DESIGN AND ANALYSIS OF DUAL BAND T-RESONATOR MICROWAVE SENSOR FOR MATERIAL CHARACTERIZATION

MUHAMMAD AMIR IS'AD BIN MD KAMAL

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND ANALYSIS OF DUAL BAND T-RESONATOR MICROWAVE SENSOR FOR MATERIAL CHARACTERIZATION

MUHAMMAD AMIR IS'AD BIN MD KAMAL

2022

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER

BORANG PENGESAHAN STATUS LAPORAN **PROJEK SARJANA MUDA II**

Tajuk Projek

Design and Analysis of Dual Band T-Resonator Microwave Sensor For Material Characterization 2021/2022

Sesi Pengajian

:

Saya MUHAMMAD AMIR IS'AD BIN MD KAMAL mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (\checkmark):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

SULIT*

TIDAK TERHAD

(TANDATANGAN PENULIS) Alamat Tetap: No 11, Jln Sari Ilmu 1/1 Taman

Alam Sari 43000 Kajang Selangor Tarikh : 21 JUN 2022

Disahkan oleh:

(COP DAN TANDATANGAN PENYELIA) PROFESOR DR. ZAHRILADHA BIN ZAKARIA Profesor akulti Kejuruteraan Eletronik Dan Kejuruteraan Komp Universiti Teknikal Malaysia Melaka (UTeM) Hang Tuah Jaya 764100 Durian Tunggal, Melaka Tarikh : 21 JUN 2022

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this report entitled "Design and Analysis of Dual Band T-Resonator Microwave Sensor For Material Characterization" is the result of my own work except for quotes as cited in the references.

: Muhammad Amir Is'ad Bin Md Kamal

:

Date

21 JUN 2022

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in terms of scope and quality for the award of Bachelor of Electronic Engineering with

DEDICATION

I dedicated this thesis to my beloved parents, Md Kamal Bin Abdul Manaf and Roslinda Binti Ramli for always be my backbone to complete the research. UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Microwave sensor which is known as resonant sensor are design that is the most popular for sensor application in detecting material characterization. This design can be seen in food industry, biomedical and material industrial application. Measurement of dielectric constant on any material is important in those respective industry by using microwave resonant technique which is used at single or discrete frequency. Conventionally, there are many kinds of resonant sensor, and has been realized in the respective industry such as waveguide, coaxial and dielectric resonator. Nevertheless, their traditional technique produces them in bulky size and high cost for manufacturing the resonator. Thus, past research conclude that planar resonant technique has the advantages due to their size comparably smaller resulting low costs manufacturing process. However, by comparing the most important perspective which is sensitivity and Q-factor, the planar technique is definitely lower than the others and limited by the range of resonant it produced. Therefore, this thesis introduces a different implementation of the same planar technique which is dual band metamaterial to overcome the disadvantages of sensitivity. The dual band sensor operates in two different frequencies in range of 1GHz to 5 GHz. It can be used with either solid, liquid, gas or powder, depends on the sensor structure and design with

Polydimethylsiloxane (PDMS) as a container for the material under test (MUT). The design will be simulated in computer simulation technology (CST) and as a result, produces narrow resonance and high Q-factor comparable to previous researchers' thesis. This proof that the proposed sensor can be one of the solutions to characterize material dielectric constant for determining its properties and quality level.

ABSTRAK

Penderia gelombang mikro yang dikenali sebagai penderia resonan adalah reka bentuk yang paling popular untuk aplikasi penderia dalam mengesan pencirian bahan. Reka bentuk ini boleh dilihat dalam industri makanan, aplikasi industri bioperubatan dan bahan. Pengukuran pemalar dielektrik pada sebarang bahan adalah penting dalam industri masing-masing dengan menggunakan teknik resonan gelombang mikro yang digunakan pada frekuensi tunggal atau diskret. Secara konvensional, terdapat pelbagai jenis sensor resonan, dan telah direalisasikan dalam industri masing-masing seperti pandu gelombang, sepaksi dan resonator dielektrik. Namun begitu, teknik tradisional mereka menghasilkannya dalam saiz yang besar dan kos yang tinggi untuk pembuatan resonator. Oleh itu, kajian lepas menyimpulkan bahawa teknik resonan satah mempunyai kelebihan kerana saiznya yang lebih kecil menyebabkan proses pembuatan kos rendah. Walau bagaimanapun, dengan membandingkan perspektif yang paling penting iaitu kepekaan dan faktor Q, teknik planar pastinya lebih rendah daripada yang lain dan dihadkan oleh julat resonan yang dihasilkannya. Oleh itu, tesis ini memperkenalkan pelaksanaan berbeza bagi teknik planar yang sama iaitu dua jalur metamaterial untuk mengatasi kelemahan sensitiviti. Penderia jalur dwi beroperasi dalam dua frekuensi berbeza dalam julat 1GHz hingga 5 GHz. Ia boleh digunakan dengan sama ada pepejal, cecair, gas atau serbuk, bergantung pada struktur penderia dan reka bentuk dengan Polydimethylsiloxane (PDMS) sebagai bekas untuk bahan dalam ujian (MUT). Reka bentuk akan disimulasikan dalam teknologi simulasi komputer (CST) dan hasilnya, menghasilkan resonans sempit dan faktor Q yang tinggi setanding dengan tesis penyelidik terdahulu. Bukti ini bahawa sensor yang dicadangkan boleh menjadi salah satu penyelesaian untuk mencirikan pemalar dielektrik bahan untuk menentukan sifat dan tahap kualitinya.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to everyone that has helped and encouraged me to complete this thesis. Every advice from my main supervisor, Professor Dr. Zahriladha Bin Zakaria, and co supervisor, Dr Ahmed Jamal Abdullah Al-Gburi, is very helpful and I am highly indebted to them in completing this final year project and thesis.

Not to mention, with a deep sense of reverence towards my precious parents, I am grateful to have them always supported me morally. If not for them, I would never complete through all my journey and my final year thesis. For that I am always deeply in appreciation.

Special thanks to my class representative who is my friend and all my colleagues for their support and help. Lastly, for those who involve indirectly to helped me complete my final year thesis, thank you to everyone.

TABLE OF CONTENTS

Decl	laration	
Арр	oroval	
Ded	ication	
Abs	tract MALAYSIA	i
Abs		iii
Ack	nowledgements	v
Tab	le of Contents	vi
List	of Figures	X
List	of Tables	xiii
List	of Symbols and Abbreviations	XV
List	of Appendices	xviii
CHA	APTER 1 INTRODUCTION	1
1.1	Project Overview	1
1.2	Problem Statement	2
1.3	Objectives	2
1.4	Scope of Work	3

1.5	Significant of Project 4			
1.6	Thesis Outline 4			
CHA	APTER 2 BACKGROUND STUDY	6		
2.1	Introduction	6		
2.2	Theory	7		
	2.2.1 Material Characterization Methods	7		
	2.2.1.1 Non-Resonant Methods	7		
	2.2.1.2 Resonant Methods	8		
2.3	2.2.2 Perturbation Theory (Resonant Methods)	9		
	2.2.3 Comparison Material Characterization Methods	11		
	Previous Research (Planar Resonator)			
	2.3.1 Enhanced Coupled Ring Resonator	13		
	2.3.2 Complementary Split Ring Resonator (CSRR)	18		
	2.3.3 Dual Band Metamaterial	23		
	2.3.4 Comparison of Previous Research	28		
CHA	APTER 3 METHODOLOGY	30		
3.1	Introduction	30		
3.2	Flowchart	31		
3.3	Gantt Chart	36		
3.4	Mathematical Analysis	36		

	3.4.1 Feedline Calculation	36
	3.4.2 Patch Calculation	37
	3.4.3 Substrate Calculation	38
	3.4.4 Q-factor Calculation	38
	3.4.5 Sensitivity Calculation	39
3.5	Resonant Sensor Design (Calculation)	39
3.6	Simulation Process	41
	3.6.1 Resonant Sensor Design (Parametric Studies / Optimizer)	42
	3.6.2 Maximum Concentration Area	48
	3.6.3 CorelDRAW software	49
3.7	Manufacturing Process	49
	وينوم سيني نيڪ Specification of Material	49
	3.7.2 Fabrication Process KAL MALAYSIA MELAKA	51
	3.7.3 Vector Network Analyzer (VNA)	52
	3.7.4 Measurement Process	53
CHA	APTER 4 RESULTS AND DISCUSSION	54
4.1	Result of Microwave Sensor	54
	4.1.1 Resonant Frequency Analysis (Validation)	55
	4.1.2 Resonant Frequency Analysis (Comparison)	59
	4.1.3 Dielectric Properties Error Analysis	62

	4.1.4 Q-Factor Analysis	72
4.2	Comparison Commercialized, Prior and Existing Research Sensor	73
CHA	CHAPTER 5 CONCLUSION AND FUTURE WORKS	
5.1	Conclusion	76
5.2	Suggestion for Future Work	77
REFERENCES		
APPE	ENDIX A ROGER 5880	83
APPF	ENDIX B FR4	86
	31 WALKING ME	

2:C

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ø

1

اونيو

ىتى

ix

LIST OF FIGURES

Figure 2.1: Classification of EM material characterization method [1].	7
Figure 2.2: Schematic diagram of reflective method in coaxial line [2].	8
Figure 2.3: Schematic diagram of electrical field (EM) affected by resona frequencies of coaxial probe [3].	ince 9
Figure 2.4 Different coupling schemes (a) loose coupling (b) matched-stub coup	ling
(c) quasi-linear coupling (d) enhanced coupling periphery [4].	13
Figure 2.5: Fabricated one-port microstrip ring-resonator with different coupling g [4].	gaps 14
Figure 2.6: Fabricated enhanced coupled one-port microstrip ring-resonator	(a)
without sample (b) with overlaid meat sample [4].	15
اويتوم سيتي بيكتيكل مليسيا ملاك	
Figure 2.7: Simulation results unloaded resonator for the effect of coupling gap) on
resonant frequency (S_{II}) [4]. KNIKAL MALAYSIA MELAKA	16
Figure 2.8: Amount of shift attained over the range of coupling gap [4].	17
Figure 2.9: Simulation result for different coupling schemes [4].	17
Figure 2.10: Experimental result for enhanced coupled ring-resonator [4].	18
Figure 2.11: Design of (a) circular and (b) rectangular CSRRs [5].	19
Figure 2.12: CSRR planar (a) Top View, (b) Perspective view, (c) Side view [5].	19
Figure 2.13: Resonant frequency versus dielectric constant [5].	20
Figure 2.14: Insertion loss versus tangent loss [5].	21
Figure 2.15: Measured for various dielectric sample S ₂₁ (dB) [5].	22

Figure 2.16: Measured value of complex permittivity [5]. 23
Figure 2.17: Designation on CST (a) Design A, (b) Design B [6].
Figure 2.18: Parameter value of the dual band metamaterial design [6]. 24
Figure 2.19: Location of MUT at maximum concentration of E-field [6]. 24
Figure 2.20: Comparison result simulation and measurement of (a) Design A, (b) Design B [6].
Figure 2.21: Q-factor used in calculation for the design [6].26
Figure 2.22: Comparison between simulation and measurement of the design A and design B [6].
Figure 2.23: Comparison permittivity value between simulation and measurement [6]
28 MALAYSIA
Figure 2.24: Comparison tangent value between simulation and measurement [6]. 28
Figure 3.1: Flowchart on sensor part 1.
Figure 3.2: Flowchart of sensor part 2.33
Figure 3.3: Measurement setup for the measurements of MUTs [7].
Figure 3.4: Project planning in Gantt chart. ALAYSIA MELAKA 36
Figure 3.5: Designation on CST [6].
Figure 3.6: Optimizer iteration setting for Ls, Ws, Lx. 43
Figure 3.7: Scattering parameter S_{21} (Linear) with peak amplitude near 0.01 with 3.2GHz achieved. 44
Figure 3.8: Optimizer iteration goals for S_{21} (linear) with target < 0.01 and range 3.18 to 3.22 GHz.
Figure 3.9: Optimizer iteration result for S_{21} (linear) with target < 0.01 and range 3.18 to 3.22 GHz.
Figure 3.10: Design A (Optimizer) with dimension and location of E-field. 47
Figure 3.11: Design B (Optimizer) with dimension and location of E-field. 48

Figure 3.12: Location of MUT at maximum concentration of E-field [6].	48
Figure 3.13: Roger RT/duroid 5880 (Appendix A).	50
Figure 3.14: SMA-Connector.	51
Figure 3.15: Process of fabricating design on PCB.	52
Figure 3.16: Vector Network Analysis (VNA).	52
Figure 4.1: Comparison result simulation and experimental of (a) Design A (b) De B.	esign 56
Figure 4.2: Comparison result Design A for (a) simulation (b) experimental kn permittivity (c) experimental unknown permittivity.	nown 60
Figure 4.3: Comparison result Design B for (a) simulation (b) experimental kn permittivity (c) experimental unknown permittivity.	10wn 61
Figure 4.4: Simulation graph of polynomial analysis based on permittivity range 0.1 to 10 for (a) Design A (b) Design B.	from 63
Figure 4.5: Polynomial graph and formula of normal polynomial method for (Design A and (c)(d) Design B.	(a)(b) 65
Figure 4.6: Polynomial graph and formula of first method for (a)(b) Design A (c)(d) Design B.	and 68
Figure 4.7: Comparison with previous sensor[6]. AYSIA MELAKA	74
Figure 4.8: Comparison of price with commercialized sensor in market[6].	75

LIST OF TABLES

Table 2.1: Comparison of material characterization methods to measure properties [11], [12].	dielectric 12
Table 2.2: Comparison of previous research.	29
Table 3.1: Parameter Designation (Design A).	40
Table 3.2: Parameter Designation (Design B).	41
Table 3.3: Parameter Designation Optimizer (Design A).	46
Table 3.4: Parameter Designation Optimizer (Design B).	46
Table 4.1: Comparison MUT simulation vs measurement of low frequency f	For Design
اونيغم سيتر تيڪنيڪا مليسيا ملاك	57
Table 4.2: Comparison MUT simulation vs measurement of high frequency f	for Design
A UNIVERSITI TEKNIKAL MALAYSIA MELAKA	57
Table 4.3: Comparison MUT simulation vs measurement of low frequency f B	for Design 58
Table 4.4: Comparison MUT simulation vs measurement of high frequency f B	for Design 58
Table 4.5: Simulation data of polynomial analysis based on permittivity ra 0.1 to 10	ange from 64
Table 4.6: Simulation data with offset of polynomial analysis based on permittivityrange from 0.1 to 1067	

Table 4.7: Comparison of permittivity error for simulation and measurement of firstmethod.70

Table 4.8: Comparison of frequency error for simulation and measurement of secondmethod.72

LIST OF SYMBOLS AND ABBREVIATIONS

PDMS	:	Polydimethylsiloxane
DUT	:	Device Under Test
MUT	:	Material Under Test
FR-4	:	Flame Retardant 4 (UL94V-0 Standard) (Glass Name)
CST	· 16	Computer Simulation Technology
VNA	:	Vector Network Analyzer
РСВ	:	Printed Circuit Board
PM	2.47	Perturbation Method
TM	ملا	Transverse Magnetic
TE	11/1	Transverse Electric
VC	:	Empty Cavity
GHz	:	Giga Hertz
MHz	:	Mega Hertz
Hz	:	Hertz
CSSR	:	Complementary Split Ring Resonator
SMA	:	Sub Miniature Version A
EM	:	Electromagnetic
S21(dB)	:	Insertion Loss
S11(dB)	:	Return Loss

μ_0	:	Permeability
BW	:	Bandwidth
fc	:	Resonant Frequency Without Sample
f_{s}	:	Resonant Frequency With Sample
Q	:	Quality Factor
$f_{ m r}$:	Resonance Frequency
$\Delta f_{ m r}$:	Resonance Frequency Shifting
$\Delta \mu$:	Permeability Changes
$\Delta \epsilon$:	Permittivity Changes
V	:	Perturbed Volume
Eo, Ho	~	Field Distribution Without Perturbation
E1, H1	:	Field Distribution With Perturbation
Er E	:	Dielectric Constant
ε'r	- 41	Actual Permittivity
ε"r	ملا	ويور سيني تستعني Imaginary Part of Permittivity
$\mu m UN$	I:VE	Micrometer KNIKAL MALAYSIA MELAKA
Zo	:	Input Impedance
εeff	:	Effective Dielectric Constant
h	:	Height of Substrate
Lf	:	Microstrip Line
Lfeed	:	½ Microstrip Line
fo	:	Resonant Frequency
Wp	:	Width of Patch
Lp	:	Length of Patch

- Lstub : Length of Patch (stub)
- Ls : Length of Substrate
- Ws : Width of Substrate

LIST OF APPENDICES

Appendix A: ROGER 5880

Appendix B: FR4

83

86