

CONVOLUTIONAL NEURAL NETWORK (CNN)
ARCHITECTURE FOR TROPICAL FRUIT CLASSIFICATION

MUHAMMAD HAZIQ BIN SHAARI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ii

CONVOLUTIONAL NEURAL NETWORK (CNN)

ARCHITECTURE FOR TROPICAL FRUIT CLASSIFICATION

MUHAMMAD HAZIQ BIN SHAARI

This report is submitted in partial fulfilment of the requirements

for the degree of Bachelor of Electronic Engineering with Honours

Faculty of Electronic and Computer Engineering

Universiti Teknikal Malaysia Melaka

2022

DECLARATION

I declare that this report entitled “Convolutional Neural Network (CNN) architecture

for tropical fruit classification” is the result of my own work except for quotes as cited

in the references.

Signature : …………………………………

 Author : Muhammad Haziq bin Shaari

 Date : 18 Jun 2022

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient

in terms of scope and quality for the award of Bachelor of Electronic Engineering with

Honours.

Signature : …………………………………

Supervisor Name : Dr. Abd Shukur bin Ja’afar

Date : 18 Jun 2022

DEDICATION

I dedicate this thesis to Allah SWT for giving me everything to complete this project

with ease.

i

ABSTRACT

Convolutional Neural Network (CNN) is a robust computer vision algorithm from

artificial intelligence (AI) that use deep learning networks to analyse visual imagery.

The predecessor, machine learning, is also a type of AI but with a lower performance

than deep learning. The aim of this project is to design a CNN model architecture layer

on par with pre-trained models such as ResNet50, VGG16, MobileNetV2, and

DenseNet121 using 15 classes of tropical fruit with total of 15000 images. The model

was designed on Google Colab using TensorFlow and Keras library. Next, the network

model needs to be trained, test, and optimized by tuning the hyperparameters. Then,

all simulation results were compared to the well-known pre-trained models in terms

of accuracy and confusion matrix. At the end of this project, the H-CNN able to reach

90.13% accuracy with balance distribution across all of the tropical fruit classification.

ii

ABSTRAK

Rangkaian Saraf Konvolusional (CNN) ialah algoritma penglihatan komputer

yang mantap daripada kecerdasan buatan (AI) yang menggunakan rangkaian

pembelajaran mendalam untuk menganalisis pengimejan visual. Sebelum ini,

pembelajaran mesin, juga merupakan jenis AI tetapi dengan prestasi yang lebih

rendah daripada pembelajaran mendalam. Matlamat projek ini adalah untuk mereka

bentuk lapisan seni bina model CNN yang setanding dengan model pra-latihan seperti

ResNet50, VGG16, MobileNetV2 dan DenseNet121 dengan menggunakan 15 kelas

buah tropika dengan berjumlah 15000 imej. Model ini telah direka bentuk pada

Google Colab menggunakan Pustaka TensorFlow dan Keras. Seterusnya, model

rangkaian perlu dilatih, diuji dan dioptimumkan dengan penalaan hiperparameter.

Kemudian, semua hasil simulasi dibandingkan dengan model pra-latihan yang

terkenal dari segi ketepatan dan matriks kekeliruan. Pada akhir projek ini, H-CNN

mampu mencapai ketepatan 90.13% dengan taburan yang seimbang yang merentasi

semua klasifikasi buah tropika.

iii

ACKNOWLEDGEMENTS

Foremost, I would like to thank my family, my parent Siti Kalsom binti Samsuri,

siblings, Muhammad Hafiz, Natasha, Muhammad Hazri and Muhammad Hamim

Hakim, for always supporting me spiritually throughout my life.

Next, I would like to express my sincere gratitude to my supervisor Dr. Abd Shukur

bin Ja’afar for the guidance of my PSM, for his patience, motivation, enthusiasm, and

immense knowledge. His encouragement helped me in all the time of research and

writing of this thesis. I could not imagine having a better supervisor and mentor for

my PSM study.

My sincere thanks also go to my love, Nurul Hidayah binti A.Halim, my friends,

Ammar, Afiq, Amirul Hafiz, Khairul Naim, Firzan, Shahmir, Farhan, and Arif for the

sleepless nights we were working together before deadlines and for all the fun we have

had in the last four years.

Besides my colleagues, I would like to thank the rest of my thesis committee,

Professor Madya Dr. Wong Yan Chie,w and Ts. Siti Aisah binti Mat Junos@Yunus,

for their encouragement, insightful comments, and hard questions.

iv

TABLE OF CONTENTS

Declaration i

Approval i

Dedication i

Abstract i

Abstrak ii

Acknowledgements iii

Table of Contents iv

List of Figures viii

List of Tables x

List of Symbols and Abbreviations xii

List of Appendices xiii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement 1

1.2 Objective and Scope 2

1.2.1 Objective 2

1.2.2 Scope of Work 2

v

1.3 Project Significant 3

CHAPTER 2 LITERATURE SURVEY 4

2.1 Artificial Intelligence (AI) 4

2.1.1 Deep Learning 5

2.2 Convolutional Neural Network (CNN) 5

2.2.1 Input 6

2.2.2 Convolution Layer – The Kernel 7

2.2.3 Pooling Layer 9

2.2.4 Activation Functions (Non-Linearity) 10

2.2.5 Fully Connected Layer 11

2.2.6 Confusion matrix 12

2.2.6.1 Accuracy 12

2.2.6.2 Precision 13

2.2.6.3 Recall 13

2.2.6.4 F1 Score 13

2.2.6.5 Support 14

2.3 Literature Review 14

CHAPTER 3 METHODOLOGY 23

3.1 Design of solution 23

3.1.1 Block Diagram 24

vi

3.1.1.1 Fetch Image from Database 25

3.1.1.2 Image pre-processing 25

3.1.1.3 Design CNN model architecture 25

3.1.1.4 Train the CNN model architecture 25

3.1.1.5 Test and optimise the CNN model architecture 26

3.1.1.6 Compare with transfer learning architectures 26

3.1.1.7 Model inferencing 26

3.1.2 Project flowchart 26

3.1.2.1 Pre-processing 26

3.1.2.2 Design CNN model architecture 27

3.2 Modern tools 29

3.2.1 Software 29

3.2.2 Hardware 30

CHAPTER 4 RESULTS AND DISCUSSION 31

4.1 Chronology of simulation 31

4.1.1 Manually filter the dataset 32

4.1.2 Add new dataset to balance the dataset 40

4.1.3 Tune the hyperparameters 47

4.1.3.1 Number of filters for each convolutional layer 47

4.1.3.2 Number of epochs 48

vii

4.2 Inference of H-CNN model 51

4.2.1 Software 51

4.2.2 Hardware 56

4.3 Comparison with other pre-trained models 59

4.3.1 Confusion matrix 60

4.4 Environment and sustainability 63

CHAPTER 5 CONCLUSION AND FUTURE WORKS 65

REFERENCES 67

APPENDICES 71

5.1 Appendix A: H-CNN’s model architecture script 71

5.2 Appendix B: H-CNN’s model architecture summary 72

viii

LIST OF FIGURES

Figure 2.1: Classic CNN architecture [8] 6

Figure 2.2: 4x4x3 RGB image [10] 7

Figure 2.3: 5x5 filter (kernel) convolving the input image [8] 8

Figure 2.4: Movement of the kernel [10] 8

Figure 2.5: Pooling layer (2x2) convolving the input [7] 9

Figure 2.6: Graph representation of ReLU [11] 10

Figure 2.7: Architecture of fully connected layers [7] 11

Figure 2.8: Confusion matrix for binary classification [12] 12

Figure 3.1: General process block diagram 24

Figure 3.2: Project flowchart 28

Figure 4.1: Enhancement of classification accuracy process 32

Figure 4.2: Learning curve before and after dataset filtering 39

Figure 4.3: Confusion matrix before adding a new dataset 40

Figure 4.4: Confusion matrix after adding a new dataset 46

Figure 4.5: Learning curves before and after changing number of epochs 48

Figure 4.6: H-CNN initial confusion matrix 50

Figure 4.7: H-CNN final confusion matrix 51

Figure 4.8: Software inferencing code 52

file:///D:/NOTES/SEMESTER%207/PSM%201/Thesis%20Draft%20PSM%201/FKEKK%20Thesis%20Template%20version%20August%202018%20-%20Copy.docx%23_Toc106394761
file:///D:/NOTES/SEMESTER%207/PSM%201/Thesis%20Draft%20PSM%201/FKEKK%20Thesis%20Template%20version%20August%202018%20-%20Copy.docx%23_Toc106394762
file:///D:/NOTES/SEMESTER%207/PSM%201/Thesis%20Draft%20PSM%201/FKEKK%20Thesis%20Template%20version%20August%202018%20-%20Copy.docx%23_Toc106394763

ix

Figure 4.9: Software inferencing test images 52

Figure 4.10: NVIDIA Jetson Nano full setup 57

Figure 4.11: Hardware inferencing block diagram 57

Figure 4.12: H-CNN confusion matrix 61

Figure 4.13: ResNet50 confusion matrix 61

Figure 4.14: VGG16 confusion matrix 62

Figure 4.15: MobileNetV2 confusion matrix 62

Figure 4.16: DenseNet121 confusion matrix 63

Figure 4.17: Sustainable development goals [22] 63

Figure 4.18: 9th goal infographic [24] 64

file:///D:/NOTES/SEMESTER%207/PSM%201/Thesis%20Draft%20PSM%201/FKEKK%20Thesis%20Template%20version%20August%202018%20-%20Copy.docx%23_Toc106394773

x

LIST OF TABLES

Table 2.1: Accuracy comparison on different types of datasets to VGG model [14] 14

Table 2.2: CNN architecture [15] 15

Table 2.3: Effect of data augmentation [15] 16

Table 2.4: Comparison to different model approaches [15] 16

Table 2.5: Deep learning vs Machine learning model [17] 17

Table 2.6: Comparison CNN model and transfer learning [19] 18

Table 2.7: Effect of picture size to CNN classification accuracy [1] 18

Table 2.8: A list of methods to mitigate overfitting [20] 19

Table 2.9: Brief overview of CNN architectures [21] 19

Table 2.10: Summary of previous studies 20

Table 3.1: Software modern tools 29

Table 3.2: Hardware modern tools 30

Table 4.1: Number of images per class before and after manually filter the dataset 33

Table 4.2: Example of unsuitable images dataset for each class 34

Table 4.3: Comparison before and after dataset filtering 39

Table 4.4: Example of added images 41

Table 4.5: After adding a new dataset 46

Table 4.6: Result from changing number of filters 47

xi

Table 4.7: Result from changing number of epochs 49

Table 4.8: Software inferencing output 53

Table 4.9: Hardware inferencing output 58

Table 4.10: Model comparison details 60

xii

LIST OF SYMBOLS AND ABBREVIATIONS

CNN : Convolutional Neural Network

AI : Artificial Intelligence

SVM : Support Vector Machine

ANN : Artificial Neural Network

RGB : Red Green Blue

FC : Fully Connected

ReLU : Rectifier Linear Unit

KNN : K-Nearest Neighbours

VGG : Visual Geometry Group

xiii

LIST OF APPENDICES

Appendix A: H-CNN’s model architecture script………………………….71

Appendix B: H-CNN’s model architecture summary……………………...72

CHAPTER 1

INTRODUCTION

Classification is about categorizing objects into groups. A type of classification

is where multiple classes are predicted. In CNN architecture, it comprises

convolutional layers, max-pooling layers, and fully connected layers. In the first layer,

the input is processed, and an output is produced in the last layer. The classification

network selects the category based on which output response has the highest output

value.

1.1 Problem Statement

First, machine learning has been the way for image classification for quite some

time due to its simplicity and fewer computer resources. However, the performance in

terms of accuracy compared to deep learning is quite a gap. According to P. Wang, E.

2

Fan, and P. Wang, [1] the image classification results from the MNIST dataset for the

machine learning model, Support Vector Machine (SVM) is 88% while CNN is 98%.

Machine learning did not perform too well for a large dataset, unlike CNN. Secondly,

the size of the model will be the main factor to avoid using a transfer learning method.

A pre-trained model size is much bigger than a designed CNN due to its nature being

pre-trained by thousands if not millions of images typically on a large-scale image-

classification task. Thus, it has unnecessary weight for a certain application where it

would not be fully utilized [2]. This research will dive deeper into how CNN works

and what affects its performance. This will give more insights into the structure of the

CNN model. To overcome these problems, designing CNN architecture could produce

a better AI model with a smaller size.

1.2 Objective and Scope

1.2.1 Objective

The objectives of this project are:

1. To design a Convolutional Neural Network architecture for tropical fruit

classification.

2. To optimize the CNN model and compare the result in terms of confusion

matrix and accuracy, between pre-trained transfer learning models and

designing a model.

3. To inference the designed model on software and hardware.

1.2.2 Scope of Work

To complete this project smoothly, several scopes of work has been determined to

ensure the main idea where and how to progress accordingly. Firstly, a dataset for

3

tropical fruit needs to be collected first. These datasets can be found on Kaggle and

any image search engine such as Google Image. Next, the hardest part is to design the

CNN model architecture. This process will be done using a TensorFlow and Keras

library of Python language since it is the most reliable coding language to develop a

CNN. The platform will be on Google Colab due to demand in graphical processing

power to train the model effectively. Right after the model is done, it needs to be

optimized to get the best result. After that, a transfer learning method will be used to

train the model with the same dataset. Then, the comparison of the simulation results

will be analyzed. Finally, the designed CNN model will be inferenced on software and

hardware.

1.3 Project Significant

This project can be implemented on real life application for more efficient output.

Currently in supermarket, the fruits need to be weighted first before the price sticker

will be printed. If the worker is not there, then the whole system is jammed. Imagine

a self-service automatic process that can eliminate this type of problems. This is just

one of the examples to justify how significant this project can be. Basically, any

application that need a visual imagery detection might need a CNN technology. Below

is some of the famous applications of CNN [3]:

• Facial Recognition

• Analyzing Documents

• Historic and Environmental Collections

• Understanding Climate

• Grey Areas

• Advertising

CHAPTER 2

LITERATURE SURVEY

This chapter will discuss about the CNN theory and previous research that has been

done.

2.1 Artificial Intelligence (AI)

AI has progressed from humble beginnings to a global impact. The definition of AI

and what should and should not be included has evolved over time. According to

Kaplan and Haenlein [4], AI defined as “a system’s ability to correctly interpret

external data, to learn from such data, and to use those learnings to achieve specific

goals and tasks through flexible adaptation”. According to European Commission’s

2018 [5] definition of AI, “AI refers to systems that display intelligent behaviors by

analyzing their environment and taking action – with some degree of autonomy – to

achieve specific goals”.

5

2.1.1 Deep Learning

Deep learning is a type of AI that mimic the human way of thinking to absorb a

certain types of knowledge. To make it simpler, deep learning can be view as a way

to automate predictive analytics. While machine learning algorithms are linear, deep

learning algorithms are arranged in a hierarchy of increasing complexity and

abstraction. According to Y. LeCun, Y. Bengio, and G. Hinton, [6] “Deep learning

enables computer models with several processing layers to discover data

representations with multiple levels of abstraction. These techniques have

significantly advanced the state-of-the-art in speech recognition, visual object

recognition, object detection, and numerous other fields, including drug development

and genomics. Deep learning identifies intricate structure in big data sets by utilizing

the backpropagation algorithm to recommend how a machine's internal parameters

used to compute the representation in each layer from the representation in the

previous layer should be modified. Deep convolutional neural networks have

advanced the processing of pictures, video, speech, and audio, while recurrent neural

networks have shed light on sequential data such as text and speech.”

2.2 Convolutional Neural Network (CNN)

CNN is a deep learning architecture, an outstanding type of multiple layer

neural network. The architecture of CNN is inspired to mimic a way of human brain.

Although it became famous after the shocking achievement of AlexNet in 2012, the

history itself originated from 1959. A CNN is a class of artificial neural network

(ANN), where it is most applied to analyze visual imagery because of the ability to

learn a significant patterns from the pixels of the image and can identify the type of

image more intelligently. A deep CNN model has several number of layers where each

6

layer extracts the significant patterns and feed it into the next layer that can be seen in

Figure 2.1. The early layers learn and take out the high-level features, and the deeper

layers learns and take out the low-level features [7].

Figure 2.1: Classic CNN architecture [8]

2.2.1 Input

Before anything else, CNN needs an input to go further process. By input image, it

means a lot of images (thousands) for it to learn efficiently. The more the input images,

the better for the model to learn. Let’s take a simple example for a better

understanding. In Figure 2.2, a Red Green Blue (RGB) image is the input. It has been

separated by its three-color planes, Red, Green, and Blue. There are many other types

of color spaces in images such as Grayscale, RGB, HSV, CMYK, etc. Now in this

image, the resolution is 4x4, which is really small for a picture. Nowadays, images

resolution has been much more complex for example SD (640x480), HD (1280x720),

FULL HD (1920x1080), 4K (3840x2160), 8K (7680x4320) and etc [9]. Imagine how

computationally intensive things would get for these modern image resolutions. The

role of the CNN is to reduce the images into a form which is easier to process, without

losing an important feature to get a good prediction [10].

7

Figure 2.2: 4x4x3 RGB image [10]

2.2.2 Convolution Layer – The Kernel

Convolutional layer is the principal part of any CNN architecture. It consists of a

set of convolutional filters (also known as kernels) which convolved the input image

(N-dimensional metrics) to generate an output feature map as shown in Figure 2.3. A

filter (kernel) can be described as a grid of discrete values or numbers, where each

value is known as the weight of this kernel. During the early stage of training process

of an CNN model, all the weights of a kernel are assigned with random numbers (best

to refer a similar model). Then, with each training epoch, the weights are tuned, it

repeats the same process that helps the kernel learning process to extract significant

features more deeply [7]. The main objective of the Convolution Operation is to

extract the high-level features such as edges, from the input images. It need not to be

limited to only one Convolutional Layer, there can be a multiple depends on the model

usage. Usually, the first layer is to be capturing a low-level feature such as edges,

color, gradient orientation, etc. With added layers, the architectures adapt to the high-

level features as well, giving us a network, which has the wholesome understanding

of images in the dataset, like how human would [10].

8

Figure 2.3: 5x5 filter (kernel) convolving the input image [8]

The stride also one of the important keys to design a kernel. Stride can be described

as the taken step size along the horizontal or vertical position of 1 to the kernel. Figure

2.4 shows how the kernel move from left to right and then starts again in row below.

If the stride length = 1, it is non-strided, because the kernel will go through each pixel

of input image [10].

Figure 2.4: Movement of the kernel [10]

9

2.2.3 Pooling Layer

Pooling layers are used to sub-sample the feature maps generated by the

convolution process. For example, it takes bigger feature maps and compresses them

to smaller feature maps like in Figure 2.5. When decreasing the feature maps, the most

dominating features in each pool step are always preserved. Like the convolution

operation, the pooling operation is conducted by defining the pooled region size and

the stride of the operation [7]. Through dimensionality reduction, the computer power

required to process the data is reduced [10]. Pooling techniques such as max pooling,

min pooling, average pooling, gated pooling, tree pooling, and others are used in

pooling layers. Max pooling is the most well-known and often utilized pooling

technique.

Figure 2.5: Pooling layer (2x2) convolving the input [7]

10

2.2.4 Activation Functions (Non-Linearity)

In any neural network-based model, the activation function's role is to translate the

input to the output, where the input value is derived by computing the weighted sum

of neuron input and then adding bias to it (if there is a bias). In other words, the

activation function produces the matching output to determine whether a neuron will

fire or not for a particular input as depicts in Figure 2.6. In CNN architecture, after

each learnable layers (layers with weights, i.e., convolutional and Fully Connected

(FC) non-linear activation layers are used. The CNN model can learn more

complicated things and manage to translate inputs to outputs non-linearly thanks to

the non-linearity behavior of those layers. In this project, Rectifier Linear Unit (ReLU)

will be used as activation function in CNN [7].

Figure 2.6: Graph representation of ReLU [11]

11

ReLU for short is a piecewise linear function that will output the input directly if it

is positive, otherwise, it will output zero. It has become the default activation function

for many types of neural networks because a model that uses it is easier to train and

often achieves better performance. The main advantage of ReLU is that it requires

very minimal computation load compared to others. Below (2.1) is the mathematical

equation of ReLU [11].

 f(x)ReLU = max (0, x) (2.1)

2.2.5 Fully Connected Layer

The last part of CNN architecture layers is FC. The way this layer works is that it

looks at the output of the previous layer (should be the activation of high-level

features) and the number of classes N [10]. The FC layers receive input from the last

convolutional or pooling layer, which is in the form of a set of metrics (feature maps),

flatten them to make a vector, and then feed it into the FC layer to construct the final

CNN output as in Figure 2.7. In other words, FC is used as the classifier of the CNN

architecture [7].

Figure 2.7: Architecture of fully connected layers [7]

12

2.2.6 Confusion matrix

A confusion matrix is a table that is used to evaluate the accuracy performance of

a classification model on a set of test data which the true values are known. Confusion

matrix shows where the model is getting confused by plotting a table that reports with

each row corresponding to the true class and each column to the predicted class like

in Figure 2.8. The confusion matrix simple to understand, but the terminologies used

can be confusing. The output “TN” stands for True Negative which shows the number

of negative samples classified correctly. Similarly, “TP” stands for True Positive

which indicates the number of positive examples classified accurately. The term “FP”

shows False Positive value, for example the number of actual negative examples

classified as positive, and “FN” means a False Negative value which is the number of

actual positive examples classified as negative.

Figure 2.8: Confusion matrix for binary classification [12]

2.2.6.1 Accuracy

Accuracy can be calculated from formula (2.2) [12], and it’s the most intuitive

performance measure. It is simply a ratio of correctly predicted observation to the total

observations. One may think that, if accuracy is high, then it is a good model. Accuracy

is a great measure but only when the datasets is symmetric where values of false

positive and false negatives are almost same. Therefore, other parameters are needed

to evaluate the performance of the model [13].

13

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃

(2.2)

2.2.6.2 Precision

Precision is the ratio of correctly predicted positive observations to the total

predicted positive observations [13]. High precision relates to the low false positive

rate as shown in equation (2.3)[12].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2.3)

2.2.6.3 Recall

Recall is the ratio of correctly predicted positive observations to all observations in

actual class – yes [13]. It is calculated from equation (2.4) [12].

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(2.4)

2.2.6.4 F1 Score

F1 Score is the weighted average of precision and recall. Therefore, this score takes

both false positives and false negatives into account as in equation (2.5) [12].

Intuitively, it is not easy to understand as accuracy, but F1 is usually more useful than

accuracy, especially if the class is uneven distribution. Accuracy works best if false

positives and false negatives have similar cost. If the cost of false positives and false

negatives are very different, it’s better to look at both precision and recall [13].

14

𝐹1 = 2 ∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

(2.5)

2.2.6.5 Support

Support is the number of samples of the true response that lie in that class [13].

2.3 Literature Review

Move on to the next discussion, a high accuracy in simulation does not guarantee a

same accuracy percentage in real world application. This may happen due to the real

situation where the model is being tested for example the lighting, background, etc.

According to Josh Janzen’s experiment, he stated that “most real-world applications

of CNN for image recognition are not going to be that similar to ImageNet base of

images” [2]. There is study that related to this, based on G. Zeng [14] did an

experiment by using 4 types of dataset to train the model as in Table 2.1. The first one

is pure online photos, second one is pure shooting photos, third one is train online

photos first then shooting photos, and the last one is shooting first and then online

photos. The result shows how this type of dataset may influence the accuracy.

Table 2.1: Accuracy comparison on different types of datasets to VGG model

[14]

VGG model with different input images Top-1 accuracy (%)

VGG - Online 89.6

VGG - Shooting 94.0

VGG - Online-Shooting 95.6

VGG - Shooting-Online 90.5

Now, the study will focus on more to designing CNN model performance. From

previous research, it is known that there are not many studies on this topic. This is due

to complication of the process that can consume a lot of time. From Y. Zhang, Z.

Dong, and X. Chen et al.[15] studies, they designed a 13-layer deep CNN model

15

architecture for fruit category classification. With 3600 dataset and 18 classes, each

class down to 200 images. They managed to achieve 94.94% of accuracy. This is a

good achievement considering the amount of dataset. The key behind this success is

efficiency in data pre-processing and data augmentation. Note that when the amount

of dataset is too small, it may lead to overfitting [16]. Table 2.2 explain in details of

each layer from the designed 13-layer deep CNN model. While in Table 2.3 shows the

accuracy result between augmented data and non-augmented data. Finally, Table 2.4

display the overall accuracy achieved for different types of model using a same

dataset.

Table 2.2: CNN architecture [15]

Layer Purpose Filter No. of

filters

Stride Padding Weights Bias Activation

1 Image

Input layer

 256x256x3

2 Conv+ReL

u

7x7 40 [3 3] [0 0] 7x7x3x4

0

1x1x40 84x84x40

3 Pooling 3x3 [3 3] [0 0] 28x28x40

4 Conv+ReL

u

5x5 80 [3 3] [2 2] 5x5x40x

80

1x1x80 10x10x80

5 Pooling 3x3 [1 1] [1 1] 10x10x80

6 Conv+ReL

u

3x3 120 [1 1] [1 1] 3x3x80x

120

1x1x120 10x10x120

7 Pooling 3x3 [1 1] [1 1] 10x10x120

8 Conv+ReL

u

3x3 80 [1 1] [1 1] 3x3x120

x80

1x1x80 10x10x80

9 Pooling 3x3 [3 3] [1 1] 4x4x80

10 FC 50x1280 50x1 1x1x50

11 FC 18x50 18x1 1x1x18

12 Softmax 1x1x18

13 Output 1x1x18

16

Table 2.3: Effect of data augmentation [15]

Test Set No. of Image Data Augmentation F1 No augmentation F1

Clean 1800 94.94% 93.72%

Background 173 89.60% 84.39%

Decay 136 94.12% 86.03%

Unfocused 145 91.03% 86.90%

Occlusion 161 92.55% 86.34%

Table 2.4: Comparison to different model approaches [15]

Approach Overall Accuracy

PCA+ kSVM 88.20%

PCA + FSCABC 89.11%

WE + BBO 89.47%

FRFE + BPNN 88.99%

FRFE + IHGA 89.59%

13-layer CNN 94.94%

This project only focuses on deep learning because it is more superior than machine

learning models. As N. Saranya, K. Srinivasan, S. Kumar et al. [17] did a comparison

of fruit classification between machine learning models, K-Nearest Neighbours

(KNN) and Support Vector Machine (SVM) versus deep learning models CNN in

Table 2.5 where the KNN, SVM and CNN produced 48.63%, 60.65% and 96.49%

respectively.

17

Table 2.5: Deep learning vs Machine learning model [17]

TITLE DATASET

(FRUIT 360)

METHOD RESULT

Fruit Classification

Using Traditional

Machine Learning

and Deep Learning

Approach

Size 100x100

Red Apple: 492

Banana: 490

Orange: 479

Pomegranate: 246

Hold out (70/30)

KNN 48.63%

SVM 60.65%

13-layer CNN

model

96.49% (20

epochs)

Now, in deep learning itself, there are two methods that can be used for training the

model as stated previously, by designing CNN model architecture and transfer

learning method. On the internet, the CNN recommendation between these two

methods will always lean to transfer learning method. Instead of building a CNN

model architecture, transfer learning can easily import a pre-built and pre-trained

model such as VGG, GoogleNet, ResNet, DenseNet, etc. Simpler to say, transfer

learning is like by taking a model trained on a large dataset and transfer it knowledge

to a smaller dataset. That means transfer learning requires a smaller amount of dataset

[18]. However, the complication of the architecture of transfer learning is very

complex. Not only it took a lot of computational power, but it also took a lot of size.

According to R. Pathak and H. Makwana [19] studies on designing CNN and transfer

learning models shows their 6-layer CNN model as listed in Table 2.6, outperformed

the other transfer learning VGG-16, AlexNet, LeNet-5, and VGG-19 with 98.23%,

90.81%, 83.56%, 82.93%, and 76.48% respectively. Bear in mind that designing CNN

model indeed can surpassed transfer learning, but it is error prone and time consuming.

18

Table 2.6: Comparison CNN model and transfer learning [19]

COMPARISON OF THE ACCURACIES

MODEL ACCURACY

VGG-16 90.81%

VGG-19 76.48%

LeNet-5 82.93%

AlexNet 83.56%

Proposed Model (designed CNN) 98.23%

From Table 2.7, CNN model’s accuracy affected by the input size of dataset.

Essentially, the bigger picture size will bring a higher classification accuracy. This is

simple to understand as a bigger picture size will have more clearer details that can be

seen from our eyes. So does CNN, it will be a lot easier to learn from a clearer picture

than a pixelated picture.

Table 2.7: Effect of picture size to CNN classification accuracy [1]

Picture size Number of categories CNN classification accuracy

64x64 10 0.71

128x128 10 0.74

256x256 10 0.95

Overfitting is a common problem while training a CNN model. This happens due

to a lot of reason but mostly from lack of training data and the CNN model is too

complex for the problem solving. In Table 2.8, R. Yamashita, M. Nishio, and K. G.

D. Richard et al. [20] listed a methods to mitigate overfitting for CNN model. Starting

from top to bottom is the priority that need to be taken care of.

19

Table 2.8: A list of methods to mitigate overfitting [20]

How to mitigate overfitting

More training data

Data augmentation

Regularization (weight decay, dropout)

Batch normalization

Reduce architecture complexity

Author L. Alzubaidi, J. Zhang, and A. Humaidi et al. [21] listed a brief overview

some of the CNN architectures in Table 2.9. VGG, ResNet, DenseNet and MobileNet

are a well-established pre-trained model. It has a multiple version due to the

community helps it to grow day by days. Below is the strength of each model with

ResNet seems like a best model here with 3.57 error rate for ImageNet dataset.

Although, it might show another result for another type of dataset.

 Table 2.9: Brief overview of CNN architectures [21]

Model Main finding Depth Dataset Error

rate

Input size Year

VGG Increased depth

and small filter

size

16,19 ImageNet 7.3 224x224x3 2014

ResNet Robust against

overfitting due to

symmetry

152 ImageNet 3.57 224x224x3 2016

20

mapping-based

skip links

DenseNet Block of layers;

layers connected

to each other

201 CIFAR-

10,

CIFAR-

100,

ImageNet

3.46,

17.18,

5.54

224x224x3 2017

MobileNet-

V2

Inverted residual

structure

53 ImageNet - 224x224x3 2018

The methods that are shown in Table 2.10 are being implemented for this project

on account of results from previous studies that shows its effectiveness in increasing

the total accuracy performance of the CNN model architecture.

Table 2.10: Summary of previous studies

Method Differences

Combine online and

shooting photos dataset

[14]

Different input images Accuracy

VGG – Online 89.6%

VGG – Shooting 94.0%

VGG – Online-Shooting 95.6%

VGG – Shooting-Online 90.5%

Data augmentation [15] Before (accuracy) After (accuracy)

Clean 93.72% 94.94%

Background 84.39% 89.60%

21

Decay 86.03% 94.12%

Unfocused 86.90% 91.03%

Occlusion 86.34% 92.55%

Deep learning [17] Method Accuracy

KNN 48.64%

SVM 60.65%

13-layer CNN model 96.49%

Design CNN model

architecture [19]

Model Accuracy

VGG-16 90.81%

VGG-19 76.48%

LeNet-5 82.93%

AlexNet 83.56%

Designed CNN 98.23%

Input size more than

200x200 [1]

Picture size Accuracy

64x64 0.71

128x128 0.74

256x256 0.95

Pre-trained models[21] Model Main finding

VGG Increased depth and small

filter size

ResNet Robust against overfitting

due to symmetry

mapping-based skip links

22

DenseNet Block of layers; layers

connected to each other

MobileNet-V2 Inverted residual

structure

CHAPTER 3

METHODOLOGY

This section focus on how the developing process will be fully conducted.

3.1 Design of solution

After study the previous research, it is easier to design a roadmap by taking a

consideration on what is the most important and least important part to focus on. This

may greatly help to reduce time taken to complete the project. As CNN model requires

a lot of try and error to achieve a great result. By considering every important

component in CNN model will highlight on how the component may help to reduce

the training time and increase the accuracy.

24

3.1.1 Block Diagram

Figure 3.1 represent the important steps taken to complete this project starting with

preparing the dataset, design the CNN model, test, and optimize, compare the results,

and model inferencing.

Figure 3.1: General process block diagram

Fetch image from database

Image pre-processing

Design CNN model architecture

Train the CNN model architecture

Test and optimize the CNN model

architecture

Model inferencing

Compare with transfer learning

architectures

25

3.1.1.1 Fetch Image from Database

This first block is fetching the dataset images from database, Kaggle. Fruit-262 will

be chosen with several images added from self-taken picture, Google Image, and data

augmentation. The dataset will be stored in Google Drive where it is a cloud storage

that enable to synchronize with Google Colab. The whole dataset will be stored here

in one folder, the training and test image will be separated using Python script on

Google Colab.

3.1.1.2 Image pre-processing

Image pre-processing prepare the dataset images into a format images before they

are used by model training. When the image is pre-processed, it also means that the

size of the image is being reduced to the input size.

3.1.1.3 Design CNN model architecture

The third stage is designing CNN model. Here is where the hyperparameters will

be decided. The CNN model has several components such as convolution layer,

activation function, pooling, fully connected and ‘softmax’. The filter size of filter,

number of filters, stride, padding weights, bias and activation needs to be assigned for

each layer that encounter a convolution process.

3.1.1.4 Train the CNN model architecture

Once the model has been designed, it is ready to train. The training process will be

done on Google Colab for faster training time. Google Colab allows user to train their

CNN model using a virtual graphic card from Google server. This is helpful for user

to use when they face a hardware limitation on their personal computer. The training

process undoubtedly uses a lot of computational power.

26

3.1.1.5 Test and optimize the CNN model architecture

Test process is done right after the training process. Its function is to test the trained

model accuracy. The dataset is separated with 80:20 ratio. The 80 is for training and

the 20 is for test. The test images can’t be the same image as training. The test result

of accuracy value is the total accuracy of the model. To get the best result, the CNN

model architecture is being optimized by tuning the hyperparameters.

3.1.1.6 Compare with transfer learning architectures

Now, to compare between these models, it is time for transfer learning architectures

to be train using a same dataset. This process is a lot easier compares to designed

CNN model because it uses a transfer learning method by importing the pre-trained

model to train our dataset. No designing layers needed. The training and test process

is same just like the previous model. The comparison will be done in terms of accuracy

and confusion matrix.

3.1.1.7 Model inferencing

Finally, the designed CNN model architecture inferencing will be done on software

and hardware to show its functionality.

3.1.2 Project flowchart

Figure 3.2 depicts the flowchart of the whole project process in details. It consists

of two main part, pre-processing, and design CNN model architecture.

3.1.2.1 Pre-processing

In Figure 3.2 left hand side, pre-processing process will be explained in more

details. The next is to pre-process the image before being trained. The main objective

to do an image processing is to reduce the CNN model’s burden during training

27

process. The explanation behind this is when the image has been pre-processed to a

certain criterion such as resolution, centralization of the image, etc., for all images will

act as standard specification for the input CNN model. When training, the model is

fed only with one standard of image thus reducing the computational power and

reducing the time taken to complete the training. In this case, the image will be resized

to 208x256.

3.1.2.2 Design CNN model architecture

From Figure 3.2 right hand side, this is where the CNN model architecture is being

designed. Not to mention that the early result would not be as expected, this would

require a try and error by tuning the hyperparameters. Hyperparameters are the

variables which determines the network structure and the variables which determine

how the network is trained. Hyperparameters are set before training, every time the

hyperparameters are being changed, it needs to retrain again to get the new result. In

this project, the hyperparameters that will be focus on is layers, filters, activator, and

optimizer.

28

 Figure 3.2: Project flowchart

Start

Pre-processing

Design CNN model architecture

Design the CNN layers

Train the CNN model

Resize to 208x256

Test the CNN model

Load image from Google

Drive

Tune the hyperparameters

Split the train and test

image (80:20)

Accuracy

>90%?

Collect the dataset for

each 15 classes

• Layers

• Filters

• Epoch

s

Comparison with pre-trained models

NO

YES

Model inferencing

End

29

3.2 Modern tools

To perform all the tasks discussed in previous section, it requires a several tools.

Considering this project related to AI and deep learning, it demands a high-power

computing resources. This project modern tools consists of two main section,

software, and hardware.

3.2.1 Software

While completing this project, a laptop running on Windows 11 installed with

software in Table 3.1 runs smoothly. On Kaggle, Fruit-262 datasets was downloaded

as the main resource for dataset. There are still a lot of datasets available on the website

but for this project, only one dataset was being chosen. Once the dataset is ready to be

trained, it will be stored on Google Drive as a cloud storage. Next, the most used

software was Google Colab Pro. Here is where the design, train, test, optimization,

and inferencing of the CNN model architecture was done. The reason for Google

Colab Pro was used instead of local hardware is because the graphical processing unit

offered is faster. Lastly, TensorFlow and Keras library was used to write the CNN

model architecture’s script.

Table 3.1: Software modern tools

Platform name Application

Windows 11 Operating system

Kaggle Datasets community

Google Drive Cloud storage for datasets

Google Colab Pro Design, train, test, optimise, and

inference the CNN model architecture

TensorFlow and Keras Machine learning Python’s library

30

3.2.2 Hardware

All the software mentioned previously ran on the laptop specifications as in Table

3.2. Table 3.2: Hardware modern tools

Table 3.2: Hardware modern tools

Acer Nitro 5 laptop specification

Processor Intel ® Core ™ i5-8300 CPU @ 2.30 GHz (8 CPUs)

GPU NVIDIA GeForce GTX 1050 4GB VRAM

RAM 12 GB

Storage 512 GB SSD

CHAPTER 4

RESULTS AND DISCUSSION

This chapter will focus on analysis of the results obtained from simulation and

hardware implementation.

4.1 Chronology of simulation

A multiple step needs to be done to achieve the best result from the designed CNN

model. There are just too many variables in CNN model that can cause a variation of

result. Thus, a try and error method were conducted to observe the differentiations of

result from each step in Figure 4.1.

32

4.1.1 Manually filter the dataset

In this step, manual selection of image dataset must be done because there are too

many unsuitable images inside the Fruit-262 dataset folders that caused the CNN

model face a hardship to learn the significant features of each fruit classes. However,

this method will cause the number of datasets for each class to be more imbalance.

Table 4.1 below shows list number of images for each class before and after this

process, and Table 4.2 shows some of the example of unsuitable fruit images.

Manually filter the dataset

Add new dataset

Tune the hyperparameters

Figure 4.1: Enhancement of classification

accuracy process

33

Table 4.1: Number of images per class before and after manually filter the

dataset

Dataset class Number of images

Before After

Apple 1171 1085

Banana 1162 1103

Cempedak 1051 893

Coconut 1024 487

Dragonfruit 1035 666

Durian 1026 827

Honeydew 1008 911

Mango 1025 904

Mangosteen 1105 1002

Orange 1087 1024

Papaya 1027 651

Pineapple 1037 889

Rambutan 1054 1001

Watermelon 996 916

Wax Apple 1017 701

34

Table 4.2: Example of unsuitable images dataset for each class

Class of fruit Example images

Apple

Banana

Cempedak

35

Coconut

Dragonfruit

Durian

36

Honeydew

Mango

Mangosteen

37

Orange

Papaya

Pineapple

38

Rambutan

Watermelon

Wax apple

39

Following Figure 4.2, both before and after result shows a healthy learning curve.

The after result of the trained H-CNN model indeed generates a huge improvement in

accuracy from 68.69% to 84.15% refer to Table 4.3. This is due to an uncomplicated

images dataset that will allow the H-CNN model to learn more efficiently. The time

taken to train the model also slightly decreased due to a lower total amount of dataset.

Before After

Figure 4.2: Learning curve before and after dataset filtering

Table 4.3: Comparison before and after dataset filtering

H-CNN Result

Before After

Accuracy 68.69% 84.15%

Loss 0.99069 0.45295

Training time 12.933 minute (776 sec) 11.866 minute (712 sec)

Total parameters 164,815 164,815

Epoch 20 20

Batch size 256 256

40

4.1.2 Add new dataset to balance the dataset

From the latest progress, after the confusion matrix has been generated as shown

in Figure 4.3, the imbalance of the dataset can be noticed clearly. The brightness of

the blue box indicates the density of dataset inside each class. An imbalance of dataset

could be the result to be biased towards specific class that have the higher amount of

dataset. To eliminate this problem, the amount of dataset for each class must be in the

same value, in this case the amount is 1,000 set of images to make it fair and square

for the H-CNN to learn. Table 4.4, shows the example of the added images for each

class.

Figure 4.3: Confusion matrix before adding a new dataset

41

Table 4.4: Example of added images

Class of fruit Example of image

Self-taken image

Cempedak

Coconut

42

Mango

Papaya

Data augmentation

Cempedak

43

Coconut

Dragonfruit

Mango

Mangosteen

44

Papaya

Wax Apple

Google Image

Cempedak

45

Mango

Papaya

The result from this step can be seen clearly from the confusion matrix below in

Figure 4.4 that in fact, now the H-CNN has an unbiased dataset which produced a

more balanced accuracy. Despite that, the accuracy decreased to 81.63% from 84.15%

gained from previous step refers to Table 4.5. This indicates that the difference of

2.52% of accuracy was from a biased class of dataset. The next step will focus on

improving the accuracy without changing any dataset anymore.

46

Figure 4.4: Confusion matrix after adding a new dataset

Table 4.5: After adding a new dataset

H-CNN Result

Before After

Accuracy 84.15% 81.63%

Loss 0.45295 0.54491

Training time 11.866 minute (712 sec) 15.3 minute (918 sec)

Total parameters 164,815 164,815

Epoch 20 20

Batch size 256 256

47

4.1.3 Tune the hyperparameters

After made some modification to the datasets, the next step is to tune the

hyperparameters of the H-CNN model by adjusting the number of filters for each

convolutional layer and number of epochs.

4.1.3.1 Number of filters for each convolutional layer

The initial value of hyperparameters can be taken from reputable sources as initial

value. In this case, the initial number of filters was taken from Yu-Dong Zhang custom

CNN model [15]. However, it is not guaranteed that the value is the best for the H-

CNN model due to a different complexity and application for each model. As seen in

Table 4.6, by changing the number of filters to 64, 128, 256 and 516 for convolutional

layers generates a huge improvement despite using a similar dataset and number of

epochs. As expected, the accuracy did rise from 81.63% to 87.83%, but what makes it

interesting is despite the total number of parameters massively increase up to

1,153,071 from just 164,815, the training time after tuning the hyperparameters

slightly lower than before. This means that the H-CNN model able to learn more

efficiently with the new number of filters.

Table 4.6: Result from changing number of filters

H-CNN Result

Before After

No. of filters for each

convolutional layer

L1: 40 L1: 64

L2: 80 L2: 128

L3: 120 L3: 256

L4: 80 L4: 512

Accuracy 81.63% 87.83%

48

Loss 0.54491 0.37966

Training time 15.3 minute (918 sec) 15.08 minute (905 sec)

Total parameters 164,815 1,153,071

Epoch 20 20

Batch size 256 256

4.1.3.2 Number of epochs

In this step, the main objective is to squeeze the H-CNN model to learn as much as

it can by increasing the number of epochs to find the stationery point where it indicates

that the H-CNN model had learn enough. Thus, the number of epochs is being set to

30. As expected, there is still a room for an improvement as seen in Table 4.7, the

accuracy climbed up to 90.13% with 2.3% margin from before. The training time also

rise by 449 seconds which is 7.48 in minute, nonetheless it is not a significant

drawback as the main objective is to increase the accuracy as much as it can.

Comparing before and after in Figure 4.5, the accuracy curve in after is convincing as

the validation accuracy reached the stationary phase.

Figure 4.5: Learning curves before and after changing number of epochs

Before After

49

Table 4.7: Result from changing number of epochs

H-CNN Result

Before After

Accuracy 87.83% 90.13%

Loss 0.37966 0.34639

Training time 15.08 minute (905 sec) 22.56 minute (1354 sec)

Total parameters 1,153,071 1,153,071

Epoch 20 30

Batch size 256 256

A confusion matrix is a table that is used to visualize the performance of a

classification model on a set of test data for which the true values are known. The y-

axis is where the classifier determines the true label and x-axis is what the classifier

predicted it to. A huge difference can be seen between initial confusion matrix from

Figure 4.6 and the final confusion matrix from Figure 4.7. The final confusion matrix

shows a solid thick blue boxes on their own class proving that the H-CNN has

improved a lot with methods above. While the initial confusion matrix displays the

poor performance before undergoing any optimization process.

50

Figure 4.6: H-CNN initial confusion matrix

51

Figure 4.7: H-CNN final confusion matrix

4.2 Inference of H-CNN model

Now, it is time to inference H-CNN to demonstrate the application of the model.

There are 2 ways to accomplish this by via software and hardware.

4.2.1 Software

To run via software, the simplest way is by using the same platform as the model

was developed, Google Colab. With a set of script from Figure 4.8, it can mimic a

real-world application by predicting a set of random images as in Figure 4.9. The script

52

performs by taking a random image from ‘Model_Test’ folder, resize it into model

input size 208x256 and predict the image belong to which classes. To demonstrate that

the simulation was done fairly, a random set of images was gathered inside a single

folder named ‘Model_Test’. Note that the images are totally new to the H-CNN model.

75 images were collected from Bing Image Search with 5 images for each class.

Figure 4.8: Software inferencing code

Figure 4.9: Software inferencing test images

53

Table 4.8 shows some of the output from the software inferencing process.

Table 4.8: Software inferencing output

54

55

56

4.2.2 Hardware

To implement the H-CNN model into a hardware, NVIDIA Jetson Nano was

connected with CSI Raspberry Pi Camera V2 as shown in Figure 4.10. From Figure

4.11, firstly save the H-CNN model generated from Google Colab as .hdf5 file. Next,

convert the .hdf5 file in ONNX format. Lastly, convert .ONNX file into TensorRT

format. Now the model can be inference into NVIDIA Jetson Nano ‘imagenet’

function. Table 4.9 shows some of the hardware inferencing output.

57

Figure 4.10: NVIDIA Jetson Nano full setup

Save the model in Keras format (.hdf5)

Convert the Keras into ONNX format

Convert the ONNX format into TensorRT format

Inference the model in ‘imagenet’

Figure 4.11: Hardware inferencing block diagram

58

Table 4.9: Hardware inferencing output

59

4.3 Comparison with other pre-trained models

Finally, the main objective of this project is to compare designed CNN model

architecture with other well established pre-trained models developed by multiple big

names such as Oxford University, Google, Microsoft Research etc. In Table 4.10, the

comparison shown in terms of accuracy, model size, training time and model

complexity. For accuracy, H-CNN comes 3rd out of 4 due to MobileNetV2 suffer an

overfitting problem due to the architecture is too complex for dataset used.

Nevertheless, the model size is the biggest advantage for H-CNN where it got a

massive margin compared to others, but keep in mind that H-CNN was only trained

to know 15 types of fruit. The training time does not make a huge difference as the

same dataset was being used. As for complexity, H-CNN only use 6-layers of tune

able layers compared to the nearest model, VGG16 which use 16-layers and the rest

model really uses a lot of layers. Lastly, the total parameters are closely related to the

model complexity, whereas the more layers in the architecture (depends on what

layer), the higher the total parameters will be.

60

Table 4.10: Model comparison details

Model

Name

H-CNN ResNet50 VGG16 MobileNetV

2

DenseNet12

1

Accuracy 90.13% 94.77% 93.93% 77.17% 84.13%

Model size 13 MB 110 MB 60.4 MB 21.2 MB 36 MB

Training

time (m)

22 18 41 23 18

Complexit

y

6-layers 50-layers 16-layers 53-layers 121-layers

Total

parameters

1,153,07

1

25,308,04

7

15,083,34

3

3,333,199 7,774,799

4.3.1 Confusion matrix

According to Figure 4.12, 4.13, 4.14, 4.15, and 4.16, all model’s confusion matrix

and classification report is being shown side by side. Observe that the thick blue box

reflects the total accuracy. The blue thickness level represents recall value from

classification report. The blue will get thicker with a higher recall value. Recall is the

ratio of correctly predicted positive observations to all observations in actual class –

yes. Essentially, the higher recall means the better for the confusion matrix.

61

Figure 4.12: H-CNN confusion matrix

Figure 4.13: ResNet50 confusion matrix

62

Figure 4.14: VGG16 confusion matrix

Figure 4.15: MobileNetV2 confusion matrix

63

Figure 4.16: DenseNet121 confusion matrix

4.4 Environment and sustainability

To comply with sustainable design criteria, this project fulfils one of the 17

sustainable development goals set by United Nations as shown in Figure 4.17, the 9th

goal, Industry, Innovation, and Infrastructure. This goal aims to build resilient

infrastructure, promote sustainable industrialization, and foster innovation.

Figure 4.17: Sustainable development goals [22]

64

According to United Nations in Figure 4.18, global manufacturing growth has been

decreasing way before the COVID-19 pandemic hits the world. Then, the pandemic

came and make situations worst that causing a trouble for a global supply chain. Thus,

technological and innovation progress are key to finding lasting solutions to both

economic and environmental challenges, such as increased resource and energy

efficiency [23]. This project might be one of the keys to solve these problems with a

low emission and high efficiency output without harming our planet.

Figure 4.18: 9th goal infographic [24]

CHAPTER 5

CONCLUSION AND FUTURE WORKS

To conclude all the works done while completing this project, it is fortunately

achieved all the main objectives. First, the H-CNN model architecture was developed

on Google Colab using Python’s Keras and TensorFlow library. Secondly, the result

from H-CNN was compared thoroughly with pre-trained models such as ResNet50,

VGG16 and MobileNetV2 using transfer learning method with same datasets for all

models. Lastly, the model successfully inferenced on software and hardware to

validate the functionality of the model. After completing this project, it is massively

giving an impact of impression on how the computer vision’s AI works behind the

scenes. It is completely complex and interesting.

Even though this thesis ends here, the project subject still lives on with rapidly

advancing days by days. There are still a lot of room for CNN architecture

66

improvement with many hyperparameters embedded inside the CNN architectures. As

hardware’s are getting faster, a software also must be in the same trend to ensure the

technology beyond these two always in parallel. In the future, there might be a model

that can learn as efficiently as this but with a lower amount of dataset. Hopes for future

studies on this topic could be more details than this thesis by investigating each layer

and their effects on the model’s accuracy so that even a simple CNN layer can be

utilized as much as it can to be on par with well-established pre-trained models. More

studies also suggested on inferencing the CNN model with a small devices such as

mobile, embedded, and Internet of Things (IoT) devices and computers like how

TensorFlow Lite does. This will surely bring an AI model to a new era where it is

light, optimized, and friendly user for cheap microcontroller that are in common right

now such as Raspberry Pi. Besides, this studies do not limited to a fruit classification

application, it can be implement into any application that requires a similar

functionality such as to classify a faulty product in a factory line.

After done a hectic year of work, this project proves that a small simple CNN model

can be as good as well-established pre-trained models with a proper development. A

dataset remains one of the most important parts to achieve a high accuracy. With a

high quality of dataset, it can beat a model with a much more but a low-quality dataset.

Then, by tweaking the hyperparameters will help the model to reach a true potential

of the developed model.

67

REFERENCES

[1] P. Wang, E. Fan, and P. Wang, “Comparative analysis of image classification

algorithms based on traditional machine learning and deep learning,” Pattern

Recognition Letters, vol. 141, pp. 61–67, 2021, doi: 10.1016/j.patrec.2020.07.042.

[2] J. Janzen, “CNN: TRANSFER LEARNING VS BUILD FROM SCRATCH,” JOSH

JANZEN’S DATA SCIENCE BLOG, 2018. https://joshjanzen.com/cnn-transfer-

learning-vs-build-from-scratch/ (accessed Jan. 05, 2022).

[3] “7 APPLICATIONS OF CONVOLUTIONAL NEURAL NETWORKS,” Flatworld

Solutions. https://www.flatworldsolutions.com/data-science/articles/7-applications-

of-convolutional-neural-networks.php (accessed Jun. 08, 2022).

[4] A. Intelligence, “What Is AI ?,” pp. 5–16, 2008, doi: 10.1007/978-3-030-51110-4.

[5] T. Eprs and E. Parliamentary, Panel for the Future of Science and Technology EPRS

| European Parliamentary Research Service, no. June. 2020.

[6] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.

436–444, 2015, doi: 10.1038/nature14539.

68

[7] A. Ghosh, A. Sufian, F. Sultana, A. Chakrabarti, and D. De, Fundamental Concepts

of Convolutional Neural Network, no. June. 2020. doi: 10.1007/978-3-030-32644-9.

[8] C. C. Chatterjee, “Basics of the Classic CNN,” towards data science, 2019.

https://towardsdatascience.com/basics-of-the-classic-cnn-a3dce1225add (accessed

Jan. 05, 2022).

[9] “What do the terms Resolution and Aspect Ratio mean for my television?,” Sony

Support, 2019. https://www.sony.com/electronics/support/articles/00105548

(accessed Jan. 05, 2022).

[10] S. Saha, “A Comprehensive Guide to Convolutional Neural Networks — the ELI5

way,” towards data science, 2018. https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 (accessed Jan.

05, 2022).

[11] J. Brownlee, “A Gentle Introduction to the Rectified Linear Unit (ReLU),”

machinelearningmastery, 2019. https://machinelearningmastery.com/rectified-linear-

activation-function-for-deep-learning-neural-networks/ (accessed Jan. 06, 2022).

[12] A. Kulkarni, D. Chong, and F. A. Batarseh, Foundations of data imbalance and

solutions for a data democracy. Elsevier Inc., 2020. doi: 10.1016/B978-0-12-818366-

3.00005-8.

[13] scikit, “API Reference,” scikit-learn, 2022. https://scikit-

learn.org/stable/modules/classes.html#module-sklearn.metrics (accessed May 30,

2022).

69

[14] G. Zeng, “Fruit and vegetables classification system using image saliency and

convolutional neural network,” Proceedings of 2017 IEEE 3rd Information

Technology and Mechatronics Engineering Conference, ITOEC 2017, vol. 2017-

Janua, pp. 613–617, 2017, doi: 10.1109/ITOEC.2017.8122370.

[15] Y. D. Zhang et al., “Image based fruit category classification by 13-layer deep

convolutional neural network and data augmentation,” Multimedia Tools and

Applications, vol. 78, no. 3, pp. 3613–3632, 2019, doi: 10.1007/s11042-017-5243-3.

[16] Y. Miki et al., “Classification of teeth in cone-beam CT using deep convolutional

neural network,” Computers in Biology and Medicine, vol. 80, no. September 2016,

pp. 24–29, 2017, doi: 10.1016/j.compbiomed.2016.11.003.

[17] N. Saranya, K. Srinivasan, S. K. P. Kumar, V. Rukkumani, and R. Ramya, “Fruit

Classification Using Traditional Machine Learning and Deep Learning Approach,” in

Advances in Intelligent Systems and Computing, ICCVBIC 20., vol. 186 AISC,

Springer Nature Switzerland, 2020, pp. 79–89. doi: 10.1007/978-3-030-37218-7.

[18] W. Koehrsen, “Transfer Learning with Convolutional Neural Networks in PyTorch,”

towardsdatascience, 2018. https://towardsdatascience.com/transfer-learning-with-

convolutional-neural-networks-in-pytorch-dd09190245ce (accessed Jan. 12, 2022).

[19] I. E. T. Davv, “CLASSIFICATION OF FRUITS USING CONVOLUTIONAL

NEURAL NETWORK AND TRANSFER LEARNING MODELS,” vol. 24, no. 3,

pp. 1–12, 2021.

70

[20] A. Patil and M. Rane, “Convolutional Neural Networks: An Overview and Its

Applications in Pattern Recognition,” Smart Innovation, Systems and Technologies,

vol. 195, pp. 21–30, 2021, doi: 10.1007/978-981-15-7078-0_3.

[21] L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges,

applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021.

doi: 10.1186/s40537-021-00444-8.

[22] “#Envision2030: 17 goals to transform the world for persons with disabilities,” United

Nations, 2016. https://www.un.org/development/desa/disabilities/envision2030.html

(accessed May 29, 2022).

[23] “Goal 9: Build resilient infrastructure, promote sustainable industrialization and foster

innovation,” United Nations, 2021.

https://www.un.org/sustainabledevelopment/infrastructure-industrialization/

(accessed May 29, 2022).

[24] “Build resilient infrastructure, promote inclusive and sustainable industrialization and

foster innovation,” United Nations, 2021. https://sdgs.un.org/goals/goal9 (accessed

May 29, 2022).

71

APPENDICES

5.1 Appendix A: H-CNN’s model architecture script

72

5.2 Appendix B: H-CNN’s model architecture summary

