

Faculty of Electrical and Electronic Engineering Technology

AHMEZAN BIN AHMEZUL

Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours

DEVELOPMENT OF COMPUTER AIDED DESIGN FOR EEG SIGNALS EPILEPSY DIAGNOSIS USING ARTIFICAL NEURAL NETWORK

AHMEZAN BIN AHMEZUL

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Industrial Electronics) with

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek : Development Of Computer Aided Design For EEG Signals Epilepsy
Diagnosis Using Neural Network

Sesi Pengajian: 2020/2021

4. Sila tandakan (✓):

Saya Ahmezan Bin Ahmezul mengaku membenarkan laporan Projek Sarjana

Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

21/1/17	(Mengandungi maklumat yang berdarjah
SULIT*	keselamatan atau kepentingan Malaysia
سال مليسيا مالاك	seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)
I NIVERSITI TEKNIK	(Mengandungi maklumat terhad yang telah
TERHAD*	ditentukan oleh organisasi/badan di mana
	penyelidikan dijalankan)
TIDAK TERHAD	
	Disahkan oleh:
Med	Kim!
(TANDATANGAN PENULIS)	(COP DAN TANDATANGAN PENYELIA)

(TANDATANGAN PENULIS) Alamat Tetap: PO BOX 247 KAMPUNG TAKIS,89608,PAPAR SABAH (COP DAN TANDATANGAN PENYELIA)

Ts. KHAIRUL AZHA BIN A AZIZ

Pensyarah Kanan

Jabatan Teknologi Kejuruteraan Elektronik Dan Komputer Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik Universiti Teknikal Malaysia Melaka

Tarikh: 9/1/2022 Tarikh: 10/2/2022

DECLARATION

I declare that this project report entitled "DEVELOPMENT OF COMPUTER AIDED DESIGN FOR EEG SIGNALS EPILEPSY DIAGNOSIS USING ARTIFICAL NEURAL NETWORK" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature

Student Name : AHMEZAN BIN AHMEZUL

Date 9/1/2022

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours.

Signature

Supervisor Name : TS.KHAIRUL AZHA BIN A.AZIZ

Date

10/2/2022

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

This thesis is dedicated to Ahmezul Bin Ahmad and Dawinah@Jaslina Bte Jugok, my beloved parents for their constant love, encouragement, and inspiration. To my supervisor Encik Khairul Azha Bin A. Aziz who never giving up to taught and guide me to complete my project. To my helpful classmate and hoursemate always keep supporting me.

ABSTRACT

Epilepsy is a brain condition that affects the whole brain nervous system and is characterised by high-frequency and high-voltage brain waves called seizures. This disorder is identified as one of the uncontrolled movements shown by epilepsy patients during an outbreak, resulting in loss of consciousness and convulsions. As a result, the purpose of this thesis is to construct an EEG Epilepsy Recognition System using Artificial Neural Networks (ANN). Their principal tool is the Cascade-Forward Neural Network technology, which their system designed to perform a process similar to that of a human brain. This brain-inspired technology was designed to mimic how human brains think. This thesis offers an epilepsy detection process implemented in MATLAB utilising Cascade-forward Neural Networks. Additionally, this study employed the Electroencephalogram (EEG) signal to diagnose and access human brain activity and disturbance by using a dataset collected from the University of Bonn (Bonn), which has been extensively used by other researchers doing epilepsy research. The MindLink EEG Sensor is used to collect external EEG data, which is subsequently utilised to test the neural network. As for the result, this Artificial Neural Network successfully carried out with 77.1% for training, 77.3% for validation, 74.7% for testing and lastly the overall accuracy is 76.2% by using 15 hidden neuron network.

ABSTRAK

Epilepsi adalah keadaan otak yang menjejaskan keseluruhan sistem saraf otak dan dicirikan oleh gelombang otak frekuensi tinggi dan voltan tinggi yang dipanggil sawan. Gangguan ini dikenal pasti sebagai salah satu pergerakan tidak terkawal yang ditunjukkan oleh pesakit epilepsi semasa wabak, mengakibatkan kehilangan kesedaran dan sawan. Hasilnya, tujuan tesis ini adalah untuk membina Sistem Pengecaman Epilepsi EEG menggunakan Rangkaian Neural Tiruan (ANN). Alat utama mereka ialah teknologi Rangkaian Neural Cascade-Forward, yang sistem mereka direka untuk melakukan proses yang serupa dengan otak manusia. Teknologi yang diilhamkan oleh otak ini direka untuk meniru cara otak manusia berfikir. Tesis ini menawarkan proses pengesanan epilepsi yang dilaksanakan dalam MATLAB menggunakan Rangkaian Neural Cascade-forward. Selain itu, kajian ini menggunakan isyarat Electroencephalogram (EEG) untuk mendiagnosis dan mengakses aktiviti dan gangguan otak manusia dengan menggunakan set data yang dikumpul dari Universiti Bonn (Bonn), yang telah digunakan secara meluas oleh penyelidik lain yang melakukan penyelidikan epilepsi. Penderia MindLink EEG digunakan untuk mengumpul data EEG luaran, yang kemudiannya digunakan untuk menguji rangkaian saraf. Hasil dari penyelidikan ini, rangkaian Neural Tiruan ini berjaya dijalankan dengan 77.1% untuk latihan, 77.3% untuk pengesahan, 74.7% untuk ujian dan akhir sekali ketepatan keseluruhan ialah 76.2% dengan menggunakan 15 rangkaian neuron tersembunyi.

ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim,

In the name of Allah, the Most Gracious and the Most Merciful. All the praises to Allah, the Lord of the 'Alamin (mankind, jinns and all that exists).

First and foremost, Alhamdulillah thanks Allah for giving me good health, spirit, patience, determination and blessing me far more than I deserve. Without Him, I would not be able to complete my dissertation in time.

Secondly, I would like to express my gratitude and appreciation to my supervisor, Encik Khairul Azha Bin A. Aziz for his guidance, support, encouragement, advise and most importantly for not giving up on me during the completion of this project.

Last but not least, I sincerely would like to express my thanks to all my beloved friends for their support and encouragement to complete this thesis successfully. I may have had difficulty completing my thesis without their support and love. To all who ever know me and help me directly and indirectly, thank you so much and may Allah bless us all.

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATIONS	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	i
MALAYSIA	
LIST OF TABLES	iii
LIST OF FIGURES	iv
LIST OF APPENDICES	vi
LIST OF SYMBOLS	7
LIST OF ABBREVIATIONS	8
CHAPTER 1 INTRODUCTION	9
 1.1 Background 1.2 Problem Statement TI TEKNIKAL MALAYSIA MELAKA 	9 10
1.3 Project Objective	11
1.4 Scope of Project	12
CHAPTER 2 LITERATURE REVIEW 2.1 Introduction	13 13
2.2 EEG Brain Sensor	13
2.2.1 NeuroSky Mindset Sensor	13
2.3 Types of Signal Processing2.3.1 Discrete Wavelet Transform (DWT)	15 15
2.3.2 Countinous Wavelet Transform (CWT)	17
2.4 Classifier	19
2.4.1 Artificial Neural Network (ANN)	19
2.4.2 Convolutional Neural Network (CNN)	22
2.4.3 Recurrent Neural Network (RNN)2.4.4 Summary of ANN,CNN and RNN	24 27
2.4.4 Summary of ANN, CNN and KNN 2.5 Summary	30
•	
CHAPTER 3 METHODOLOGY 3.1 Introduction	32 32

3.2	Methodology	32
3.3	Software Implementation	36
	3.3.1 Arduino IDE and PLX DAQ Software	38
3.4	Hardware Implementation	40
3.5	•	
3.6	Outcomes	44
3.7	Gantt Chart	45
CHA	APTER 4 RESULTS	46
4.1	Overview	46
4.2	Analysis Before Transform Dataset into Sub-Band Using DWT	47
4.3		
4.4	Analysis by Changing the Number of Neurons in Cascade-forward Neural	Network
	Hidden Layer in Matlab.	54
4.5	Results Real Time Brainwave Data Using MindLink EEG Sensor	58
4.6	Analysis Using The App Designer in Matlab to Make the GUI 59	
4.7	Analysis by Testing the Real-Time EGG Brainwave Data. 61	
4.8	Discussion ALAYS/A	62
4.9	Overall Project Design	64
CH A 5.1 5.2 5.3	APTER 5 Overview Conclusion Future Work and Recommendation	65 65 66
5.4	Project Potential	67
	اونور سنتي تنكنكل ملسبا ملاك	68
APP	PENDICES	70

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE	TITLE	PAGE
Chapter 2		
Table 2.1: C	Comparison of Brain Signal Type	15
Table 2.2: C	Comparison On Previous Project	28
Chapter 3		
Table 3.1: T	The University of Bonn's epilepsy dataset	33
Table 3.2: T	The DWT Coefficient and EEG Waveform	36
Table 3.3: T	Target Dataset	37
Chapter 4		
Table 4.1 : 0	Overall steps results shows in table	51
Table 4.2: C	Overall steps results shows in table	47
Table 4.3	: The result of different hidden neuron with percentage of training, validation, testing and overall accuracy	of 57
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE TITLE	PAGE
CHAPTER 2	
Figure 2.1: Neurosky Mindset Sensor	14
Figure 2.2: Framework Method based on wavelet	17
Figure 2.3: Process Step	18
Figure 2.4: Coventional Methods to detect Epilepsy	18
Figure 2.5: Sample Scalogram changes for each sagmen	t 19
Figure 2.6: ANN Layers	20
Figure 2.7: Block diagram of the proposed system	21
Figure 2.8: Block Diagram of ANN Process	22
Figure 2.9: Illustration of CNN	23
Figure 2.10: Block diagram of CNN process	24
Figure 2.11: RNN,LSTM and GRU unit	25
Figure 2.12: RNN process TI TEKNIKAL MALA	YSIA MELAKA 26
CHAPTER 3	
Figure 3.1: : State in EEG Signals	35
Figure 3.2: Block Diagram of Neural Network Detection	System 35
Figure 3.3: Arduino IDE interface	39
Figure 3.4: PLX DAQ interface	40
Figure 3.5: NeuroSky MindLink Sensor	40
Figure 3.6: Flow Chart EEG Process	41
CHAPTER 4	
Figure 4.1: RAW data from Uni Of Bonn	48
Figure 4.2: After extracting the RAW data	48

Figure 4.3: From Text Files to Excel Files	49
Figure 4.4: SET Z after been changed to DWT to 8 Sub-band waves	49
Figure 4.5: Confussion matrix of 15 hidden neuron	52
Figure 4.6:Confusion matrix analysis before transform the dataset into sub-band.	53
Figure 4.7: Process flow for Cascade-forward Neural Network Training Data.	54
Figure 4.8:Confusion Matrix of 15 hidden neuron	55
Figure 4.9: Confusion Matrix of 10 hidden neuron.	56
Figure 4.10: Data reading display from Serial COM Arduino Uno software	58
Figure 4.11: Data Reading which display on serial monitor on Arduino Software	58
Figure 4.12: Graphical User Interface	60
Figure 4.13: Waveform of Dataset Z	61
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1: Confusion Matrix Chang	ges 10 until 15 Hidden Neuron in Cascade	Forward
Neural Network.		70
Appendix 2:Arduino Coding		72
Appendix 3: Coding Training Casca	de Neural Network	76

LIST OF SYMBOLS

μV	Microvolts
α	Alpha
β	Beta
γ	Gamma
Δ	Delta
θ	Theta
Hz	Hertz
V MALAY.	Volt
dΒ	Daubechies Wavelet coefficients Tau
VCC GND	Voltage Common Collector Ground
RXNIVERS	Receiver NIKAL MALAYSIA MELAKA
TX	Transmitter
a	Scaling Parameter
b	Location of the Parameter
0/0	Percentage

LIST OF ABBREVIATIONS

EEG Electroencephalogram

MIT Massachusetts Institute of Technology

CNN Convolutional Neural Network

CHB Children's Hospital Boston

CWT Continuous Wavelet Transform

BoW Bags-of-Words

SVM Support Vector Machine

DWT Discrete Wavelet Transform

FFT Fast Fourier Transform

AR Autoregressive or Autoregression

MLPNN Multilayer Perceptron Neural Network

ANFIS Adaptive Neuro-Fuzzy Interference System

KDD Knowledge Discovery in Database

RNN ERSIT TEK Neural Network Recurrent Neural Network

LSTM Long-Short-Term Memory

GRU Gated-Recurrent Unit

STFT Short-time Fourier Transform

WT Wavelet Transform

GPS Global Positioning System

ANN Artificial Neural Network

UBonn University of Bonn

CHAPTER 1

INTRODUCTION

1.1 Background

Seizures, odd behaviour, feelings, and even loss of consciousness are all symptoms of epilepsy, a neurological disorder. Patients who experience seizures are at a greater risk of several different kinds of trauma, including falls, head trauma, cuts, and burns. Patients may be unaware that seizures happen without warning, which increases their risk of harm. Epilepsy affects an estimated 4-5% of the world's population, according to current research[1]

Electroencephalography is a critical technique for diagnosing and analysing epilepsy (EEG). To diagnose brain illnesses such as epilepsy, autism, brain tumours, and depression, an electroencephalogram (EEG) is used. The EEG is a noninvasive, low-cost, well-established, and precise technique used to record brain activity. When electrodes are put on essential points on the patient's skull using proper mechanical and electrical support, the EEG detects the variations in brain electricity between the electrodes. To diagnose epileptic seizures, neurologists have typically relied on visual analysis of EEG recordings. However, this technique may be time-consuming and labour-intensive, especially when dealing with long-term recordings, and it is also subjective. A new method to automated diagnostics is therefore required as a result [2].

We utilized data from the University of Bonn in this study. A conventional electrode replacement procedure of 10-20 electrodes was used for the recording. The datasets are divided into five sets, each with 100 channels and labelled A through E. Data is digitalized at 173.61Hz sampling rate and 12bit A/D resolution using a 128-channel amplifier setup [1]

A Computer Program based on Artificial Neural Networks replicates human brain functions. This particular methodology incorporates human biology, which results in the ANN's, a mathematical model that can calculate, make decisions, and learn. [3] The Neural Network Toolbox in MATLAB will be used to examine EEG data using ANN in this project. This study is designed to illustrate how the information from an EEG may be used to distinguish epilepsy and normal patients.

1.1.1 Problem Statement

Seizures and behavioural abnormalities that recure often are indicators of epilepsy, a neurological condition that occurs when there is too much electrical activity in the brain. That shows that seizures will result from this abnormally high electrical activity in the brain. Seizures may cause unconsciousness and tremors. Seizures happen regularly, but the epilepsy sufferer does not know when or how they will occur. During a seizure, an EEG scan may reveal a particular pattern of brain activity changes. EEG measurements are used to examine the impact of epilepsy on the brain.

Due to the complex, pure, and direct nature of the oscillation, EEG recordings are seldom observed. Furthermore, because it is essential to use an algorithm to quantify EEG signals properly, the interpretation has not been extensively verified by analytics. As a pre-

processing stage for an Artificial Neural Network (ANN) based on EGG disassembled data, the capabilities of the wavelet transform for data manipulation are examined in this recommended research. To ensure that the data meets specifications, the data is created using the MATLAB Neural Network toolbox, which utilises the Neural Network routine. Based on the data used, the ANN's capacity may be estimated.

Due to a large number of hospitalised people due to their epilepsy, the EEG recordings are exceedingly challenging to deal with since they comprise an enormous amount of time-to-day information. That will require an enormous quantity of data to be collected. As a consequence, the design and operation of this system must be optimised. Auto-Regression techniques minimise the amount of processing time required by setting out to collect as little data as possible.

Due to time consuming to load the EEG data, a MATLAB-based GUI (Graphical User Interface) platform have to be create to detect the existence of a brain disease and to provide a clear comparison between the afflicted and normal brain

1.2 Project Objective

The purpose of this project is as follow:

a) To develop a computer aided design for EEG signals epilepsy diagnosis using artifical neural network.

RSITI TEKNIKAL MALAYSIA MELAKA

- b) To analyze whether its able to recognize between healthy person and epilepsy person by evaluating EEG parameters.
- c) To evaluate genuine brainwave data, acquire it from an EEG sensor and train it using an Artificial Neural Network (ANN) using data from the University of Bonn's EEG dataset.

1.3 Scope of Project

The scope of this project are as follows:

- a) The Dataset for this Epilepsy Test is from Department of Epileptology at the University Hospital of Bonn.
- b) To categorise healthy and epileptic EEG data using the Matlab Neural Network toolkit.
- c) Use Neurosky Mindlink to monitoring signals generated by neural activity in brain.
- d) Use App designer (Matlab) to take out the wave from the Dataset.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The number of people who have epilepsy varies, but the worldwide total is estimated to be approximately 1 per cent. A very severe CNS disorder that increases a person's risk of having frequent seizures. A seizure is a sudden, involuntary alteration in behaviour, movement, feeling, or consciousness in the brain detected by a doctor. Changes in clinical behaviour are preceded and followed by waves in the electroencephalogram (EEG) which include single-frequency (monomorphic), multifrequency (polymorphic), and spike and sharp wave complexes.

2.2 EEG Brain Sensor

2.2.1 NeuroSky Mindset Sensor

The NeuroSky Mindset Sensor is utilised in interpreting EEG data in several ways. The gadget will gather and transmit brain signals, which will then be translated into movements. The system will assess the size of the wave and modify the sensitivity such that the system will recognise it. NeuroSky monitors electrical activity in the human brain by attaching electrodes to the forehead and ears and applying unique thinking to this information. [5]. The design shown in Figure 2.1 fits snugly within the ear and has a probe at the end.

Figure 2.1: Neurosky Mindset Sensor

The NeuroSky Mindwave Mobile consists of eight pieces: an ear clip, an ear arm, a battery compartment, a power switch, an adjustable headband, a sensor tip, and a sensor arm. This electronic device has two sensors that measure and filter electroencephalogram (EEG) data. The sensor picks up the electrical signal on the forehead implanted in the brain's frontal lobe. Another sensor that is used to filter out electrical noise is an ear clip. NeuroSky Mindwave Mobile is very resistant to noise, and before transmitting the signal, it has been digitally coded. Additionally, it broadcasts unencrypted brain waves, also known as Emotive and Muse waves, without encryption. [6]

The NeuroSky method is used to characterise mental state by using the residual signal received after noise and muscle movements of raw brain wave data have been filtered. Two eSense signals are generated in this programme: attention and meditation signals. These signals indicate the attention and relaxation of the individual. This signal has a value of 0 to 100, with nil showing low concentration or relaxation and 100 signallings high concentration or relaxation. To function with Arduino, the EEG or NeuroSky Mindset sensors must be modified. The Arduino can only read input values of 0V to 5V, whereas the sensor outputs 0V to 5V. One example is the MindLink Sensor, which functions like the NeuroSkyMindset Sensor. The comparison of the kind of brain signal is provided in Table 2.1.

Table 2.1: Comparison of Brain Signal Type

Waveband	Frequency (Hz)	Condition
Delta	0.1 - 3	Deep Dreamless, Sleep or Unconsious
Theta	4 - 7	Drowniness, deep relaxion, daydreaming
Alpha	8 – 13	Relaxtion, medidation, quiet and conscious
Low Beta	12 – 15	Relaxed but concentrated, constructive attention,
		daydreaming and solving problem
Mid-range	16-20	Thought, self awareness and surroundings
Beta	ALAYS/A	
High Beta	21 – 30	Alert and restless

This sensor will turn brain impulses into directions that change human intellect into an electrical signal, and processors need to be installed to order mobile, medicinal, or even engineering applications. The EEG sensor communication may be linked to a phone or a computer using Bluetooth or a wireless unit. To connect an EEG sensor, the Arduino Uno uniteration module were utilised.

2.3 Types of Signal Processing

2.3.1 Discrete Wavelet Transform (DWT)

Discrete Wavelet Transformation (DWT), epileptic electroencephalography (EEG) computer-assisted signal analysis has recently become a powerful temporal frequency technique for seized identification. In earlier research, the DWT parameters selected randomly or experimentally are among the main hurdles to DWT deployment. In addition,