

Faculty of Electrical and Electronic Engineering Technology

AMIZATUL AFZAN BINTI ZAHARUDDIN

Bachelor of Electrical Engineering Technology with Honours

2021

VIABILITY STUDY ON DIFFERENT TYPE OF RENEWABLE ENERGY IN MALAYSIA USING HOMER

AMIZATUL AFZAN BINTI ZAHARUDDIN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I declare that this project report entitled "VIABILITY STUDY ON DIFFERENT TYPE OF RENEWABLE ENERGY IN MALAYSIA USING HOMER" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical Engineering Technology with Honours.

Signature	: Att
Supervisor Name	: DR. AZHAN BIN AB. RAHMAN
Date	: 11 JANUARY 2022
Signature	اونيۈىرسىتى تيكنىكل مليسى
Co-Supervisor	RSITI TEKNIKAL MALAYSIA MELAKA
Name (if any)	
Date	:

DEDICATION

To my beloved mother, xxxxx, and father, xxxxx, and To dearest wife, xxxxx and My son, xxxxx (example only)

ABSTRACT

Energy is critical to a country's survival, as practically everything is dependent on it. Generally speaking, there are two types of energy available which is renewable energy and non-renewable energy. Renewable energy comes from natural resources such as solar, wind, tidal, and biomass, while non-renewable energy comes from fossil fuels. There are a lot of benefits to using renewable energy to generate electricity. However, according to National Energy Balance in 2010, the researcher found that 40% of Malaysia's electricity is generated from non-renewable energy. This paper will study different types of renewable energy in Malaysia to find the most suitable potential renewable energy based on the three main factors: geographical data, the technology used, and investment return. The application HOMER provides reliable data based on the selected locations to find the most viable renewable energy. Based on the initial results, Sabah has been chosen as a starting location for the study as the place has 2 out of 3 renewable energies available. The result shows the annual data by year the estimated cost for installing solar photovoltaics and wind turbine for the small scale location. Malaysia's energy status is provided in this study, particularly in the renewable energy sector, and can serve as a springboard for further research and development in this field.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Tenaga merupakan satu elemen penting untuk sesebuah negara dalam menjalani kehidupan pada setiap hari. Tenaga terbahagi kepada dua jenis iaitu tenaga yang boleh diperbaharui and tidak boleh diperbaharui. Tenaga yang boleh diperbaharui datangnya dari sumber alam seperti cahaya matahari, angin, dan biojisim. Biojisim ini menggunakan bahan lebihan aktiviti seperti perkebunan dan perladangan. Terdapat banyak kelebihan yang dapat diperolehi oleh sesebuah negara jika menggunakan tenaga yang boleh diperbaharui. Namun, berdasar kajian yang dijalankan oleh National Energy Balance pada tahun 2010, 40% arus elektrik di Malaysia masih diproses dari tenaga tidak boleh diperbaharui. Jadi, kajian ini dijalankan untuk mengkaji pelbagai jenis tenaga yang boleh diperbaharui di Malaysia supaya dapat mencari satu tenaga yang berpotensi dalam menjana elektrik. Kajian ini dijalankan berdasarkan tiga faktor utama seperti data kedudukan, teknologi yang digunakan dan pemulangan dalam menjana elektrik menggunakan tenaga yang boleh diperbaharui. Aplikasi HOMER digunakan di dalam kajian ini kerana untuk mengeluarkan maklumat yang dikehendaki, data tentang lokasi tersebut perlulah digunakan dan HOMER mempunyai data tentang lokasi tersebut berdasar lokasi yang dikehendaki. Berdasarkan data yang dianalisis, Sabah telah dipilih untuk menjalankan simulasi bagi mencari kesesuain tempat dan kos bagi pemasangan solar dan turbin angin. Kajian ini telah dapat menunjukkan status tenaga yang boleh diperbaharui pada peringkat awal dengan harapan makumat tersebut dapat menggalakkan lagi kajian di dalam sektor tenaga.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, xxxxx and co-supervisor, xxxxx for their precious guidance, words of wisdom and patient throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) and xxxxx for the financial support through xxxxxx which enables me to accomplish the project. Not forgetting my fellow colleague, xxxxxx for the willingness of sharing his thoughts and ideas regarding the project.

My highest appreciation goes to my parents, parents in-law, and family members for their love and prayer during the period of my study. An honourable mention also goes to xxxxxx for all the motivation and understanding. And to xxxxx, thanks for

Finally, I would like to thank all the staffs at the xxxxxxx, fellow colleagues and classmates, the Faculty members, as well as other individuals who are not listed here for being co-operative and helpful.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

		PAGE
DECLAR	ATION	
APPROV	AL	
DEDICA	FIONS	
ABSTRA	CT	i
ABSTRA	K	ii
ACKNOV	VLEDGEMENTS	iii
TABLE C	VF CONTENTS	i
LIST OF	TABLES 4	iii
LIST OF	FIGURES	iv
LIST OF		vii
LISTOF		v11 ::
	ADDREVIATIONS	viii
LISTOF	APPENDICES	1X
CHAPTE	R 1 INTRODUCTION	1
1.2 Pro	blem Statement TI TEKNIKAL MALAVSIA MELAKA	2
1.3 Pro	ject Objective	3
1.4 Sco	ope of Project	3
CHAPTE	R 2 LITERATURE REVIEW	4
2.1 Inti 2.2 Pro	oduction ject Background	4 4
2.2 110	.1 History of renewable energy in Malaysia	4
2.2	.2 Renewable energy and non-renewable energy	5
2.3 Sol	ar Energy	6
2.3	.1 Technology used	6
2.3	2 Geographical data	0
2.3	A Rising issue	8 9
2.3 2.4 Wi	nd Energy	10
2.4	.1 Technology used	11
2.4	.2 Geographical data	12
2.4	.3 Return of investment	12
2.4	.4 Rising issue	12

2.5	Biomass energy 12		
	2.5.1 Technology used		
	2.5.2 Geographical data	14	
	2.5.3 Return of investment	15	
	2.5.4 Rising issue	15	
2.6	Literature review	16	
	2.6.1 Previous works	16	
	2.6.2 Summary of literature review	20	
2.7	Summary of findings	37	
2.8	Summary	38	
СНАР	PTER 3 METHODOLOGY	39	
3.1	Introduction	39	
3.2	Methodology	40	
	3.2.1 Gantt chart	42	
	3.2.2 Simulation setup	43	
3.3	Summary	51	
СНАР	PTER 4 RESULTS AND DISCUSSIONS	52	
4.1	Introduction	52	
4.2	Analysis for simulation 52		
4.3	Results simulation for solar radiance 53		
4.4	Results simulation for wind speed 59		
4.5	Analysis based on the results for solar energy 66		
4.6	6 Analysis based on the results for wind speed 68		
4.7	Biomass data analysis 70		
4.8	Data analysis based on the type of biomass resources	76	
4.9	Summary	79	
CHAF	PTER 5 CONCLUSION AND RECOMMENDATIONS	80	
5.1	Conclusion	80	
5.2	Future Works	81	
REFE	RENCES	82	
APPE	NDICES	85	

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	The advantages and disadvantages of renewable energy Error! Be not defined.	ookmark
Table 2.2	The advantages and disadvantage of non renwable energy	6
Table 2.3	Summary of literature review	21
Table 4.1 Renewable	Annual solar radiance from January to Decemeber by using Natura energy (NREL) according to cities	1 66
Table 4.2	Average annual solar radiance by cities	67
Table 4.3	Installation cost	67
Table 4.4	Wind speed by cities from January to December	68
Table 4.5	Average annual speed by cities	69
Table 4.6	Installation cost	69
Table 4.7	Biomass power-plant in Malaysia	71
Table 4.8	The production in 2018 and 2019	75
Table 4.9	UNIVERSITI TEKNIKAL MALAYSIA MELAKA The biomass by-product	75

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	(a) Solar PV (b) Solar thermal diagram	7
Figure 2.2	Irradiation on Malaysia's map Error! Bookmark no	ot defined.
Figure 2.3	IKEA store	8
Figure 2.4	Conference and exhibition for MPIA roadshow	9
Figure 2.5	Wind turbine componenets	10
Figure 2.6	Wind movement	11
Figure 2.7	Process of gasification	13
Figure 2.8	Process of pyrolysis	13
Figure 2.9	Location of palm oil in Malaysia	14
Figure 2.10	Waste-to-energy plant	16
Figure 2.11	Map of Sarawak with selected regions	17
Figure 2.12	Annual average of daily wind speed regions	17
Figure 2.13	Demographice distribution of palm oil planted area in Malaysia	19
Figure 3.1	Project methodology flow chart	40
Figure 3.2	Simulation setup for solar radiance	43
Figure 3.3	Simulation setup for solar radiance	44
Figure 3.4	Simulation setup for solar radiance	44
Figure 3.5	Simulation setup for solar radiance	45
Figure 3.6	Simultion setup for solar radiance	45
Figure 3.7	Simulationsetup for solar radiance	46
Figure 3.8	Simulation setup for wind speed	47
Figure 3.9	Simulation setup for wind speed	47

Simulation setup for wind speed	48
Simulation setup for wind speed	48
Simulation setup for wind speed	49
Simulation setup for wind speed	49
Simulation setup for wind speed	50
Annual graph for solar radiance	53
Schematic Design	53
Net Present Cost	54
Annual graph for solar radiance	54
Schematic Design	55
Net Present Cost	55
Annual graph for solar radiance	56
Schematic Design	56
اونيوبرسيتي تيڪنيڪل ماNet Present Cost	56
Graph for solar radiance	57
Schematic Design	57
Net Present Cost	57
Graph for solar radiance	58
Schematic Design	58
Net Present Cost	58
Graph for wind speed	59
Schematic Design	59
Net Present Cost	60
Graph for wind speed	60
	Simulation setup for wind speed Simulation setup for wind speed Simulation setup for wind speed Simulation setup for wind speed Annual graph for solar radiance Schematic Design Net Present Cost Annual graph for solar radiance Schematic Design Net Present Cost Annual graph for solar radiance Schematic Design Net Present Cost Graph for wind speed Schematic Design Net Present Cost Graph for wind speed Schematic Design Net Present Cost

Figure 4.20	Schematic Design	60
Figure 4.21	Net Present Cost	61
Figure 4.22	Graph for wind speed	61
Figure 4.23	Schematic design	62
Figure 4.24	Net Present Cost	62
Figure 4.25	Graph for wind speed	63
Figure 4.26	Schematic Design	63
Figure 4.27	Net Present Cost	64
Figure 4.28	Graph for wind speed	64
Figure 4.29	Schematic Design	65
Figure 4.30	Net Present Cost	65
Figure 4.31	Steam turbine system (Nstional Institute Building Science,2021)	71
Figure 4.32	Anaerobic digestion process (Sara Tanigawa, EEST)	72
Figure 4.33	Chart for power generated by power plant in Malaysia	72
Figure 4.34	Annual Prices of Crude Palm Oil in 2018	73
Figure 4.35	Annual prices of Crude Palm Oil in 2019	73
Figure 4.36	Value generation from electricity (MIGHT,2014)	76
Figure 4.37	Acquisition Cost (MIGHT, 2014)	77
Figure 4.38	Net value creation (MIGHT,2014)	78

LIST OF SYMBOLS

- Voltage angle

-

δ

- -
- -
- -
- -
- -
- -

LIST OF ABBREVIATIONS

V - Voltage

- -
- -
- -
- -
- -
 - -
- -

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Example of Appendix A	85
Appendix B	Example of Appendix B	86

CHAPTER 1

INTRODUCTION

1.1 Background

Energy is an essential part of a country as almost everything is related to using energy. For example, watching television, washing clothes, lighting the home, and others. Those activities show that energy is vital to human society. There are two kinds of renewable and non-renewable energy sources. Renewable energy is generated from natural sources that are constantly refilled but not renewable. In Malaysia, the primary source for electricity generation is fossil fuels, non-renewable energy. According to National Energy Balance in 2010, the researcher found that 40% of the country's electricity is generated from nonrenewable energy. This has become a concerning matter because energy will run out. It is also significantly harmful to the environment as burning fossil fuels pollutes the atmosphere, which can cause chronic diseases related to respiratory problems. Moreover, the burning process also increases greenhouse gas emissions, changing weather patterns, such as increasing the temperature. So, we need to study the most suitable renewable energy that is the primary source to generate electricity in Malaysia.

The most potential renewable energy in Malaysia are solar, wind, and biomass. Solar energy is the type of energy that generates energy from radiant light and heat from the sun using photovoltaic and solar thermal technology. The irradiation during the North-East Monsoon increased due to winds from Central Asia to the South China Sea via Malaysia. With the technologies, solar energy usage has risen for homes and businesses. Malaysia is strategically located near the equator with a higher potential for solar uptake. Solar generation potential in Malaysia has estimated can reach up to 6500MW (Ahmad, et al., 2011).

Next, wind energy is one of the renewable energy in Malaysia. The wind is the air movement in response to pressure within the atmosphere. Wind turbines process the wind that has kinetic energy into mechanical power. Malaysia is well-known as a low-speed wind location since Malaysia has low-speed wind compared to the Indian Ocean and the South China Sea with solid winds (Ibrahim, et al., 2015). 1.5 to 4.5 m/s is the average range of monthly wind speed (Zaharim, et al., 10–12 July 2017).

Biomass is renewable organic material that comes from plants and animals, for example, energy crops and waste from forests, yards, and farms. It contains chemical energy from the sun, and plants produce biomass through photosynthesis. There are various ways that biomass can create power which is burning. Mostly electricity that generated from biomass produced by direct combustion. To have high-pressure steam, biomass is burned in a boiler, and the stream flows over a series of turbine rotating blades that drive the generator and produce electricity. Bacterial decomposition is also another process for biomass. An anaerobic bacteria collect material waste in oxygen-free tanks producing methane and other natural gas renewables to be purified. The last process is gasification and pyrolysis. Malaysia is one of the largest palm oil producers, making it a substantial potential resource for biomass. (Ozturk, et al., 2017). It is an advantage for Malaysia as biomass is always available, and these resources are easily stored. It also can reduce waste while generating electricity.

This study aims to determine the state and locate the most viable renewable energies that can develop into the primary energy source for electricity generation. The benefits of renewable energy can bring many benefits the environment.

1.2 Problem Statements

Malaysia is rich in renewable energy, including solar, wind, and biomass. However, in this study, we need to find the most potential renewable energy among the others that available for today's environment.

The main factor that needs to be studied to implement renewable energy is the geographical factor. So, we should use an application that provides the current data of the location. Moreover, renewable energy will bring many benefits to Malaysia as it is unlimited resources and help to decrease the greenhouse gas emitted, leading to a clean environment. Therefore, the usage of renewable energy should be growing for a better future.

1.3 Project Objectives

- To analyse the renewable energy that has the highest potential in Malaysia.
- To monitor the essential factors that affect renewable energy by using Homer application.
- To develop the most viable renewable energy that can be implemented in Malaysia.

1.4 Scope of Project

- Study the types of renewable energy in Malaysia: solar, wind, and biomass. Then, analyse the most potential renewable energy that can be developed.
- Design and monitor all the data provided by the application

alu

• Deciding which types of renewable energy are suitable in Malaysia based on the technology used, geographical factor, and investment return.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter is about a comprehensive overview of the previous work based on the related topic about the project called a literature review. A literature review is written based on previous studies, including articles, thesis, journals, and others. It will help the researcher provide a foundation of knowledge about the topic and the various solutions used by the past researcher.

As a result, the researcher can identify the main point of the study to improve their progress regarding the past research. It also can prevent duplication of work and give credit to another researcher. The most important thing is that the researcher can expect the study's outcome through this chapter based on the other researcher's data.

2.2 PROJECT BACKGROUND

2.2.1 History of renewable energy in Malaysia

Renewable energy is a type of energy produced from natural resources continuously replenished and renewed. The most common natural sources are wind, solar, and various forms of biomass.

In Malaysia, renewable energy started in 1980 when Four Fuel Diversification Strategy was used to achieve a balance in the use of oil, gas, coal, and hydro in the energy mix, back. In 1997, the Kyoto Protocol was signed, an international agreement to limit greenhouse gas emissions. Other than that, Fifth Fuel Policy was signed in 1999 to gain more sustainable energy in the future by having a target of renewable energy providing 5% of electricity. The Small Renewable Energy Program (SREP) is also one of Malaysia's government initiatives to encourage connection from small renewable power generation plants to the national grid. This program allows renewable projects to sell their electricity output to TNB with a capacity of 10 MW, resulting in 28 approved biomass projects for 194 MW of grid capacity. Malaysia likewise promised to cut its greenhouse gas (GHG) emissions by 45 per cent as a percentage of its GDP by2015, compared to 2005. By the year2025, the government hoped to have achieved a 20% RE target. The evolution throughout the years shows that the importance of implementing RE in the country by Malaysia's government.

2.2.2 Renewable energy and Non- renewable energy

Renewable energy sources mean sustainable energy that cannot run out as it is produced from natural resources such as sunlight, wind, tides, and biomass. Meanwhile, nonrenewable energy comes from sources that will run out and cannot be replenished over time. Examples are fossil fuels, coal, petroleum, and natural gas. Both energies have their pros and cons to produce energy in generating electricity. The tables below show the advantages and disadvantages of renewable and non-renewable energy.

T-1.1. 0 1	TT1		fp
I anie / I	The advantages	and disadvantage	S OT Kenewahie energy
1 4010 2.11	The unvallinged	una anoua rantago.	s of ficence wable effergy.

Advantages	Disadvantages		
Prevent the rising of global warming as the	Energy supply can be affected by		
sources are non-pollutant that does not	unpredictable weather. As an example,		
increase the carbon level and greenhouse	solar photovoltaic do not have heat to		
gas.	generate electricity due to the weather.		
نيكل مليسيا ملاك	اونىۋىرسىتى تىك		
Unlimited resources to generate electricity	Do not produce energy as much as non-		
because natural energy sources can replace	renewable sources as Malaysia is still		
themselves.	dependent on non-renewable energy.		
Lower requirements on maintenance. For	Geographic limitations to finding suitable		
example, technology generating energy,	places that provide enough energy need a		
wind turbines and solar panels have only a	lot of study and research.		
few or no moving parts.			

Advantages	Disadvantages
Abundant and affordable as oil and diesel are used in powering vehicles.	It cannot be replaced once the source is unavailable.
Cost-effective.	The mining causes damages to the environment that create acid rain and greenhouse gases emitted increased.
Easier to produce for usage.	The prices of these sources will increase in the future because they will expire soon.

Table 2.2. The advantages and disadvantages of non-renewable energy.

2.3 Solar energy

2.3.1 Technology used

AALAYS/A

Various types of technology are used in Malaysia to generate energy from sunlight. As an example, photovoltaic and solar thermal. The photovoltaic cell is an electronic component that generates electricity when exposed to photons or light particles. Photovoltaic capacity has been growing steadily since the start of the 21st century, led by the construction of massive solar farms. Photovoltaic works when the semiconductor materials absorb the photons emitted by the sun and generate the flow of electrons. Solar photovoltaic convert 5-15 per cent of solar energy into direct current (DC), then stored in batteries. The converter will convert DC to alternating current (AC) to be used in appliances. Solar thermal is used to produce thermal energy by harnessing solar energy. Solar thermal uses the sun's energy to create high-temperature steam that powers a turbine to generate electricity. The applications of solar thermal systems in Malaysia are divided into solar drying and solar water heating. The first is a simple, low-power, short-lived drying system. The other is a powerful, long-lived, high-efficiency system, but costly.

Figure 2.1. (a) Solar PV (Solar Schools, 2018) (b) Solar thermal diagram.

(U.S. Energy, 2020)

2.3.2 Geographical data

ALAYSI.

Based on the irradiation map below shows that Malaysia has potential because of its advantageous location near the equator. Malaysia has one of the most considerable potentials for solar adoption. Malaysia's monthly sun irradiation is predicted to be 400–600 MJ/m2. There is higher irradiation from Central Asia to South China Sea via Malaysia and Australia between November and March. Meanwhile, wind direction on the south-west monsoon, then the Malacca Straits between May and September from Australia to Sumatera Island. Malaysia, in general, has a high solar generating potential due to its hot and sunny weather throughout the year. Solar power generation has a possibility of up to 6500 MW. (Wan Syakirah Wan Abdullah, 2019)

Figure 2.2 Irradiation on Malaysia's map. (Global Solar Atlas, 2018)

2.3.3 Return of investment

In Malaysia, solar energy system has been implied in warehouses, stores, and others. By installing a solar PV system, it helps to reduce corporate operating. Malaysia's government also provided an incentive that NEM (Net energy metering) allows for the self-consumption of electricity generated by solar photovoltaic (PV) system users. Any excess energy is exported to the grid. The more energy generated by the solar PV system, the greater the energy and monetary savings for the business. For example, IKEA Cheras in Kuala Lumpur has installed 3,852 pieces of solar panels on its roof, with a total system capacity of 1,001.52 kilowatt-peak (kW/p). This has an immediate impact, as the self-consume the energy generated with no waste created, instantly reducing our energy and operating costs, which can result to our customers through the continuous price reductions of our products.

Figure 2.3. IKEA store. (IKEA Stores, 2020)

2.3.4 Rising issue

In 2025, Malaysia's Government has set the goal of achieving 20% renewable energy generation. However, according to National Energy Balance in 2010, the researcher found that 40% of the country's electricity is generated from non-renewable energy. This has become a severe issue for the country because non-renewable energy cannot be replaced after it been depleted. To solve this matter, The Malaysian Photovoltaic Industry Association (MPIA) has launched MPIA Solar Roadshow 2020-2021. This platform is designed to provide policy information, programs, tax incentives, financing, insurance coverage, investment risks and returns, the PV system rooftop solar rental, and power purchase agreement (PPA). The target audience is in the commercial and industrial sectors since over four million buildings could potentially be installed using solar photovoltaic to harness free and renewable energy from the sun. Solar PV systems have been installed in less than 12000 buildings, or less than 1% of all facilities. (SEDA, 2020). This roadshow will attract those sectors into installing solar PV systems.

Figure 2.4. Conference and exhibition for MPIA roadshow. (MPIA, 2020)

2.4 Wind energy

2.4.1 Technology used

The rotor's aerodynamic power is changed to electricity by a wind turbine. Lift and drag are produced because there is a difference in air pressure on both sides of the blade. Next, the drag and rotor spin is weaker than the lifting force. The rotor connects to the generator or a shaft and several gearboxes (a gearbox) to speed up a rotation so that the generator can be reduced physically. This aerodynamic force translation into a generator rotation generates electricity. The wind speed and air density cube equal the wind power content. Wind turbines are built to take advantage of the available wind energy at a given site.

2018)

2.4.2 Geographical data

Compared to other countries, Malaysia is noted for having a low wind speed area. Wind energy has yet properly harvested because Malaysia has a yearly average of wind speed of less than 2 m/s since wind turbines need at least 4 m/s wind speed to produce electricity.

According to meteorologists, the Indian Ocean and the South China Sea are the most common sources of strong wind in Malaysia. The monthly wind speed range means is 1.5-4.5 m/s. Since then, the great 9-11 m/s wind speeds can be used. In Peninsular Malaysia, high wind zones have been detected in Mersing, Johor, and Kuala Terengganu, whereas East Malaysia's highest wind potential regions include Kudat and Sabah. (Wan Syakirah Wan Abdullah, 2019) However, because of the monsoons, the implementation of wind energy in these areas may not be as straightforward as it appears at first glance. As a result, the wind speed in these areas may vary significantly from season to season and from year to year.

Figure 2.6 Wind movement. (Surf forecast, 2021)

2.4.3 Return of investment

The wind turbine investment in Malaysia can bring advantages as the wind still blows at night. Wind energy is "native" energy because it is available practically everywhere on the plant, reducing energy imports and creating wealth and local employment. Moreover, wind energy is not a pollutant compared to fossil fuels that produce toxic gases.

2.4.4 Rising issue

The government has conducted a significant amount of research to determine the potential for wind energy production in the country. A total of four wind turbines have been installed in Malaysia for educational and research purposes. These locations are Pulau Terumbu Layang-Layang in Sabah, Perhentian Island in Terengganu, Kudat in Kuching, and Setiu in Terengganu. Compared to other places in Malaysia, Pulau Terumbu has the highest potential for wind energy production, whereas Perhentian Island has been forced to close due to technical difficulties and a lack of convincing wind to generate energy in the area. (Conventus Law, 2020). Careful wind map assessment and energy harnessing technology research should be further conducted. However, more excellent government support would be required for the potential of wind energy in Malaysia to be successfully explored.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2.5 Biomass energy

2.5.1 Technology used

The technology used in biomass energy production is divided into two processes, gasification and pyrolysis. Gasification is when solid material with little oxygen is exposed to high temperatures to produce synthesis gas. This gas primarily constitutes carbon monoxide and hydrogen and can be used in a conventional boiler to generate electricity. Pyrolysis is a process that produces crude biomass heated at a lower temperature without oxygen. This oil may replace fuel oil or diesel in motors for power generation.

Figure 2.8. Process pyrolysis. (Salman Zafar, 2020)

2.5.2 Geographical data

Malaysia has conventional energy resources like oil, gas, and renewables, including hydro, biomass, and solar energy. Malaysia has tremendous agricultural biomass resources and wood waste resources available for immediate exploitation concerning biomass resources in Malaysia. The primary biomass resources in Malaysia are sugar cane, cassava, and corn crops. Then there are farm by-products such as rice stroke, cassava rhizome, and corncobs. Wooden biomass, such as fast-growing trees, wood waste from sawmills, and sawdust, among other things. Malaysia is the world's largest exporter of palm oil, having shipped more than 19.9 million tonnes of palm oil out of the country in 2017. The extraction of palm oil from palm fruit results in many residues in the form of palm kernel coatings, empty fruit bunches, and mesocarp fiber, among other things. This shows that Malaysia is suitable for biomass energy production as the waste can be produced to generate electricity.

Figure 2.9. Location of palm oil in Malaysia. (Malaysian-German Chamber of Commerce and Industry, 2018)

2.5.3 Return of investment

In Malaysia, the waste can be the supply for biomass process to produce energy that generates electricity as there are abundant agricultural activities that left behind the waste. Utilising biomass extensively as a renewable energy source in Malaysia can reduce the country's reliance on fossil fuels. Another significant benefit is the reduction of net carbon dioxide emissions into the atmosphere, which reduces the global warming effects of carbon dioxide. This kind of energy process also reduces the amount of waste in Malaysia. The amount of solid waste generated per capita in Malaysia varies from 0.45 to 1.44kg/day, depending on the area's economic status. Thus, the environment's cleanliness can be improved by producing energy.

2.5.4 Rising issue

ALAYS.

Biomass energy has become one of the potential renewable energy that can implemented in Malaysia as there are a lot of supply for the waste especially the solid waste. From the statistics by Malaysia government in 2012, averagely one person in rural areas generates about 0.73kg while one person living in urban areas generates more which is 0.83kg per day. A project by Malaysian government which is waste-to-energy (WTE) was launched by Malaysia's Housing and Local Government Ministry (KPKT). However, there are some concerning issue related to the development on the project which is gas emission that is produced from the energy generation process. Based on the research, the burning of 1 Mg of municipal waste in the incinerators is producing about 0.7 to 1.2 Mg carbon dioxide. (The legal 500, 2021). So, to reduce the amount of gas emission Government of Malaysia set a requirement that need to be follow by the operators. Another issue that related to the project is the cost of the incinerators that costly about RM100 per tonne for the operational cost of WTE plant which is so expensive for the local authority. (Vanisha Selvam, 2019). Government should create more program for private financial institutions to provide better financing to the industry players such as Green Technology Financing Scheme that is currently available under MOSTI.

Figure 2.10. Waste-to-energy plant.

(Ellis Burruss, 2013)

2.6 Literature review

2.6.1 Previous works by others

ALAYSI

This section of the paper concluded the literature that have the same way in investigating the potential renewable energy to be developeded using HOMER software. First paper with the title "Optimal selection of renewable energy installation site in remote areas using segmentation and regional technique in Sarawak, Malaysia" (Aziah Khamis, 2020) image segmentation divided into three main techniques: color thresholding, circular hough transform, and K means. This method is specified in the remote areas in Sarawak, Malaysia, as this area has limitations due to complicated geographical factors and high costs. The advantage of this study is the locations of the potential regions have been obtained. Next, (Izadyar, 2016) investigated the potential hybrid renewable energy in rural areas in Malaysia by using HOMER software and Net Present Cost (NPC), identifying places with the maximum sun, wind, and hydroelectric potential. However, the report mentioned innovative designs and technologies to generate power in low-wind regions in Sabah and Sarawak in particular. Based on (Azah Mohamed, 2016), in order a system to work in maximum availability and minimum cost, the optimum sizing needs to be obtain because it is dependent on meteorological variables such as solar energy, ambient temperature, and wind speed to

determine the size and performance of a hybrid power-generating system of this type. So, this research compares thetwo methods: the proposed optimisation method and HOMER software method. The results show that the proposed optimisation method provides more accurate results.

Figure 2.11. Map of Sarawak with selected regions (Izadyar, 2016)

Figure 2.12. Annual average of daily wind speed regions. (Aziah Khamis, 2020)

Next, a paper by (Wan Syakirah Wan Abdullah, 2019) with the title 'The Potential and Status of Renewable Energy Development in Malaysia' mentioned that Malaysia has a target to achieve 20% usage of renewable energy by 2025. This shows that there are opportunities for the area to be developed. Another research by (Syed Shah Alam, n.d.) It stated that sustainable renewable energy production, the government's effort, business sector involvement and awareness of users should be given priority. The government supporting the development of energy renewable can be a severe matter to others that also encourage Malaysian to promote saves energy and electricity. The main obstacles that become an obstacle are the limited information on renewable energy technologies, lack of awareness, and limited private sector engagement that emerged as significant barriers to sustainable renewable energy development. (Syed Shah Alam, n.d.)

Biomass appears to be an essential source of renewable energy and a significant energy source around the world until fossil fuels become dominant, and research has proved its potential for large-scale production before industrialisation. The hydrogen production study using SCW oil palm biomass gasification may serve as a future source of sustainable energy. (Anon., 2007). Based on the calculations, this technology the most potential hydrogen production created theoretically by oil palm biomass meets the present worldwide hydrogen requirement by more than 50 per cent. Malaysia alone produces approximately 47% of the world's supply of palm oil and is considered the biggest producer and exporter of palm oil in the world.(M.A.A. Mohammeda, 2011). When it comes to the usage of oil palm biomass as a clean energy source, hydrogen production from it has risen to the top of the list of priorities. There are a variety of thermo-chemical conversion technologies that can be used for hydrogen production from biomass. One such technology is gasification, a competitive method of converting solid biomass such as oil palm waste into a uniform gas mixture containing hydrogen, carbon monoxide, methane, and carbon dioxide.

Moreover, in agriculture and forestry, Malaysia is rich in natural resources. When paired with feedstock availability, this increases the country's reliance on a single source of raw materials. (Jing Yan Tock, 2010) Specify that additional agricultural biomasses, such as banana plant biomass, should be considered. As an alternative to palm oil waste, banana biomass can be used as a renewable energy source. (Mohd Shaharin Umar, 2013) Mentioned that this study uses a mixed methodology approach combining market surveys and interviews with regulators. Options for researching the potential use of less sought-after resources are among the possible future tactics identified by this research. To maintain industrial development, wise measures must be implemented to offer infrastructure and benefits. The use of FiT tools suggests that a system modification is possible that will be more effective in the long run for the palm oil renewable energy industry.

2.6.2 Summary of Literature review

No	Author	Title	Year	Remarks
1	A. Y. Azman student, A.	Study of		- The study is based on
	A. Rahman, A. N. Azmi,	Renewable Energy		three primary factors:
	F. Hanaffi, A. Khamis	Potential in		action, geographical
		Malaysia.		dispersion, technology,
				and economic analysis.
				There are four types of
				renewable that focus in
	AVSI			this study: solar, wind,
	AL AND AND			biomass, and tidal.
				- Biomass has the
	ــــــ			potential to provide
	E.S.			sufficient electricity in
	AINI			Malaysia.
	Maluela Me	15:5:		- Improve the
			i çe.	development of biomass
	UNIVERSITI TE	KNIKAL MALA	YSIA	resources as it is
				available and lower cost.
				- Analyse additional
				renewable energy
				sources, such as hydro
				and geothermal energy.
2	Aziah Khamis, Tamer	Optimal selection	2020	- There are three primary
	Khatib, Nur Amira	of renewable		strategies in identifying
	Haziqah Mohd Yosliza,	energy installation		colour thresholds,
	Aimie Nazmin Azmi.	site in remote		circular transformations,
		areas		and the K-means on the
		using		map.
		segmentation and		

Table 2.3 Summary of	of Literature Review
----------------------	----------------------

		regional		-The combination of
		technique: A case		photovoltaic and
		study of		hydropower is the ideal
		Sarawak,		rural hybrid.
		Malaysia.		- The study only focused
				on some remote regions
				while there are other
				locations.
				- The methods are
				applicable to find the
				potential locations by the
				provided data.
3	Wan Syakirah Wan	The Potential and	2019	-The potential for
	Abdullah, Miszaina	Status of		Malaysia's renewable
	Osman, Mohd Zainal	Renewable Energy		energy sector to meet its
	Abidin Ab Kadir, Renuga	Development in		20 per cent target by
	Verayiah.	Malaysia.		2025 difficulties and
	Sanno -			opportunities
	5N. ().	6.6.		- Geothermal is not
	المتسب المرك	- cu cu	<u>s</u> .	discussed in the paper
	UNIVERSITI TE	KNIKAL MALA	YSIA	because of the
				geographical condition.
				- Malaysia will continue
				to rely on coal and
				natural gas in the future,
				but it will also have a
				more significant
				proportion of renewable
				energy.
				- More research needs to
				be initiated to obtain data
				for wind energy.

				- Solar energy has higher
				potential in Large Solar
				Scale technology.
4	Nima Izadyar, Hwai	Investigation of	2016	- To better understand
	Chyuan Ong, Wen Tong	potential hybrid		Malaysia's prospective
	Chong, Juwel Chandra	renewable energy		locations, based on the
	Mojumder, K.Y. Leong b	at various rural		comparison of total net
		areas in Malaysia		present cost (NPC) for
				wind, solar and micro-
				hydropower.
				- New design and
				technology in the HRES
				design should be
	AT MALAISIA MA			introduced
				- Less usage of diesel
	ž	2		generators.
	E			- In this regard, the
	Alun			villages of Tioman are
	shi l	16.6.		mainly unsuitable sites
	مىيسىيا ملاك	June	يبي ا	for the hybrid renewable
	UNIVERSITI TE	KNIKAL MALA	YSIA	energy system, while
	01111210011112			Langkawi offers the
				finest potential for wind
				and solar.
5	Azah Mohamed, Tamer	Optimal Sizing of	2016	- By using the method
	Khatib	a PV/Wind/Diesel		given in the HOMER
		Hybrid Energy		application, a system that
		System for		functions at the lowest
		Malaysia.		possible cost and with the
				maximum availability
				can be designed.
				- According to the
				findings, the optimal

				sizing ratios for PV
				arrays and wind turbines
				in Kuala Terengganu are
				0.737 and 0.46,
				respectively.
				- Building load demand
				can be supplied at the
				lowest possible cost by
				acquiring optimisation
				sizes.
6	Mohd Amran Mohd	Optimal Solar	2019	In Sebuyau, Sarawak, the
	Radzi, Nasrudin Abd.	Powered System		ideal solar power system
	Rahim, Hang Seng Che,	for long houses in		to lengthy power homes
	Hideaki	Sarawak by using		by four main steps:
	Ohgaki, Hooman	HOMER tool.		estimation, design,
	Farzaneh, Wallace Shung			simulation by HOMER
	Hui Wong, and Lai Chean			software, and
	Hung.			optimisation work.
	shi la	5.5		-Based on the data
			يي ا	obtained, it can allow the
	UNIVERSITI TE	KNIKAL MALA	YSIA	designer to develop solar
				energy.
				-By developing solar
				energy, conventional
				fossil fuel generators will
				decrease and be cost-free.
				- The study also should
				find other valuable
				resources for the
				longhouses.
7	Wei Yee Teoh, Say Yen	Techno-economic	2016	- To suggest the use of
	Khu, Chee Wei Tan, Ing	and Carbon		PV to reduce grid energy
				use and encourage

	Hui Hii, and Kai Wee	Emission Analysis		renewable energy using
	Cheu	for a		HOMER simulation to
		Grid-Connected		offer data for usage and
		Photovoltaic		renewable energy.
		System in Malacca		- Based on the
				simulation, grid-
				connected PV system is
				more beneficial
				compared to a standalone
				grid. Although the cost is
				higher, it is a one-time
				investment that can work
				for a long time.
	at MALAISIA ME			- The study should
	The second s			consider the less costly
	Ê	2		material.
	LIG			- PV system can be used
	Samo			for developing renewable
	5h1. [].	5.5		energy in Malaysia.
8	S. Bahramara, M. Parsa	Optimal planning	2016	- Use HOMER software
	Moghaddam n RSITI TE	of hybrid MALA	YSIA	to access minimum
	, M.R. Haghifam	renewable energy		investment and
		systems		operational costs,
		using HOMER: A		including technical and
		review		pollution restrictions.
				- HRESs have been
				modeled in both stand-
				alone and grid-connected
				modes.
				- The parameters
				observed are wind speed,
				solar radiation, fuel price,
				component costs.

				-HRESs can be
				employed to supply local
				loads in rural, distant and
				unique urban areas.
9	N Abdullah, J Jamiluddin,	Experimental	2020	- The hand scrapping
	F Y Hagos, N S N Azmi.	investigation on		approach was utilised to
		pineapple leaf		evaluate Pineapple Leaf
		fibre as biomass		Fiber's potential as a
		source for		substitute for existing
		renewable energy		biomass resources.
		application		- The PALF have higher
				cellulose content which
				have higher calorimetric
	at machiold the			value.
	The second second			-The PALF can be a good
				application, but the
	LIG			availability of the PALF
	\$ AMIN			should concern matter,
	she l.	6.6.		besides using the oil palm
	المتسب المرك	- and	يبي ا	empty fruit bunch and
	UNIVERSITI TE	KNIKAL MALA	YSIA	rice husk.
10	Heap-Yih Chonga, Wei-	Ocean renewable	2013	- To examine the current
	Haur Lamb	energy in		situation of the
		Malaysia: The		renewables of the ocean,
		potential of the		such as tidal dams, mare
		Straits of Malacca		energy, wave energy,
				ocean thermal conversion
				and salinity gradient
				electricity.
				- Tidal current is the most
				potential option in the
				Straits of Malacca
				compared to others.

				- The development of the
				ocean renewable can be
				developed in Malaysia
				however, it lacked funds
				because of the planning is
				still in the early stages.
11	Fuad Noman,Gamal	A Comprehensive	2020	-To review the current
	Alkawsi, Dallatu Abbas,	Review of Wind		status of wind energy,
	Ammar Alkahtani, Seih	Energy in		including the main
	Kiong Tiong,	Malaysia: Past,		factors and the
	Janaka Ekanyake.	Present		recommendations for
	New York	and Future		improving wind research
		Research Trends.		in Malaysia, are
	LIG			discussed in this
	\$ PAINO			document.
	shi l	6.6.		-With- Lack of
	مىيسىيا مارك	June	يجي	standardisation and wind
	UNIVERSITI TE	KNIKAL MALA	YSIA	data representation,
				hybrid power systems are
				used to solve the issue.
				- Three potential areas in
				Malaysia are suitable for
				renewable wind energy,
				but more research is
				needed.
12	S N Ashwindran, A A	A review on the	2017	- Wind energy sector
	Azizuddin, A N Oumer2	prospect of wind		challenges in Malaysia:
	and M Z Sulaiman	power as an		wind conditions,
		alternative		government policies and
				technologies

		source of energy		- Selected areas of the
		in Malaysia.		eastern coast of Malaysia
				and selected Sabah and
				Sarawak region have the
				potential to harvest
				power.
				-Wind renewable energy
				can supply energy, but
				wind turbines must be
				built on the unstable
				regions of the Monsoon
				wind speed pattern.
13	Syed Shah Alam, Nor	A Survey on	2016	- The limited availability
	Fariza Mohd Nor	Renewable Energy		of renewable energy
	, Maisarah Ahmad, Nik	Development in		technology information,
	Hazrul Nik Hashim.	Malaysia: Current		lack of public awareness,
	EX	Status, Problems,		and lack of participation
	Vaning.	and Prospects		by the commercial sector
	shi l	6.6.		have been cited as
	متيسيا مارك	- un u	يي ا	significant obstacles to
	UNIVERSITI TE	KNIKAL MALA	YSIA	developing sustainable
				renewable energy
				sources.
				-Build awareness of
				renewable power, while
				higher education
				institutions include
				renewable energy
				programs in their
				academic curricula.
				- Sustainable renewable
				energy development,
				government initiative,

				corporate sector
				partnership, and user
				awareness should be
				given priority.
14	Rajmal Joshi.M, Aravind	Comparison	2018	-Evaluate its practicality
	CV, Dr. R.	between		in terms of efficiency and
	Dhanasekaran, Charles	Photovoltaic and		emission rates, and give
	Raymond, Se Yong En.	Wind Turbine for		recommendations.
		Monetary and		- As Malaysia's tropical
		Non-monetary		environment has a
		Costing		relatively constant
				amount of sunlight and
				temperature throughout
	at MALAISIA MA			the day, solar energy has
	New York			the highest renewable
	E			energy efficiency.
	LIG			-In this case, producing
	Samn			energy using the wind
	shi la la	6.6.		turbine is not incredibly
	المتسب المرك	- and	يتي ا	efficient because the
	UNIVERSITI TE	KNIKAL MALA	YSIA	average wind velocity is
				under extreme conditions
				for spinning wind turbine
				blades.
15	Normazlina Mat Isa,	A techno-	2016	- An investigation of the
	Chee Wei Tan, AHM	economic		GCPV for Malaysian
	Yatim.	assessment of		hospital structures using
		grid-connected		software (HOMER) to
		photovoltaic		optimise and analyse the
		system for a		sensitiveness of solar
		hospital building		grid-connected systems.
		in Malaysia		- The hospital's
				realisation of NeM will

				provide hospital owners
				with the benefit they can
				minimise their energy
				expenses.
16	S. Mekhilef	Renewable energy	2018	-This study in Malaysia
		resources and		on the application,
		technologies		research, and
		practice in		development of energy
		Malaysia.		resources for renewables
				and the use of renewable
				energy technologies
				(RETs).
	1 AV 0.			- In Malaysia, the energy
	AT MALAISIA ME			sector still depends on
	No. 1			traditional energy, like
	Ê		0	fossil fuels and natural
	I.M.			gas.
	\$3AMIO			To conserve energy while
	shi l.	16.5.		also utilising
	المتسب المرك) - an a	يي ا	environmentally friendly
	UNIVERSITI TE	KNIKAL MALA	YSIA	energy sources such as
				nuclear energy and
				photovoltaic, the
				government must be
				prepared to look for other
				alternative energy
				sources such as atomic
				energy and photovoltaic.
17	Tau Len Kelly-Yong,	Potential of	2007	- Present the possible
	Keat Teong Lee, Abdul	hydrogen from oil		availability of oil palm
	Rahman Mohamed,	palm biomass as a		biomass that may be
	Subhash Bhatia	source of		transformed into
				hydrogen in super-critical

		renewable energy		water via the gasification
		worldwide		process.
				- It has been
				demonstrated that
				biomass can be used to
				generate hydrogen, which
				can be used as a
				renewable energy source.
18	Jing Yan Tock, Chin Lin	Banana biomass as	2010	-Since banana has high
	Lai, Keat Teong Lee, Kok	a potential		growth rates, its
	Tat Tan, Subhash Bhatia.	renewable energy		availability, neutralise of
		resource: A		carbon, and bearing fruit
	at MALAISIA MA	Malaysian case		only once in life made the
		study		banana the chosen
	Ê	2	0	subject.
	E.			-Combustion, water high-
	Vanno -			critical gasification, and
	she l	6.6.		digestion can converse
	متيسيا مارك) - un u	يبي ا	biomass to energy which
	UNIVERSITI TE	KNIKAL MALA	YSIA	produces thermal energy
	01111210011112			and biogas.
				- Banana biomass energy,
				which accounts for most
				renewable energy needs,
				has a capacity of 4.6% in
				Malaysia for 2007.
19	M.A.A. Mohammed, A.	Hydrogen rich gas	2011	- The essential role of
	Salmiatona, W.A.K.G.	from oil palm		demand for energy
	Wan Azlinaa, M.S.	biomass as a		production because of
	Mohammad Amrana, A.	potential source of		future availability of raw
	Fakhru'l-Razi, Y.H.	renewable energy		materials is efficient and
	Taufiq-Yap.	in Malaysia		clean energy sources of

				carbon dioxide from
				biomass.
				-The palm oil business's
				current state in terms of
				contributing to
				sustainable and
				renewable energy is brief
				and up-to-date.
				- The deactivation of
				carbon deposition is a
				severe difficulty with the
				use of dolomite, which is
				a soft and delicate
	AV MALATSIA MA			material, yet dolomite is
	The second se			cheap and easy to
		2		replace.
20	Mohd Shaharin Umar,	Strengthening the	2013	- Examine the long term
	Philip Jennings, Tania	palm oil biomass		practicability of many of
	Urmee.	Renewable Energy		the value chain's
	المتسب المرك	industry in	يبي ا	components, including
	UNIVERSITI TE	Malaysia	YSIA	the availability of
				supplies of palm oil
				biomass, bio-energy
				converting technologies,
				and grid expansion costs
				and alternatives.
				-In consultation with the
				industry, the government
				should intervene and set
				up the necessary
		1	1	
				infrastructure and

21	H. Fayaz, N.A. Rahim, R.	Solar Energy	2011	- A review of solar policy
	Saidura, K. H. Solangi H.	Policy: Malaysia		implemented by
	Niaz, M.S. Hossain.	VS Developed		developed countries and
		Countries		Malaysia will be
				reviewed, discussing the
				successful current solar
				energy policies in
				developed countries.
				-The most beneficial
				energy policies
				implemented by
				developed countries are
				FiT, RPS and Incentives.
	at MALAISIA MA			- Malaysia's policies on
				renewable energy have
	Ê			limits, such as low level
	LIN .			encouragement; lack of
	Samo			coordination and
	shi l.	6.6.		consistency within the
	المتسب المرك	- and	5.	policy framework;
	UNIVERSITI TE	KNIKAL MALA	YSIA	innovative regional
				policies; insufficient
				investment in technical
				research and
				development; incomplete
				and unhealthy funding
				and investment systems
22	N. Gomesh, I.Daut,	Study on	2013	-Malaysia's perspective
	M.Irwanto, Y.M.Irwan,	Malaysian's		on renewable energy,
	M.Fitra.	Perspective		especially in the solar
		towards		sector, through a study.
		Renewable Energy		- Renewable energy is
				warmly appreciated by

		Mainly on Solar		many Malaysians,
		Energy		notably in the field of
				solar energy, as well as
				the urge for change in
				traditional energy
				methods.
23	Amanda Halima, Ahmad	Feasibility Study	2018	- This paper includes a
	Fudholia, Kamaruzzaman	on Hybrid Solar		study on the technology
	Sopiana, Mohd Hafidz	Photovoltaic with		for the development and
	Ruslan.	Diesel Generator		size of hybrid renewable
		and Battery		energy systems and the
		Storage Design		system's feasibility.
	WALAYSIA 44	and Sizing Using		-The load forecasting on
		HOMER Pro		energy demands has been
	ž	A	6	projected to increase
	E ==			drastically since 2000.
	"RaAlling			- A basic knowledge of
	6h1 []	1/		sizing the system must be
	مليسيا ملاك	يكسيكر	يى	improved as the
			VSIA	simulation will become
	ONVERONTE		I WIN	easier
24	Siow Chee Loon and	Wave Energy for	2012	- Before selecting the
	Jaswar Koto.	Electricity		appropriate device type,
		Generation in		several types of wave
		Malaysia -Merang		energy converter
		Shore, Terengganu		currently developed by
				the manufacturer were
				reviewed.
				- Attenuator type wave
				converter developed by
				Wave Star was
				considered one of the

				installation devices at the
				site.
				-Since the last time the
				device was used, it has
				been in standby mode for
				nearly half a year.
				- The wave height is less
				than what is required for
				the device to function
				correctly.
25	S.M. Shafiea, T.M.I.	Current energy	2011	-Investigation of various
	Mahliaa, H.H. Masjuki,	usage and		renewable energy and
	A. Andriyanaa	sustainable energy		examine the energy and
	at MALAISIA ME	in Malaysia: A		environmental issues.
		review		- This should be
	Ê	8		discussed in depth by
	E.			critical stakeholders such
	\$ JAIMO			as government,
	she l	6.6.		institutions, industry, and
	متيسيا مارك	- and a	يي	society.
	UNIVERSITI TE	KNIKAL MALA	YSIA	- It generally takes
				decades to replace one
				form of primary energy
				with another completely.
26	Yun Seng Lim, Siong Lee	Analytical	2009	- The Princeton Ocean
	Koh	assessments on the		Model creates a three-
		potential of		dimensional numerical
		harnessing tidal		model for Malaysia that
		currents for		has calibrated against
		electricity		measurement.
		generation in		-Although Malaysia has
		Malaysia.		tidal energy, which
				means a promising

				renewable energy source
				is available, several
				environmental cases
				should be studied and
				explained.
27	Nor F. Yah, Ahmed N.	Small scale	2017	- To demonstrate the
	Oumer	hydropower as a		potential and current state
	, Mat S. Idris	source of		of modest
		renewable energy		hydroelectricity in
		in Malaysia: A		Malaysia at a low-level
		review		location and rural
				electrification.
				- Current issues of
	at MALAISIA MO			renewable energy plant
	H.			design and education,
		2	0	energy tariffs, fossil fuel
	LIN I			producers' financial rates
	A AINO			and subsidies, and
	chi (I	1		program-design,
	متبسيا ملاك	- in the	5.	opposition and regulatory
	LINIVERSITI TE	ΚΝΙΚΔΙ ΜΔΙ Δ	VSIA	failure should be
	ONVERONTE		1015	addressed.
28	Omar Yaakob, Tengku	Prospects for	2006	- The existing
	Mohd Ariff Tengku Ab	Ocean Energy in		oceanographic data in
	Rashid, Mohamad Afifi	Malaysia.		Malaysia and the possible
	Abdul Mukti			energy sources are
				identified.
				- The current
				development of different
				ocean energy extraction
				methods will be
				examined.

29	H. Borhanazad, S.	Potential	2013	-Renewable energy
	Mekhilef, R. Saidur, G.	application of		sources might be
	Boroumandjazi.	renewable energy		regarded as the best
		for rural		choice for reducing rural
		electrification in		energy poverty.
		Malaysia		- The potential for solar
				power for electricity is
				significant since
				maximum solar radiation
				in Malaysia amounts to
				roughly 6.027 kWh/m2 in
				Sabah and 5.303 kWh/m2
	I AVO.			in Sarawak within one
	at WALKISIA MA			day.
30	A. Johari, S.H. Samseh,	Potential use of	2012	- Briefly discuss
	M. Ramli and H. Hashim	solar photovoltaic		incentives and RE Act
	Samn	in peninsular		enacted by the
	shi lala	Malaysia.		government of Malaysia
	المتسبب سارك	Jana	يي ا	to guarantee
	UNIVERSITI TE	KNIKAL MALA	YSIA	dependability and
				security of long-term
				energy supply.
				- The Malaysian
				Government has made
				several initiatives to
				encourage people and
				businesses to engage in
				solar photovoltaics.
				- The favorable climate
				makes solar photovoltaics
				very viable for energy
				generation.

2.7 Summary of findings

Based on the articles and journals from the past researchers, there is a lot of renewable energy that can be studied in Malaysia. Renewable energy can be used as the primary energy to generate electricity instead of using non-renewable energy, which one day will deplete and run out. However, the viability of renewable energy should be the main factor before deciding which renewable energy should be the next primary energy source. The energy should be available in the country and easy to harvest. After reviewing all the information from the past researcher, the viability of renewable energy can be listed from the top to the last.

- 1) Biomass energy
- 2) Solar energy
- 3) Wind energy

There are three types of renewable energy that can be the main energy source in Malaysia to generate electricity from the list. These types need to be studied based on the three main factors: technology used, geographical data, and return of investment. Based on the main factors, the data obtained from the simulation using HOMER application needs to be analysed before deciding which renewable has the most potential as the primary renewable in Malaysia.

2.8 Summary

At the end of this chapter, the past researcher uses various types of methods to find the suitability of the specific renewable energy in the area. Other than that, some researchers found out that using hybrid renewable energy is more effective than only using one of the sources. This literature review compiles a study from 2006- 2020 that shows the past and present of the renewable energy which can broaden the knowledge about the topic. The past papers will help the researcher improve research methodology and generate ideas on how to study about the project.

CHAPTER 3

METHODOLOGY

3.1 Introduction

The methodology is about a system of methods used that specifically procedures or techniques used to identify, process and analyse information about a topic. This section, allows reader to evaluate a study based on validity and reliability. This section is important as the step needs to be complete for the project completion. Each step must follow according to the time to prevent any problems occur at the end. Each process has to be done by the researcher so that, any problems should have enough time to find the solution.

The relation between this chapter and the project is designing a simulation to find the availability of the RE in Malaysia by using HOMER. This project will be carried out by the steps based on the schedule. Based on the schedule, the routine and activities should be done within the period of time. So, the project can be finished according to the timeline without any problems happening.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

3.2 Methodology

Figure 3.1 shows the flow chart for the project methodology that study the availability of various types of renewable energy in Malaysia and the purpose of finding the most suitable RE that the main factors can develop.

Figure 3.1 Project methodology flow chart

Based on the flowchart above, the process starts with a literature review that shows the previous works from other researchers that provide various methods of the project to find the data. Next, the researcher needs to do research on their own and collect their data to be compared to find suitable ones. Then, the data will be studied to see the available renewable energy in Malaysia. Then, designing a simulation based on the three main factors: the technology used, geographical factors, and investment return. If the main criteria are passed, the data will be reviewed once again before deciding which renewable energy is the most suitable to develop in Malaysia.

3.2.1 Gantt Chart

3.2.2 Simulation setup

For this subtopic, the images will show how the simulation would be done from step to step to obtain the results for the specific renewable energy, which is solar radiance and wind speed.

Solar radiance:

Step 1: Enter the specific location that needs to be observed.

Step 2: Search the location until it marked on the map

Step 3: Download the resources that the HOMER application has provided. From the resources, they can know the information for the location. . 1

		NIKAL MAL	
Take Tour Setup Assistant Requirest creating Maria that Date a menual is every pound	New: CHARNEL PEPLIE Anton Antonio Antonio Decoption To cartaen Tee Italia ce atalae amoutaanse	Resource Index Resource Refer Ref Refer Ref Refer Refer Refer Refer Refer Refer	A Kempung Chuning (0200 Kange, Reis, Manysan (228,6%), 100° (13.2.5.)
HOMER	Shoosh tele /Nr Inference and Nr Annual spacely shartoge /Nr Vicipes blattine (pare)		Got questions? Check out the HOMER KnowledgeBase

Figure 3.4 Simulation setup for solar radiance

Step 4: Generate the graph to get the annual average solar radiance by clicking the graph section.

Figure 3.5 Simulation setup for solar radiance

Step 5: Next, we selected the load, converter, battery and components to generate the electricity as we can see from the image, solar panel is being selected.

Figure 3.6 Simulation setup for solar radiance

Step 6: To obtain how much cost is needed, the HOMER will calculate based on the lifespan of the components including the maintainence.

Wind speed:

Step 1: Enter the specific location that needs to be observed

Step 2: Search the location until it marked on the map

	an .							
E (1-1) V	HOMES Pro Manager	d Aneym bot of	N STATE	to taken 4		frent.	Q	1-210
		**			رسيتي	ونيو		
SCHEMATIC	a			DESIGN	1			
Take Tour Setup Assistant Setup Assistant MAd a haat Add a power heate Add a remedie entry heart	Antive ANCATULAFZAN Active ANCATULAFZAN Description To Distrant Dista FOR WING SPEED	Solar NALL P NALL P Norman Nor	A L ediction of englet by po- englet by po- e	Wartholds Energy Rainar An Alexan International International Composition of the Composition Composition Wartholds Discogn Flaster and the 1981 - San 2012 Wartholds Discogn Passor and the Unit of Discogn Passor and the Discogn Passor			(22593, 1029024)	(1000 Hz)
		Owner Wada	-	improved which modeling.	101C+38001 fa	ala Langer, Sing		
			1	INCCU	a hand?		7	
	Discount rate (Na	8.00		Premium	Support is av	ailable		
	Inflation rate (fair	1.00	(A)	for your p	project needs			
100	Jonual catacity shortage (No.	8.00	(R	Construction Construction	and a second second second			-
HOMER	Presert lifetime (case)	23.00	a					
HIG FIG	Authors and the state of the st		.0	1000		- 22		
E P Type here to select	P 📑 🔒		0	🧿 🖬 🦊		and the an	0 10 6 at the 11	11/2001

Figure 3.9 Simulation setup for wind speed

Step 3: Download the resources that have been provided by HOMER application. From the resources, it will show the information for the location.

Figure 3.10 Simulation setup for wind speed

Step 4: Generate the graph to get the annual average wind speed by clicking the graph section.

D (1-1) (1	The second secon	Q =30
=	اويوم سيني بيك الشيخ الشيخ الشيخ	
SCHEMATIC	DESIGN	
Take Tour	VERSING REKNIKAL MALAYSIA MELAKA	Better
Setup Assistant	Develoal Free Menters. I require transmission (Bosty)	Choose Stratue gate for improved wird wedeling.
INDEXED CHANGES	Marching Androger Werd Speers Lines Marching Androger Lines Marching Androger Werd Speers Lines Marching Androger Werd Speers Lines Marching Androger Lines March	29 AM Hong Longs Fernanze (FOWER) Non advoire the antern of earth - Dec 2010)
	Dec 1470 - Avenuel Avenue (m/s): 4.10	
Pro Pro	Scalied Admaul Average (9/1). A.10 🔞 🔤 🔤	
🕀 🎜 Type here to search	1월 🧰 💼 🜒 🕐 👰 🖽 🛃 🔶 🐠 🖽 🖉	a at this 1/1/2001

Figure 3.11 Simulation setup for wind speed

Step 5: Next, we selected the load, converter, battery, and components to generate the electricity. As we can see from the image, the wind turbine is being selected.

Figure 3.13 Simulation setup for wind speed

Step 6: To obtain how much cost is needed, the HOMER will calculate based on the lifespan of the components, including the maintenance.

3.3 Summary

UNIVERSI

This chapter describes the methodology of the study about "The Viability Study of Different Type of Renewable Energy in Malaysia". The methodology of this project contains on how the study should be done based on the important factors which are geographical data, technology used and return of investment. This is an important chapter as it is a way to ensure that the project can be done based on the correct sequence of the project methods.

The primary method that the developer has used is using HOMER software to collect the essential data for the renewable energy that has been studied. The data from the software will be determined based on the project's three main factors. Other than that, the past researcher data is used in this project as a piece of additional information to the study. The data is based on the various methods to find the stability of renewable energy in a specific area. This chapter also includes a Gantt chart to ensure that the project is on time management.

'I TEKNIKAL MALAYSIA MELAKA

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

In this chapter, the results from the simulation will be discussed based on the main factors: geographical data, technology used, and return of investment. The data obtain from the simulation will be analyses whether the results is achieving the main objectives of the study that have been conducted.

4.2 Analysis for the simulation

Based on the simulation that has been done, the results will show two main data: the average annual value and the cost of installation. The average annual value will determine the geographical data of the locations is suitable for the implementation of solar or wind energy. For the cost installation, the data will discover the return of investment for each of the location based on their geographical data. The locations for the simulation have been selected based on the geographical map from past researcher that studied the data of the renewable energy. For the simulation, the locations have been stimulated to 5 potential locations that may have the highest potential to be developed in Malaysia. The simulation will be done for solar and wind energy while for the biomass energy, the data that includes the geographical data and return of investment will be study based on the current data in biomass power-plant in Malaysia. There is various type of biomass resources that needs to be examine that leads to which type of the resources that have the highest potential.

4.3 Results simulation for Solar radiance

Location: Kota Bharu, Kelantan

Figure 4.2 Schematic Design

Net Present Cost (NPC) of 25 years.

Achieture	Cost		lysten		Tolyn U	
🖛 🗗 🛃 🥙 🏹 1001-14 🏹 Converter 🖓 Ospatch 🖓	NPC 0 7 COE 0 7 Operating cost	t 🛛 🖓 İnitial capital 🦞 Ren Fia (RM) 🦿 (R)	9 Wild 90	Capital Cost V Production ((RM) Following (Actoromy & Annual Throughput , [b] Rollbyky	Normal Cap (RNN)
🖣 🖬 🛃 7.41 28 0.0	RM28,448 RM0743 RM895.85	RHE7,887 100	8	11,517 11,062	37.1 2319	290

Figure 4.3 Net Present Cost

Location: Chuping, Perlis

UNIVERSITFigure 4.4 Annual graph for solar radiance

Schematic Design

Figure 4.5 Schematic Design

Net Present Cost (NPC) of 25 years

Location: Kuala Terengganu, Terengganu

the Avera	ne Solar Gio	bei Horstontal Imat	ases (THE)	Data			Dennico	d Frien Irik	met_	1	20 8	1000	1.04	Library:		
Mouth	Chartate	Daily Radiation AWh/m?/day	1		_	tan e									Redator	1
e	0.540	3.109	100	-					-	-		-	-			19
÷.	0.685	6344	100				-									12
ar .	0.580	6.025	2.4	-		1000	_	The second	-	-	-	-	-	-	-	15
aí -	0.567	6.107														- 24
ay	0.534	5.289	21													10
	0.548	5,404	31													193
4	0.531	3.368	0.													1.
4	0.535	5.467		4	3	9	3	1	5	*	20		đ	100	d.	
ŵ.	0.528	5.472	Timete	adapt of T	177/2021 0			-			1		1.0		100	
đ	0.935	5.390	Nationa	Ferenal	vie Energy 1	abcontory	database									
DH .	0.571	4.870	National cellulula	d Solder Ray	marriere Data wier 5.22596	dunie Marazinski										
eć .	0.528	4.899	cellula	portling	Antie: 103.1	449965430	6641									

Figure 4.7 Annual graph for solar radiance

Figure 4.8 Schematic Design

Net Present Cost (NPC) of 25 years

Achitecture			Cut		Şut	19	ņ	1		1086.04
🖛 🗗 💽 🥂 🖓 Trivie Le 🖓 Converter	V Dispatch V MPC		Questing cost 0 V	Intel capital V	New Fraz. O V	Tetal Fael V	Capital Cast W (RM)	Restation V	Adamatry V	Armat Throughput , (ARM/yr)
🕊 🗈 🛃 66 29 2.48	CC 8167.5	539 EV0.708	RM896.37	EN25,001	105	0	16571	10.592	97.1	2.338

Figure 4.9 Net Present Cost

Figure 4.10 Graph for solar radiance MALAYS Schematic Design: SCHEMATIC AC DC 3 Electric Load #1 PV AYSIA MELAKA ΔT 11.26 kWh/d 2.09 kW peak Converter 1kWh LA 🙆 🤽 🙆 🕒 🖾 🖓

Figure 4.12 Schematic Design

Net Present Cost (NPC)

Figure 4.13 Net Present Cost

Location: Raub, Pahang

Figure 4.15 Schematic Design

Net Present Cost (NPC)

Compare Econom

Ēxŗ	oor	t		Optimization Results Left Double Clic on a particular system to see its detailed Simulation Results.														
				Architectu	re				Cost				Syste	m	P	V		
4		2	PV (kW)	1kWh LA 🏆	Converter V	Dispatch 🏹	NPC O V	COE (RM) V	Operating cost (RM/yr)	0 Y ^{ir}	itial capital (RM)	Ren Frac (%)	07	Total Fuel V (L/yr)	Capital Cost (RM)	Production (kWh/yr)	Autonomy ((hr)	Y Annu
7	3	Z	6.77	29	234	cc	RM37,886	RM0.714	RM895.09	R	M26,314	100		0	16,914	10,581	37.1	2,333

Figure 4.16 Net Present Cost

4.4 Results simulation for wind speed

Location: Mersing, Johor

WIND RESOURCE	
Choose Data Source: 🕷 Intermonthly averages 🔘 Import from a time series data file or the library	
Downkaad From Internet, Superior, Superior and T	Choose West
Monthly Average Wind Speed Data	improved with
Average Int + 1 7	Downloaded at 10/27/2021 9:47:48 AM from
Marth ()	NASA Prediction of Worldwide Energy Resource (PC
Lae 6.090 8.7	Monthly average wind speed at 50m above the surf
	over a 30-year period (Jan 1984 - Dec 2013) cell/lideointLatitude 2.25
1007 - 1.100 Aug 1 1005 - 1.1	cell/lidpovitiongitude: 103.75
New 1000	
100 · · · · · · · · · · · · · · · · · ·	đ
Jul 3.970 Decemeters Vacation With Hauster Advanced Barameters	
Aug 4100	
Sep 3.610 Algevide shows sea level (w) 0	
Oct \$1070 Anenuerster height (m) 10	
Nov - 3600	
LONE 2 5410 - F	
Aroual Average (mA): 4.10	
F	damage 1
Scaled Annual Average (m/SE 4.10	4-4
Figure 4.1 / Graph for wind spee	ed
AIND	
iship: LIC: Com	
chematic Design	او دوم
	V
SCHEMATIC	
UNIVERS TI TEKNIKAT MALAVSIAS	
AC	has have the contract of the
G3 Electric Load #1 1kWh LA	
11 25 1446 14	
11.20 KWN/0 2.09 HW pask	
Converter	
Converter	
💿 🦗 🕥 🕟 📖 🗥 🚱	

Figure 4.18 Schematic Design

Net Present Cost:

Figure 4.19 Net Present Cost

Location: Pulau Redang, Terengganu

Schematic Design

Figure 4.21 Schematic Design

Net Present Cost (NPC):

Figure 4.22 Net Present Cost

Location: Pulau Pangkor, Perak

Schematic Design

Figure 4.24 Schematic Design

Net Present Cost (NPC)

Location: Langkawi, Kedah

Figure 4.27 Schematic design

Net Present Cost (NPC):

Figure 4.28 Net Present Cost

Location: Pulau Tioman, Pahang

Schematic Design

Figure 4.30 Schematic Design

4.5 Analysis based on the results for solar energy

MONTHS	КОТА	CHUPING	KUALA	KUALA	RAUB
	BHARU		TERENGGANU	KANGSAR	
JANUARY	4.687	5.402	5.109	5.212	5.155
FEBRUARY	5.338	6.145	6.044	5.904	5.770
MARCH	5.607	6.197	6.035	5.851	5.826
APRIL	5.599	5.976	6.107	5.747	5.751
MAY	5.137	5.287	5.389	5.230	5.220
JUNE	5.092	5.268	5.404	5.264	5.227
JULY	5.042	5.188	5.268	5.134	5.216
AUGUST	5.212	5.297	5.467	5.249	5.297
SEPTEMBER	5.201	5.182	5.472	5.274	5.360
OCTOBER	5.061	5.158	5.360	5.289	5.307
NOVEMBER	4.669	4.936	4.876	4.985	5.036
DECEMBER	4.528	5.164	4.899	5.163	5.020
AVERAGE	5.100	5.430	5.450	5.360	5.350
			a a Qa	· · · · · ·	1

Table 4.2 Annual solar radiance from January to December by using Natural Renewable Energy Laboratory (NREL) according to cities.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Location	Average annual Solar radiance
	(kWh/m^2/month)
Kota Bharu, Kelantan	5.100
Chuping, Perlis	5.430
Kuala Terengganu, Terengganu	5.450
Kuala Kangsar, Perak	5.360
Raub, Pahang	5.350

Table 4.2 Average annual solar radiance by cities

Table 4.3 Installation cost

Location	Cost by year
Kota Bharu, Kelantan	RM 895.85
Chuping, Perlis	RM 890.38
Kuala Terengganu, Terengganu	RM 896.37
Kuala Kangsar, Perak	RM 893.81
Raub, Pahang	RM 895.09
anna	

Based on the tables above, Kuala Terengganu has the highest average annual solar radiance compared to the other 4 locations. Chuping has the second-highest value with 5.430 (kWh/m^2/month). The third highest is Kuala Kangsar, with 5.360 (kWh/m^2/month). The two lowest values are Raub and Kota Bharu, with the respective values of 5.350 and 5.100 (kWh/m^2/month). Next, the calculated cost provided by Homer software shows that the lowest cost per year is Chuping, Perlis with RM 890.38. The second-lowest-cost is Kuala Kangsar with RM 893.81, and the third-lowest is Raub with RM895.09. The two highest costs are Kota Bharu and Kuala Terengganu, with RM 895.85 and RM 896.37.

4.6 Analysis Based on the Results for wind speed

MONTHS	MERSING	PULAU	PULAU		PULAU
		REDANG	PANGKOR	LANGKAWI	TIOMAN
JANUARY	6.090	6.060	5.900	5.720	7.240
FEBRUARY	5.440	4.950	5.420	4.750	6.120
MARCH	4.140	4.360	4.110	3.890	4.490
APRIL	2.990	3.420	3.010	3.160	3.090
MAY	3.090	2.860	3.310	3.320	3.370
JUNE	3.600	2.760	3.950	3.720	4.160
JULY	3.970	2.910	4.380	3.790	4.720
AUGUST	4.100 AYS	2.860	4.580	4.170	4.930
SEPTEMBER	3.610	2.650	3.950	4.050	4.140
OCTOBER S	3.070	3.340	3.210	4.050	3.240
NOVEMBER	3.680	4.900>	3.560	4.590	4.130
DECEMBER	5.410	6.430	5.120	5.880	6.590
AVERAGE	4.10	3.96	4.21	4.26	4.69

Table 4.4 Wind speed by cities from January to December

å 5 13 9

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 4.5 Average annual speed by cities

Location	Average annual Wind speed (m/s)
Mersing	4.10
Pulau Redang	3.96
Pulau Pangkor	4.21
Langkawi	4.26
Pulau Tioman	4.69

Table 4.6 Installation cost

Location	Cost per year
Mersing	RM 7271
Pulau Redang	RM 7271
Pulau Pangkor	RM 18,264
Langkawi	RM 6113
Pulau Tioman	RM 6981
ىكل ملىستا ملاك	اونىۋىر سىخ ئىگ

Based on the results that have been simulated by HOMER software, Pulau Tioman has the highest wind speed, which is 4.69 m/s, and the second-highest in Langkawi with 4.26 m/s. Next, Pulau Pangkor with 4.21 m/s, and the second-lowest in Mersing with the value of 4.10 m/s. The lowest wind speed is Pulau Redang, with only 3.96 m/s.

Pulau Pangkor has the highest cost for the calculated cost compared to the other 4 locations. The total cost is RM 18,264, two times more than the cost in Mersing and Pulau Redang with RM 7271. This made Pulau Pangkor is not a suitable location to develop the wind turbine. The two lowest costs are Pulau Tioman and Langkawi, with RM 6981 and RM 6113.

4.7 Biomass data analysis

The table 4.7 shows the list of biomass power plants available in Malaysia. There are 4 biomass power-plant in Sabah while the other two is from Selangor. The biomass power-plant in Sabah use the same technology and type of fuel which are steam turbine and empty fruit brunch. Steam turbine is a technology that generate steam to produce electrical energy by burning the biomass fuel. The fuel which is empty fruit bunch will insert into a combustor or furnace to be burned with excess air to heat the water in the boiler that create the steam, then the steam from the boiler expanded through the steam turbine and spins to run the generator that produce electricity. From figure 4.32, it shows how the steam turbine system works. Next, gas turbine is used for Jana Landfill power-plant, the technology use biogas as a fuel. Biogas is produced from anaerobic decomposition or thermochemical conversion of biomass. Figure 4.33 explained the anaerobic digestion process that produce the biogas. The chart in figure shows the generated power by each of the power-plant in Malaysia. TSH has the highest power generated which is 14MW compared to the others four power-plant.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 4.7 Biomass power-plant in Malaysia

PLANT	LOCATION	GENERATED	TECHNOLOGY	TYPE OF
		POWER	USED	FUEL
		(MW)		
TSH	TAWAU,	14	STEAM	EMPTY
BIOENERGY	SABAH		TURBINE	FRUIT
				BUNCH
KINA	SANDAKAN,	11.5	STEAM	EMPTY
BIOPOWER	SABAH		TURBINE	FRUIT
				BUNCH
SEGUNTOR	SANDAKAN,	11.5	STEAM	EMPTY
BIOENERGY	SABAH		TURBINE	FRUIT
				BUNCH
RECYCLE	SEMENYIH,	8.9	STEAM	REFUSE
ENERGY	SELANGOR		TURBINE	DERIVED
	AALAYSIA			FUEL
JANA	PUCHONG,	8	GAS TURBINE	BIO GAS
LANDFILL	SELANGOR 😓			
KWANTAS	KOTA 🗧	9.8	STEAM	EMPTY
OIL	KINABALU,		TURBINE	FRUIT
E	SABAH			BRUNCH
02	<u></u>			
	AINO .			

Figure 4.32. Steam turbine system (National Institute Building Science, 2021)

Figure 4.33. Anaerobic digestion process (Sara Tanigawa, EESI)

Figure 4.32 Chart for power generated by power plant in Malaysia

Location: Tawau, Sabah

Power plant: TSH Bioenergy

Figure 4.34 Annual prices of Crude Palm Oil in 2019

Based on the figure in 4.33 and 4.34, the annual prices for both years are 2256.67 RM / tonne and 2153.33 RM / tonne. The prices are the cost of processing the Fresh Fruit Bunches (FFB) into Crude Palm Oil (CPO) and Palm Kernel (PK). CPO generate large quantity of biomass waste that can be use in for Biomass power-plant. TSH's biomass power-plant has a renewable energy power purchase agreement with Sabah Electricity Sdn Bhd to supply up to 10MW of green electricity which proof that the biomass resources can be use to generates electricity from solid by-product of the CPO. From the annual graph in 2018, CPO price declined from RM2086 per tonne to RM1995 per tonne due to the industry uncertainty and economic volatility. The industry uncertainty happened because of the risks in the oil palm industry as TSH Biomass power-plant is a latecomer to the industry. In December 2018, Malaysia's B10 biodiesel programme was launched for the transportation sector that helps the palm oil stockpile which resulting in boost annual biodiesel consumption by 700,000 mt (metric tonne) – 80000 mt (matric tonne).

Location: Kota Kinabalu, Sabah

Power plant: Kwantas Oil

Table 4.	8	The	production	in	2018	and	2019.
	~		p100000000000				

Production	unit	2018	2019
Fruit	tonne	326,623	286,726
Bunches			
(own)			
Fruit	tonne	289,117	234,443
Bunches			
(third			
parties)			
Palm	tonne	31,008	26,394
kernel			
Crude palm	tonne	128,549	107,610

Table 4.9 The biomass by-product in 2018 and 2019

Primary waste	Utilisation	2018	2019	Units
Empty Fruit 🌑	Fertiliser and	27104	97011	Tonne
Bunches	biomass fuel			
Mesocarp Fibers	Fertiliser and <i>C</i>	63879	109085	Tonne
_/	biomass fuel		5	
Shells	Biomass fuel	14978	14311	Tonne
POME	Fertiliser	318373	356959 AM	M^3

Based on the table in 4.8, the data shows the value of production from the palm oil mills and plantations. The value of production in 2019 is lower compare to production in 2018. For the table 4.9, the primary waste from the previous table are divided into 4 types which are empty fruit bunches, mesocrap fibers, shells and POME (palm oil mill effluent). The biomass waste by-products are used as the organic fertilizer and biomass fuel. From the data value from both table, it shows that the waste from the CPO (Crude Palm Oil) process is utilizing into something useful instead of become a pollution to the environment. The data shows the potential of the palm oil and plantation to create their own biomass power-plant that provide their own electricity.

4.8 Data analysis based on the type of Biomass Resources

Based on the data provided by Malaysia Industry- Government Group for High Technology:

Chart 1 below provides the graphical summary of the value creation for the types of biomass studies.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The chart above shows the types of biomass that consists of:

- Palm Empty Fruit Bunches (EFB)
- Palm Kernel Shell (PKS)
- Oil Palm Trunks (OPT)
- Wood Saw Dust
- Rice Husk
- Municipal Solid Waste (MSW)

The value was determined based on the following factors which are calorific value, moisture content and revenue generation from sale to grid electricity based on Feed-in Tariffs (FiT) rate under the Renewable Energy (RE) Act 2011.Value creation of power generation from biomass is calculated based on FiT rate under the RE Act 2011.FiT rate under the Renewable Energy Act 2011 is assumed to be RM0.31 per kW/hr for biomass and RM0.41 per kW/hr for MSW.

The major factor is the difference in calorific values between the biomass in wet and dry forms. EFB and OPT have high moisture content, therefore require extensive drying process for efficient conversion to energy. Next, palm EFB and OPT give the lowest value in wet forms while rice husk, PKS, and saw dust gives larger but comparable value for electricity generation. Lastly, MSW shows a significantly high value generation because of its high calorific value (21,671 MJ/MT) and the presence of high calorific contents such as plastics, paper, leather, textiles and wood in the MSW

The chart above contains biomass acquisition costs which feedstock purchase, transportation, and collection costs. This costs are important to determine the revenue generation from the sale of electricity to grid based FiT rates under the RE Act 2011 with biomass based power generation. From the chart, PKS and rice husk shows larger cost variance as compared to others. The high cost is because of the supply and demand market of biomass resources is still new and there is no standard for buying and selling the biomass resources.

Based on the chart above, MSW has the highest net value creation and the second highest is OPT. Then, EFB and saw dust. Rice husk and PKS is at the lowest with negative net value creation due to their competing uses that mark up the acquisition costs that influenced by the power generation. MSW has the highest net value creation because of the high calorific which is the presence of plastics, paper, leather, textiles and wood. EFB and OPT need to obtain more commercial ventures so it can increase the acquisition costs.

4.9 Summary

This chapter presented the results and analysis obtained from the live data provided by HOMER application for solar and wind energy. For biomass energy, the results and analysis is made from the data of production and the value of biomass resources. The type of biomass resources also been analyzed based on the potential value creations. The value is based on 3 main factors which are calorific value, moisture content and revenue generation from sale to grid electricity based on Feed-in Tariffs (FiT) rate under Renewable energy (RE) Act 2011.

Based on the simulation results for solar energy, for the geographical data, Kuala Terengganu has the highest value of annual average solar radiance compared to the other 4 locations. For the installation cost, it has the second lowest cost. So, Kuala Terengganu could be the location to implement the solar energy.

Next, for wind energy that based on the geographical data, Pulau Tioman has the highest value of annual average wind speed as it is located in island. The installation cost for the location is average compared to Pulau Redang that has the highest but low wind speed. Pulau Tioman is the ideal location due to highest wind speed and average installation cost.

According to data research, Sabah has the most power-plant due to their large palm oil region. The availibility of the biomass waste should not be a problem as there are around 1.54 million hectares the size of total palm oil in Sabah. For the types of biomass resources, Municipal Solid Waste (MSW) is the most potential type of resources based on the 2 main points which are calorific value and moisture content. MSW is also has the highest availibility as the waste has become a problem to our country. By using MSW as the main biomass resources, the environment pollution can reduce while electricity can be generate.

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this chapter, conclusion will be made by discussing whether this project is meet the objectives that have been stated in the early of the chapter. The data obtained from this project should be analyse before making any summary. This chapter also included the future recommendationA which is about the improvements that should be made in order for the project to be more successful.

Based on the objectives of the study, the highest potential renewable energy in Malaysia is Biomass as the resources is available across the country which is the Municipal Solid Waste (MSW) while the other 2 renewable energies which are solar and wind do not have constant availability. The essential factor also has been monitor by using Homer application to determine which location has the highest potential for each of the renewable energy. The essential factors are geographical data and the cost of installation that has been simulated through the Homer application. The most viable renewable energy can be implemented by developing the selected location and the data of the resources.

5.2 Future Works

The study on the viability of different type of renewable energy using HOMER application can be improved in the future in order for this project to achieve the main objectives.

First, to find the most viable renewable energy, a lot of locations needs to be analyse beforehand because there are many potential locations with different type of renewable energy located in Malaysia.

Next, for the biomass resources to develop the renewable energy, the government should provide more incentives as it can benefit the investors for the biomass industry. The relevant agencies and government bodies should involve more to bring forward the biomass renewable energy. Lastly, through all the recommendations, the project should be done according to the objectives and achieve the exact results to deciding which renewable energy is the most viable ones.

REFERENCES

A. Johari, S. S. M. R. a. H. H., 2012. *POTENTIAL USE OF SOLAR PHOTOVOLTAIC IN PENINSULAR MALAYSIA*, s.l.: s.n.

A. Y. Azman student, A. A. R. A. N. A. F. H. A. K., n.d. *Study of Renewable Energy Potential in Malaysia*, s.l.: s.n.

Ahmad, S., Kadir, M. & Shafie, S., 2011. *Current perspective of the renewable energy development in Malaysia.*, s.l.: s.n.

Amanda Halima, A. F., 2018. *Feasibility Study on Hybrid Solar Photovoltaic with Diesel Generator and Battery*, s.l.: s.n.

Anon., 2007. Potential of hydrogen from oil palm biomass as a source, s.l.: s.n.

Ashwindran, S. N., 2017. *A review on the prospect of wind power as an alternative*, s.l.: s.n.

Azah Mohamed, T. K., 2016. Optimal Sizing of a PV/Wind/Diesel Hybrid Energy, s.l.: s.n.

Aziah Khamis, T. K. N. A. H. M. Y. A. N. A., 2020. Optimal selection of renewable energy installation site in remote areas using sigmentation and regional technique, s.l.: s.n.

Chong, H.-Y., 2013. Ocean renewable energy in Malaysia: The potential of the Straits of Malacca, s.l.: s.n.

H. Borhanazad, S. M., 2013. *Potential application of renewable energy for rural electrification in Malaysia*, s.l.: s.n.

H. Fayaza, N. R. R. S. K. H. S. H. N. M. H., 2011. Solar Energy Policy: Malaysia VS Developed Countries, s.l.: s.n. TEKNIKAL MALAYSIA MELAKA

Ibrahim, M., Hwang, Y., Ismail, M. & Albani, A., 2015. *Spatial Analysis of Wind Potential for Malaysia*, s.l.: s.n.

Izadyar, N., 2016. *Investigation of potential hybrid renewable energy at various rural*, s.l.: s.n.

Jing Yan Tock, C. L. L. K. T. L. *. K. T. T. S. B., 2009. Banana biomass as potential renewable energy resource: A Malaysian case study, s.l.: s.n.

Jing Yan Tock, C. L. L. K. T. L. *. K. T. T. S. B., 2010. Banana biomass as potential renewable energy resource: A Malaysian case study, s.l.: s.n.

Koto, S. C. L. a. J., 2016. Wave Energy for Electricity Generation in Malaysia, s.l.: s.n.

M.A.A. Mohammeda, A. S. W. W. A. M. M. A., 2011. *Hydrogen rich gas from oil palm biomass as a potential source of renewable*, s.l.: s.n.

Mekhilef, S., 2010. *RENEWABLE ENERGY RESOURCES AND TECHNOLOGIES PRACTICE IN*, s.l.: s.n.

Mohd Amran Mohd Radzi1, N. A. R. H. S. C. H., 2019. *OPTIMAL SOLAR POWERED SYSTEM FOR LONG*, s.l.: s.n.

Mohd Shaharin Umar*, P. J. T. U., 2013. *Strengthening the palm oil biomass Renewable Energy industry in Malaysia*, s.l.: s.n.

N Abdullah1, *. J. J., 2019. *Experimental investigation on pineapple leaf fiber as biomass*, s.l.: s.n.

N.Gomesh, I. M. Y. M., 2013. *Study on Malaysian's Perspective towards Renewable Energy*, s.l.: s.n.

Nazani Nazri, S. A., 2018. Evaluation of Potential Sites for Harnessing Tidal, s.l.: s.n.

Noman, F., 2020. A Comprehensive Review of Wind Energy in Malaysia: Past, Present, s.l.: s.n.

Nor F. Yah, A. N. O., 2017. Small scale hydro-power as a source of renewable energy in *Malaysia: A*, s.l.: s.n.

Normazlina Mat Isa, C. W. T., 2016. *A techno-economic assessment of grid connected photovoltaic*, s.l.: s.n.

Omar Yaakob, T. M. A. B. T. A. R. M. A., 2006. Prospects for Ocean Energy in Malaysia , s.l.: s.n.

Ozturk, M. et al., 2017. *An overview of the development potential in Turkey and Malaysia,* s.l.: s.n.

RajmalJoshi.M, 2018. Comparison between Photovoltaic and Wind Turbine, s.l.: s.n.

S. Bahramara, M. P. M., 2016. *Optimal planning of hybrid renewable energy systems*, s.l.: s.n.

S.M. Shafiea, T. M. H. M. a. A. A., 2011. Current energy usage and sustainable energy in Malaysia: A review, s.l.: s.n.

Syed Shah Alam, N. F. M. N., n.d. *A Survey on Renewable energy deveopment in Malaysia*, s.l.: s.n.

Wan Syakirah Wan Abdullah, M. O., 2019. *The Potential and Status of Renewable Energy*, s.l.: s.n.

Wei Yee Teoh, S. Y. K. C. W. T. I. H. H. a. K. W. C., 2012. *Technoeconomic and Carbon Emission Analysis for a*, s.l.: s.n.

Yun Seng Lim, S. L. K. 1., 2009. *Analytical assessments on the potential of harnessing tidal currents*, s.l.: s.n.

Zaharim, A. et al., 10–12 July 2017. The Impact of Wind Technology, s.l.: s.n.

KWANTAS, 2020. s.l., s.n.

Nyakuma, B. B., 2018. Biomass Energy Outlook in Malaysia using Functions of

Innovation Systems, Skudai: Institute of Future Energy.

Rahman, N. A., 2014. *Biomass Benchmarking Study*, Cyberjaya: Malaysian Industry Government Group for High Technology. RESOURCES, T., 2019. *CORPORATE REPORT*, s.l.: s.n.

Solar PV cell diagram.

https://www.solarschools.net/knowledge-bank/renewable-energy/solar/how-a-pv-cellworks Waste to energy plant. https://www.no-burn.org/the-wte-incinerator-wastes-more-energy-

than-it-generates/ Biomass pyrolysis diagram.

https://www.bioenergyconsult.com/biomass-pyrolysis-process/ Tapered

channel diagram.

https://taperedchannelwaveenergy.weebly.com/how-does-it-work.html

Gasification process diagram. http://www.allpowerlabs.com/ Wind

energy turbine component diagram.

https://www.eepowerschool.com/wind/wind-turbine-working-principle/ Surf forecast diagram.

https://www.surf-forecast.com/ Solar KAL MALAYSIA MELAKA

thermal diagram.

 $\underline{https://www.eia.gov/energy explained/solar/solar-thermal-collectors.php} Solar$

irradiance diagram.

https://globalsolaratlas.info/map MPIA

Solar Roadshow diagram.

https://mpia.org.my/events/

2.		26.	
3.		27.	
4.		28.	
5.		29.	
6.		30.	
7.		31.	
8.		32.	
9.		31	
10.	ΗXA	34.	PIR
11.		35	
12.	MALAYSIA	36.	
13.	1	37.	
14.	111 H	38.	
15.	A	39.	
16.		40.	
17.		41.	
18.	100	42.	
19.	57Hn	43.	
20.	shi Lic	44.	
21.	منیسیا مارد	45.	اوتتوبر سنج ت
22.		46.	1
23.	UNIVERSITI TEKNIK/	AL MA	LAYSIA MELAKA
24.			

Appendix A Example of Appendix A

No. 25.

Parameters

Parameters

No.

1.

APPENDICES

Appendix B Example of Appendix B