

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

NUR FARAH WAHIDA BINTI YAHAYA

Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

2021

DEVELOPMENT OF IOT-BASED GUEST WELCOMING SYSTEM USING FACE RECOGNITION ALGORITHM

NUR FARAH WAHIDA BINTI YAHAYA

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek: DEVELOPMENT OF IOT-BASED GUEST WELCOMING SYSTEM USING FACE RECOGNITION ALGORITHM

Sesi Pengajian:2021/2022

Saya Nur Farah Wahida binti Yahaya mengaku membenarkan laporan Projek Sarjana

- Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:
- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengaijan tinggi.

institusi pengajian tinggi.	
4. Sila tandakan (✓): SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah
UNIVERSITI TEKNIK	ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
TIDAK TERHAD	
Paule	Disahkan oleh:
(TANDATANGAN PENULIS) Alamat Tetap: No 48-L, Jalan DC 5/3 , Desa Coalfields, 47000 , Sungai Buloh, Selangor.	(COP DAN TANDATANGAN PENYELIA) TS ZAHARIAH BINTI MANAP <i>Penyelaras Program BEET</i> Jabatan Teknologi Kejuruteraan Elektronik dan Komputer Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka
Tarikh: 10/01/2022	Tarikh: 11-01-2022

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Development of IoT-based guest welcoming system using face recognition algorithm" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours.

Signature :
Supervisor Name : TS ZAHARIAH BINTI MANAP
Date : 11-01-2022
Sea Allan
اونيومرسيتي تيڪنيڪل مليسيا ملاك
Co-Supervisor IVERSITI TEKNIKAL MALAYSIA MELAKA
Name (if any)
Date :

DEDICATION

Dedicated to my mom Naimah bt Muhammad and my dad Yahaya bin Che Cob, the most who gave me strength to complete this final year project.

ABSTRACT

Automatic doors have become a typical feature on many different types of buildings, and they are growing more popular by the day in terms of producing effective electrical gadgets that provide enough security. Because of the enormous increase in crime rates and everyone wants to take adequate precautions to prevent it. This project aims to develop a guest welcoming system for home security purpose. Face recognition algorithm whose role to recognize whether a guest is a real guest or intruder, becomes the main feature of the developed system. From the literature, most of the technologies used in developing a guest welcoming system are complex in terms of number of components used. Therefore, this project simplifies the system's design by using more simple circuit, portable and user friendly. The developed system is formed of three main components which are a camera, Raspberry Pi microcontroller, and mobile application. The camera captures the image of guest and feed to the microcontroller, where the recognition and matching take place. Microcontroller will send the output to mobile application. Additionally, an external circuit is designed to control the door locking function. In short, the objective of this project is to develop a visitor welcoming circuit system based on face recognition technique, to develop a mobile application and integrate with the visitor greeting circuit for output display and to test the performance of the developed system that can access the hardware output. The performance and the output were being tested and being evaluated. With this project, the surrounding of the house will feel more safe.

تىكنىكا ملىسى UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Pintu automatik telah menjadi ciri tipikal pada pelbagai jenis bangunan, dan ia semakin popular dari hari ke hari dari segi menghasilkan alat elektrik yang berkesan yang menyediakan keselamatan yang mencukupi. Kerana peningkatan kadar jenayah yang sangat besar dan semua orang mahu mengambil langkah berjaga-jaga yang mencukupi untuk mencegahnya. Projek ini bertujuan untuk membangunkan sistem penyambut tetamu untuk tujuan keselamatan rumah. Algoritma pengecaman muka yang berperanan untuk mengenali sama ada tetamu adalah tetamu sebenar atau penceroboh, menjadi ciri utama sistem yang dibangunkan. Daripada literatur, kebanyakan teknologi yang digunakan dalam membangunkan sistem menyambut tetamu adalah kompleks dari segi bilangan komponen vang digunakan. Oleh itu, projek ini memudahkan reka bentuk sistem dengan menggunakan litar yang lebih ringkas, mudah alih dan mesra pengguna. Sistem yang dibangunkan ini terdiri daripada tiga komponen utama iaitu kamera, mikropengawal Raspberry Pi, dan aplikasi mudah alih. Kamera menangkap imej tetamu dan suapan ke mikropengawal, tempat pengecaman dan pemadanan berlaku. Pengawal mikro akan menghantar output ke aplikasi mudah alih. Selain itu, litar luaran direka untuk mengawal fungsi mengunci pintu. Secara ringkasnya, objektif projek ini adalah untuk membangunkan sistem litar pelawat pelawat berdasarkan teknik pengecaman muka, untuk membangunkan aplikasi mudah alih dan menyepadukan dengan litar ucapan pelawat untuk paparan output dan untuk menguji prestasi sistem yang dibangunkan yang boleh mengakses keluaran perkakasan. Prestasi dan output sedang diuji dan dinilai. Dengan adanya projek ini, persekitaran rumah akan berasa lebih selamat.

تى تيكنيكل مليسيا مل UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENTS

First and foremost, I want to thank my supervisor, Ts Zahariah binti Manap, for her invaluable assistance, wise counsel, and patience throughout this project.

Not forgetting my fellow classmate for the willingness of sharing his thoughts and ideas regarding the project.

My gratitude is extended to my parents and family members for their support and prayers during my studies. My mother deserves special recognition for all her encouragement and understanding.

TABLE OF CONTENTS

	PAGI
DECLARATION	
APPROVAL	
DEDICATIONS	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	i
LIST OF TABLES	iii
LIST OF FIGURES	iv
LIST OF SYMBOLS	vi
LIST OF ABBREVIATIONS	vii
LIST OF APPENDICES	viii
CHAPTER 1 MIL INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement TI TEKNIKAL MALAYSIA MELAKA	2
1.3 Project Objective 1.4 Scope of Project	23
CHAPTER 2 LITERATURE REVIEW	4
2.1 Introduction	4
2.2 Overview face recognition system or objective/activity recognition system 2.3 Technologies for face recognition system	4
2.3.1 Wi-Fi technology	8
2.3.2 Radio Frequency Identification (RFID) technologies	9
2.3.3 GSM Module	10
2.3.4 Summary of technologies used in the face recognition 2.4 Method in Recognition for face recognition system	12
2.4.1 Random Forest (RF)	13
2.4.2 Support Vector Machine (SVM)	14
2.4.3 Multiplayer Perception (MLP)	15
2.4.4 Histogram of Gradient (HOG)2.5 Comparison of article paper for technologies and method	17
CHAPTER 3 METHODOLOGY	20
3.1 Introduction	20

3.2	Methodology	21
	3.2.1 Process Flow of system	23
3.3	System Setup Procedure	24
3.4	Software Development	26
	3.4.1 Raspberry Pi OS	27
	3.4.2 PuTTY	28
	3.4.3 Open-Source Computer Library (OpenCV)	28
	3.4.4 Virtual Network Computing (VNC)	29
	3.4.5 Telegram	30
3.5	Hardware Development	31
	3.5.1 Raspberry Pi model 3 B+	35
	3.5.2 Raspberry Pi module camera	36
	3.5.3 Relay	37
	3.5.4 Solenoid Door Lock	38
	3.5.5 PIR Sensor	38
	3.5.6 Mini Buzzer	39
CHAF	PTER 4 RESULTS AND DISCUSSIONS	41
4.1	Introduction	41
4.2	Results and Analysis	41
4.3	Testing face recognition with Pi camera module	43
4.4	Telegram Control	45
4.5	Output from VNC viewer	46
4.6	Summary	47
СПАТ	TED 5	10
	Conclusion AND RECOMMENDATIONS	40
5.1 5.2	ويوم سبي بيكنيك مليسيا متعاد	48
5.2		49
REFE	RENCESIVERSITI TEKNIKAL MALAYSIA MELAKA	50
APPE	ENDICES	53

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1 Comparison for T	Cechnologies that used	6
Table 2.2 Machine learning	algorithms (RF, SVM, MLP) are compared.	7
Table 2.3 Comparison betw their research	veen articles based on technologies and method u	used in 18
Table 3.1 List component a	nd their function	32

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1 Block Diagram of Fl	ow Recognition development	5
Figure 2.2 Illustrate Wi-Fi tech	nology	9
Figure 2.3 Illustrate for RFID te	echnology	10
Figure 2.4 Ilustrate GSM Modu	le technology	11
Figure 2.5 Illustrate of Random	Forest (RF)	14
Figure 2.6 Illustrate of Support	Vector	15
Figure 2.7 Illustrate of Multipla	yer perceptron (MLP)	16
Figure 3.1 Sytem Block Diagra	m	20
Figure 3.2 Flow Chart Overall f	final project	22
Figure 3.3 Sytem Flow Chart		23
Figure 3.4 VNC Viewer Screen	shot	25
Figure 3.5 VNC Viewer mobile	اويور سيتي تيڪني Screenshot	25
Figure 3.6 Block Diagram of Fl	ow Software development SIA MELAKA	26
Figure 3.7 An overview the inte	erface of Raspberry Pi OS	27
Figure 3.8 An overview the inte	erface of PuTTY	28
Figure 3.9 An Overview of the	OpenCV facial recognition	29
Figure 3.10 An Overview the in	nterface desktop for VNC	30
Figure 3.11 An Overview the te	elegram logo	30
Figure 3.12 Block Diagram of I	Flow Hardware development	32
Figure 3.13 Pins on Raspberry	pi Model 3 B+	36
Figure 3.14 Raspberry Pi Modu	le Camera	37
Figure 3.15 Relay		38
Figure 3.16 Solenoid Door Loc	k	38

Figure 3.17 PIR sensor		39
Figure 3.18 Mini Buzzer		40
Figure 4.1 Full developed connection	n for this project	42
Figure 4.2 Full circuit and connection	n using Fritzing	42
Figure 4.3 Front view	Figure 4.4 Back view	43
Figure 4.5 Inside view		43
Figure 4.6 Image Data for face recog	nition	44
Figure 4.7 Output from save Dataset	face recognition	44
Figure 4.8 Output from side view	Figure 4.9 Output from front view	44
Figure 4.10 Screenshot notification f	rom telegram	45
Figure 4.11 Output for PIR sensor af	ter detecting any motion Infront of the door	46
Figure 4.12 Output for command to I	ock and unlock the door	46
Figure 4.13 Output for command sen	ding photo to telegram application	46
Figure 4.14 Output for Command the	at contain with dataset اونیونر سینی تیکنیک	46

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

GSM	-	Global System for Mobile
HOG	-	Histogram of Gradient
MLP	-	Multiplayer Perception
OpenCV	-	Open-Source Computer Library
PIR	-	Passive Infrared sensor
RF	-	Random Forest
RFID	-	Radio Frequency Identification
Rpi	-	Raspberry Pi
SVM	-	Support Vector Machine
VNC	-	Virtual Network Computing
Wi-Fi	-	Wireless Fidelity

MIVERSITI TERMINAL MALATSIA MELAK

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
appendix 1 Full coding for	r TelegramBot	55
appendix 2 Coding for Sto	ored DataSet Face Recognition	56

CHAPTER 1

INTRODUCTION

1.1 Background

Home security with only door locker is not enough to protect your house and family. However, the innovative home security system on the market still not popular for household uses because of the high price tag. Besides that, the smart home security system is still can be improved to higher security level and build with low-cost material to fulfil the market's need. Regarding this issue, welcoming gust system using face algorithm project can help solve this issues. This welcoming system security system are accurately detects visitors or guests who enter and leave through the door. As a result, this chapter will briefly present the project's overview. This chapter also emphasises the problem statement, project objectives, scope, and overall report organisation.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

This project aims to develop an IoT based Guest Welcoming A system that can see anyone or guest that come to our house by capturing the face by using Raspberry Pi Camera and can access to lock and unlocked only just using app which is Telegram application by using via mobile phone or any devices by searching the system name. In a nutshell, the buzzer will automatically sound, if the PIR sensor detects any motion in front of your house to alert the people in the house without guest must push any bell. The project consists of two main processes, hardware development (involves sensor and devices selection and integration) and software development (involves face algorithm development which is face recognition that captures the face and can see it through mobile app development). The expected result from this project was used to analyze the performance about recognize person's face just alert the house owner through a mobile app. The developed system will undergo a series of real-time testing to evaluate its performance based on the accuracy and efficiency of recognition.

1.2 Problem Statement

Refer to the abstract which is this project aims to develop a guest welcoming system for home security purpose. Face recognition algorithm whose role to recognize whether a guest is a real guest or intruder, becomes the main feature of the developed system. The system that accurately recognise the guest's face in order to check the guest's identity before accepting them. However, the system still requires further improvement to achieve higher accuracy and efficiency. Furthermore, the issues that involve recognizing while synchronously with system still a challenging.

1.3 Project Objective

The goal of this project is to develop an IoT- based Guest Welcoming system that can detect people's faces by capturing the photo and sends a notification to the home owner via a mobile app. Following are the three objectives:

- a) To develop a guest welcoming circuit system based on face recognition technique.
- b) To develop a mobile application and integrate with the visitor greeting circuit for output display.
- c) To test the performance of the developed system that can access the hardware output.

1.4 Scope of Project

This project primarily focuses recognising faces by applying image processing techniques collected by a module camera in a single plank personal computer, namely a Raspberry Pi 3 model B+ for the microcontroller and Python for the software. In this project, we focus on the following scopes:

- a) The output which is the motion will triggered with sound to alert the home owner and save time to access the hardware ouput anywhere.
- b) Other than alerting with sound(buzzer), the owner of the house can access to capturing the faces of the guest before confirming to enter their house.
- c) After confirming the guest faces, the owner of the house can access to open up the door with only using database that already had using App Telegram to access it anywhere without any limits.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In the Era, across the world are regularly implementing smart home and office security control system. The main part of any home and office security system are accurately detecting visitor or guest who enter and leave through the door. Face recognition has received important attention from security guard due to people activities found in several applications of security like forensic, airport, face tracking and criminal recognition. Compared to other biometric qualities like finger print, using iris and face scanning. Due to people activities seen in numerous security applications such as forensic, airport, face tracking, and criminal detection, face recognition has gotten a lot of attention from security guards. When compared to other biometric traits such as finger prints, iris and facial scanning are more accurate. They can be taken without the knowledge of the visitor and utilised for security-related purposes such as criminal detection, face tracking, airport security, and forensics. Face recognition entails taking a photo of a person's face with a webcam. This chapter summarises findings from prior studies on the related project.

2.2 Overview face recognition system or objective/activity recognition system

Based on the previously literature review that being review most of them doing significance of such system in applications like surveillance, private security has been proven to be very effective[1].

A detail survey on face recognition can be found all the authors [2], [3], [4], [5], [1], [6], [7], [8], [9], [10], [11], [12] & [13].

Figure 2.1 Block Diagram of Flow Recognition development

Technology	Approximate	Coverage	Strength	Weakness
	accuracy			
Wi-Fi	1.5m	Building	Low cost and	Locate at
			High accuracy	entry point
RFID	1m – 5m	Room	Low cost and Side of inactivitty	Precision is Very low
GSM	1m – 5m	Large multi-	GSM standard has	Not suitable for
Module		floor	traditionally	efficient
		buildings	employed the	communication
			strongest cells	

Table 2.1 Comparison for Technologies that used

The authors in [1] suggested from their survey that the widely used techniques for smart doors, opency based on the Internet of Things (IoT) is being used for face recognition. The implementation area is divided into three categories which is home, office, and campus. When the bell is ring, the technology detects and recognises faces in real time. The taken image is compared to the database, and if there is a match, access is given and the door opens. On the other hand, the authors in [10] ultilising the Histogram Object Gradient (HOG). Face encoding is used in this approach to recognise a person's face and eye and it works well with fluctuations in light/illumination variations. The extraction of facial features will be done later.

Compare face could be a function that uses a Support Vector Machine classifier to categorise and output the face encoding. [12] machine learning methods (RF, SVM, and MLP) were compared. The features were extracted supported fixed-size windows round the observations. It shows that it's possible to realize a high accuracy for binary activity recognition with simple features, and that we discuss the optimization of various parameters like the sensors collection frequency, and therefore the storage buffer size. Table 2.2 Machine learning algorithms (RF, SVM, and MLP) are compared.

		RF	SVM	MLP
Activity	Accuracy (%)	86.01	94.17	81.12
	Kappa	0.72	0.88	0.62
Group Size	Accuracy (%)	59.25	54.01	55.66
	Kappa	0.17	0.08	0.11
Talking vs All	Accuracy (%)	54.67	57.66	66.42
	Kappa	0.09	0.15	0.33

Table 2.2 Machine learning algorithms (RF, SVM, MLP) are compared.

Furthermore, as an example, the outcome of all of these publications is that they have successfully achieved their goal [1] The goal of the paper is to offer the user with information utilising open-source technology. For [9] This paper highlights the problems of activity recognition using anonymous sensors in the environment, its possible applications and advantages compared to classical smartphone and wearable based approaches, as well as the improvements such as authors [10].

The purpose of distribution feeder (cable or line) is to provide path for energy flow from GSS all the way to the distribution customer. Traditional distribution feeders (without DER) are usually operated in radial configurations - the energy flows uni-directionally from the GSS to the load. The feeders are typically categorized by its: (i) voltage level, (ii) conductor material, (iii) conductor size (cross sectional area), (iv) insulation type and (v) no of phases. These feeders scattered all over different supply zones. Hence, they are extensive and large in numbers.

2.3 Technologies for face recognition system

Face recognition technology is a major research topic that cuts across many industries and disciplines. Face recognition is a fundamental human behaviour that is crucial for good communications and interactions among individuals, according to the authors[14].However, a variety of technologies are being presented as a means of developing and improving the face recognition and activity system. Indoor positioning technology can be divided into a few