MELAKA HANG TUAH JAYA 76100 DURIAN TUNGGAL MELAKA

Tarikh : 17 JUN 2022

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "Design and Analysis of IoT based Integrated Air Quality Monitoring System" is the result of my own work except for quotes as cited in the references.

Signature :

Author : WONG MIN YUE

Date : 17 JUNE 2022

APPROVAL

I hereby declare that I have read this thesis. In my opinion, this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with

Date : 17 JUNE 2022

DEDICATION

A special dedication to the almighty God who made this project a success despite facing a lot of challenges and fallbacks, and to my beloved parents, who are my source of encouragement. Also, to my gracious supervisor, Ts. Mohd Shahril Izuan bin Mohd Zin, he always taught and guided me when facing many challenges and problems.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Air pollution is one of the main problems faced by all countries worldwide. The increasing pollution level is due to industries, urbanization, and a rising population that affects human health. Whenever air pollution occurs, there is a likelihood of losing a life, the risk of respiratory infections increases, and extensive damage to nature, even the agricultural crop, and commercial forest yields. But indoor air pollution is worse than outdoor air pollution because the areas enable more potential pollutants to build up more than open spaces. For this reason, the project entitled 'Design and Analysis of IoT based Integrated Air Quality Monitoring System' is proposed. It aims to design and develop an EKNIKA MALAY air quality monitoring system with IoT technique and analyze its effectiveness in monitoring multiple air quality parameters such as dust and gas concentrations. In order to do this, the system needs information such as humidity, temperature, gas concentration, and dust concentration to determine the system's effectiveness. All the measured data values are represented in graphical form and analyzed. The significant parts of this project are sensor and data transmission. The data collected will be passed to the Thingspeak server via the Arduino NodeMCU ESP32 microcontroller. The data can be shared and monitored in real-time. Lastly, the system will notify the user if certain parameters exceed the optimum value through the Pushbullet application. In short, the designed system can monitor the air quality of the indoor environment.

ABSTRAK

Pencemaran udara merupakan salah satu masalah utama yang dihadapi oleh semua negara di seluruh dunia. Tahap pencemaran yang semakin meningkat adalah disebabkan oleh industri, pembandaran, peningkatan populasi yang menjejaskan kesihatan manusia. Setiap kali pencemaran udara berlaku, terdapat kemungkinan kehilangan nyawa, risiko jangkitan pernafasan meningkat, dan kerosakan yang meluas kepada alam semula jadi, malah tanaman pertanian, dan hasil hutan komersial. Tetapi pencemaran udara dalaman adalah lebih teruk daripada pencemaran udara luar kerana kawasan dalaman membolehkan bahan pencemar berpotensi terkumpul lebih banyak daripada kawasan lapang. Atas sebab ini, projek bertajuk 'Reka Bentuk dan Analisis Sistem Pemantauan Kualiti Udara Bersepadu berasaskan IoT' dicadangkan. Ia bertujuan untuk merekabentuk dan membangunkan sistem pemantauan kualiti udara dengan teknik IoT dan menganalisis keberkesanannya untuk memantau pelbagai parameter kualiti udara seperti kepekatan habuk dan kepekatan gas. Untuk melaksanakan fungsi ini, sistem memerlukan maklumat seperti kelembapan, suhu, kepekatan gas dan kepekatan habuk untuk menentukan keberkesanan sistem. Semua nilai data yang diukur diwakili dalam bentuk grafik dan akan digunakan untuk analisis. Bahagian penting projek ini ialah

sensor dan penghantaran data. Data yang dikumpul akan dihantar ke pelayan Thingspeak melalui mikropengawal Arduino NodeMCU ESP32. Data boleh dikongsi dan dipantau dalam masa nyata. Akhir sekali, sistem akan memberitahu pengguna jika parameter tertentu melebihi nilai optimum melalui aplikasi Pushbullet. Pendek kata, sistem yang direka boleh memantau kualiti udara persekitaran dalaman.

ACKNOWLEDGEMENTS

First and foremost, praise and thank to God, the Almighty, for His showers of blessings throughout my research work to complete the research successfully.

I would like to express my deep and sincere gratitude to my supervisor, Ts. Mohd Shahril Izuan bin Mohd Zin always provided invaluable guidance throughout this research. His dynamism, vision, sincerity, and motivation have deeply inspired me. He has taught me the methodology to carry out the research and present the research works as clearly as possible. It was a great privilege and honor to work and study under his guidance. I am incredibly grateful for what they have offered me.

I wish to express my deepest gratitude and appreciation to my family, friends, and coursemates for their cooperation, advice, helpful suggestion, and overwhelming support for the report completion and my entire study at Universiti Teknikal Malaysia Melaka.

TABLE OF CONTENTS

Declaration	i
Approval	i
Dedication	i
Abstract	i
Abstrak	ii
Acknowledgements	iv
Table of Contents	v
List of Figures	ix
UNIVERSITI TEKNIKAL MALAYSIA MELAKA List of Tables	xii
List of Symbols and Abbreviations	xiii
List of Appendices	xiv
CHAPTER 1 INTRODUCTION	1
1.1 Project Background	2
1.2 Problem Statement	3
1.3 Objectives of the Research	3
1.4 Scope of Work	4

1.5	Thesis Outline	5
СНА	PTER 2 BACKGROUND STUDY	6
2.1	Air Pollution	7
	2.1.1 Outdoor Air Pollution	8
	2.1.2 Indoor Air Pollution	10
2.2	Literature Review	11
	2.2.1 Summary of the Previous Works	18
СНА	PTER 3 METHODOLOGY	21
3.1	Overview of Project	22
	3.1.1 Research, Plan, and Design Prototype	23
	3.1.2 Hardware Development	23
	اونيوم سيني نيڪني Software Development (3.1.3	24
	3.1.4 Prototype Testing IKAL MALAYSIA MELAKA	24
	3.1.5 Deployment of Prototype	25
	3.1.6 Data Collection and Analysis	25
3.2	Project Flowchart	26
	3.2.1 Monitor Air Quality Parameters	27
3.3	Components Used	28
	3.3.1 NodeMCU IoT CPU ESP32 DEVKIT V1 WiFi & Bluetooth Development Board	28
	3.3.2 DHT22 Temperature and Humidity Sensor	28

vi

	3.3.3 MQ135 Gas Sensor	28
	3.3.4 PMS5003 Dust Sensor	29
3.4	Technical Design	30
	3.4.1 System Architecture	30
	3.4.2 Cost of Electronic Components, Materials, Equipment	34
	3.4.3 Hardware and Software Development	35
	3.4.3.1 Hardware Development	35
	3.4.3.2 Software Development	39
	3.4.4 Prototype Testing	46
СНА	PTER 4 RESULTS AND DISCUSSION	48
4.1	Result	49
	اونيوم,سيتي تيڪنيڪل مليPrototype (1.1.1	49
	4.1.2 Output in Serial Monitor, ThingSpeak, and ThingView	50
	4.1.3 Notification from Pushbullet	53
4.2	Analysis of Multiple Air Quality Parameters	55
	4.2.1 Overall Results for a Four Days Duration	55
	4.2.2 Comparison between Bedroom and Kitchen on Specific Time	60
	4.2.3 Relationship between Temperature and Humidity	65
4.3	Environment and Sustainability	68
СНА	APTER 5 CONCLUSION AND FUTURE WORKS	69

vii

APPE	ENDICES	79
REFI	ERENCES	72
5.2	Recommendations and Suggestions	71
5.1	Conclusion	70

LIST OF FIGURES

Figure 2.1: Number of deaths by risk factor in the world in 2017 [3]	9
Figure 2.2: Number of deaths by risk factor in Malaysia in 2017 [3]	9
Figure 2.3: Indoor air quality monitoring system's architecture	16
Figure 3.1: Overall block diagram of the project	22
Figure 3.2: Overview of air quality monitoring system	25
Figure 3.3: Flowchart of IoT based air quality monitoring system	26
Figure 3.4: Expected outcome of the project	30
Figure 3.5: Schematic diagram of the sensor detection circuit	35
Figure 3.6: Pin configuration of NodeMCU ESP32 microcontroller	36
Figure 3.7: Pin configuration of DHT22 temperature and humidity sensor	36
Figure 3.8: Pin configuration of MQ135 gas sensor	37
Figure 3.9: Pin configuration of PMS5003 dust sensor	38
Figure 3.10: New channel creation	40
Figure 3.11: Channel ID and API key obtainment	40
Figure 3.12: Dashboard of Pushbullet account	41
Figure 3.13: Access token obtainment	42
Figure 3.14: Pushbullet service	42
Figure 3.15: Virtual scenarios list	43

Figure 3.16: Scenario of cold	43
Figure 3.17: Scenario of dangerous	44
Figure 3.18: Scenario of dangerous 2	44
Figure 3.19: Scenario of dry	44
Figure 3.20: Scenario of hot	44
Figure 3.21: Scenario of humid	45
Figure 3.22: Scenario of invalid	45
Figure 3.23: Scenario of poor air	45
Figure 4.1: Prototype of project	49
Figure 4.2: Front and back view of the prototype	49
Figure 4.3: Power up the system	49
Figure 4.4: Output display in the serial monitor	50
Figure 4.5: Output display on ThingSpeak website	51
Figure 4.6: Output display in ThingView application	52
Figure 4.7: Graph of average temperature versus days in both areas (A	56
Figure 4.8: Graph of average humidity versus days in both areas	56
Figure 4.9: Graph of average CO ₂ concentration versus days in both areas	57
Figure 4.10: Graph of average PM1 concentration versus days in both areas	58
Figure 4.11: Graph of average PM2.5 concentration versus days in both areas	58
Figure 4.12: Graph of average PM10 concentration versus days in both areas	59
Figure 4.13: Graph of temperature versus time in both areas	60
Figure 4.14: Graph of humidity versus time in both areas	61
Figure 4.15: Graph of CO ₂ concentration versus time in both areas	62

Figure 4.16: Graph of PM1 concentration versus time in both areas	63
Figure 4.17: Graph of PM2.5 concentration versus time in both areas	63
Figure 4.18: Graph of PM10 concentration versus time in both areas	63
Figure 4.19: Graph of temperature versus humidity in the bedroom from 5 pm to 7	рт 65

Figure 4.20: Graph of temperature versus humidity in the kitchen from 5 pm to 7 pm 66

Figure 4.21: Graph of temperature versus humidity in the bedroom for four days 66

Figure 4.22: Graph of temperature versus humidity in the kitchen for four days 67

LIST OF TABLES

Table 2.1: Previous works summary	18	
Table 3.1: Four monitoring air quality parameters	27	
Table 3.2: Functions of main hardware and software components	32	
Table 3.3: Cost for project prototype	34	
Table 3.4: Connection of DHT22 temperature and humidity sensor with NodeMCU		
ESP32	37	
Table 3.5: Connection of MQ135 gas sensor with NodeMCU ESP32	37	
Table 3.6: Connection of PMS5003 dust sensor with NodeMCU ESP32	38	
Table 4.1: Condition of air quality parameters and Pushbullet	53	
UNIVERSITI TEKNIKAL MALAYSIA MELAKA		

LIST OF SYMBOLS AND ABBREVIATIONS

For examples:

AQI : Air Quality Index CO Carbon Monoxide : CO_2 Carbon Dioxide : **Direct Current** DC Global System for Mobile communication **GSM** : GUI Graphical User Interface : IDE Integrated Development Environment IoT Internet of Things LCD Liquid Crystal Display SIA MELAKA PCA Principal Component Analysis PM Particulate Matter : PPM : Parts Per Million SBC Single Board Computers SBS Sick Building Syndrome : SO_2 Sulphur Dioxide : WHO World Health Organization : WSN Web Sensor Nodes :

LIST OF APPENDICES

Appendix A: Coding of IoT based integrated air quality monitoring system84
Appendix B: Datasheet of DHT22 temperature and humidity sensor
Appendix C: Datasheet of MQ135 gas sensor
Appendix D: Datasheet of PMS5003 dust sensor
Appendix E: Data collected on 5 May 2022 in the bedroom
Appendix F: Data collected on 6 May 2022 in the bedroom
Appendix G: Data collected on 7 May 2022 in the bedroom
Appendix H: Data collected on 8 May 2022 in the bedroom
Appendix I: Data collected on 15 May 2022 in the kitchen
Appendix J: Data collected on 16 May 2022 in the kitchen
Appendix K: Data collected on 17 May 2022 in the kitchen
Appendix L: Data collected on 18 May 2022 in the kitchen

CHAPTER 1

INTRODUCTION

scope of work. The structure of the thesis will also be included in this section.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.1 **Project Background**

Air quality monitoring system has become a part of the popular element in ensuring a healthy environment and lifestyle. The development of air quality monitoring systems is one of the crucial developments for civilizations of humans. It can be used in many places such as in the factory, outdoor, houses, rooms, workplaces, etc.

In recent years, the world's air quality has become poor year by year due to the development of industrialization. It has become a significant public health concern in all countries. In 2016, it was estimated that ambient or outdoor air pollution in both cities and rural areas causes nearly 4.2 million premature deaths per year worldwide [1]. Even though outdoor air pollution is one of the primary sources that cause air quality change, indoor air pollution cannot be ignored. Indoor air pollution is considered a dangerous element for one of the world's leading causes of death, including diabetes, heart disease, stroke, pneumonia, and other chronic diseases [2].

According to the Global Burden of Disease study, 1.6 million humans died prematurely because of indoor air pollution in 2017 [3]. 3% of global deaths accounted for 6% in low-income countries [3]. Therefore, an air quality monitoring system is essential because it is a remedial action to improve air quality and is always easy to implement once airborne pollutants are detected.

Besides that, previous work and research on air quality monitoring systems include using various types of sensors such as MQ2, MQ7, MQ135, BME280, DHT11, dust particle sensors, etc. The selection of the idea and components are then decided based on the requirements so that it is suitable to meet the needs.

1.2 Problem Statement

Currently, an air quality monitoring system is essential in assessing pollution in relation to the ambient air quality standards. Air pollution can be categorized into outdoor and indoor pollution. Based on the research, we spend most of the time, which is approximately 90% indoors compared to outdoor [4]. The indoor air can be up to five times more polluted than the outside air. Besides that, indoor pollution can cause health problem that is more serious than outdoor pollution, such as irritation of the eyes, headaches, fatigue, and respiratory diseases. Hence, it was in the top five environmental dangers.

Referring to [5] and [6], there is no data analysis for the developed system. It is vital to have data analysis to provide a trustful result from the system that has been designed so that the system's effectiveness can be ensured and give a reliable reading to the users.

Therefore, it is necessary to develop an affordable, community-based, real-time air quality monitoring system with IoT-based integrated to monitor the indoor environment's air quality so that humankind's health can be ensured. All the measured data will be analyzed to determine the system's effectiveness. Also, the selected sensors are one of the factors that will affect the system's effectiveness.

1.3 Objectives of the Research

The objectives of this research are:

- 1. To design and develop an affordable indoor air quality monitoring system.
- 2. To analyze the system's effectiveness by monitoring four air quality parameters: temperature, humidity, gas concentration, and dust concentration.
- 3. To develop an IoT-based data processing and transmitting unit.

1.4 Scope of Work

The design and development of this project's air quality monitoring system are based on the Internet of Things (IoT) to determine and analyze the system's effectiveness using Arduino NodeMCU ESP32 and multiple sensors. However, this system focuses more on monitoring the indoor environment's air quality. The effectiveness is highly dependent on the sensors being used; the more the related sensors are deployed, the higher the effectiveness [7]. The prototype of this system will be installed in a closed room environment for a few days. DHT22 sensor, MQ135 gas sensor, and PMS5003 dust sensor will sense the surrounding air to detect the increment or decrement of temperature, humidity, gas concentration, and dust concentration. ESP32 is then collected and reads the data from those sensors by uploading programming code (C Language) from Arduino IDE software to ESP32. Four air quality parameters are monitored in real-time, and the measured data will be sent to the cloud server for analysis. Meanwhile, there are some limitations: speed of received and updated data, capacity to receive data or send notifications for the use of ThingSpeak and Pushbullet applications. In this project, three different types of air quality sensors are used.