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ABSTRACT 

Convolutional Neural Network (CNN) is a robust computer vision algorithm from 

artificial intelligence (AI) that use deep learning networks to analyse visual imagery. 

The predecessor, machine learning, is also a type of AI but with a lower performance 

than deep learning. The aim of this project is to design a CNN model architecture layer 

on par with pre-trained models such as ResNet50, VGG16, MobileNetV2, and 

DenseNet121 using 15 classes of tropical fruit with total of 15000 images. The model 

was designed on Google Colab using TensorFlow and Keras library. Next, the network 

model needs to be trained, test, and optimized by tuning the hyperparameters. Then, 

all simulation results were compared to the well-known pre-trained models in terms 

of accuracy and confusion matrix. At the end of this project, the H-CNN able to reach 

90.13% accuracy with balance distribution across all of the tropical fruit classification.
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ABSTRAK 

Rangkaian Saraf Konvolusional (CNN) ialah algoritma penglihatan komputer 

yang mantap daripada kecerdasan buatan (AI) yang menggunakan rangkaian 

pembelajaran mendalam untuk menganalisis pengimejan visual. Sebelum ini, 

pembelajaran mesin, juga merupakan jenis AI tetapi dengan prestasi yang lebih 

rendah daripada pembelajaran mendalam. Matlamat projek ini adalah untuk mereka 

bentuk lapisan seni bina model CNN yang setanding dengan model pra-latihan seperti 

ResNet50, VGG16, MobileNetV2 dan DenseNet121 dengan menggunakan 15 kelas 

buah tropika dengan berjumlah 15000 imej. Model ini telah direka bentuk pada 

Google Colab menggunakan Pustaka TensorFlow dan Keras. Seterusnya, model 

rangkaian perlu dilatih, diuji dan dioptimumkan dengan penalaan hiperparameter. 

Kemudian, semua hasil simulasi dibandingkan dengan model pra-latihan yang 

terkenal dari segi ketepatan dan matriks kekeliruan. Pada akhir projek ini, H-CNN 

mampu mencapai ketepatan 90.13% dengan taburan yang seimbang yang merentasi 

semua klasifikasi buah tropika.
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CHAPTER 1  

INTRODUCTION  

 

Classification is about categorizing objects into groups. A type of classification 

is where multiple classes are predicted. In CNN architecture, it comprises 

convolutional layers, max-pooling layers, and fully connected layers. In the first layer, 

the input is processed, and an output is produced in the last layer. The classification 

network selects the category based on which output response has the highest output 

value. 

1.1 Problem Statement 

First, machine learning has been the way for image classification for quite some 

time due to its simplicity and fewer computer resources. However, the performance in 

terms of accuracy compared to deep learning is quite a gap. According to P. Wang, E. 
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Fan, and P. Wang, [1] the image classification results from the MNIST dataset for the 

machine learning model, Support Vector Machine (SVM) is 88% while CNN is 98%. 

Machine learning did not perform too well for a large dataset, unlike CNN. Secondly, 

the size of the model will be the main factor to avoid using a transfer learning method. 

A pre-trained model size is much bigger than a designed CNN due to its nature being 

pre-trained by thousands if not millions of images typically on a large-scale image-

classification task. Thus, it has unnecessary weight for a certain application where it 

would not be fully utilized [2]. This research will dive deeper into how CNN works 

and what affects its performance. This will give more insights into the structure of the 

CNN model. To overcome these problems, designing CNN architecture could produce 

a better AI model with a smaller size. 

 

1.2 Objective and Scope 

1.2.1 Objective 

The objectives of this project are: 

1. To design a Convolutional Neural Network architecture for tropical fruit 

classification. 

2. To optimize the CNN model and compare the result in terms of confusion 

matrix and accuracy, between pre-trained transfer learning models and 

designing a model. 

3. To inference the designed model on software and hardware. 

1.2.2 Scope of Work 

To complete this project smoothly, several scopes of work has been determined to 

ensure the main idea where and how to progress accordingly. Firstly, a dataset for 
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tropical fruit needs to be collected first. These datasets can be found on Kaggle and 

any image search engine such as Google Image. Next, the hardest part is to design the 

CNN model architecture. This process will be done using a TensorFlow and Keras 

library of Python language since it is the most reliable coding language to develop a 

CNN. The platform will be on Google Colab due to demand in graphical processing 

power to train the model effectively. Right after the model is done, it needs to be 

optimized to get the best result. After that, a transfer learning method will be used to 

train the model with the same dataset. Then, the comparison of the simulation results 

will be analyzed. Finally, the designed CNN model will be inferenced on software and 

hardware. 

1.3 Project Significant  

This project can be implemented on real life application for more efficient output.  

Currently in supermarket, the fruits need to be weighted first before the price sticker 

will be printed. If the worker is not there, then the whole system is jammed. Imagine 

a self-service automatic process that can eliminate this type of problems. This is just 

one of the examples to justify how significant this project can be. Basically, any 

application that need a visual imagery detection might need a CNN technology. Below 

is some of the famous applications of CNN [3]: 

 

• Facial Recognition 

• Analyzing Documents 

• Historic and Environmental Collections 

• Understanding Climate 

• Grey Areas  

• Advertising



 

 

 

CHAPTER 2  

LITERATURE SURVEY 

This chapter will discuss about the CNN theory and previous research that has been 

done. 

2.1 Artificial Intelligence (AI) 

AI has progressed from humble beginnings to a global impact. The definition of AI 

and what should and should not be included has evolved over time. According to 

Kaplan and Haenlein [4], AI defined as “a system’s ability to correctly interpret 

external data, to learn from such data, and to use those learnings to achieve specific 

goals and tasks through flexible adaptation”. According to European Commission’s 

2018 [5] definition of AI, “AI refers to systems that display intelligent behaviors by 

analyzing their environment and taking action – with some degree of autonomy – to 

achieve specific goals”.  
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2.1.1 Deep Learning 

Deep learning is a type of AI that mimic the human way of thinking to absorb a 

certain types of knowledge. To make it simpler, deep learning can be view as a way 

to automate predictive analytics. While machine learning algorithms are linear, deep 

learning algorithms are arranged in a hierarchy of increasing complexity and 

abstraction. According to Y. LeCun, Y. Bengio, and G. Hinton, [6] “Deep learning 

enables computer models with several processing layers to discover data 

representations with multiple levels of abstraction. These techniques have 

significantly advanced the state-of-the-art in speech recognition, visual object 

recognition, object detection, and numerous other fields, including drug development 

and genomics. Deep learning identifies intricate structure in big data sets by utilizing 

the backpropagation algorithm to recommend how a machine's internal parameters 

used to compute the representation in each layer from the representation in the 

previous layer should be modified. Deep convolutional neural networks have 

advanced the processing of pictures, video, speech, and audio, while recurrent neural 

networks have shed light on sequential data such as text and speech.” 

 

2.2 Convolutional Neural Network (CNN) 

CNN is a deep learning architecture, an outstanding type of multiple layer 

neural network. The architecture of CNN is inspired to mimic a way of human brain. 

Although it became famous after the shocking achievement of AlexNet in 2012, the 

history itself originated from 1959. A CNN is a class of artificial neural network 

(ANN), where it is most applied to analyze visual imagery because of the ability to 

learn a significant patterns from the pixels of the image and can identify the type of 

image more intelligently. A deep CNN model has several number of layers where each 
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layer extracts the significant patterns and feed it into the next layer that can be seen in 

Figure 2.1. The early layers learn and take out the high-level features, and the deeper 

layers learns and take out the low-level features [7]. 

 

Figure 2.1: Classic CNN architecture [8] 

 

2.2.1 Input 

Before anything else, CNN needs an input to go further process. By input image, it 

means a lot of images (thousands) for it to learn efficiently. The more the input images, 

the better for the model to learn. Let’s take a simple example for a better 

understanding. In Figure 2.2, a Red Green Blue (RGB) image is the input. It has been 

separated by its three-color planes, Red, Green, and Blue. There are many other types 

of color spaces in images such as Grayscale, RGB, HSV, CMYK, etc. Now in this 

image, the resolution is 4x4, which is really small for a picture. Nowadays, images 

resolution has been much more complex for example SD (640x480), HD (1280x720), 

FULL HD (1920x1080), 4K (3840x2160), 8K (7680x4320) and etc [9]. Imagine how 

computationally intensive things would get for these modern image resolutions. The 

role of the CNN is to reduce the images into a form which is easier to process, without 

losing an important feature to get a good prediction [10]. 
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Figure 2.2: 4x4x3 RGB image [10] 

 

2.2.2 Convolution Layer – The Kernel 

Convolutional layer is the principal part of any CNN architecture. It consists of a 

set of convolutional filters (also known as kernels) which convolved the input image 

(N-dimensional metrics) to generate an output feature map as shown in Figure 2.3. A 

filter (kernel) can be described as a grid of discrete values or numbers, where each 

value is known as the weight of this kernel. During the early stage of training process 

of an CNN model, all the weights of a kernel are assigned with random numbers (best 

to refer a similar model). Then, with each training epoch, the weights are tuned, it 

repeats the same process that helps the kernel learning process to extract significant 

features more deeply [7]. The main objective of the Convolution Operation is to 

extract the high-level features such as edges, from the input images. It need not to be 

limited to only one Convolutional Layer, there can be a multiple depends on the model 

usage. Usually, the first layer is to be capturing a low-level feature such as edges, 

color, gradient orientation, etc. With added layers, the architectures adapt to the high-

level features as well, giving us a network, which has the wholesome understanding 

of images in the dataset, like how human would [10]. 
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Figure 2.3: 5x5 filter (kernel) convolving the input image [8] 

 

The stride also one of the important keys to design a kernel. Stride can be described 

as the taken step size along the horizontal or vertical position of 1 to the kernel. Figure 

2.4 shows how the kernel move from left to right and then starts again in row below. 

If the stride length = 1, it is non-strided, because the kernel will go through each pixel 

of input image [10]. 

 

Figure 2.4: Movement of the kernel [10] 
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2.2.3 Pooling Layer 

Pooling layers are used to sub-sample the feature maps generated by the 

convolution process. For example, it takes bigger feature maps and compresses them 

to smaller feature maps like in Figure 2.5. When decreasing the feature maps, the most 

dominating features in each pool step are always preserved. Like the convolution 

operation, the pooling operation is conducted by defining the pooled region size and 

the stride of the operation [7]. Through dimensionality reduction, the computer power 

required to process the data is reduced [10]. Pooling techniques such as max pooling, 

min pooling, average pooling, gated pooling, tree pooling, and others are used in 

pooling layers. Max pooling is the most well-known and often utilized pooling 

technique. 

 

Figure 2.5: Pooling layer (2x2) convolving the input [7] 
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2.2.4 Activation Functions (Non-Linearity) 

In any neural network-based model, the activation function's role is to translate the 

input to the output, where the input value is derived by computing the weighted sum 

of neuron input and then adding bias to it (if there is a bias). In other words, the 

activation function produces the matching output to determine whether a neuron will 

fire or not for a particular input as depicts in Figure 2.6. In CNN architecture, after 

each learnable layers (layers with weights, i.e., convolutional and Fully Connected 

(FC) non-linear activation layers are used. The CNN model can learn more 

complicated things and manage to translate inputs to outputs non-linearly thanks to 

the non-linearity behavior of those layers. In this project, Rectifier Linear Unit (ReLU) 

will be used as activation function in CNN [7]. 

 

Figure 2.6: Graph representation of ReLU [11] 



11 

 

ReLU for short is a piecewise linear function that will output the input directly if it 

is positive, otherwise, it will output zero. It has become the default activation function 

for many types of neural networks because a model that uses it is easier to train and 

often achieves better performance. The main advantage of ReLU is that it requires 

very minimal computation load compared to others. Below (2.1) is the mathematical 

equation of ReLU [11]. 

 f(x)ReLU =  max (0, x) (2.1) 

 

 

2.2.5 Fully Connected Layer 

The last part of CNN architecture layers is FC. The way this layer works is that it 

looks at the output of the previous layer (should be the activation of high-level 

features) and the number of classes N [10]. The FC layers receive input from the last 

convolutional or pooling layer, which is in the form of a set of metrics (feature maps), 

flatten them to make a vector, and then feed it into the FC layer to construct the final 

CNN output as in Figure 2.7. In other words, FC is used as the classifier of the CNN 

architecture [7]. 

 

Figure 2.7: Architecture of fully connected layers [7] 
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2.2.6 Confusion matrix 

A confusion matrix is a table that is used to evaluate the accuracy performance of 

a classification model on a set of test data which the true values are known. Confusion 

matrix shows where the model is getting confused by plotting a table that reports with 

each row corresponding to the true class and each column to the predicted class like 

in Figure 2.8. The confusion matrix simple to understand, but the terminologies used 

can be confusing. The output “TN” stands for True Negative which shows the number 

of negative samples classified correctly. Similarly, “TP” stands for True Positive 

which indicates the number of positive examples classified accurately. The term “FP” 

shows False Positive value, for example the number of actual negative examples 

classified as positive, and “FN” means a False Negative value which is the number of 

actual positive examples classified as negative. 

 

Figure 2.8: Confusion matrix for binary classification [12] 

2.2.6.1 Accuracy 

Accuracy can be calculated from formula (2.2) [12], and it’s the most intuitive 

performance measure. It is simply a ratio of correctly predicted observation to the total 

observations. One may think that, if accuracy is high, then it is a good model. Accuracy 

is a great measure but only when the datasets is symmetric where values of false 

positive and false negatives are almost same. Therefore, other parameters are needed 

to evaluate the performance of the model [13]. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
 

 

(2.2) 

 

 

2.2.6.2 Precision 

Precision is the ratio of correctly predicted positive observations to the total 

predicted positive observations [13]. High precision relates to the low false positive 

rate as shown in equation (2.3)[12]. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2.3) 

 

 

 

2.2.6.3 Recall 

Recall is the ratio of correctly predicted positive observations to all observations in 

actual class – yes [13]. It is calculated from equation (2.4) [12]. 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2.4) 

 

 

2.2.6.4 F1 Score 

F1 Score is the weighted average of precision and recall. Therefore, this score takes 

both false positives and false negatives into account as in equation (2.5) [12]. 

Intuitively, it is not easy to understand as accuracy, but F1 is usually more useful than 

accuracy, especially if the class is uneven distribution. Accuracy works best if false 

positives and false negatives have similar cost. If the cost of false positives and false 

negatives are very different, it’s better to look at both precision and recall [13]. 
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𝐹1 =  2 ∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(2.5) 

 

2.2.6.5 Support 

Support is the number of samples of the true response that lie in that class [13]. 

2.3 Literature Review 

Move on to the next discussion, a high accuracy in simulation does not guarantee a 

same accuracy percentage in real world application. This may happen due to the real 

situation where the model is being tested for example the lighting, background, etc. 

According to Josh Janzen’s experiment, he stated that “most real-world applications 

of CNN for image recognition are not going to be that similar to ImageNet base of 

images” [2]. There is study that related to this, based on G. Zeng [14] did an 

experiment by using 4 types of dataset to train the model as in Table 2.1. The first one 

is pure online photos, second one is pure shooting photos, third one is train online 

photos first then shooting photos, and the last one is shooting first and then online 

photos. The result shows how this type of dataset may influence the accuracy. 

Table 2.1: Accuracy comparison on different types of datasets to VGG model 

[14] 

VGG model with different input images Top-1 accuracy (%) 

VGG - Online 89.6 

VGG - Shooting 94.0 

VGG - Online-Shooting 95.6 

VGG - Shooting-Online 90.5 

   

Now, the study will focus on more to designing CNN model performance. From 

previous research, it is known that there are not many studies on this topic. This is due 

to complication of the process that can consume a lot of time. From Y. Zhang, Z. 

Dong, and X. Chen et al.[15] studies, they designed a 13-layer deep CNN model 
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architecture for fruit category classification. With 3600 dataset and 18 classes, each 

class down to 200 images. They managed to achieve 94.94% of accuracy. This is a 

good achievement considering the amount of dataset. The key behind this success is 

efficiency in data pre-processing and data augmentation. Note that when the amount 

of dataset is too small, it may lead to overfitting [16]. Table 2.2 explain in details of 

each layer from the designed 13-layer deep CNN model. While in Table 2.3 shows the 

accuracy result between augmented data and non-augmented data. Finally, Table 2.4 

display the overall accuracy achieved for different types of model using a same 

dataset. 

Table 2.2: CNN architecture [15] 

Layer Purpose Filter No. of 

filters 

Stride  Padding  Weights Bias Activation 

1 Image 

Input layer 

      256x256x3 

2 Conv+ReL

u 

7x7 40 [3 3] [0 0] 7x7x3x4

0 

1x1x40 84x84x40 

3 Pooling 3x3  [3 3] [0 0]   28x28x40 

4 Conv+ReL

u 

5x5 80 [3 3] [2 2] 5x5x40x

80 

1x1x80 10x10x80 

5 Pooling 3x3  [1 1] [1 1]   10x10x80 

6 Conv+ReL

u 

3x3 120 [1 1] [1 1] 3x3x80x

120 

1x1x120 10x10x120 

7 Pooling 3x3  [1 1] [1 1]   10x10x120 

8 Conv+ReL

u 

3x3 80 [1 1] [1 1] 3x3x120

x80 

1x1x80 10x10x80 

9 Pooling 3x3  [3 3] [1 1]   4x4x80 

10 FC     50x1280 50x1 1x1x50 

11 FC     18x50 18x1 1x1x18 

12 Softmax       1x1x18 

13 Output       1x1x18 
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Table 2.3: Effect of data augmentation [15] 

Test Set No. of Image Data Augmentation F1 No augmentation F1 

Clean 1800 94.94% 93.72% 

Background 173 89.60% 84.39% 

Decay 136 94.12% 86.03% 

Unfocused 145 91.03% 86.90% 

Occlusion 161 92.55% 86.34% 

 

Table 2.4: Comparison to different model approaches [15] 

Approach Overall Accuracy 

PCA+ kSVM 88.20% 

PCA + FSCABC 89.11% 

WE + BBO 89.47% 

FRFE + BPNN 88.99% 

FRFE + IHGA 89.59% 

13-layer CNN 94.94% 

 

This project only focuses on deep learning because it is more superior than machine 

learning models. As N. Saranya, K. Srinivasan, S. Kumar et al. [17] did a comparison 

of fruit classification between machine learning models, K-Nearest Neighbours 

(KNN) and Support Vector Machine (SVM) versus deep learning models CNN in 

Table 2.5 where the KNN, SVM and CNN produced 48.63%, 60.65% and 96.49% 

respectively. 
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Table 2.5: Deep learning vs Machine learning model [17] 

TITLE DATASET 

(FRUIT 360) 

METHOD RESULT 

Fruit Classification 

Using Traditional 

Machine Learning 

and Deep Learning 

Approach 

 

Size 100x100 

 

Red Apple: 492 

Banana: 490 

Orange: 479 

Pomegranate: 246 

Hold out (70/30) 

 

KNN 48.63% 

SVM 60.65% 

13-layer CNN 

model 

96.49% (20 

epochs) 

Now, in deep learning itself, there are two methods that can be used for training the 

model as stated previously, by designing CNN model architecture and transfer 

learning method. On the internet, the CNN recommendation between these two 

methods will always lean to transfer learning method. Instead of building a CNN 

model architecture, transfer learning can easily import a pre-built and pre-trained 

model such as VGG, GoogleNet, ResNet, DenseNet, etc. Simpler to say, transfer 

learning is like by taking a model trained on a large dataset and transfer it knowledge 

to a smaller dataset. That means transfer learning requires a smaller amount of dataset 

[18]. However, the complication of the architecture of transfer learning is very 

complex. Not only it took a lot of computational power, but it also took a lot of size. 

According to R. Pathak and H. Makwana [19] studies on designing CNN and transfer 

learning models shows their 6-layer CNN model as listed in Table 2.6, outperformed 

the other transfer learning VGG-16, AlexNet, LeNet-5, and VGG-19 with 98.23%, 

90.81%, 83.56%, 82.93%, and 76.48% respectively. Bear in mind that designing CNN 

model indeed can surpassed transfer learning, but it is error prone and time consuming.  
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Table 2.6: Comparison CNN model and transfer learning [19] 

COMPARISON OF THE ACCURACIES 

MODEL ACCURACY 

VGG-16 90.81% 

VGG-19 76.48% 

LeNet-5 82.93% 

AlexNet 83.56% 

Proposed Model (designed CNN) 98.23% 

 

From Table 2.7, CNN model’s accuracy affected by the input size of dataset. 

Essentially, the bigger picture size will bring a higher classification accuracy. This is 

simple to understand as a bigger picture size will have more clearer details that can be 

seen from our eyes. So does CNN, it will be a lot easier to learn from a clearer picture 

than a pixelated picture.  

Table 2.7: Effect of picture size to CNN classification accuracy [1] 

Picture size Number of categories CNN classification accuracy 

64x64 10 0.71 

128x128 10 0.74 

256x256 10 0.95 

 

Overfitting is a common problem while training a CNN model. This happens due 

to a lot of reason but mostly from lack of training data and the CNN model is too 

complex for the problem solving. In Table 2.8, R. Yamashita, M. Nishio, and K. G. 

D. Richard et al. [20] listed a methods to mitigate overfitting for CNN model. Starting 

from top to bottom is the priority that need to be taken care of. 
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Table 2.8: A list of methods to mitigate overfitting [20] 

How to mitigate overfitting 

More training data 

Data augmentation 

Regularization (weight decay, dropout) 

Batch normalization 

Reduce architecture complexity 

 

Author L. Alzubaidi, J. Zhang, and A. Humaidi et al. [21] listed a brief overview 

some of the CNN architectures in Table 2.9. VGG, ResNet, DenseNet and MobileNet 

are a well-established pre-trained model. It has a multiple version due to the 

community helps it to grow day by days. Below is the strength of each model with 

ResNet seems like a best model here with 3.57 error rate for ImageNet dataset. 

Although, it might show another result for another type of dataset. 

 Table 2.9: Brief overview of CNN architectures [21]  

Model Main finding Depth Dataset Error 

rate 

Input size Year 

VGG Increased depth 

and small filter 

size 

16,19 ImageNet 7.3 224x224x3 2014 

ResNet Robust against 

overfitting due to 

symmetry 

152 ImageNet 3.57 224x224x3 2016 
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mapping-based 

skip links 

DenseNet Block of layers; 

layers connected 

to each other 

201 CIFAR-

10, 

CIFAR-

100, 

ImageNet 

3.46, 

17.18, 

5.54 

224x224x3 2017 

MobileNet-

V2 

Inverted residual 

structure 

53 ImageNet - 224x224x3 2018 

 

The methods that are shown in Table 2.10 are being implemented for this project 

on account of results from previous studies that shows its effectiveness in increasing 

the total accuracy performance of the CNN model architecture. 

 

Table 2.10: Summary of previous studies 

Method Differences 

Combine online and 

shooting photos dataset 

[14] 

Different input images Accuracy 

VGG – Online 89.6% 

VGG – Shooting 94.0% 

VGG – Online-Shooting 95.6% 

VGG – Shooting-Online 90.5% 

Data augmentation [15] Before (accuracy) After (accuracy) 

Clean 93.72% 94.94% 

Background 84.39% 89.60% 
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Decay 86.03% 94.12% 

Unfocused 86.90% 91.03% 

Occlusion 86.34% 92.55% 

Deep learning [17] Method Accuracy 

KNN 48.64% 

SVM 60.65% 

13-layer CNN model 96.49% 

Design CNN model 

architecture [19] 

Model Accuracy 

VGG-16 90.81% 

VGG-19 76.48% 

LeNet-5 82.93% 

AlexNet 83.56% 

Designed CNN 98.23% 

Input size more than 

200x200 [1] 

Picture size Accuracy 

64x64 0.71 

128x128 0.74 

256x256 0.95 

Pre-trained models[21] Model Main finding 

VGG Increased depth and small 

filter size 

ResNet Robust against overfitting 

due to symmetry 

mapping-based skip links 
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DenseNet Block of layers; layers 

connected to each other 

MobileNet-V2 Inverted residual 

structure 

 

 



 

 

 

CHAPTER 3  

METHODOLOGY  

This section focus on how the developing process will be fully conducted.  

3.1 Design of solution 

After study the previous research, it is easier to design a roadmap by taking a 

consideration on what is the most important and least important part to focus on.  This 

may greatly help to reduce time taken to complete the project. As CNN model requires 

a lot of try and error to achieve a great result. By considering every important 

component in CNN model will highlight on how the component may help to reduce 

the training time and increase the accuracy. 
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3.1.1 Block Diagram 

Figure 3.1 represent the important steps taken to complete this project starting with 

preparing the dataset, design the CNN model, test, and optimize, compare the results, 

and model inferencing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1: General process block diagram 

Fetch image from database 

Image pre-processing 

Design CNN model architecture 

Train the CNN model architecture 

Test and optimize the CNN model 

architecture 

Model inferencing 

Compare with transfer learning 

architectures 
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3.1.1.1 Fetch Image from Database 

This first block is fetching the dataset images from database, Kaggle. Fruit-262 will 

be chosen with several images added from self-taken picture, Google Image, and data 

augmentation. The dataset will be stored in Google Drive where it is a cloud storage 

that enable to synchronize with Google Colab. The whole dataset will be stored here 

in one folder, the training and test image will be separated using Python script on 

Google Colab. 

3.1.1.2 Image pre-processing 

Image pre-processing prepare the dataset images into a format images before they 

are used by model training. When the image is pre-processed, it also means that the 

size of the image is being reduced to the input size.  

3.1.1.3 Design CNN model architecture 

The third stage is designing CNN model. Here is where the hyperparameters will 

be decided. The CNN model has several components such as convolution layer, 

activation function, pooling, fully connected and ‘softmax’. The filter size of filter, 

number of filters, stride, padding weights, bias and activation needs to be assigned for 

each layer that encounter a convolution process. 

3.1.1.4 Train the CNN model architecture 

Once the model has been designed, it is ready to train. The training process will be 

done on Google Colab for faster training time. Google Colab allows user to train their 

CNN model using a virtual graphic card from Google server. This is helpful for user 

to use when they face a hardware limitation on their personal computer. The training 

process undoubtedly uses a lot of computational power.  
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3.1.1.5 Test and optimize the CNN model architecture 

Test process is done right after the training process. Its function is to test the trained 

model accuracy. The dataset is separated with 80:20 ratio. The 80 is for training and 

the 20 is for test. The test images can’t be the same image as training. The test result 

of accuracy value is the total accuracy of the model. To get the best result, the CNN 

model architecture is being optimized by tuning the hyperparameters. 

3.1.1.6 Compare with transfer learning architectures 

Now, to compare between these models, it is time for transfer learning architectures 

to be train using a same dataset.  This process is a lot easier compares to designed 

CNN model because it uses a transfer learning method by importing the pre-trained 

model to train our dataset. No designing layers needed. The training and test process 

is same just like the previous model. The comparison will be done in terms of accuracy 

and confusion matrix. 

3.1.1.7 Model inferencing 

Finally, the designed CNN model architecture inferencing will be done on software 

and hardware to show its functionality. 

3.1.2 Project flowchart 

Figure 3.2 depicts the flowchart of the whole project process in details. It consists 

of two main part, pre-processing, and design CNN model architecture.  

3.1.2.1 Pre-processing 

In Figure 3.2 left hand side, pre-processing process will be explained in more 

details. The next is to pre-process the image before being trained. The main objective 

to do an image processing is to reduce the CNN model’s burden during training 



27 

 

process. The explanation behind this is when the image has been pre-processed to a 

certain criterion such as resolution, centralization of the image, etc., for all images will 

act as standard specification for the input CNN model. When training, the model is 

fed only with one standard of image thus reducing the computational power and 

reducing the time taken to complete the training. In this case, the image will be resized 

to 208x256.  

3.1.2.2 Design CNN model architecture 

From Figure 3.2 right hand side, this is where the CNN model architecture is being 

designed. Not to mention that the early result would not be as expected, this would 

require a try and error by tuning the hyperparameters. Hyperparameters are the 

variables which determines the network structure and the variables which determine 

how the network is trained. Hyperparameters are set before training, every time the 

hyperparameters are being changed, it needs to retrain again to get the new result. In 

this project, the hyperparameters that will be focus on is layers, filters, activator, and 

optimizer. 
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          Figure 3.2: Project flowchart 
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3.2 Modern tools 

To perform all the tasks discussed in previous section, it requires a several tools. 

Considering this project related to AI and deep learning, it demands a high-power 

computing resources. This project modern tools consists of two main section, 

software, and hardware. 

3.2.1 Software 

While completing this project, a laptop running on Windows 11 installed with 

software in Table 3.1 runs smoothly. On Kaggle, Fruit-262 datasets was downloaded 

as the main resource for dataset. There are still a lot of datasets available on the website 

but for this project, only one dataset was being chosen. Once the dataset is ready to be 

trained, it will be stored on Google Drive as a cloud storage. Next, the most used 

software was Google Colab Pro. Here is where the design, train, test, optimization, 

and inferencing of the CNN model architecture was done. The reason for Google 

Colab Pro was used instead of local hardware is because the graphical processing unit 

offered is faster. Lastly, TensorFlow and Keras library was used to write the CNN 

model architecture’s script. 

Table 3.1: Software modern tools 

Platform name Application 

Windows 11 Operating system 

Kaggle Datasets community 

Google Drive Cloud storage for datasets 

Google Colab Pro Design, train, test, optimise, and 

inference the CNN model architecture 

TensorFlow and Keras Machine learning Python’s library 
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3.2.2 Hardware 

All the software mentioned previously ran on the laptop specifications as in Table 

3.2. Table 3.2: Hardware modern tools 

Table 3.2: Hardware modern tools 

Acer Nitro 5 laptop specification 

Processor Intel ® Core ™ i5-8300 CPU @ 2.30 GHz (8 CPUs) 

GPU NVIDIA GeForce GTX 1050 4GB VRAM 

RAM 12 GB 

Storage 512 GB SSD 

 

 

 



 

 

 

CHAPTER 4  

RESULTS AND DISCUSSION 

This chapter will focus on analysis of the results obtained from simulation and 

hardware implementation.  

4.1 Chronology of simulation 

A multiple step needs to be done to achieve the best result from the designed CNN 

model. There are just too many variables in CNN model that can cause a variation of 

result. Thus, a try and error method were conducted to observe the differentiations of 

result from each step in Figure 4.1. 
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4.1.1 Manually filter the dataset 

In this step, manual selection of image dataset must be done because there are too 

many unsuitable images inside the Fruit-262 dataset folders that caused the CNN 

model face a hardship to learn the significant features of each fruit classes. However, 

this method will cause the number of datasets for each class to be more imbalance. 

Table 4.1 below shows list number of images for each class before and after this 

process, and Table 4.2 shows some of the example of unsuitable fruit images. 

Manually filter the dataset 

Add new dataset 

Tune the hyperparameters 

 

Figure 4.1: Enhancement of classification 

accuracy process 
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Table 4.1: Number of images per class before and after manually filter the 

dataset 

Dataset class Number of images 

Before After 

Apple 1171 1085 

Banana 1162 1103 

Cempedak 1051 893 

Coconut 1024 487 

Dragonfruit 1035 666 

Durian 1026 827 

Honeydew 1008 911 

Mango 1025 904 

Mangosteen 1105 1002 

Orange 1087 1024 

Papaya 1027 651 

Pineapple 1037 889 

Rambutan 1054 1001 

Watermelon 996 916 

Wax Apple 1017 701 
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Table 4.2: Example of unsuitable images dataset for each class 

Class of fruit Example images 

Apple 

 

Banana 

 

Cempedak 
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Coconut 

 

Dragonfruit 

 

Durian 
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Honeydew 

 

Mango 

 

Mangosteen 
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Orange 

  

Papaya 

 

Pineapple 
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Rambutan 

 

Watermelon 

 

Wax apple 
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Following Figure 4.2, both before and after result shows a healthy learning curve. 

The after result of the trained H-CNN model indeed generates a huge improvement in 

accuracy from 68.69% to 84.15% refer to Table 4.3. This is due to an uncomplicated 

images dataset that will allow the H-CNN model to learn more efficiently. The time 

taken to train the model also slightly decreased due to a lower total amount of dataset. 

Before After 

  

Figure 4.2: Learning curve before and after dataset filtering 

Table 4.3: Comparison before and after dataset filtering 

H-CNN Result 

Before After 

Accuracy 68.69% 84.15% 

Loss 0.99069 0.45295 

Training time 12.933 minute (776 sec) 11.866 minute (712 sec) 

Total parameters 164,815 164,815 

Epoch 20 20 

Batch size 256 256 
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4.1.2 Add new dataset to balance the dataset 

From the latest progress, after the confusion matrix has been generated as shown 

in Figure 4.3, the imbalance of the dataset can be noticed clearly. The brightness of 

the blue box indicates the density of dataset inside each class. An imbalance of dataset 

could be the result to be biased towards specific class that have the higher amount of 

dataset. To eliminate this problem, the amount of dataset for each class must be in the 

same value, in this case the amount is 1,000 set of images to make it fair and square 

for the H-CNN to learn. Table 4.4, shows the example of the added images for each 

class. 

 

Figure 4.3: Confusion matrix before adding a new dataset 
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Table 4.4: Example of added images 

Class of fruit Example of image 

Self-taken image 

Cempedak 

 

Coconut 
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Mango 

 

Papaya 

 

Data augmentation 

Cempedak 
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Coconut 

 

Dragonfruit 

 

Mango 

 

Mangosteen 
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Papaya 

 

Wax Apple 

  

Google Image 

Cempedak 
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Mango 

 

Papaya 

 

 

The result from this step can be seen clearly from the confusion matrix below in 

Figure 4.4 that in fact, now the H-CNN has an unbiased dataset which produced a 

more balanced accuracy. Despite that, the accuracy decreased to 81.63% from 84.15% 

gained from previous step refers to Table 4.5. This indicates that the difference of 

2.52% of accuracy was from a biased class of dataset. The next step will focus on 

improving the accuracy without changing any dataset anymore. 
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Figure 4.4: Confusion matrix after adding a new dataset 

 

Table 4.5: After adding a new dataset 

H-CNN Result 

Before After 

Accuracy 84.15% 81.63% 

Loss 0.45295 0.54491 

Training time 11.866 minute (712 sec) 15.3 minute (918 sec) 

Total parameters 164,815 164,815 

Epoch 20 20 

Batch size 256 256 



47 

 

4.1.3 Tune the hyperparameters 

After made some modification to the datasets, the next step is to tune the 

hyperparameters of the H-CNN model by adjusting the number of filters for each 

convolutional layer and number of epochs. 

4.1.3.1 Number of filters for each convolutional layer 

The initial value of hyperparameters can be taken from reputable sources as initial 

value. In this case, the initial number of filters was taken from Yu-Dong Zhang custom 

CNN model [15]. However, it is not guaranteed that the value is the best for the H-

CNN model due to a different complexity and application for each model. As seen in 

Table 4.6, by changing the number of filters to 64, 128, 256 and 516 for convolutional 

layers generates a huge improvement despite using a similar dataset and number of 

epochs. As expected, the accuracy did rise from 81.63% to 87.83%, but what makes it 

interesting is despite the total number of parameters massively increase up to 

1,153,071 from just 164,815, the training time after tuning the hyperparameters 

slightly lower than before. This means that the H-CNN model able to learn more 

efficiently with the new number of filters. 

Table 4.6: Result from changing number of filters 

H-CNN Result 

Before After 

No. of filters for each 

convolutional layer 

L1: 40 L1: 64 

L2: 80 L2: 128 

L3: 120 L3: 256 

L4: 80 L4: 512 

Accuracy 81.63% 87.83% 
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Loss 0.54491 0.37966 

Training time 15.3 minute (918 sec) 15.08 minute (905 sec) 

Total parameters 164,815 1,153,071 

Epoch 20 20 

Batch size 256 256 

 

4.1.3.2 Number of epochs 

In this step, the main objective is to squeeze the H-CNN model to learn as much as 

it can by increasing the number of epochs to find the stationery point where it indicates 

that the H-CNN model had learn enough. Thus, the number of epochs is being set to 

30. As expected, there is still a room for an improvement as seen in Table 4.7, the 

accuracy climbed up to 90.13% with 2.3% margin from before. The training time also 

rise by 449 seconds which is 7.48 in minute, nonetheless it is not a significant 

drawback as the main objective is to increase the accuracy as much as it can. 

Comparing before and after in Figure 4.5, the accuracy curve in after is convincing as 

the validation accuracy reached the stationary phase. 

Figure 4.5: Learning curves before and after changing number of epochs 

 

Before After 
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Table 4.7: Result from changing number of epochs 

H-CNN Result 

Before After 

Accuracy 87.83% 90.13% 

Loss 0.37966 0.34639 

Training time 15.08 minute (905 sec) 22.56 minute (1354 sec) 

Total parameters 1,153,071 1,153,071 

Epoch 20 30 

Batch size 256 256 

 

A confusion matrix is a table that is used to visualize the performance of a 

classification model on a set of test data for which the true values are known. The y-

axis is where the classifier determines the true label and x-axis is what the classifier 

predicted it to. A huge difference can be seen between initial confusion matrix from 

Figure 4.6 and the final confusion matrix from Figure 4.7. The final confusion matrix 

shows a solid thick blue boxes on their own class proving that the H-CNN has 

improved a lot with methods above. While the initial confusion matrix displays the 

poor performance before undergoing any optimization process. 
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Figure 4.6: H-CNN initial confusion matrix 
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Figure 4.7: H-CNN final confusion matrix 

 

4.2 Inference of H-CNN model 

Now, it is time to inference H-CNN to demonstrate the application of the model. 

There are 2 ways to accomplish this by via software and hardware.  

4.2.1 Software 

To run via software, the simplest way is by using the same platform as the model 

was developed, Google Colab. With a set of script from Figure 4.8, it can mimic a 

real-world application by predicting a set of random images as in Figure 4.9. The script 



52 

 

performs by taking a random image from ‘Model_Test’ folder, resize it into model 

input size 208x256 and predict the image belong to which classes. To demonstrate that 

the simulation was done fairly, a random set of images was gathered inside a single 

folder named ‘Model_Test’. Note that the images are totally new to the H-CNN model. 

75 images were collected from Bing Image Search with 5 images for each class.  

 

Figure 4.8: Software inferencing code 

 

Figure 4.9: Software inferencing test images 
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Table 4.8 shows some of the output from the software inferencing process.  

Table 4.8: Software inferencing output 
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4.2.2 Hardware 

To implement the H-CNN model into a hardware, NVIDIA Jetson Nano was 

connected with CSI Raspberry Pi Camera V2 as shown in Figure 4.10. From Figure 

4.11, firstly save the H-CNN model generated from Google Colab as .hdf5 file. Next, 

convert the .hdf5 file in ONNX format. Lastly, convert .ONNX file into TensorRT 

format. Now the model can be inference into NVIDIA Jetson Nano ‘imagenet’ 

function. Table 4.9 shows some of the hardware inferencing output. 
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Figure 4.10: NVIDIA Jetson Nano full setup 

 

  

 

 

 

 

 

Save the model in Keras format (.hdf5) 

Convert the Keras into ONNX format 

Convert the ONNX format into TensorRT format 

Inference the model in ‘imagenet’ 

Figure 4.11: Hardware inferencing block diagram 
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Table 4.9: Hardware inferencing output 
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4.3 Comparison with other pre-trained models 

Finally, the main objective of this project is to compare designed CNN model 

architecture with other well established pre-trained models developed by multiple big 

names such as Oxford University, Google, Microsoft Research etc. In Table 4.10, the 

comparison shown in terms of accuracy, model size, training time and model 

complexity. For accuracy, H-CNN comes 3rd out of 4 due to MobileNetV2 suffer an 

overfitting problem due to the architecture is too complex for dataset used. 

Nevertheless, the model size is the biggest advantage for H-CNN where it got a 

massive margin compared to others, but keep in mind that H-CNN was only trained 

to know 15 types of fruit. The training time does not make a huge difference as the 

same dataset was being used. As for complexity, H-CNN only use 6-layers of tune 

able layers compared to the nearest model, VGG16 which use 16-layers and the rest 

model really uses a lot of layers. Lastly, the total parameters are closely related to the 

model complexity, whereas the more layers in the architecture (depends on what 

layer), the higher the total parameters will be. 
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Table 4.10: Model comparison details 

Model 

Name 

H-CNN ResNet50 VGG16 MobileNetV

2 

DenseNet12

1 

Accuracy 90.13% 94.77% 93.93% 77.17%   84.13% 

Model size 13 MB 110 MB 60.4 MB 21.2 MB 36 MB 

Training 

time (m) 

22  18  41 23  18 

Complexit

y 

6-layers 50-layers 16-layers 53-layers 121-layers 

Total 

parameters 

1,153,07

1 

25,308,04

7 

15,083,34

3 

3,333,199 7,774,799 

 

4.3.1 Confusion matrix 

According to Figure 4.12, 4.13, 4.14, 4.15, and 4.16, all model’s confusion matrix 

and classification report is being shown side by side. Observe that the thick blue box 

reflects the total accuracy. The blue thickness level represents recall value from 

classification report. The blue will get thicker with a higher recall value. Recall is the 

ratio of correctly predicted positive observations to all observations in actual class – 

yes. Essentially, the higher recall means the better for the confusion matrix. 
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Figure 4.12: H-CNN confusion matrix 

 

 

 

 

 

Figure 4.13: ResNet50 confusion matrix 
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Figure 4.14: VGG16 confusion matrix 

 

 

 

 

 

Figure 4.15: MobileNetV2 confusion matrix 
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Figure 4.16: DenseNet121 confusion matrix 

 

4.4 Environment and sustainability 

To comply with sustainable design criteria, this project fulfils one of the 17 

sustainable development goals set by United Nations as shown in Figure 4.17, the 9th 

goal, Industry, Innovation, and Infrastructure. This goal aims to build resilient 

infrastructure, promote sustainable industrialization, and foster innovation. 

 

Figure 4.17: Sustainable development goals  [22] 
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According to United Nations in Figure 4.18, global manufacturing growth has been 

decreasing way before the COVID-19 pandemic hits the world. Then, the pandemic 

came and make situations worst that causing a trouble for a global supply chain. Thus, 

technological and innovation progress are key to finding lasting solutions to both 

economic and environmental challenges, such as increased resource and energy 

efficiency [23]. This project might be one of the keys to solve these problems with a 

low emission and high efficiency output without harming our planet. 

 

Figure 4.18: 9th goal infographic [24] 



 

 

 

CHAPTER 5  

CONCLUSION AND FUTURE WORKS 

To conclude all the works done while completing this project, it is fortunately 

achieved all the main objectives. First, the H-CNN model architecture was developed 

on Google Colab using Python’s Keras and TensorFlow library. Secondly, the result 

from H-CNN was compared thoroughly with pre-trained models such as ResNet50, 

VGG16 and MobileNetV2 using transfer learning method with same datasets for all 

models. Lastly, the model successfully inferenced on software and hardware to 

validate the functionality of the model. After completing this project, it is massively 

giving an impact of impression on how the computer vision’s AI works behind the 

scenes. It is completely complex and interesting.  

Even though this thesis ends here, the project subject still lives on with rapidly 

advancing days by days. There are still a lot of room for CNN architecture 
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improvement with many hyperparameters embedded inside the CNN architectures. As 

hardware’s are getting faster, a software also must be in the same trend to ensure the 

technology beyond these two always in parallel. In the future, there might be a model 

that can learn as efficiently as this but with a lower amount of dataset. Hopes for future 

studies on this topic could be more details than this thesis by investigating each layer 

and their effects on the model’s accuracy so that even a simple CNN layer can be 

utilized as much as it can to be on par with well-established pre-trained models. More 

studies also suggested on inferencing the CNN model with a small devices such as 

mobile, embedded, and Internet of Things (IoT) devices and computers like how 

TensorFlow Lite does. This will surely bring an AI model to a new era where it is 

light, optimized, and friendly user for cheap microcontroller that are in common right 

now such as Raspberry Pi. Besides, this studies do not limited to a fruit classification 

application, it can be implement into any application that requires a similar 

functionality such as to classify a faulty product in a factory line. 

After done a hectic year of work, this project proves that a small simple CNN model 

can be as good as well-established pre-trained models with a proper development. A 

dataset remains one of the most important parts to achieve a high accuracy. With a 

high quality of dataset, it can beat a model with a much more but a low-quality dataset. 

Then, by tweaking the hyperparameters will help the model to reach a true potential 

of the developed model. 
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APPENDICES 

5.1 Appendix A: H-CNN’s model architecture script 
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5.2 Appendix B: H-CNN’s model architecture summary 

 




