

## **Faculty of Electrical and Electronic Engineering Technology**



### SHATIISH A/L PANNER SELVAM

**Bachelor of Electronics Engineering Technology (Telecommunications) with Honours** 

2022

# DEVELOPMENT OF IOT-BASED REAL-TIME DRAINAGE MONITORING SYSTEM

### SHATIISH A/L PANNER SELVAM

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours



### UNIVERSITI TEKNIKAL MALAYSIA MELAKA



**UNIVERSITI TEKNIKAL MALAYSIA MELAKA** FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

#### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek: DEVELOPMENT OF IOT-BASED REAL-TIME DRAINAGE IONITORING SYSTEM

Sesi Pengajian: 21/22

Saya Shatiish A/L Panner Selvam mengaku membenarkan laporan Projek Sarjana

- Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:
- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

| institusi pengajian tinggi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Sila tandakan (✓):<br>SULIT*<br>SULIT*<br>Comparison of the second | (Mengandungi maklumat yang berdarjah<br>keselamatan atau kepentingan Malaysia<br>seperti yang termaktub di dalam AKTA<br>RAHSIA RASMI 1972)<br>(Mengandungi maklumat terhad yang telah<br>ditentukan oleh organisasi/badan di mana<br>penyelidikan dijalankan) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Disahkan oleh:                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Disahkan oleh:                                                                                                                                                                                                                                                 |
| (TANDATANGAN PENULIS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Disahkan oleh:                                                                                                                                                                                                                                                 |
| (TANDATANGAN PENULIS)<br>Alamat Tetap:<br>No30, Jalan Sambau 17,<br>Taman Bayu Emas,<br>41200 Klang Selangor Dahrul Ehsan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Disahkan oleh:<br>JAA<br>(COP DAN TANDATANGAN PENYELIA)<br>TS. DR. IDA SYAFIZA BINTI MD ISA<br>PENSYARAH<br>FAKULTI TEKNOLOGI KEJURUTERAAN<br>ELEKTRIK DAN ELEKTRONIK<br>UNIVERSITI TEKNIKAL MALAYSIA MELAKA                                                   |

\*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

### **DECLARATION**

I declare that this project report entitled "Development Of IoT- Based Real-Time Drainage Monitoring System" is the result of my research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.



### APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours.

| Signature :                    |                    |
|--------------------------------|--------------------|
| Supervisor Name · TS_DR_IDA SY | AFIZA BINTI MD ISA |
|                                |                    |
| Date : 25/1/2022               |                    |
| aganinin                       |                    |
| Signature فالله على المالك     | اونيۇم,سىتى تىكنى  |
| Co-Supervisor                  | AL MALAYSIA MELAKA |
| Name (if any)                  |                    |
| Date :                         |                    |
|                                |                    |

### DEDICATION

To my beloved mother Mrs. Thuvalarasi a/p Rajoo and my father Panner Selvam a/l Mani, my supportive supervisor Ts. Dr. Ida Syafiza Binti Md Isa, my faithful panels, lecturer of FTKEE, and my friends who strongly supported throughout thick and thin.



#### ABSTRACT

Nowadays, technologies are rapidly advancing in this world, including the type of monitoring system used. In addition, the evolution of the Internet of Things (IoT) has made people's life more convenient and practical where it supports everyone to be connected to any things, and anywhere, via the Internet. It has been reported that the current drainage system in most of the countries is still using manpower which may expose them to many hazards and accidents. Therefore, monitoring the status of the drainage from time to time is very crucial to avoid accidents to happen. Several researchers have focused on developing drainage monitoring systems, however, most of the system are using GSM module to send the monitored data to the control room which introduced latency. Therefore, the purpose of this work is to develop an IoT-based Real-Time Drainage Monitoring System to monitor the drainage system. In this work, the proposed system is designed to detect the depth of the water, the level of gas concentration at the drainage area, and the flow rate of the water flow in the drain using a laser sensor, gas sensor, and flow meter sensor, respectively. Besides, the system is also equipped with a GPS module to locate the location of the monitored area. For monitoring purposes, the system is integrated with the Blynk server application where all of the monitored data including the depth of the water, gas concentration, and the flow rate of water in the drain will be stored in the cloud server via WiFi connection. In addition, a notification will be sent out to the in-charge person if any of the sensors exceed the threshold value. The proposed system has been tested and the results show that the system has high reliability and measured and the actual reading has high accuracy with a margin error of 3%.

تي تيڪنيڪل مليسيا ملا

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

#### ABSTRAK

Pada masa kini, teknologi berkembang pesat di dunia ini, termasuk jenis sistem pemantauan vang digunakan. Di samping itu, evolusi Internet of Things (IoT) telah menjadikan kehidupan orang lebih mudah dan praktikal di mana ia menyokong semua orang untuk dihubungkan dengan apa sahaja, dan di mana sahaja, melalui Internet. Telah dilaporkan bahawa sistem saliran semasa di kebanyakan negara masih menggunakan tenaga kerja yang dapat mendedahkannya kepada banyak bahaya dan kemalangan. Oleh itu, memantau status saliran dari semasa ke semasa sangat penting untuk mengelakkan kemalangan berlaku. Beberapa penyelidik telah menelitikan diri pada pengembangan sistem pemantauan saliran, namun, sebagian besar sistem memiliki beberapa kesalahan seperti penerapan gsm dalam sistem yang memberikan data lambat yang akan mempengaruhi pengiriman data waktu nyata ke ruang kontrol masing-masing. Oleh itu, tujuan kerja ini adalah untuk mengembangkan Sistem Pemantauan Saliran Masa Nyata berasaskan IoT untuk memantau sistem saliran. Dalam ini, sistem yang dicadangkan dirancang untuk mengesan kedalaman air, tingkat kepekatan gas di kawasan saliran, dan kelajuan aliran air di longkang menggunakan sensor laser, sensor gas, dan sensor meter aliran, masing-masing. Selain itu, sistem ini juga dilengkapi dengan modul GPS untuk mencari lokasi kawasan yang dipantau. Untuk tujuan pemantauan, sistem ini disatukan dengan aplikasi pelayan Blynk di mana semua data yang dipantau termasuk kedalaman air, kepekatan gas, dan laju aliran air di longkang akan disimpan di internet melalui sambungan WiFi. Sebagai tambahan, pemberitahuan notifikasi akan dihantar kepada orang yang bertanggungjawab sekiranya ada sensor yang melebihi nilai ambang. Sistem yang dicadangkan telah diuji dan hasilnya menunjukkan bahawa sistem ini mempunyai kebolehpercayaan yang tinggi dan tepat dengan kesalahan margin 3%. ونيؤم سيتي تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

#### ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Ts. Dr. Ida Syafiza Binti Md Isa for her precious guidance, words of wisdom, and patient throughout this project. I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for the support through my final year project period which enables me to accomplish the project. My highest appreciation goes to my parents and family members for supporting me not only financially but their love and prayer during the period of my study.

Finally, I would like to thank my friends and classmates for their valuable feedback as well as other individuals who are not listed here for being cooperative and helpful. These projects would not be accomplished without their guidance, thank you again to everyone.



### TABLE OF CONTENTS

|                                                                                                                                                                      | PAGE                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| DECLARATION                                                                                                                                                          |                              |
| APPROVAL                                                                                                                                                             |                              |
| DEDICATIONS                                                                                                                                                          |                              |
| ABSTRACT                                                                                                                                                             | i                            |
| ABSTRAK                                                                                                                                                              | ii                           |
| ACKNOWLEDGEMENTS                                                                                                                                                     | iii                          |
| TABLE OF CONTENTS                                                                                                                                                    | ivv                          |
| LIST OF TABLES                                                                                                                                                       | vi                           |
| LIST OF FIGURES                                                                                                                                                      | viiii                        |
| LIST OF SYMBOLS                                                                                                                                                      | X                            |
| LIST OF ABBREVIATIONS                                                                                                                                                | xixi                         |
| LIST OF APPENDICES                                                                                                                                                   | xiiii                        |
| CHAPTER 1       INTRODUCTION         1.1       Background         1.2       Problem Statement         1.3       Project Objective         1.4       Scope of Project | <b>1</b><br>1<br>2<br>2<br>3 |
| CHAPTER 2 LITERATURE REVIEW                                                                                                                                          | 4                            |
| 2.1 Introduction                                                                                                                                                     | 4                            |
| 2.2 Concept of IOT                                                                                                                                                   | 4                            |
| 2.5 Previous research Projects<br>2.2 Hor based Servers Monitoring System                                                                                            | /<br>7                       |
| 2.3.1101 based Sewage Monitoring System<br>2.3.2 IoT Enabled Inner Drainage Monitoring System Applying Water Flow Sen                                                | ror 8                        |
| <ul> <li>2.3.2 for Human Safety, Smart City Solutions on Drainage, Unused Wells, and C<br/>Alerting Systems</li> </ul>                                               | arbage                       |
| 2.3.4 Autonomous Anti-Clogging Sewerage System using IoT                                                                                                             | 11                           |
| 2.3.5 Human Safety System in Drainage, Unused Well and Garbage Alerting Sys                                                                                          | tem for                      |
| Smart City                                                                                                                                                           | 13                           |
| 2.3.6 Smart Drainage Monitoring System Using IoT                                                                                                                     | 13                           |
| 2.3.7 Underground Drainage Monitoring system using IOT                                                                                                               | 15                           |
| 2.3.8 IoT based Sewage Monitoring and Alert System using Raspberry PI                                                                                                | 16                           |
| 2.3.9 IOI and Zig Bee Smart Drainage System                                                                                                                          | 17/<br>10                    |
| 2.3.10 Under Ground Dramage wonnoring System Using 101                                                                                                               | 18                           |

| 2.3.11 Drainage Monitoring System with Smart Sensors                                                                  | 19       |  |
|-----------------------------------------------------------------------------------------------------------------------|----------|--|
| 2.3.12 In Real-Time Applications Using 101, a Smart Sewage Alert System for Worker                                    | S20      |  |
| 2.3.13 ESP 8266 Node MCU Based Weather Monitoring System 21                                                           |          |  |
| 2.3.14 IOT Dased Onderground Dramage Monitoring System<br>2.3.15 Drainage Overflow Monitoring System using IoT (DOMS) | 22       |  |
| 2.3.15 Dramage Overnow Womorning System using for (DOWS)                                                              | 23       |  |
| CHAPTER 3 METHODOLOGY                                                                                                 | 25       |  |
| 3.1 Introduction                                                                                                      | 25       |  |
| 3.2 Design of the system                                                                                              | 25       |  |
| 3.3 Hardware Implementation                                                                                           | 26       |  |
| 3.3.1 Node MCU Lua V3 ESP 8266 WiFi                                                                                   | 26       |  |
| 3.3.2 MQ5 LPG Natural Gas Sensor                                                                                      | 28       |  |
| 3.3.3 GY-NEO6MV2 Flight Control GPS Module                                                                            | 29       |  |
| 3.3.4 TOF10120 range sensor                                                                                           | 30       |  |
| 3.3.5 Water Flow Sensor                                                                                               | 31       |  |
| 3.4 Software Implementation                                                                                           | 32       |  |
| 3.4.1 Arduino IDE                                                                                                     | 32       |  |
| 3.4.2 Blynk application                                                                                               | 33       |  |
| 3.5 Project work Flow Chart                                                                                           | 35       |  |
| CHAPTER A RESULTS AND DISCUSSIONS                                                                                     | 37       |  |
| 41 Introduction                                                                                                       | 37       |  |
| 4.2 Software Results                                                                                                  | 37       |  |
| 4.2.1 MO-5 Gas Sensor                                                                                                 | 39       |  |
| 4.2.2 TOF10120 range sensor                                                                                           | 37<br>40 |  |
| 4.2.2 Water flow sensor                                                                                               | 40<br>41 |  |
| 4 2 4 Flight Control GPS Module sensor                                                                                | 42       |  |
| 4 3 Hardware Development                                                                                              | 44       |  |
| 4.3.1 MO-5 Gas Sensor                                                                                                 | 44       |  |
| 4.3.2 TOF10120 range sensor TEKNIKAL MALAYSIA MELAKA                                                                  | 45       |  |
| 4.3.3 Water flow sensor                                                                                               | 46       |  |
| 4.4 Project Prototype                                                                                                 | 47       |  |
| 4.5 Analysis Results                                                                                                  | 48       |  |
| 4.5.1 MO-5 Gas Sensor                                                                                                 | 48       |  |
| 4.5.2 TOF 10120 Range sensor                                                                                          | 51       |  |
| 4.5.3 TOF Water flow sensor                                                                                           | 53       |  |
| 4.5.4 Flight Control GPS Module sensor                                                                                | 56       |  |
| CHAPTER 5 CONCLUSION AND RECOMMENDATIONS                                                                              | 57       |  |
| 5.1 Introduction                                                                                                      | 57       |  |
| 5.2 Conclusion                                                                                                        | 57       |  |
| 5.3 Recommendation                                                                                                    | 58       |  |
| REFERENCES 59                                                                                                         |          |  |

APPENDICES 61

### LIST OF TABLES

| TABLE            | TITLE                                                                               | PAGE |
|------------------|-------------------------------------------------------------------------------------|------|
| Table 2. 1 Elem  | ents of IoT                                                                         | 5    |
| Table 2. 2 Sense | or values were obtained in a stable level condition                                 | 10   |
| Table 2. 3 Speci | fication of LPG sensor                                                              | 13   |
| Table 4. 1 MQ-:  | 5 Gas Sensor Output                                                                 | 50   |
| Table 4. 2 Heig  | nt of water TOF sensor vs Measurement value                                         | 52   |
| Table 4. 3 Wate  | r flow rate vs the digital output<br><b>UTERN</b><br>اونيونرسيتي تيڪنيڪل مليسيا ملا | 55   |

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

### LIST OF FIGURES

| FIGURE TITLE                                                                                     | PAGE |
|--------------------------------------------------------------------------------------------------|------|
| Figure 2. 1 IoT based smart applications (Kinza Shafique and Bilal A. Khawaja)                   | 6    |
| Figure 2. 2 IoT offers a cutting-edge technology. (Kinza Shafique and Bilal A. Khawaja).         | 7    |
| Figure 2. 3 Block diagram depicting Methodology                                                  | 8    |
| Figure 2. 4 Underground Drainage Monitoring System Block Diagram                                 | 9    |
| Figure 2. 5 Block Diagram of the System                                                          | 10   |
| Figure 2. 6 Block diagram of the complete system is made up of a number of different components. | 12   |
| Figure 2. 7 Node MCU Block Diagram                                                               | 14   |
| Figure 2. 8 Block representation of Server connection                                            | 15   |
| Figure 2. 9 Block diagram for the suggested system                                               | 16   |
| Figure 2. 10 The system's block diagram                                                          | 17   |
| Figure 2. 11 Implementation circuit in real-time                                                 | 17   |
| Figure 2. 12 Architecture diagram of the system ALAYSIA MELAKA                                   | 18   |
| Figure 2. 13 Block Diagram of Drainage monitoring module                                         | 19   |
| Figure 2. 14 The Proposed Model's Block Diagram                                                  | 20   |
| Figure 2. 15 Circuit diagram of the input and output block                                       | 21   |
| Figure 2. 16 The Overall System Connection Diagram                                               | 22   |
| Figure 2. 17 Block Diagram Used in Monitoring system                                             | 23   |
| Figure 2. 18 Proposed system architecture                                                        | 24   |
| Figure 3. 1 Block diagram                                                                        | 26   |
| Figure 3. 2 Pins of Node MCU                                                                     | 27   |
| Figure 3. 3 Node MCU ESP8266                                                                     | 28   |

| Figure 3. 4 Pins of MQ-5 Gas Sensor                               | 28 |
|-------------------------------------------------------------------|----|
| Figure 3. 5 MQ-5 Gas Sensor                                       | 29 |
| Figure 3. 6 GY-NEO6MV2 Flight Control GPS Module                  | 29 |
| Figure 3. 7 Pins TOF10120                                         | 30 |
| Figure 3. 8 TOF10120 Module                                       | 31 |
| Figure 3. 9 Flow rate sensor                                      | 32 |
| Figure 3. 10 Arduino IDE Software                                 | 33 |
| Figure 3. 11 Blynk Application                                    | 34 |
| Figure 3. 12 Flowchart of final year project implementation       | 35 |
| Figure 4. 1 Database page for Blynk                               | 38 |
| Figure 4. 2 The MQ-5 sensor's hardware source code                | 39 |
| Figure 4. 3 The TOF sensor's hardware source code                 | 40 |
| Figure 4. 4 The Water flow sensor's hardware source code          | 41 |
| Figure 4. 5 Flight Control GPS Module sensor and WIFI source code | 42 |
| Figure 4. 6 Flight Control GPS Schematic                          | 42 |
| Figure 4. 7 Schematic diagram of Drainage monitoring system       | 43 |
| Figure 4. 8 Connection diagram for MQ-5 Gas Sensor                | 44 |
| Figure 4. 9 Connection diagram for TOF10120 range sensor          | 45 |
| Figure 4. 10 Connection diagram for Water flow sensor             | 46 |
| Figure 4. 11 Construction of Real-Time Drainage Monitoring System | 47 |
| Figure 4. 12 Gas sensor value when in open space                  | 48 |
| Figure 4. 13 Gas sensor value when in contact with methane gas    | 49 |
| Figure 4. 14 MQ-5 Gas Sensor Graph Output                         | 50 |
| Figure 4. 15 TOF10120 sensor value when low water level           | 51 |
| Figure 4. 16 TOF10120 sensor value when high water level          | 51 |

| Figure 4. 17 Height of water TOF sensor vs Measurement graph output | 53 |
|---------------------------------------------------------------------|----|
| Figure 4. 18 Water flow sensor value when water flow is blocked     | 53 |
| Figure 4. 19 Water flow sensor value when water flow open           | 54 |
| Figure 4. 21 GY-NEO6MV2 Flight Control GPS Module                   | 56 |



### LIST OF SYMBOLS

- Percentage Degree 1. % -
- \_
- 1. 70 2. ° 3. ' Prime \_
- 4. " Double Prime \_



### LIST OF ABBREVIATIONS

**API - Application Programming Interface** CMOS - Complementary metal-oxide semiconductor CO - Carbon Monoxhide CPU - Central processing unit CRs - Cognitive Radio DHT - Digital Temperature and Humidity DOMS - Drainage Overflow Monitoring system DSP - Digital signal processing GND - Ground GPS - Global position system GSM - Global System for Mobile HTTP - Hypertext Transfer Protocol **IDE** - Integrated Development Environment IOT - Internet of Things LCD - Liquid Crystal Display LUA - High-Level Programming Language MCU - Micro controller Unit NET - Network Enterprise server NETPI - Network Analyser NFV - Network Function Virtualization PIC - Perifral Interface Controller PPM – Parts Per Milloin RF - Radio frequency RFID - Radio-frequency identification SD-WSN - Software Defined Wireless sensor network SPAD - Single Photon Avalanche Diodes AL MALAYSIA MELAKA **SPI - Serial Peripheral Interface** TCP/IP - Transmition Control Protocol/ Internet Protocol TOF - Time-of-Flight UART - Universal Asynchronous receiver-transmitter

VCC - Voltage Common collector

VNC - Virtual network computing

### LIST OF APPENDICES

| APPENDIX               | TITLE         | PAGE |
|------------------------|---------------|------|
| Appendix A: Gantt Char | t 1 of PSM 1  | 61   |
| Appendix B: Gantt Cha  | rt 2 of PSM 2 | 62   |



#### **CHAPTER 1**

#### **INTRODUCTION**

### 1.1 Background

The Internet of Things (IoT) is a combination of sensors, software, and other technologies embedded in objects that connect and exchange data with other devices over the internet. A study in [1] said that by applying intelligence in everyday objects, they turned into smart devices and can be controlled from anywhere in the world.Many IoT-based systems has been developed for monitoring purposes which include home automation system, remote health monitoring system and emergency notifications for medical and healthcare systems, agriculture monitoring system that can control the water pump anywhere and environmental monitoring. However, it has been reported that, currently, the drainage system in most of the countries is still using manpower for cleaning and managing purposes [1]. Hence, the workers are exposed to hazardous gaseous around the drainage area which may lead to underground workers' death. Therefore, monitoring the real-time condition of the drainage system is very crucial to avoid any accident. In this work, an IoTbased real-time drainage monitoring system has been developed using an Arduino microcontroller with the aim to monitor the depth of the water, the gas concentration, and flow rate of the water in the drainage system. The real-time monitored data will be sent to the cloud via WiFi using the Blynk application. Also, the proposed system is equipped with a GPS module to locate the location of the monitored drainage area and a notification message will be sent out to the in-charge person when an emergency is detected i.e. sensor detected value that exceeds the threshold.

### **1.2 Problem Statement**

A flood is a disaster caused due to a clogged drainage system [2]. Recently, it has been reported that the flash flood that happened in Kuala Lumpur, is due to the poor service maintenance of the drains and irrigation canals. The poor service maintenance of the drains and irrigation canals has resulted in the exposure of toxic gases due to the decomposition of organic household or industrial waste. In addition, the flash flood also leads to a rise in mosquitoes, a foul odor, etc. Therefore, the development of a smart drainage monitoring system is important to prevent flooding. Many researchers have focused on developing the drainage monitoring system. However through the previous research, certain disadvantages can be found which require human interaction at times to obtain the results from the system, data recorded is not in real-time, and limited sensors. Therefore the proposed project overcomes the disadvantages of the existed project and will be a reliable device to assist the challenged workers.

# 1.3 Project Objective

The objectives of this work are as follows:

- a) To develop an IoT-based real-time drainage monitoring system, to monitor the depth of the water, the level of gas concentration, and the flow rate of the water for blockage detection in the drain using Arduino.
- b) To develop a data logging system to record real-time monitored data for monitoring purposes.
- c) To evaluate the performance of the developed prototype in terms of its reliability and accuracy compared to the measured value.

#### **1.4 Scope of Project**

The scope of the projects prioritizes the detection of the water flow rate, the depth of water level, and the presence of gas concentration through using a portable device that can produce real-time data using the presence of IoT. The proposed system is targeted to be used as one of the smart cities applications where wireless internet connection is unlimited. Since the project is focusing on flow rate, using water flow sensors helps to calculate the volume of water flowing through the system.

The project also focuses on monitoring the gas concentration value in parts per million(ppm) at the drainage environment therefore a Gas Sensor is MQ-5 sensor is also added to the system for monitoring purposes. Since the MQ-5 gas sensor has a high sensitivity to Methane, Propane is a suitable sensor for the current environment. The TOF10120 sensor is a range module camera system that measures the round trip traveled by the light produced to determine the distance between the camera and the subject for each point of the image with time-flight techniques. Through the laser sensor, the data being recorded is the height water level. A GPS is added to this project so that it gives flexibility for the respective authority to detect the location of the system. Each GPS satellite sends a signal to the GPS receiver. The satellites transmit the same time at which the signals are sent. All the information mentioned above is sent to the Blynk server application through wifi for recording purposes in real-time. The data recorded from the server is being recorded every 5 minutes interval time and tabulated to get an average reading.

#### **CHAPTER 2**

#### LITERATURE REVIEW

#### 2.1 Introduction

In this part chapter, thorough literature research has been conducted based on the previous works to better understand the research problem being studied. A detailed discussion has been done and analyzed on the relationships of each work obtained from various authors that are relevant to this project.

#### 2.2 Concept of IOT

According to the IoT agenda, Kevin Ashton of Procter & Gamble created the term "Internet of Things.". Through his founding of radio frequency identification (RFID) where this would allow computed to manage a person's belongings. Back then the minimum goal of IoT is the installation of short-range mobile transceivers into a variety of common items and to provide new forms of communication between humans and machines. A study has been conducted to support this claim by [1] to introduce the Internet of Things (IoT) as a wide cultural phenomenon. Their paper also recommends two techniques for developing new business models based on IoT and concludes with a discussion of how far the future of IoT can be anticipated. The elements of IoT can be represented in Table 1.1 below.

| Technological<br>Aspects | Hardware                            | Wireless devices (such as computers,<br>smartphones, RFID tags, and wireless sensors) are<br>used to connect physical objects to the Internet of<br>Things (IoT) and enable communication across<br>the network. |
|--------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Software                            | Built software applications to input value in a<br>certain groups of customers and utilities for an<br>end to end IoT user applications                                                                          |
|                          | Networking                          | Different networking technologies allow us<br>connecting from one point to another point<br>through the internet and satellite communication.                                                                    |
|                          | Intergrated<br>manifesto            | A cloud-based, integrated platform that allows<br>interaction and easy compatibility between<br>multiple hardware, software, and networking<br>aspects.                                                          |
|                          | Quality                             | Operational guidelines require the design of<br>emerging lot components and ensure their<br>compatibility.                                                                                                       |
|                          | Data<br>کل ملیسیا ہ<br>ERSITI TEKNI | Data created in real-time by IoT nodes that are<br>constantly broadcasting their properties through<br>the network (for example, a temperature sensor<br>transmitting room temperature).                         |
|                          | Human objects                       | Humans experiencing with the IoT wireless devices such as smartphones, health sensors, etc.                                                                                                                      |
| Physical<br>environment  | Objects                             | Cars, parcels, and animals are examples of physical objects that can interact and share through a network.                                                                                                       |
|                          | Surrounding<br>environment          | Humans and physical space can communicate<br>with one another, such as at a vehicle park with an<br>integrated RFID card reader.                                                                                 |
| Socio-economic           | Customers                           | Specific IoT applications, such as smart home systems, target individual consumers or companies.                                                                                                                 |

Table 2. 1 Elements of IoT

| Department of<br>Organization | The organisations in charged of developing,<br>publishing, and enforcing IoTrelated regulations.                       |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Associations of companies     | Companies that are responsible setting standards and guidelines that facilitate IoT.                                   |
| Consumer<br>privacy groups    | Protecting customers from security and privacy<br>problems as a result of IoT applications and<br>similar technologies |
| Entrepreneurs                 | Intelectual business person engaging in<br>entrepreneurship and intrapreneurship using IoT.                            |

Based on research done by [2] says that their paper presents the Internet of Things, including statistical and architectural trends, application cases, problems, and future possibilities The author also gives an overview of the developing 5G-IoT framework. Some of the IoT technologies are SD-WSN, NFV, and smart radios are all examples of software-defined wireless sensor networking (CRs). The authors say that IoT offers many business and carrier opportunities. Figures 2.1 and 2.2 below briefly describe the future of IoT.



Figure 2. 1 IoT based smart applications (Kinza Shafique and Bilal A. Khawaja)