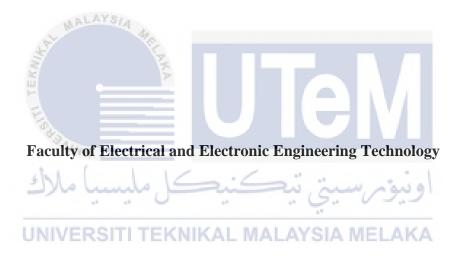


Faculty of Electrical and Electronic Engineering Technology


Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

2021

DEVELOPMENT OF PET HEALTH MONITORING COLLAR WITH GPS TRACKER USING LoRa

ASHWINI A/P JAYADEVAN NAIDU

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

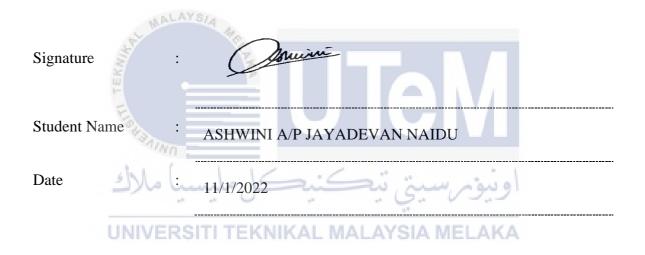
BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek : Development of Pet Health Monitoring Collar with GPS Tracker using LoRa

Sesi Pengajian : 18/19

Saya ASHWINI A/P JAYADEVAN NAIDU mengaku membenarkan laporan Projek Sarjana

Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:


- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4

Sila tandakan (✓): SULIT* TIDAK TERHAD TIDAK TERHAD	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	Disahkan oleh:
Comine	F.
(TANDATANGAN PENULIS) Alamat Tetap: 1049, TAMAN SAGA 4, JALAN 12, 05400, ALOR SETAR, KEDAH.	(COP DAN TANDATANGAN DR. HASLINAH BINTI MOHD NASIR Pensanih Jahatan Tekendergi Kejimutena an Ukernona dan Kompatan Takada Tekendergi Kejimutena an Tekena da Kompatan Takada Tekendergi Kejimutena an Tekena da Kompatan
Tarikh:11/1/2022	Tarikh: 11/1/22

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "DEVELOPMENT OF PET HEALTH MONITORING COLLAR WITH GPS TRACKER USING LoRa " is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours.

Signature	LAYSIA AND
Supervisor Name	: DR. HASLINAH BINTI MOHD NASIR
Date	اونيوسيتي تيڪنيڪل مايسيا
Signature UNIVE	RSITI TEINIKAL MALAYSIA MELAKA
Co-Supervisor Name	: EN MOHD FAIZAL BIN ZULKIFLI
Date	: 11/1/2022

.....

DEDICATION

This project is dedicated to my loved ones and pet owners.

ABSTRACT

Pet owners have been the subject of 60% of the complaints received by the Veterinary Services Department (DVS) during the previous two years. In recent times, many pet owners have failed to grasp the complexities of pet health issues. This includes the missing pet cases that have gone up a lot. The main cause for the rapidly growing number of reported cases is that, pet owners are experiencing financial challenges as a result of high-priced veterinary costs. In spite of this, many pet owners find it difficult to assume responsibility for their pet's safety. This project was created to monitor the health state of pets and to track their movements safely. Aside from that, the goal of this project is to validate this developed health monitoring collar towards animals in order to track their location and health status by using smartphone. This project embedded in a pulse/heart beat and temperature sensor to detect, GPS module to track location, LoRa module as transmission medium to transmit data and Arduino Nano to process the data. The real time monitoring health status and location can be present on the Blynk application which have been installed by the pet owners in their smartphones. As the results, this project has been successfully developed and is fully validated with the real pet. The condition and location of the pet can be freely monitored through the Blynk application by the pet owner. In conclusion, the project will be very helpful for pet owners to monitor health status and to track the current location of the pet in real time.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Pemilik haiwan peliharaan merupakan subjek 60% bagi aduan yang diterima oleh Jabatan Perkhidmatan Veterinar (DVS) dalam tempoh dua tahun sebelumnya. Sejak kebelakangan ini, banyak pemilik haiwan kesayangan telah gagal memahami kerumitan masalah kesihatan haiwan kesayangan. Ini termasuk peningkatan kes kehilangan haiwan kesayangan yang semakin teruk. Punca utama peningkatan kes yang dilaporkan adalah bahawa, pemilik haiwan kesayangan mengalami kesusahan dari segi kewangan akibat kos veterinar dengan harga tinggi. Walaupun begitu, ramai pemilik haiwan kesayangan merasa sukar untuk bertanggungjawab terhadap keselamatan haiwan kesayangan mereka. Projek ini dicipta untuk memantau keadaan kesihatan haiwan peliharaan dan untuk mengesan pergerakan mereka dengan selamat. Selain itu, matlamat projek ini adalah untuk mengesahkan kolar pemantauan kesihatan yang dibangunkan ini terhadap haiwan untuk mengesan lokasi dan status kesihatan mereka dengan menggunakan telefon pintar. Sistem ini disertakan dengan pengesan nadi/dengupan jantung dan suhu, modul GPS untuk menjejaki lokasi, modul LoRa sebagai medium untuk menghantar data dan Arduino Nano untuk memproses data. Projek memantau status kesihatan dan lokasi semasa boleh didapati di aplikasi Blynk yang telah dimuat turunkan oleh pemilik haiwan peliharaan di telefon pintar mereka. Hasilnya, projek ini telah berjaya dibangunkan dah disahkan sepenuhnya dengan haiwan peliharaan yang sebenar. Keadaan dan lokasi haiwan peliharaan juga boleh dipantau dengan bebas melalui aplikasiI Blynk oleh pemilik haiwan peliharaan. Kesimpulannya, sistem ini dapat membantu pemilik haiwan kesayangaan unutk memantau status kesihatan and menjejak lokasi semasa.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Dr Haslinah Binti Mohd Nasir and co-supervisor, En Mohd Faizal Bin Zulkifli for their precious guidance, words of wisdom and patient throughout this project.

I am also indebted to both of my parents and Universiti Teknikal Malaysia Melaka (UTeM) for the financial support, which enables me to accomplish the project. Not forgetting my fellow colleague, En Hazwan for the willingness of sharing his thoughts and ideas regarding the project.

My highest appreciation goes to my parents and family members for their love and prayer during the period of my study. An honourable mention also goes to my friends for all the motivation and understanding.

Finally, I would like to thank all the staffs at the Faculty of Technologies, fellow colleagues and classmates, the Faculty members, as well as other individuals who are not listed here for being co-operative and helpful.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ونيؤمرسيتي تيكنيكل مليسيا ما

TABLE OF CONTENTS

DECLARATION	PAGE
APPROVAL	
DEDICATIONS	
ABSTRACT	i
ACKNOWLEDGEMENTS	ii
ACKINOW LEDGEWIEN IS	11
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES LAYSIA	viii
CHAPTER 1 INTRODUCTION 1.0 Introduction 1.1 Research Background 1.2 Problem Statement 1.3 Project Objective 1.4 Scope of Research 1.5 Thesis Outline	1 1 2 3 3 4
 2.1 Introduction 2.2 Concept of Smart Animal Health Monitoring 2.3 Concept of GPS tracking 2.4 Internet of Things (IoT) 2.5 LoRa 2.6 Previous Related Projects 2.6.1 Wearable Smart Health Monitoring 2.6.2 IoT based Health Monitoring 2.6.3 LoRaWAN based Smart Agriculture 2.6.4 Dairy Cows Monitoring System using LoRa 2.6.5 Real Time Health Monitoring System 2.7 Comparison of Previous Related Projects 2.8 Summary 	6 9 11 16 19 19 20 22 23 23 23 25 27

CHAPTER 3 METHODOLOGY

3.1	Introduction	28
3.2	Study Design	28
3.3	Elaboration of Process Flow	29

	3.3.1 Project Implementation Flowchart	29	
	3.3.2 Project Development Flowchart	30	
3.4	Hardware Implementation	32	
	3.4.1 Arduino Nano	32	
	3.4.2 Pulse/Heart beat Sensor	33	
	3.4.3 LM35 Temperature Sensor	34	
	3.4.4 GPS module NEO6MV2	36	
	3.4.5 LoRa Module	37	
	3.4.6 WiFi Module	38	
3.5	Software Specification	38	
	3.5.1 Arduino IDE	39	
3.6	Mobile Application Specification	40	
	3.6.1 Blynk Mobile Application	40	
3.7	Circuit Diagram	42	
3.8	Block Diagram of the Project	43	
3.9	Project Simulation 4		
3.10			

3.10 Summary

CHAPTER 4

RESULTS AND ANALYSIS

4.1 Introduction 46 4.2 Software Development 46 Hardware Development 47 4.3 Prototype Development 49 4.4 Project Integration 4.5 49 Data Analysis 4.6 51 4.7 Summary 57 CONCLUSION **CHAPTER 5** Introduction 5.1 58 **TEKNIKAL MALAYSIA MELAKA** Conclucion 58 5.2 5.3 Summary 58 **REFERENCES** 60 **APPENDICES** 63

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Fundamental Technologies of Smart Health Monitoring	8
Table 2.2	Structures of IoT	12
Table 2.3	The Characteristics and Explanation of LoRa	17
Table 2.4	Comparison of the Previous Related Projects	25
Table 3.1	LM35 sensor pins configuration	35
Table 4.1	Results of RSSI signal strength for every 1 meter distance	55
Table 4.2	Results of pet's heartbeat rate per minutes in resting and walking condition اوينون سيني نيكنيكل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	56

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1	Estimation cost for pet's vet check-up	2
Figure 2.1	The setup of all sensors around the animal body	7
Figure 2.2	The display data for oxygen and carbon dioxide concentration	8
Figure 2.3	GPS Collar use GSM module for data transmission	11
Figure 2.4	Internet of Things (IoT) based smart appliances	16
Figure 2.5	LoRa Technology Overview	17
Figure 2.6	Future IoT application that monitored with LoRa	18
Figure 2.7	Block diagram of animal health monitoring system	20
Figure 2.8	IoT based health monitoring system using Arduino	21
Figure 2.9	Block diagram of the project	22
Figure 2.10	Dairy cows monitoring system	23
Figure 2.11	Real time monitoring system investing techniques	24
Figure 3.1	Flowchart of this project implementation	29
Figure 3.2	Steps of pet health monitoring collar with GPS tracker using LoRa implementation	30
Figure 3.3	Arduino Nano microcontroller unit	32
Figure 3.4	Pulse/Heartbeat sensor	33
Figure 3.5	Both sides view of the Pulse/HeartBeat sensor	34
Figure 3.6	LM35 temperature sensor	35
Figure 3.7	GPS module NEO6MV2	36
Figure 3.8	SX1278 LoRa module 433M 10KM Ra-02	37
Figure 3.9	ESP 32	38
Figure 3.10	Arduino IDE icon	39

Figure 3.11	Arduino IDE interface			
Figure 3.12	Blynk application icon	41		
Figure 3.13	Blynk application interface	41		
Figure 3.14 42	Diagram of Project Implementation			
Figure 3.15	Block Diagram of Pet Health Monitoring Collar with GPS Tracker using LoRa	43		
Figure 3.16	Connection Diagram of Transmitter	44		
Figure 3.17	Connection Diagram of Receiver	45		
Figure 4.1	Blynk Application Platform	47		
Figure 4.2	Transmitter side of the project	47		
Figure 4.3	Receiver side of the project	48		
Figure 4.4	Prototype Development	50		
Figure 4.5	Internet Configuration	50		
Figure 4.6 🚽	The pet tracker online status in Blynk	51		
Figure 4.7	The pet tracker offline status in Blynk	51		
Figure 4.8	Pet health collar testing	51		
Figure 4.9	LED red blinking	52		
Figure 4.10	LED green blinking	52		
Figure 4.11	Temperature and Heartbeat rate of the pet	53		
Figure 4.12	Latitude and Longitude of pet's current location	53		
Figure 4.13	Signal strength of the LoRa module	54		
Figure 4.14 Play button on the Blynk application				
Figure 4.15 Blynk application data display				
Figure 4.16 Distance between transmitter and receiver				

Figure 4. 17	Graph of RSSI signal strength taken every 1 meter distance	56
Figure 4.18	Graph of Heartbeat rate every minute	57

CHAPTER 1

INTRODUCTION

This chapter will discuss about the background of the project, problem statement, objectives, scope of the project and the project outline.

1.1 Research Background

According to [1] the cases received by the Malaysian's Veterinary Services Department (DVS), an estimated of 60% of our nation households have a pet particularly cats and dogs. Many pet owners have recently struggled to comprehend pet health problems and their own position in detecting and preventing illness. According to research, many pet owners are not responsible for bringing their pets in for a regular checkup to monitor their health status. A heart rate for animal, for instance, the heart rate of a dog will rise for several causes, including anxiety or stress, as well as physical exertion. This is natural, and it will usually get back to normal heartbeat rate level in a short amount of time. If the abnormally fast heart rhythm persists for an extended period, it may be a sign of a medical problem that necessitates veterinary treatment. There are several diseases that caused by rapid heartbeat rate for animals particularly dogs and cats. Tachycardia [2] is a disease marked by an abnormal heartbeat rate in pets.

Basically, there are two types in of Tachycardia disease which is Superventricular Tachycardia and Ventricular Tachycardia. The differences from these both illnesses are, Superventricular Tachycardia [3] arises from heart illness while Ventricular Tachycardia might be result of heart illness, congenital defects, or other severe conditions. Moreover, other illness that can affect by an abnormal heartbeat rate in pets are dilated cardiomyopathy, drug overdose, gastrointestinal, pancreatitis, depression and etc. On the other hand, abnormal temperature rate also affected a pet's health condition which can cause illness. For instance, low temperature rate in pets particularly cats and dogs can cause Hypothermic disease while high temperature rate cause Hyperthermic disease or depression.

Throughout this research that have been made, shows that not many pet owners are not being concern about their pets' health issues and the illnesses that can affect through heartbeat and temperature rate. In addition, normal regular medical checkup is very expensive. However, technological limitations remain in terms of pet health monitoring with the majority of veterinarians using traditional equipment in their clinics.

This project will be very helpful for the owners to detect their pet's current location and monitor their pet's health status in real-time. This project will apparently reduce the number of animal cases which received Veterinarian Service Department (DVS) that have been increase for past few years in all around the world. Moreover, The GPS tracker in this project will be able to detect the pet's current position, which will be helpful in tracking the location of the pet by the pet owners.

1.2 Problem Statement

Currently the process to monitor pet's health condition are only done in veterinary hospitals or clinics. According to [1], pet owners are paying out thousands of ringgit to look after their pets. Although only going for normal regular vet consultations, it costs a very expensive bill.

Figure 1.1: Estimation cost for pet's vet check-up [1]

On the other hand, the cases of missing pets are increasing gradually while the found cases are remaining on the constant rate[4]. Pet owners were unable to locate or trace their lost pets. This difficulty occurs due to carelessness of pet owner to be aware their pet. Furthermore,

vetenarians are recommending microchipping pets to most of the pet owners. Microchipping[5] is a small procedure where a small microchip will be inserted under animal's skin permenantly. This microchip will aid the pet owners to track their pets. There are few side effect arises due to microchipping such as cancer risk, abcesses, microchip migration and hair loss.

By using the advance features of the Internet of Things (IoT), pet owners can keep track and monitor their beloved pets, thus take action when necessary. Therefore, to aid the pet owners to key an eye on their pet's health status and get notified on their location in real time, a pet health monitoring collar with GPS tracker using LoRa is proposed.

1.3 Project Objective

The main purpose for this project are:

ula,

- 1. To study characteristics and functionality of LoRa and Blynk application.
- 2. To develop mobile based monitoring health system utilizing microcontroller.

ويىۋىرسىتى تېكنىك

3. To validate the developed project towards animals.

1.4 Scope of Research

The scope of this project focuses mainly on using microcontroller and LoRa to communicate with GPS tracker, WiFi module, pulse/heartbeat rate sensor, temperature sensor and smartphone application which is Blynk application to alert the pet owners their pet's current health status in real time. The presence of GPS tracker and LoRa module will be able to detect the current location of the animal in long range. The detected location will be sent to owner's smartphone application. Moreover, the pulse/heartbeat rate sensor in this project will sensor the heartbeat rate while the temperature sensor will detect the temperature of the animal. Blynk application is used to received notification from the microcontroller. Last but not the least, this project is dedicated to every pet lover. The performance of the project is analyzed by observing the health condition and location detection in a range of distance.

1.5 Project Outline

This report consists of five chapters that are discussed about the implementation of this project, "Development of Pet Health monitoring collar with GPS tracker using LoRa". According on the objective which have been previously presented and, on the approach, proposed before, this project is made up of five (5) chapters, which contents are summarized as follows:

- Chapter 1 introduces about the background of the pet health monitoring system and GPS tracker using LoRa. A problem statement is stated, and objectives are listed to set as a benchmark to be achieved to solve the problems. Finally, in this chapter it covers the scope of research and the outlines of this project.
- Chapter 2 consist of literature review. In this section, inserted discussion about the related research done by researchers based on the project implementation and functionality. A comparison between the projects is done to discover the main idea, theory and provide a broad view of the essence of implementation which will be satisfactory for this project.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

- Chapter 3 consists of the methodology used to execute in this project. The methodology is done by taking certain steps to develop this project while obeying the objectives stated. Moreover, a flowchart is designed to illustrate the whole function of this project system.
- Chapter 4 are included the details of results obtained from the performance of this project. Furthermore, the discussion on the analysis based on this project results and findings is being concluded clearly in this chapter.
- Chapter 5, basically concludes and summarizes the main ideas and states whether the project output has achieved the main objectives

that have been list out previously. Lastly, in this chapter there will be a section which gives suggestions on further improvement for this project in future with upcoming technology.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter discuss the important information and details which are found by several study and research from related previous study. Therefore, the discussion begins with the study of smart animal health monitoring and GPS tracker concepts. It is important to research on these concepts because they are the main objective of this project. Furthermore, as this project involve the LoRa technology, it is vital to study the concepts of the technology to have a clear vision of the scope. In summary, this chapter end with the comparison of the related previous projects and the type of the implementation that will be fit in this project.

2.2 Concept of Smart Animal Health Monitoring

In general, smart refers to technology that is sensor-based, data-driven and more programmable. Moreover, it is also involving artificial intelligence. Animal health monitoring is a method where traditional medical scaling is incorporated with innovative technologies. Animal health monitoring benefit in several ways such as monitoring heartbeat rate, temperature rate, respiratory rate and also helps to get faster medical treatment at nearby veterinary clinic or hospital. Furthermore, it will also useful device for pet lovers to monitoring their pet's health status in real time. Heartbeat rate and temperature of an animal are the main important to identify the current health status. It is much simpler if we create an flexible wearable to automatically detect and perform all these tasks [6]. According to that, this technology has done many changes in the pet health monitoring sector such as:

- 1. Real-time monitoring system
- 2. GPS tracking
- 3. Data from sensor will be transfer to mobile application by using LoRa

According to [7], smart animal health monitoring concept consist of smart devices that are connected sensors that are able to monitor an animal health condition in real-time. With that, smart devices are components that are built in with sensors and intelligence to perform autonomous tasks. Moreover, the sensors will be seen to take part in the control system that will be aid to monitor animal's health analysis. This show it is capable to detect current health status of an animal.

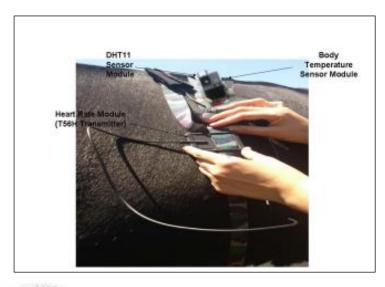


Figure 2.1: The setup of all sensors around the animal body [7]

Y.N.Malek stated that the idea of developing a device of detecting the temperature and be able to transmit the reading to the receiver[8]. Lately, the Internet of Thing (IoT) has widened its scope of accuracy to be used in the pet health monitoring device by adding smart sensors and technologies with low power consumption that are already present in other fields. For instance, this technology has been used widely on home automation, medical field and industrial. This is considered as Smart Health Monitoring which includes, data processing, data collecting and analysis. Data processing can be done through the implementation of IoT frame to assist veterinarian in their field for better actions. Royal Society for the Prevention of Cruelty to Animals (RSPCA) mentioned that a real-time data processing that be develop by using the aid of IoT [9]. This also have been proven by implementing it in collecting healthcare results such as breathing rate, oxygen level and also heartbeat rate. The implementation in this field enables the process of monitoring to be less difficult, reduce the cost and thus could be treated in less time.

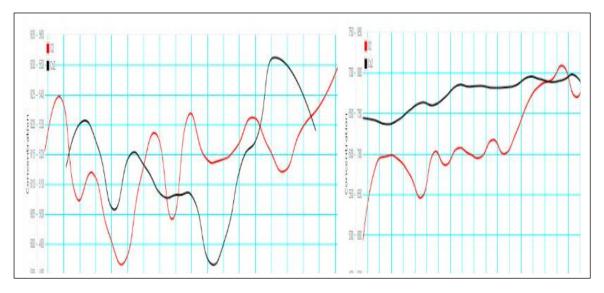


Figure 2.2: Display data for oxygen and carbon dioxide concentration [9]

The usage of a collar for pets especially cats and dogs, has been an identification tag for their safety and protection purpose. Collars were used as protection, identification and restraint pets like cats and dogs [10]. Now, the transition changes to automated and datacentered management. This new evolution is possible to be developed by implementing fundamental technologies such as the Internet of Things and GSM module [11]. Table 2.1 below shows in detail about the fundamental technologies in aiding technologies in smart health monitoring for pets.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 2.1: Fundamental Technologies of Smart Health Monitoring.

Internet	of	Things	Microcontroller	Compressed microcomputer that present in a
(IoT)				single integrated circuit. It is enhanced to
				control electronic devices. This small device
				consists of memory, input-output pins,
				microprocessor on a single printed circuit
				board. This device normally used in industrial
				application and embedded with other devices to
				provide control and interfacing. Raspberry Pi
				and Arduino are one of the instances of
				microcontrollers.

	2.6	
	Micro sensors	Small device that can be able to measure
		multiple aspects. Therefore, some of this
		devices operates also on a nanoscale. For
		instances, sensors that measure heartbeat rate
		that gives output in digital format. The data that
		was previously unapproachable can be now
		measured and analyzed, such as the oxygen
		level in blood.
	Networking	The desired output from the sensor must be sent
	Technology	over a network for analysis and processing. The
		networking technologies have considerably
		and range while reducing cost and power
	1.57.00	consumption.
at MAL	ALA NO.	
and the	L. M.K.	It is a chirp spread spectrum (CSS)-based
TEA	LoRa	spread spectrum modulation approach. LoRa is
Ela		a low-power wide-area network modulation
* AINO		method developed by LoRa Alliance. Low
shl. (power, low cost, and dependable performance
	_ میں	make LoRa Technology ideal for crucial smart
UNIVER	SITI TEKNIK	healthcare applications.
GPS	GPS tracking	It is a technology that will be used for the
	unit	process tracking any object. It has three
		separate data sets which is known as timing,
		navigation and positioning. GPS is used in a
		variety of operations, including military, first
		responder, commercial, and personal
		applications.

As the emergent population worldwide, it is necessary to improvise the development of health monitoring system especially for animals to the next level. Smart health monitoring for pets has all the chances to be implemented with the aid of fundamental technologies such as Internet of Things(IoT) and GPS trackers. This implementation requires less human involvement and capable of monitoring the current health status for our beloved pets from