
Faculty of Electrical and Electronic Engineering Technology

DEVELOPMENT OF VOICE COMMAND GROCERY SHOPPING LIST
MAKER BASED ON ARDUINO PLATFORM

NUR ELMIERA BINTI ISMAIL

Bachelor of Electronic Engineering Technology with Honours

2021

DEVELOPMENT OF VOICE COMMAND GROCERY SHOPPING LIST MAKER
BASED ON ARDUINO PLATFORM

NUR ELMIERA BINTI ISMAIL

A project report submitted
in partial fulfillment of the requirements for the degree of

Bachelor of Electronics Engineering Technology with Honours

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I declare that this project report entitled “Development of Voice Command Grocery Shopping

List Maker based on Arduino Platform” is the result of my own research except as cited in the

references. The project report has not been accepted for any degree and is not concurrently

submitted in candidature of any other degree.

Signature :

Student Name :

Date :

NUR ELMIERA BINTI ISMAIL

8/2/2022

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics

Engineering Technology with Honours.

Signature :

Supervisor Name : TS. DR. MOHD SYAFIQ BIN MISPAN

Date :
8/2/2022

DEDICATION

To my beloved parents,

Ismail bin Omar and Julia bt Ismail who always there with me and instilled in me the virtues

of perseverance and relentlessly encouraged me to strive for excellent in completing this

report.

To my siblings that always generates and giving idea for me to complete this report, I would

like to say thank you for always support and help me with their full of love that make me feel

motivated and always in high spirits to finish my report.

To my great supervisor TS. DR. Mohd Syafiq bin Mispan, thank you for the guidance and

encouragement for me to make sure my report and project is done well and always keep

reminds me to complete my task and always motivate me with some brilliant idea and positive

vibes also never lets any sadness dominate into my heart.

 i

ABSTRACT

In today's modern world, due to a lack of time to manage household needs, people are

always seeking a convenient and effective way of doing their daily jobs. One of the daily

activities in people's lives that could be improved is going to the grocery store. It has

become a habit for people to provide for their household needs in an orderly and complete

manner. As a result, the goal of this project is to create a system that can use voice to list

groceries and display them on a small I2C 16x2 LCD in the kitchen area. This application

will help the user to list the groceries through voice recognition and takes a short time to

list the items needed. The project that is used consists of the programmable voice

recognition module, the small LCD display, and the microcontroller Arduino Uno board

with ESP8266 (ESP-01). The list of groceries is linked to the grocery app (i.e., developed

by the previous PSM students). Whenever the user enters new data into the list via the

voice command system, the list in the Grocer App is updated. So, this mobile application

is easy to use and shortens the time for the user. Moreover, the user can add, remove, or

overwrite the list by using the grocery store's app.

 ii

ABSTRAK

Dalam dunia moden hari ini, kerana kekurangan masa untuk menguruskan hal rumah, orang

selalu mencari cara yang mudah dan berkesan untuk melakukan pekerjaan harian. Salah satu

perkara harian dalam kehidupan orang yang memerlukan penambahbaikan adalah ketika

melakukan runcit. Sudah menjadi kebiasaan bagi orang untuk menyediakan barang runcit

rumah dengan teratur dan lengkap. Oleh itu, objektif projek ini adalah untuk merancang sistem

yang boleh menggunakan suara untuk menyenaraikan runcit dan paparan pada monitor I2C

16x2 LCD kecil di kawasan dapur. Aplikasi ini akan membantu pengguna menyenaraikan

barang runcit melalui pengecaman suara dan mengambil masa yang singkat untuk

menyenaraikan item yang diperlukan. Projek yang digunakan terdiri daripada modul

pengecaman suara boleh atur cara, paparan LCD kecil I2C 16x2, dan papan mikropengawal

Arduino Uno dengan ESP8266 (ESP-01). Senarai barang runcit telah berjaya dihubungkan ke

Aplikasi Grocer (iaitu, yang dikembangkan oleh pelajar PSM sebelumnya). Setiap kali

pengguna memasukkan data baru dalam senarai melalui sistem perintah suara, daftar di

Aplikasi Grocer telah diperbaharui. Jadi, aplikasi mudah alih ini senang digunakan dan

memendekkan masa untuk pengguna. Lebih-lebih lagi, pengguna dapat menambah,

membuang atau menukar senarai dengan menggunakan Aplikasi Grocer.

 iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Ts. Dr. Mohd

Syafiq bin Mispan for his precious guidance, words of wisdom and patient throughout this

project. Their invaluable support and guidance of relevant knowledge, insightful remarks and

ideas throughout the research and thesis work has made a significant contribution to the

project’s success.

My highest sentimental appreciation and gratitude to my beloved parents, Mr. Ismail

bin Omar and Mrs. Julia binti Ismail, as well as my siblings, for their love, prayers,

encouragement, understanding, support and contributions throughout my entire life. And thank

you to everyone who has helped and contributed to this study effort, whether directly or

indirectly. Your generosity means a lot to me and will never be forgotten. Thank you kindly.

My best wishes go to all my university colleagues for their moral support, information

sharing, and encouragement. Thank you once again for your friendship and memorable

experiences.

iv

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS ix

CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Problem Statement 2
1.3 Project Objective 3
1.4 Scope of Project 3

CHAPTER 2 LITERATURE REVIEW 4
2.1 Introduction 4
2.2 Microcontroller 4

2.2.1 Comparison between Microcontroller 5
2.3 Mobile Application 8

2.3.1 Mobile Application Development 9
2.3.2 Mobile Operating System 10

2.4 Mobile Database 12
2.5 Voice Recognition Mobile Application 13
2.6 Previous Research Papers 14
2.7 Summary previous research projects 19
2.8 Summary 25

CHAPTER 3 METHODOLOGY 26
3.1 Introduction 26
3.2 Methodology 26

3.2.1 Planning Phase 27
3.2.2 Analysis Phase 27
3.2.3 Design Phase 27

v

3.2.4 Implementation Phase 28
3.2.5 Maintenance Phase 28

3.3 Whole Planning 28
3.4 Project Overview 29

3.4.1 Developing the System Application 29

3.5 System Design 31
3.6 Requirement Analysis 32

3.6.1 Software Requirement 32
 3.6.2 Hardware Requirement 33

3.7 Gantt Chart 39
3.8 Summary 40

CHAPTER 4 RESULTS AND DISCUSSIONS 41
4.1 Introduction 41
4.2 Project Graphical User Interfaces 41

 4.2.1 Main Menu Interface of Grocer Application 42
 4.2.2 Voice Input Ordering Lists 43

4.3 Analysis of The Hardware Implementation 45
4.4 Summary 48

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 49
5.1 Introduction 49
5.2 Conclusion 50
5.3 Recommendation 50

REFERENCES 51

APPENDICES 53

vi

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1 Comparison between NodeMCU ESP8266 and Arduino Uno 7

Table 2.2 Summary of the previous voice command projects 19

Table 2.3 Gantt Chart 39

Table 2.4 Rate of Voice Command Success At 5 cm Distance 46

Table 2.5 Rate of Voice Command Success At 10 cm Distance 47

Table 2.6 Rate of Voice Command Success At 15 cm Distance 48

vii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 2.1 Example of Microcontroller 5

Figure 2.2 Example of NodeMCU ESP82666 5

Figure 2.3 Example of Arduino UNO 6

Figure 2.4 Google Android 11

Figure 2.5 iOS for iPhone 11

Figure 2.6 Firebase is Realtime Database 12

Figure 2.7

Figure 2.8

MySQL is a database system used on the web

Train's menu of fast CB apps, such as a command list, data testing,

13

 and assistance. 15

Figure 2.9

Voice command and Directional Control Interfaces with Prototype

15

Figure 2.10 Android Application Showing Notification 16

Figure 2.11 Android Galaxy S Smartphone (Left), Bluetooth Transfer Station 17

Figure 2.12 Experiment with a suite of mobile applications 18

Figure 3.1 Waterfall Model 27

Figure 3.2 Flowchart of Objective 1 29

Figure 3.3 Flowchart of Overall System 30

Figure 3.4 Block diagram of voice command application 31

Figure 3.5 Interface of Mobile Application 32

Figure 3.6 Firebase Database 33

Figure 3.7 Arduino UNO 34

Figure 3.8 Components of voice module 35

viii

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

I2C 16x2 LCD

ESP8266 (ESP-01) WiFi Module

Breadboard

LED

Jumper Wires Male to Male

35

 36

 37

 37

 38

Figure 4.1 Main menu Interface of Grocer Application 42

Figure 4.2 Voice input lists on voice input menu 43

Figure 4.3 Firebase Database 44

Figure 4.4 Hardware Design 45

ix

LIST OF ABBREVIATIONS

API - Application Programming Interface

GPIO - General Purpose Input/Output

HTML - Hypertext Markup Language

iOS - iPhone Operating System

IoT - Internet

JSON File - JavaScript Object Notation

LCD - Liquid-crystal display

OS - Operating System

PIR sensor - Passive infrared

PWM - Pulse-width modulation

TCP/IP - The Internet protocol suite

1

CHAPTER 1

INTRODUCTION

1.1 Background

 In today's world, a portable computer, such as a smartphone, has become an

essential part of our daily lives. Android is the operating system for these cellphones. Today, the

three most widely used smartphone operating systems are Apple's iOS, Google's Android, and

Microsoft's Windows. Each of these operating systems has a unique mix of advantages and

disadvantages. iOS, Android, and Windows all have 1.4 million, 1.5 million, and 0.3 million

applications installed, respectively, according to Statista. (Statista,2015). The cell phone has

fundamentally altered people's lives. Nowadays, people interact less using SMS, preferring to

interact using instant messaging services that need an Internet connection, such as WhatsApp

or Telegram. Apart from that, cellphones have GPS, which enables users to navigate via

navigation applications.

 Today's internet businesses prioritise not just their websites, but also their mobile

platforms. Mobile users have overtaken device users for the first time, according to Mobile

Marketing Statistics 2015. Additionally, online analytics company Flurry reports that 80

percent of mobile advertising time is spent on apps rather than browsers. This is why internet

firms must build mobile applications in order to remain competitive. Through push

notifications, a client may get the most up-to-date information through a mobile application on

their smartphone.

2

 While grocery shopping might be intimidating, virtually everyone will have to do it

at some time. Through the use of the current online retail buying mobile application, a new

voice command capability for smartphones has been developed to aid customers with online

grocery shopping and to quickly list the things required. Each suggested application comes

with a unique set of disadvantages. In conclusion, this project will provide a new menu of

voice command mobile applications that will make it simple to list grocery goods utilising the

kitchen's voice command system.

1.2 Problem Statement

 Voice commands combined with technology are becoming more prevalent in

everyday life. As a result of voice search's growth and interest among internet users,

eCommerce enterprises must include voice search optimization in their marketing efforts. As

an example, consider online grocery buying on the Android platform.

 As a result, the current online retail purchasing mobile application must be

enhanced to make it simpler for customers to shop for groceries online from the comfort of their

homes. Voice commands should be integrated into the current online retail purchasing mobile

application system to facilitate the listing of grocery goods. Additionally, by utilising the

Grocer App's voice command, users may save time by avoiding the need to travel to the living

room if they forget to bring their mobile device with them while listing grocery goods in the

kitchen.

 Additionally, there are certain complications when a customer must recall kitchen

supplies that have run out and wants to purchase them impulsively at home. The answer to this

issue is to design a mobile application that supports voice commands and is capable of taking

orders for things in real time while also reducing the usage of paper for grocery lists. Hence, voice

commands on the grocer's app may assist.

3

1.3 Project Objective

The objective of this project is to list the groceries through voice commands and take a short

time to list the items needed. Specifically, the objectives are as follows:

a) To design a system that uses voice commands to list groceries and display

them on a small LCD.

b) To execute the voice command to be displayed directly on the small LCD and

Grocer apps at the same time.

c) To evaluate the accuracy of the voice command of the system.

1.4 Scope of Project

The scope of this project are as follows:

a) This system is used for voice command grocery shopping list makers, and it

includes some new feature that make it easier to use and save the user time.

b) This application will help the user to list the groceries through voice recognition

and takes a short time to list the items needed.

c) The voice recognition module is considered for any 7 voice commands in the

library that could be imported into recognizer. It means 7 commands/words are

effective at the same time.

d) It requires a Wi-Fi connection to work.

e) When a user adds new data by voice command, the Grocer App updates the list.

f) All data collected by the Grocer App will be stored in the Firebase database.

g) It is an application that is based on the Android platform

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 This chapter aims to explore the project's relation to other research in order to do

better research and minimize the excessive recurrence of the study's issue areas. All

information was gathered from credible sources such as journal papers, books, conference

proceedings, and websites. A voice command shopping list maker application on a Arduino

based platform is one that allows the user to list groceries using speech recognition and takes a

little time to list the things required. This chapter's content contains an explanation of the

function and a comparison of the components.

2.2 Microcontroller

 A microcontroller (MCU, abbreviation for microcontroller unit) is a kind of

microcomputer that is based on a single metal-oxide-semiconductor (MOS) integrated circuit

(IC). A microcontroller consists of one or more central processing units (CPUs), memory, and

programmable input/output peripherals (Moskowitz, Sanford L, 2016). Additionally, on-chip

programme memory in the form of ferroelectric RAM, NOR flash, or an OTP ROM is

prevalent, providing a tiny amount of RAM.

 In modern use, a microcontroller is similar to, but less complicated than, a system

on a chip (SoC). A microcontroller may be one of the components of a system-on-chip (SoC),

although it is commonly combined with advanced peripherals such as a graphics processing

unit (GPU), a wireless module, or one or more coprocessors (Moskowitz, Sanford L, 2016).

5

 For my project, I used the Arduino Uno microcontroller for research. As a result, the

Methodology section discusses the usage of hardware and the kind of microcontroller in this

project in more depth.

Figure 2.1 Example of Microcontroller

2.2.1 Comparison between Microcontroller

NodeMCU is an open source development board based on the ESP8266

microcontroller. The ESP-8266 module is a wireless microcontroller board that may be

programmed. The ESP8266 Wi-Fi board is a system-on-chip (SOC) with an integrated

TCP/IP protocol stack that can connect any secondary microcontroller to a Wi-Fi network.

Because the ESP8266 board is capable of hosting an application or offloading all Wi-Fi

networking tasks to another application processor, it is well suited for usage as a sensing

node capable of sensing data from numerous wirelessly linked IoT sensor nodes and

delivering it to a central server.

Figure 2.2 Example of NodeMCU ESP8266

6

 While Arduino is an 8-bit microcontroller development board equipped with a USB

programming port for connecting to a computer and other connections for interfacing to other

devices such as sensors, motors, speakers, and diodes. It has both input and output pins, with

the inputs being either digital (0–13) or analogue (A0–A5), while the output pins are all digital

(0–13). The Arduino board design, as well as the integrated development environment that

includes a cross-compiler, a debugger, and a serial monitor for controlling the inputs and

outputs, is open source. Arduino may be powered through a USB cable connected to a

computer, a 9V battery, or an external power source.

Figure 2.3 Example of Arduino Uno

7

Table 2.1: This is the comparison between NodeMCU ESP8266 and Arduino Uno.

NodeMCU ESP8266 Arduino Uno

Advantages

• NodeMCU is one of the

easiest to use, since it

already has the necessary

processing capability to

run its applications, and it

still has a direct

connection to Wi-Fi (D.

Bento, 2018)

• NodeMCU makes direct

references to its libraries,

eliminating the need for

extra libraries; the

method of connection and

use is as simple as

selecting the device type

on the platform. (D.

Bento, 2018)

• The Arduino Uno is an

excellent learning platform

for embedded programming

but does not have an

integrated Wi-Fi module.

(Müller, Mohammed and

Kimball, 2015)

• It is easy to use, programme

and integrate Arduino

controllers into electrical

applications. (Müller,

Mohammed and Kimball,

2015)

• During the research

papers, detect a few

references on the

NodeMCU, due to the

• Has limited capabilities

using the standard libraries.

(Müller, Mohammed and

Kimball, 2015)

8

Disadvantages

fact that it is a new

product, recently debuted

in the market. (D. Bento,

2018)

• The number of pins on the

NodeMCU ESP8266 is

significantly less than the

number of ports on the

Arduino Uno. (D. Bento,

2018)

• It is based on an 8-bit

microprocessor. The

Arduino Uno seems to have

little computer power.

(Müller, Mohammed and

Kimball, 2015)

2.3 Mobile Application

A mobile app is a computer programme or software application, commonly called

a mobile application or an app, intended to operate on a mobile device, such as a phone, a

tablet or a wristwatch. Although applications such as email, calendars, and contact databases

were initially developed to aid in productivity, public demand for apps has resulted in rapid

development in other areas, such as mobile gaming, factory automation, GPS and location-

based services, order-taking, and ticket purchases, resulting in the availability of millions of

applications. Mobile applications are an evolution of desktop programmes for use on desktop

computers and web applications for use on mobile web browsers rather than directly on the

mobile device. (R. Islam and M. Mazumder, 2010).

9

2.3.1 Mobile Application Development

There are several classification schemes for mobile apps. A frequent technique is to

distinguish between native mobile applications, web-based applications, cross-platform

applications, and hybrid applications. Native applications are those that are specifically

created for a particular mobile platform. As a consequence, an Apple iPhone app will not run

on an Android smartphone (Khandeparkar, Gupta and B.Sindhya, 2015). As a consequence,

the vast majority of businesses develop apps for a variety of platforms. Professionals build

native applications using best-in-class user interface components. This results in increased

speed and stability, as well as a more favourable user experience (Khandeparkar, Gupta and

B.Sindhya, 2015).

A web application is developed using standard web technologies such as HTML,

CSS, and JavaScript. In contrast to offline use, an internet connection is often required for

proper action or access to all the features. The cloud stores the vast majority, if not all, of

user data (Delia et al., 2015). However, since online methods or apps employ client-server

interaction, the response time is slower and the technique is less appealing than the native

approach since it is not installed on the devices (Delia et al., 2015).

The hybrid pattern is similar to the web approach in that it makes use of web

technologies such as HTML, JavaScript, and CSS but is not browser-based. They instead run

in the web container of the device, which enables increased access to device-specific data

capabilities given through application programming interfaces (Delia et al., 2015). Finally,

it leverages a procedure known as cross-compilation for cross-platform approaches. The

source code will be transformed into native binaries, and the cross-compiler will create

platform-specific executable code (Abrahim, 2016). These are intended to facilitate the use

of web and native technologies across a range of platforms. Additionally, these applications

are easier and quicker to develop. It refers to the use of a single codebase that runs across a

10

variety of mobile operating systems. Despite these advantages, hybrid applications struggle

to execute well. Apps commonly fail to maintain a consistent look and feel across several

mobile operating systems (Abrahim, 2016).

2.3.2 Mobile Operating System

Now that technology has advanced to its pinnacle, each smartphone has its own

operating system built by the manufacturer to ensure device compatibility and support. A

mobile operating system (Mobile OS) is a software framework that allows other programmes

known as application programmes to run on mobile devices such as personal digital

assistants (PDAs), tablets, cellular phones, and smartphones (CMER, (2014). It is known as

a mobile operating system. There are various mobile operating systems available today. The

two most common operating systems seen on cellphones are Android OS and iOS. These

two mobile operating systems use different approaches.

The Android OS for mobile devices is developed by the Open Handset Alliance,

which is headed by Google. Google released the Android operating system in November

2007. The bulk of the Android core code is open source and published under the Apache

License, but the bulk of the software on the Android devices (such as the Play Store, Google

Search, Google Play Services, Google Music, and so on) is proprietary and licensed (NCSU,

2014). Because each Android application runs in its own process with its own Unix User

Identifier (UID) and permissions, apps cannot read or write each other's data or code in

general. At this stage, the Android system seeks authorisation from the user; a technique for

delivering permission dynamically at runtime is not feasible but would improve security

transparency (Renner T., (2014).

11

Figure 2.4 Google Android

iOS (formerly known as iPhone OS) is an Apple Inc. mobile operating system that

is exclusive to Apple devices (Gartner) (2017). Apple's iPhone, iPad, iPod Touch, and Apple

TV all run on this operating system. It is proprietary and closed source, based on the open

source Darwin core operating system. iOS promotes a new kind of user interaction,

especially direct manipulation, for small-screen, limited-input devices. iOS is built on Mac

OS X and shares the Darwin core with that operating system, which is an open source

POSIX-compliant UNIX operating system (NCSU 2014). This verifies that the programme

was not modified and enables the runtime to detect if an application has become

untrustworthy since it was last used. In contrast to Android applications, iOS applications

may only be signed with an official certification (Apple2) (2014).

Figure 2.5 iOS for iPhone

12

2.4 Mobile Database

The Firebase Realtime Database (Firebase) is a cloud-based NoSQL database that

enables real-time data synchronisation and storage between users. To design serverless

applications, users cooperate across several devices. Firebase, a Google product launched in

2017, syncs data in real time through Android, iOS, and JavaScript SDKs, enabling

expressive searches that grow in size in proportion to the result set. Users who do not need

real-time data synchronisation may profit from the one-time reading feature.

To simplify things, the Android application utilises Firebase to store and send data.

Because Firebase is free (though it may charge a very tiny yearly cost if the number of users

exceeds the free limit), and it supports real-time database systems, it is well suited for them

(Sarkar, Gayen and Bilgaiyan, 2018). Fees are quite costly in comparison to other local

servers, and performance is totally reliant on the fees paid to these servers. In comparison to

the local server, the Firebase server does not discriminate on the basis of price or

performance. Firebase is distinguished by a variety of qualities that distinguish it from other

servers. Firebase Storage, Firebase Databases, Firebase Authentication, and Firebase

Functions are just a few of the advanced features. As seen in Figure 2.6, the Firebase

Realtime Database is a cloud-based database management system.

Figure 2.6 a Firebase is Realtime Database

MySQL is the world's most popular open-source database, founded by Oracle. It is

compatible with FreeBSD, Linux, OS X, Solaris, and Windows server operating systems. It

13

is a relational database management system (RDMS) founded on the structured query

language (SQL). Unlike Firebase, MySQL is a free and open-source database management

system. MySQL may be installed in the cloud or on-premises by users.

MySQL is a widely used database for use in web applications and is a critical

component of the well-known LAMP open-source web application software stack (and other

"AMP" stacks). MySQL may be developed and installed using source code, but it is most

often installed as a binary package unless special customizations are required. In the majority

of Linux distributions, the package management system automatically downloads and

installs MySQL, although further configuration is often required to modify security and

optimization settings (Kazan, F. A., Terziolu, H., and Aaçayak, A. C., 2015).

Figure 2.7 MySQL is a database system used on the web.

2.5 Voice Recognition Mobile Application

While voice recognition is a technology that makes use of desirable equipment and

a service that can be handled by speech, this issue impacts a large number of other people as

well. In other words, the user talks to devices that employ speech recognition programmes

to recognise what is said. The spoken words will be transformed into a digital signal, which

will transform sound waves to a sequence of numbers that will then be adjusted to the code-

specific code used to identify the word (Kwang B. Lee, Roger A. Grice, 2018). The rapid

spread of cellular connectivity has increased the need for speech recognition systems. Speech

applications that include speech interfaces, speech recognition, and voice conversation

14

management may aid users in maintaining focus on their current job without demanding

additional effort from their hands or eyes (Kwang B. Lee, Roger A. Grice, 2018). As a result,

I researched this voice command application in more depth in this area by doing research on

previously researched relevant articles.

2.6 Previously Proposed of Voice Command Android Mobile Application

From the previous study, (Siagian and Hutauruk, 2018) proposed Voice controller

mobile android application. The study's goal was to create an interactive android application

that also integrated certain capabilities that are already available on android-based

smartphones, such as attending to a line calling function and an outgoing calling feature,

using voice commands that could be used on a tablet or any android -based phone.Speech

recognition contains a data set to translate between user descriptions and the labels in the

database, which contains entries on the speech recognition (sounds and patterns) that make

up the sound. The system application includes data training, list commands, testing, and help.

It accepts voice commands and performs operations in accordance with them. People with

limited reading skills who are sighted can also utilise this programme if they are engaged in

activities that prohibit them from reading.

The system's goal was to create the needed application using the Android Software

Development Kit (SDK) to create a range of tools and APIs. It is based on the Linux kernel,

and the Android operating system makes use of C / C + + libraries. As a result, having four

data voice classifications in this class enables access to the speech recognition service for

basic features such as (e.g., line calls, outgoing call features) (see Figure 2.8). The database

includes many forms of speech recognition (sounds and patterns) that comprise the sound.

This program is appropriate for the blind because it allows the child blind (CB) to

communicate and move independently.

15

Figure 2.8 Train's menu of fast CB apps, such as a command list, data testing, and

assistance.

Elsewhere, from previous study, (Madiba, Owolawi and Mapayi, 2019) proposed

Wi-Fi Enabled Speech Automated Guided Vehicle using Android and NodeMCU. The

project aimed to analyse the reaction of the vehicle to the supplied spoken instruction for

varied directional movement, as well as obstacle recognition and collision avoidance. This

paper creates an autonomously guided vehicle employing Arduino Uno as the system's core

intelligence and an ultrasonic sensor for obstacle detection and avoidance. It communicates

through Wi-Fi utilising voice instructions from an Android smartphone. As a result, the study

produced very promising results, with accuracy, sensitivity, and precision rates of 100

percent for directional movement, sensitivity and accuracy rates of 70 percent and 85 percent

for obstacle detection in the right direction, and sensitivity and accuracy rates of 80 percent

and 90 percent for obstacle detection in the left direction, with precision rates of 100 percent.

Figure 2.9 Voice command and Directional Control Interfaces With Prototype Design of

the Proposed Automated Guided Vehicle

16

In another study, from a previous study, (Afandi and Sarno, 2020), the proposed

paper is Android Application for Advanced Security System based on Voice Recognition,

Biometric Authentication, and the Internet of Things. The goal of this study is to have

complete control over your home from any of its corners. Home security has long been a key

issue for people all over the world. By using the smart home application, the user will receive

immediate notification of any intruder (i.e. giving off a burglar alarm). The concept of home

automation and security via the Internet of Things is accomplished in this article by utilising

a low-cost microcontroller-based Arduino board, an Android device, and Firebase services.

Arduino is mostly used for prototyping. It accesses the Internet through a WI-FI hotspot. The

Arduino may easily be set to connect to the internet and programmed. To obtain the needed

data, we use a PIR sensor and a Flame Sensor on the hardware. As a result, it has played an

important and necessary role in the fields of home automation and security, making our lives

easier with the smart features inherited from automation.

Figure 2.10 Android Application Showing Notification.

17

 According to (Mulhern, N. McCaffrey, N. Beretta, 2013), a proposed paper

designing android applications using voice controlled commands: For hands-free interaction

with common household devices. This paper is intended to help people with disabilities. It

enhances previously developed offline voice control of household equipment using an input-

output peripheral interface control processor powered by an application on the Galaxy S

Android mobile phone. The application was created to identify key word instructions and

deliver signals to the appropriate pins on the input-output board.

 The execution of a command was enabled via the smart phone's interface with a

television remote. The transfer station displayed contains the majority of the hardware

components, which are the Android Galaxy S Smart Phone, the Direct Television remote and

the Generic Television. The Eclipse software development kit (SDK) is used as the computer

programming environment for system development. As a result, even in the presence of

ambient noise, high-quality speech recognition and command execution may be performed at

greater distances. This project will continue to provide a socially-current method of wireless

voice control to ease everyday domestic tasks. The gadget also has the potential for major

use in assistive technology domains, boosting users' domestic freedom.

Figure 2.11 Android Galaxy S Smartphone (Left), Bluetooth Transfer Station (Middle),

Direct TV Remote (Right), Generic Television (Top), Bluetooth Transfer Station (Right)

18

 Elsewhere, Home Automation System Based Mobile Application is proposed by

(Suesaowaluk, 2020) which work includes the development of a mobile application that serves

as an end-user interface, allowing users to remotely control a household appliance by

performing two separate tasks: first, turning on the appliance and second, turning it off. Voice

command and graphical user interface through button pushing are two types of user interface.

Effective work serves the needs of the family and the elderly first and foremost, and it may

also assist disabled individuals by allowing them to live independently of their family

members. Second, regular citizens may construct a system for their homes by expanding the

fundamental communication equipment they already own at an affordable cost.

 The components utilised in this system include ESP8266 Wi-Fi module, relay

switches, and four Chanel input ports, along with a Graphical User Interface (GUI) made by

Blynk, a smartphone application, and voice control using the Google Assistant. As the result,

users with the ability to control and manage appliances located within their homes.

Additionally, homeowners who choose to turn on and off certain electrical appliances may do

it using a command rather than having direct access to the equipment. This technique is

sensible, and it benefits the aged, the disabled, and the general public.

Figure 2.12 Experiment with a suite of mobile applications based on a home automation

system.

19

2.7 Summary of the previous voice command projects

Table 2.2 Summary of the previous voice command projects.

No. Author Title Components Method Advantages Disadvantages
1 (Khotimah, Khusnul

Santoso, Agus Budi

Ma'Arif, Miftahul

Azhiimah, Alfiantin

Noor Suprianto,

Bambang

Sumbawati, Meini

Sondang Rijanto, Tri,

2020)

Validation of

Voice

Recognition in

Various Google

Voice Languages

using Voice

Recognition

Module V3

Based on

Microcontroller

1. The Voice

Recognition Module

V3 is used to match

voice commands

2. Arduino Uno

Atmega328, LED as

an actuator

3. LCD 16 x 2

4. mobile phone (google

voice) as a voice

source

5. Arduino IDE software

This Voice Recognition

Module (V3) employs user

voice instructions. Voice

instructions are utilised as

a code to turn on and off

the lights. Voice

commands are used as

examples, e.g. the phrases

"lights on" to turn on the

lights, and "lights off" to

turn them off. The

command would be

The clarity with

which voice

instructions are

spoken has an effect

on their success rate.

The further the

distance between the

microphone and the

Google voice

speaker is, the lower

successful voice

commands are.

20

 6. Voice Recognition

Module V3's voice

command database

formed using 9 (nine)

different languages that are

picked randomly and

based on Google Voice.

Indonesian, English,

Chinese, Japanese,

Korean, Swedish, Italian,

Latin, German.

2 (Isyanto, Haris

Arifin, Ajib Setyo

Suryanegara,

Muhammad, 2020)

Design and

Implementation

of IoT-Based

Smart Home

Voice

Commands for

disabled people

1. Arduino Uno Rev 3

2. Modem Wireless

3. Relay

4. Power Supply Unit

(PSU)

Users do not have to move

to activate or deactivate

electrical devices. When

the pronunciation is

accurate, the Google

Assistant programme will

receive voice instructions.

The design is helps

those with

disabilities engage

with their

environment.

There are significant

obstacles to creating

devices employing

Wireless Sensor

Networks.

21

 using Google

Assistant

5. Output socket to

control electrical

equipment.

6. Android smartphone

with Google Assistant

Without the need to type

text messages, voice

commands are more

convenient to use.

3 (Lee, Kwang B.

Grice, Roger A.,

2006)

The design and

development of

user interfaces

for voice

application in

mobile devices

1. Wireless Network

2. Personal digital

assistants

3. Mobile computing

4. Mobile devices

5. Voice applications

6. Voice-based interfaces

7. Dictionary-and-text

file database

Real-world mobile device

applications are built using

a commercial speech

engine and then usability

testing is used to improve

their performance. In

addition, the system

utilises voice interfaces

and speech recognition

algorithms developed in

Be completely,

naturally, and

effortless to use

Without little

training, most

humans can use

speech apps to

perform many tasks,

and so this large

range of applications

Until now,

commercial mobile

devices have not yet

been applied in this

manner. Since the

application's

prototype is limited

to a single tiny

domain, it may not

respond to voice

22

 earlier and in-progress

work to build the mobile

application.

will be useful in a

smart city

environment.

instructions and

natural speech from

the actual world. The

environment of the

field can change,

impairing speech

accuracy. The

application would be

less advanced if we

didn't use noise

control.

4 (Aktar, Nasrin

Jaharr, Israt

Lala, Bijoya, 2019)

Voice

Recognition

based intelligent

Wheelchair and

1. Voice recognition

module, V3

2. GPS module

3. Mobile application

A wheelchair is fitted with

a GPS module, and with

this feature, the patient is

able to control the

The Firebase-

supported system is

quick and

inexpensive and also

Didn’t use noise

control.

23

 GPS Tracking

System

4. Arduino with Wi-Fi

module

5. Firebase

6. IR Sensor

7. Handicapped people

with wheelchair

wheelchair with voice

instructions. To identify

the patient's voice, the

voice module V3 is used.

This kit translates voice

commands into

hexadecimal numbers and

then transfers that data to

the wheelchair's Wi-Fi

module. The Wi-Fi

module is in contact with

the motor driver IC, which

tells it to move the wheels

in the specified direction.

much more user-

friendly than the

typical GSM-based

navigation systems.

24

5 (Suesaowaluk,

Poonphon, 2020)

Home

Automation

System Based

Mobile

Application

1. Arduino Uno

2. Graphical User

Interface (GUI) by

Blynk App

3. Voice Control Google

Assistant

4. Relay 2 and 4 Chanel

5. Smartphone

application

This system can be

managed remotely via the

internet as well as locally

via the Wi-Fi system. The

system is divided into two

modules: a mobile user

interface that enables

command of the system,

and a GUI created from

button pushing for both

voice control and a

graphical user interface.

Module two is an

experimental set of home

Benefits first, elderly

families, elderly

people, and disabled

people can empower

themselves so that

they are the least

burden to their

family members.

Secondly, the

general public can

construct their own

systems by

expanding basic

communication

The number of

various equipment,

such as air

conditioners and

additional light

bulbs, would be

expanded to match

the demands of

growing

consumption.

 appliance-linked devices

and development tools.

equipment to the

necessary capacity.

25

2.8 Summary

The research papers on the existing voice command projects provided us with some

ideas for our creation. Additionally, this chapter highlights the technology and critical

components utilised in the development of this product's hardware and software. According

to the literature analysis, each approach utilised in the study has distinct benefits and

limitations that make it appropriate for the project.

26

CHAPTER 3

METHODOLOGY

3.1 Introduction

 This chapter aims to cover all the details of the whole system from the beginning

until the end, and the flow of steps involved in the development of this "Voice Command

Grocery Shopping List Maker based on the Arduino Platform". Other than that, this chapter

also discusses all the details about all the equipment used in this project. In this chapter, we

also implemented a project methodology or the way this project will develop.

3.2 Methodology

The waterfall model was used to create this project. Each subsequent phase in the

creation cycle will begin where the previous one ended. Once a phase's work has been

approved, the phase comes to a conclusion and the following phase starts.

The benefits of the waterfall approach are that it allows for the identification of

requirements well before programming begins. The waterfall also has the advantage of

limiting the number of changes that must be made as the project progresses. Additionally,

the Waterfall paradigm is straightforward to implement and comprehend.

27

Figure 3.1 Waterfall Model

3.2.1 Planning Phase

The first step in implementing this strategy is to brainstorm ideas and discuss the

project title with the supervisor. When providing a project title, the overview of the intended

project is often included. A Gantt chart will be prepared throughout this phase to guarantee

that all planned activities are carried out as scheduled.

3.2.2 Analysis Phase

This step collects all the application criteria. The problem statement, aim, and scope

of the project have all been defined. The majority of precise information is gained via

observation. During this step, a literature evaluation of the present research article is also

undertaken to ascertain the application's added value.

3.2.3 Design Phase

 The framework and configuration specifications were developed with an emphasis on

functionality evaluation after the identification of project needs. The design phase provides an

28

overview of the application. A few diagrams are necessary, including a context diagram, a data

flow diagram, and a user interface diagram.

3.2.4 Implementation and Testing Phase

 This stage is often referred to as development, building, or coding. After the design

is ready, begin developing the interface's code. Using Android Studio, an application will be

built throughout this process.

Once the implementation is complete, the application is tested. Any inaccuracies or

omissions can be located here. It will perform all the testing operations necessary to

guarantee that the application operates as anticipated and satisfies the requirements.

The next step is to connect the hardware with the mobile application that has been

built.

3.2.5 Maintenance Phase

System maintenance is the last phase of the waterfall paradigm. During this step, it

will guarantee that the application is up and operating in the appropriate environment.

3.3 Whole Planning

In this, Projek Sarjana Muda (PSM) or Bachelor Degree Project (BDP) has been

split into two sections, which are PSM 1 and PSM 2. All PSM students need to find a lecturer

as their supervisor in PSM 1 and propose their project or select the project given by their

supervisor. A meeting is arranged to discuss the project between the supervisor and the

student. Then, to identify the hardware components and software that will be developed in

this project, research on the project needs to be done.

29

3.4 Project Overview

 In this section, a flowchart will be presented to illustrate the progress of this project

while making a thesis and constructing a system to make this project work to achieve the

desired results. In addition, this section also presents the system design of the application.

3.4.1 Developing the System Application

Figure 3.2 Flowchart of Objective 1

According to figure 3.2, the distance and volume of the voice affect the recognition

rate of voice commands. The more distant you are from the voice module's microphone, the

30

more successful the voice commands are. Consequently, the shorter the distance between the

speech module microphone, a high number of voice commands will be successful.

Figure 3.3 Flowchart of overall system

Before using the application, users need to enter self -authentication first. Once the

application system has confirmed the user's identity as a valid user, the user can open the

main menu list in this application. If the system is unable to identify the user’s identity

verification, the user has to register as a new user. When the voice module identifies a voice

command, the Grocer application will display the order that has been placed and the order

will be checked out. If it is successful, the order will be displayed. If there is an addition to

the order, the user can return to the main menu list of voice input button of this application.

31

3.5 System Design

Figure 3.4 Block diagram of voice command application based on Arduino Uno with
ESP8266 (ESP-01)

 For this system design, the voice module recognizes the voice command by using

microphone. The system will check to see if the grocery lists are displayed on the kitchen's

small LCD. Otherwise, the voice command is not correctly received and cannot be displayed

on an small LCD in the kitchen area for the user, but it will continue.

 Following successful verification by the programmable voice module, the user's voice

input is added to the Arduino UNO with ESP8266 (ESP-01), allowing the temporary memory of

grocery lists to be displayed on a small LCD in the kitchen while also being displayed on the

Grocer App’s voice input menu. The ESP8266 (ESP-01) WiFi Module is used in this project to

connect the hardware and the Android application. When a new piece of data is entered into the

list by the user using the voice command system, the list in the Grocer App will be updated

accordingly. Specifically, the data is kept in the Firebase database. If the result is acceptable, the

lists are displayed in the Grocer app on the user's mobile phone and on a small LCD at the kitchen;

otherwise, the Grocer app does not take the command order from the voice module and nothing

32

happens. To list the items, the user must speak into the microphone several times until the system

recognises the voice and allows user to list the things.

3.6 Requirement Analysis

3.6.1 Software Requirement

• Android Studio

Among the platforms for building mobile applications is Android Studio, which

supports the Java and Kotlin programming languages, among other things. Furthermore,

Android Studio enables users to build applications by leveraging APIs and libraries, which

makes the development process more straightforward and user-friendly.

Figure 3.5 Interface of Mobile Application based Android Studio

33

• Firebase Database

To simplify things, the Android application uses Firebase to store and send data.

Because Firebase is free (though it may charge a very tiny yearly cost if the number of users

exceeds the free limit), and it supports real-time database systems, it is well suited for them

(Sarkar, Gayen and Bilgaiyan, 2018). Fees are quite costly in comparison to other local

servers, and performance is totally reliant on the fees paid to these servers. In comparison to

the local server, the Firebase server does not discriminate on the basis of price or

performance. Firebase is distinguished by a variety of qualities that distinguish it from other

servers. Firebase Storage, Firebase Databases, Firebase Authentication, and Firebase

Functions are just a few of the advanced features.

Figure 3.6 a Firebase is Realtime Database.

3.6.2 Hardware Requirement

• Microcontroller hardware requirements

 Arduino is an 8-bit microcontroller development board equipped with a USB

programming port for connecting to a computer and other connections for interfacing to other

devices such as sensors, motors, speakers, and diodes. It has both input and output pins, with

the inputs being either digital (0–13) or analogue (A0–A5), while the output pins are all digital

(0–13). The Arduino board design, as well as the integrated development environment that

includes a cross-compiler, a debugger, and a serial monitor for controlling the inputs and

34

outputs, is open source. Arduino may be powered through a USB cable connected to a

computer, a 9V battery, or an external power source.

 It contains 14 digital I/O pins (of which 6 are PWM outputs), 6 analogue inputs, a 16

MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button.

It comes with everything needed to support the microcontroller; simply connect it to a

computer through USB or power it using an AC-to-DC adapter or battery to get started. The

FTDI USB-to-serial driver chip is absent from the Uno, as is the case with all previous boards.

Instead, it uses an Atmega8U2 that has been coded as a USB-to-serial converter.

Figure 3.7 Arduino Uno with board

• Voice Recognition Module

 The voice recognition module is a compact, easy-to-use spoken recognition board

that is tiny and simple to operate. It is a speaker-dependent module that is capable of recognising

up to 80 different voice commands at a time. Any sound may be trained to function as a command.

It is necessary for users to train the module before any voice command may be recognised. Voice

instructions are placed together in a large group, similar to how books are arranged in a library.

Any of the seven voice commands in the library might be loaded into the recognizer programme.

This signifies that seven commands are active at the same time.

 There are two ways to operate this board: the Serial Port (which has complete

functionality) and the General Input Pins (part of the function). The General Output Pins on the

35

board were capable of generating a variety of different waves when a corresponding voice

command was received and recognised.

Figure 3.8 Components of the Voice module

• I2C 16x2 LCD

Liquid crystal display technology is designed to filter out light. In order to

construct an LCD, two pieces of polarised glass (also known as a substrate) are bonded

together with a liquid crystal material sandwiched in between. A backlight emits light that

flows through the first substrate and into the second substrate. Electrical currents enable the

liquid crystal molecules to align at the same time, allowing varying amounts of light to flow

through to the second substrate and form the colours and images that you see on the screen

Figure 3.9 I2C 16x2 LCD

36

• ESP-01 ESP8266 Serial WiFi Wireless Transceiver Module

 Any microcontroller can connect to the WiFi network using a self-contained

system on chip (SOC) with an integrated TCP/IP protocol stack. When combined with another

application processor, the ESP8266 can host an application or offload all Wi-Fi networking

functions to that processor. Its on-board processing and storage capabilities are adequate for

integration with sensors and other application-specific devices via its GPIOs, requiring minimal

work beforehand and minimal loading during runtime.

Figure 3.10 ESP8266 (ESP-01) WiFi Module

• Breadboard

 As a result of the fact that it does not require soldering, the solderless breadboard

is reusable. This makes it simple to utilise for temporary prototypes and circuit design

experiments, as well as for other purposes. As a result, solderless breadboard s are becoming

increasingly popular among students and those involved in technology education. This

characteristic was not present in earlier breadboard kinds. Unlike stripboards (Veroboards) and

other prototyping printed circuit boards, which are used to construct semi-permanent soldered

prototypes or one-offs, printed circuit boards used for prototyping cannot be easily reused.

Breadboards can be used to prototype a wide range of electronic systems, ranging from simple

analogue and digital circuits to entire central processing units and everything in between (CPUs).

37

Figure 3.11 Breadboard

• LED

 A light-emitting diode (LED) is a type of semiconductor light source that generates

light when a current is applied to it. During the recombination of electrons in the semiconductor

with electron holes, energy in the form of photons is released. The amount of energy required for

electrons to pass through the band gap of a semiconductor determines the hue of the light (which

corresponds to the energy of the photons). White light can be produced by combining numerous

semiconductors or by depositing a coating of light-emitting phosphor on the surface of a

semiconductor chip.

Figure 3.12 LED

38

• Jumper Wires

 In their most basic form, jumper wires are just wires with connector pins at either

end, which allows them to be used to connect two places to each other without the need for

soldering. Jumper wires are generally used in conjunction with breadboards and other prototyping

tools to make it simple to change the configuration of a circuit as needed. It's a rather

straightforward process. Jumper wires, in fact, are among the most fundamental of all electrical

components.

Figure 3.13 Jumper Wires Male to Male

39

3.7 Gantt Chart

Table 2.3 Gantt Chart

40

3.8 Summary

This chapter covered all of the stages involved in the creation of a voice command

grocery shopping list maker based on Arduino Uno. The mobile application and the hardware

is expected to be successfully built in accordance with the stages described above, as well as

to include certain additional capabilities.

41

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

 This chapter presents all the details of the whole system from the beginning until the end

and the flow of steps involved in the development of this "Voice Command Grocery Shopping

List Maker based on the Arduino Platform". Other than that, this chapter also discusses all the

details about all the equipment used in this project. In this chapter, we also implemented a project

methodology, or the way this project is developed.

4.2 Project Graphical User Interfaces

 This part will go over the overall flow of the applications. This app will continue on to

the result pages till the end of the app. The Graphical User Interface (GUI) for this application will

be created using Android Studio and the Java programming language.

42

4.2.1 Main Menu Interface of Grocer Application

Figure 4.1 Main Menu Interface of Grocer Application

 Figure 4.1 depicts the main menu page. A number of new buttons have been added, including

the Tesco button, Econsave button, Mydin button, Giant button, and a voice command menu for the

application's main menu (the voice input button menu), which I designed. It is necessary to use

Android Studio in order to develop the application. In order to manage the voice command, the user

first has to check for authentication in order to prove that the user is actually logged into the database

as a login device owner. The Firebase API has supplied developers with a feature to simply utilise

it.

 Here, the voice recognition employs the simplest smartphone Android 1.5 (Cupcake) API.

Speech Recognition functions on the basis of analogue sound impulses translated into a digital data

form and ends with a text/paragraph. The text/section can also be used as a feedback parameter in

43

text-to-speech (TTS), so that the user knows that the voice instruction code is well received. Press

the button voice and give the command speech. If the received text matches the code, the user is

provided with a feedback parameter in a voice confirming that the code has been correctly received,

and then the system reads the user's voice instructions and converts them into text form. I built and

implemented speech user interfaces such as voice commands in this Grocer App.

 After tapping on each mall, the user will be redirected to a different page. There is also a

“voice input” and "logout" button, which may be found in the menu.

4.2.2 Voice Input Ordering List

Figure 4.2 Voice input lists on voice input menu

 When the user talks into the microphone after tapping the voice input page, the output

order list (product list) will be displayed on the screen on Android Studio interface. The product list

option allows users to browse through a list of available products. The option to return to the main

menu is represented by the button "back to main menu". It will store the product information in the

Firebase database.

44

Figure 4.3 Firebase Database stored the output data from
the hardware

 The Figure 4.3 above show the database that were created using Firebase. This database

were created when the user add the data by speaks on microphone and then the voice recognition

module sent the input to the microcontroller with ESP8266 (ESP-01) WiFi Module. The user's voice

input is added to the Arduino UNO with ESP8266 (ESP-01), allowing the temporary memory of

grocery lists to be displayed on a small LCD in the kitchen while also being displayed on the Grocer

App’s voice input menu. The ESP8266 (ESP-01) WiFi Module is used in this project to connect the

hardware and the Android application.

 When a new piece of data is entered into the list by the user using the voice command system,

the list in the Grocer App will be updated accordingly. Specifically, the data is kept in the Firebase

database. If the result is acceptable, the lists are displayed in the Grocer app on the user's mobile

phone and on a small LCD in the kitchen; otherwise, the Grocer app does not take the command

45

order from the voice module and nothing happens. To list the items, the user must speak into the

microphone several times until the system recognises the voice and allows user to list the things.

 This database uses the recycler view function in Android Studio. The RecyclerView

function acts as a list view to display all the lists that have been saved. The RecyclerView was chosen

instead of the ListView because the RecyclerView can reuse the same pattern as the database that we

have created. Every single item that has been added into the database has its own id that has been

automatically created by the system.

4.3 Analysis of the Hardware Implementation

Figure 4.4 Hardware Design

 The ultimate result of this study's testing is the percentage of each word's pronunciation that

was successful in this project. When the distance between the microphone and the user's voice is

taken by 5 cm, the success rate of voice commands utilising the Voice Recognition Module V3

increases.

46

Table 2.4 Rate of Voice Command Success At 5 cm Distance

 From Table 2.4 above, when the distance between the microphone and the user's voice is

5 cm with a full volume (100%), it can be seen that the success rate of voice commands with a full

volume (100%) approaches 100% for the voice command at a distance of 5 cm (command). Except

for the command Refill Febreze, which had a 90% success rate when delivered at half volume (50%),

other voice commands delivered at half volume (50%) had 100% success rates. Because the word

"refill" is difficult to pronounce correctly in English, the company has taken this step .

 Based on Table 2.4 above, it is known that the success rate of voice instructions is inversely

correlated to the distance between the microphone and the user's voice. The greater the distance

between the microphone and the user's voice, the less likely it will be that voice instructions will be

successfully executed by the system. Consequently, the closer the distance between the microphone

and the user's voice is, the higher the chance that voice commands will be successfully executed by

the user.

 The distance of 5 cm

No. Command 30% 50% 100%

1. Econsave 90% 100% 100%

2. Refill Febreze (1KG) 80% 90% 100%

3. Ketchup (1bottle) 90% 100% 100%

4. Chilli Sauce (1bottle) 90% 100% 100%

5. Bread 100% 100% 100%

6. Milo (1KG) 90% 100% 100%

47

Table 2.5 Rate of Voice Command Success At 10 cm Distance

 Table 2.5 shows the success percentage of voice commands when the distance between the

microphone and the user's voice is increased by 10 cm. According to Table 2.5, the success rate of

voice commands at a distance of 10 cm with full volume (100%) is 100% for all commands tested

for the voice command. While voice commands with half the intensity (50%) in command had a

success percentage of 100% with the commands Econsave, Bread, and Milo (1KG). 90% of Ketchup

(1 bottle) with 90% of Chilli Sauce (1 bottle). The Refill Febreze (1KG) Command indicates a

percentage of 50%. Again, it has done so since the word "refill" is unclear to pronounce correctly in

English.

 The distance of 10 cm

No. Command 30% 50% 100%

1. Econsave 0% 100% 100%

2. Refill Febreze (1KG) 0% 50% 100%

3. Ketchup (1bottle) 0% 90% 100%

4. Chilli Sauce (1bottle) 0% 90% 100%

5. Bread 0% 100% 100%

6. Milo (1KG) 0% 100% 100%

48

Table 2.6 Rate of Voice Command Success At 15 cm Distance

 Table 2.6 shows the results of the percentage of voice commands that were successfully

recognised by the Voice Recognition Module V3 when the distance between the microphone and the

user's voice was increased by 15 cm. Based on the results of Table 2.6 above, it can be concluded

that the success rate of voice commands at a distance of 15 cm with full volume (100%) reaches

100% for all tested commands when sent at a distance of 15 cm with full volume (100%).

4.3 Summary

 Based on results, the user's voice level on the voice module's microphone is directly

proportional to the success rate of voice commands. The user's voice volume impacts the success of

voice commands. The success rate of voice commands decreases as the user's voice level increases.

So that powerful voice is better. The distance between the microphone and the user's voice is

inversely proportional to the success rate of voice command. Voice commands work better when the

microphone is closer to the user's mouth. To test the Voice Recognition Module V3, closeness is

preferable.

 The distance of 15 cm

No. Command 30% 50% 100%

1. Econsave 0% 0% 100%

2. Refill Febreze (1KG) 0% 0% 100%

3. Ketchup (1bottle) 0% 0% 100%

4. Chilli Sauce (1bottle) 0% 0% 100%

5. Bread 0% 0% 100%

6. Milo (1KG) 0% 0% 100%

49

CHAPTER 5

CONCLUSION

5.1 Introduction

 This section explores the conclusions that may be drawn from this project, including

whether the project's goals and objectives have been met or not. Additionally, this chapter explains

the recommendations for this project's future development, which are discussed later in the chapter.

 5.2 Conclusion

 This project presented a voice command application that can be used in daily life by

applying the use of smartphone applications. The suggested techniques and approaches operate

perfectly and effectively while needing little hardware. Through the use of voice commands, I have

developed an interactive Android application as well as the addition of the Voice Input button to

the Grocer's App. In addition, this application helps the user to list groceries through voice

recognition and it takes a short time to list the items needed in their daily lives. This project used the

programmable voice recognition module, the small LCD 16x2 I2C display and the microcontroller

Arduino UNO board. The list of groceries will be linked to the Grocer's App. Whenever the user

enters new data into the list via the voice command system, the list in the Grocer App will be

updated. All data collected by the Grocer App will be stored in the Firebase database. Moreover,

the user can add, remove or overwrite the list by using the Grocer's App.

50

 Except for at a distance of 5 cm and with a user voice volume of 30%, the Voice

Recognition Module V3 performs well. For the "Refill Febreze" command, because the vowel

pronunciation is unclear. The clarity of voice command pronunciation impacts the command success

rate. Even at a distance, all commands are detected when the volume is raised to 100%. Success will

diminish if the volume is reduced to 50% and 30% at 10 cm and 15 cm. The Microcontroller-based

Voice Recognition Module V3 was used in this investigation to validate voice recognition. This study

also employed a normal human voice with no noise. So the research outcomes were more reliable.

5.3 Recommendation

 Based on this project, to make a further recommendation, the grocer's app may benefit from

the addition of a few additional languages before reaching the main menu. Future development

should focus on improving accuracy, which is especially important if the application is used to issue

commands via speaking in a noisy setting. This problem, it was discovered, may be partially offset

by the use of a headset / earbuds with a built-in microphone. The sensitivity of the microphone on

the device is also critical to the effectiveness of the application. It is also possible to design additional

language packs for languages, which would allow users in isolated areas, such as those living in rural

areas, to benefit from voice controlled hardware and the android application without having to learn

a new language and/or accent.

 Other than that, future work can be accomplished by voice recognition and data transfer

over Bluetooth, both of which are handled totally by an entirely offline system. The study and

development will show the capability of modern mobile phone technology and its limitless uses.

51

REFERENCES

Aktar, N., Jaharr, I. and Lala, B. (2019) ‘Voice Recognition based intelligent Wheelchair and GPS

Tracking System’, 2nd International Conference on Electrical, Computer Communication

Engineering, ECCE 2019, pp. 7–9.

Bento, D. A. C. (2018) ‘IoT: Arduino Uno, Results of an experimental and comparative survey’,

International Journal of Advance Research in Computer Science and Management Studies, 6(1),

pp. 46–56.

Chauhan, R. et al. (2016) ‘Study of implementation of Voice Controlled Wheelchair’, ICACCS

2016 - 3rd International Conference on Advanced Computing and Communication Systems:

Bringing to the Table, Futuristic Technologies from Around the Globe, pp. 44-46.

Isyanto, H., Arifin, A. S. and Suryanegara, M. (2020) ‘Design and Implementation of IoT-Based

Smart Home Voice Commands for disabled people using Google Assistant’, Proceeding – I CoSTA

2020: 2020 International Conference on Smart Technology and Applications: Empowering

Industrial IoT by Implementing Green Technology for Sustainable Development, pp. 89-94.

 Khotimah, K. et al. (2020) ‘Validation of Voice Recognition in Various Google Voice Languages

using Voice Recognition Module V3 Based on Microcontroller’, Proceeding - 2020 3rd

International Conference on Vocational Education and Electrical Engineering: Strengthening the

framework of Society 5.0 through Innovations in Education, Electrical, Engineering and

Informatics Engineering, ICVEE 2020, pp. 1–6.

Lee, K. B. and Grice, R. A. (2006) ‘The design and development of user interfaces fo r voice

application in mobile devices’, IEEE International Professional Communication Conference,

pp. 308–320.

Omyonga, K. and Shibwabo, B. K. (2015) ‘The application of real – time voice recognition to

52

control critical mobile device operations’, 2(7), pp. 174–184.

Ooko, S. O. (2019) ‘A Comparison of Arduino, Raspberry Pi and ESP8266 Boards’, (December),

pp. 12-14.

Siagian, P. and Hutauruk, S. (2018) ‘Voice controller mobile android application’, IOP Conference

Series: Materials Science and Engineering, 420(1), pp. 82-85.

Suesaowaluk, P. (2020) ‘Home Automation System Based Mobile Application’, 2020 2nd World

Symposium on Artificial Intelligence, WSAI 2020, pp. 97–102.

Alzahrani, S. M. (2017) ‘Sensing for the internet of things and its applications’, Proceedings -

2017 5th International Conference on Future Internet of Things and Cloud Workshops, Wi-Fi

Cloud 2017, 2017-Janua, pp. 88–92.

Madiba, J., Owolawi, P. A. and Mapayi, T. (2019) ‘Wi-Fi Enabled Speech Automated Guided

Vehicle using Android and Arduino’, Proceedings - 2019 International Multidisciplinary

Information Technology and Engineering Conference, IMITEC 2019, pp. 26–29.

Mulhern, N. et al. (2013) ‘Designing android applications using voice controlled commands: For

hands free interaction with common household devices’, Proceedings of the IEEE Annual Northeast

Bioengineering Conference, NEBEC, pp. 265–266.

Sarkar, S., Gayen, S. and Bilgaiyan, S. (2018) ‘Android Based Home Security Systems Using Internet

of Things (IoT) and Firebase’, Proceedings of the International Conference on Inventive Research

in Computing Applications, ICIRCA 2018, (Icirca), pp. 102–105.

53

APPENDICES

Source Code for Android Studio
Main Activity Java for Main Menu

<?xml version="1.0" encoding="utf -8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="#596DDD"
 tools:context=".MainActivity">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:background="#596DDD"
 android:orientation="vertical">

 <RelativeLayout
 android:layout_width="wrap_content"
 android:layout_height="match_parent"
 android:layout_marginStart="102dp"
 android:layout_marginTop="32dp"
 android:layout_marginEnd="20dp">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:text="Welcome"
 android:textColor="#FFFFFF"
 android:textSize="50sp"/>

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_marginTop="50dp"
 android:text="please select mall"
 android:textColor="#FFFFFF"
 android:textSize="20sp" />

54

 </RelativeLayout>

<GridLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:alignmentMode="alignMargins"
 android:columnCount="2"
 android:columnOrderPreserved="false"
 android:rowCount="3">

 <androidx.cardview.widget.CardView

 android:id="@+id/tesco"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_rowWeight="1"
 android:layout_columnWeight="1"
 android:layout_margin="12dp"
 app:cardCornerRadius="12dp"
 app:cardElevation="6dp">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/white"
 android:gravity="center"
 android:orientation="vertical"
 android:padding="16dp">

 <ImageView
 android:layout_width="108dp"
 android:layout_height="85dp"
 app:srcCompat="@drawable/tesco" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="12dp"
 android:text="Tesco"
 android:textColor="#000000"
 android:textSize="22sp" />

 </LinearLayout>
 </androidx.cardview.widget.CardView>

 <androidx.cardview.widget.CardView

55

 android:id="@+id/econsave"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_rowWeight="1"
 android:layout_columnWeight="1"
 android:layout_margin="12dp"
 app:cardCornerRadius="12dp"
 app:cardElevation="6dp">

 <LinearLayout

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/white"
 android:gravity="center"
 android:orientation="vertical"
 android:padding="16dp">

 <ImageView
 android:layout_width="108dp"
 android:layout_height="80dp"
 app:srcCompat="@drawable/econsave" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="12dp"
 android:text="Econsave"
 android:textColor="#000000"
 android:textSize="20sp" />

 </LinearLayout>
 </androidx.cardview.widget.CardView>

 <androidx.cardview.widget.CardView
 android:id="@+id/mydin"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_rowWeight="1"
 android:layout_columnWeight="1"
 android:layout_margin="12dp"
 app:cardCornerRadius="12dp"
 app:cardElevation="6dp">

 <LinearLayout

56

 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:background="@android:color/white"
 android:gravity="center"
 android:orientation="vertical"
 android:padding="16dp">

 <ImageView
 android:layout_width="80dp"
 android:layout_height="80dp"
 app:srcCompat="@drawable/mydin" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="12dp"
 android:text="Mydin"
 android:textColor="#000000"
 android:textSize="20dp" />

 </LinearLayout>
 </androidx.cardview.widget.CardView>

 <androidx.cardview.widget.CardView
 android:id="@+id/giant"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_rowWeight="1"
 android:layout_columnWeight="1"
 android:layout_margin="12dp"
 android:background="@android:color/white"
 app:cardCornerRadius="12dp"
 app:cardElevation="6dp">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical"
 android:padding="16dp"
 tools:ignore="UseCompoundDrawables">

 <ImageView
 android:layout_width="80dp"
 android:layout_height="80dp"
 app:srcCompat="@drawable/giant" />

57

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="12dp"
 android:text="Giant"
 android:textColor="#000000"
 android:textSize="20sp" />

 </LinearLayout>
 </androidx.cardview.widget.CardView>

 <androidx.cardview.widget.CardView
 android:id="@+id/voice_input"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_rowWeight="1"
 android:layout_columnWeight="1"
 android:layout_margin="12dp"
 android:background="@android:color/white"
 app:cardCornerRadius="12dp"
 app:cardElevation="6dp">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical"
 android:padding="16dp"
 tools:ignore="UseCompoundDrawables">

 <ImageView
 android:layout_width="80dp"
 android:layout_height="70dp"
 app:srcCompat="@drawable/voice_input" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="12dp"
 android:text="voice input"
 android:textColor="#000000"
 android:textSize="18sp" />

 </LinearLayout>
 </androidx.cardview.widget.CardView>

58

 <androidx.cardview.widget.CardView
 android:id="@+id/logout"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_rowWeight="1"
 android:layout_columnWeight="1"
 android:layout_margin="12dp"
 android:background="@android:color/white"
 app:cardCornerRadius="12dp"
 app:cardElevation="6dp">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical"
 android:padding="16dp"
 tools:ignore="UseCompoundDrawables">

 <ImageView
 android:layout_width="80dp"
 android:layout_height="70dp"
 app:srcCompat="@drawable/logout" />

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="12dp"
 android:text="logout"
 android:textColor="#000000"
 android:textSize="19sp" />

 </LinearLayout>
 </androidx.cardview.widget.CardView>

 </GridLayout>
 </LinearLayout>

</LinearLayout>

59

holder.textViewID.setText(Integer.toString(employeeModelClass.getId()));
holder.editText_Name.setText(employeeModelClass.getName());
holder.editText_Email.setText(employeeModelClass.getEmail());
holder.editText_Weight.setText(employeeModelClass.getWeight());
holder.editText_Price.setText(employeeModelClass.getPrice());

holder.button_edit.setOnClickListener(new View.OnClickListener()

{ @Override
public void onClick(View v) {

String stringName =
holder.editText_Name.getText().toString(); String
stringEmail = holder.editText_Email.getText().toString();
String stringWeight =
holder.editText_Weight.getText().toString(); String
stringPrice = holder.editText_Price.getText().toString();

databaseHelperClass.updateEmployee(new EmployeeModelClass

(employeeModelClass.getId(),stringName,stringEmail,stringWeight,stri ngPrice));
notifyDataSetChan
ged(); ((Activity)
context).finish();
context.startActivity(((Activity) context).getIntent());

}
});

holder.button_delete.setOnClickListener(new
View.OnClickListener() { @Override
public void onClick(View v) {

databaseHelperClass.deleteEmployee(employeeModelClass.getId());
employee.remove(position);
notifyDataSetChanged();

}
});

}

@Override
public int

getItemCount() {
return
employee.size();

}

public class ViewHolder extends

RecyclerView.ViewHolder{ TextView textViewID;
EditText
editText_Email;
EditText
editText_Name;
EditText

60

editText_Weight;
EditText
editText_Price;
Button
button_edit;
Button button_delete;

public ViewHolder(@NonNull View itemView) {

61

Firebase Database

@Override
public void onUpgrade(FirebaseDatabase db, int oldVersion, int

newVersion) { db.execFirebase("DROP TABLE IF EXISTS " +
TABLE_NAME);
onCreate(db);

}

public void addEmployee(EmployeeModelClass employeeModelClass){
ContentValues contentValues = new ContentValues();
contentValues.put(DatabaseHelperClass.NAME,
employeeModelClass.getName());
contentValues.put(DatabaseHelperClass.EMAIL,
employeeModelClass.getEmail());
contentValues.put(DatabaseHelperClass.WEIGHT,
employeeModelClass.getWeight());
contentValues.put(DatabaseHelperClass.PRICE,
employeeModelClass.getPrice()); FirebaseDatabase =
this.getWritableDatabase();
FirebaseDatabase.insert(DatabaseHelperClass.TABLE_NAME,
null,contentValues);

}

public List<EmployeeModelClass>
getEmployeeList(){ String firebase =
"select * from " + TABLE_NAME;
firebaseDatabase =
this.getReadableDatabase();

List<EmployeeModelClass> storeEmployee = new
ArrayList<>(); Cursor cursor =
firebaseDatabase.rawQuery(firebase, null);
if

(cursor.moveTo
First()){ do {

int id =
Integer.parseInt((cursor.getString(0)
)); String name = cursor.getString(1);
String email =
cursor.getString(2); String
weight =
cursor.getString(3); String
price = cursor.getString(4);
storeEmployee.add(new
EmployeeModelClass(id,name,email,weight,price));

}
while (cursor.moveToNext());

}
cursor.close();
return storeEmployee;

62

}
public void updateEmployee(EmployeeModelClass employeeModelClass){

ContentValues contentValues = new ContentValues();
contentValues.put(DatabaseHelperClass.NAME,employeeModelClass.get
Name());
contentValues.put(DatabaseHelperClass.EMAIL,employeeModelClass.get
Email()); contentValues.put(DatabaseHelperClass.WEIGHT,
employeeModelClass.getWeight());
contentValues.put(DatabaseHelperClass.PRICE,
employeeModelClass.getPrice()); firebaseDatabase =
this.getWritableDatabase();
FirebaseDatabase.update(TABLE_NAME,contentValues,ID + "= ?" , new
String[]

{String.valueOf(employeeModelClass.getId())});
}

public void deleteEmployee(int id){

Source Code for Voice Recognition Module V3

#include <SoftwareSerial.h>
#include "VoiceRecognitionV3.h"
VR myVR(2,3); // 2:RX 3:TX, you can choose your favourite pins.

void printSeperator();
void printSignature(uint8_t *buf, int len);
void printVR(uint8_t *buf);
void printLoad(uint8_t *buf, uint8_t len);
void printTrain(uint8_t *buf, uint8_t len);
void printCheckRecognizer(uint8_t *buf);
void printUserGroup(uint8_t *buf, int len);
void printCheckRecord(uint8_t *buf, int num);
void printCheckRecordAll(uint8_t *buf, int num);
void printSigTrain(uint8_t *buf, uint8_t len);
void printSystemSettings(uint8_t *buf, int len);
void printHelp(void);

#define CMD_BUF_LEN 64+1
#define CMD_NUM 10
typedef int (*cmd_function_t)(int, int);
uint8_t cmd[CMD_BUF_LEN];
uint8_t cmd_cnt;
uint8_t *paraAddr;
int receiveCMD();
int checkCMD(int len);
int checkParaNum(int len);
int findPara(int len, int paraNum, uint8_t **addr);
int compareCMD(uint8_t *para1 , uint8_t *para2, int len);

63

int cmdTrain(int len, int paraNum);
int cmdLoad(int len, int paraNum);
int cmdTest(int len, int paraNum);
int cmdVR(int len, int paraNum);
int cmdClear(int len, int paraNum);
int cmdRecord(int len, int paraNum);
int cmdSigTrain(int len, int paraNum);
int cmdGetSig(int len, int paraNum);
int cmdSettings(int len, int paraNum);
int cmdHelp(int len, int paraNum);

const char cmdList[CMD_NUM][10] = { // command list table
 {
 "train" }
 ,
 {
 "load" }
 ,
 {
 "clear" }
 ,
 {
 "vr" }
 ,
 {
 "record" }
 ,
 {
 "sigtrain" }
 ,
 {
 "getsig" }
 ,
 {
 "Settings" }
 ,
 {
 "test" }
 ,
 {
 "help" }
 ,
};
const char cmdLen[CMD_NUM]= { // command length
 5, // {"train"},
 4, // {"load"},
 5, // {"clear"},
 2, // {"vr"},
 6, // {"record"},

64

 8, // {"sigtrain"},
 6, // {"getsig"},
 8, // {"Settings"},
 4, // {"test"},
 4, // {"help"}
};
cmd_function_t cmdFunction[CMD_NUM]={ // command handle fuction(function pointer
table)
 cmdTrain,
 cmdLoad,
 cmdClear,
 cmdVR,
 cmdRecord,
 cmdSigTrain,
 cmdGetSig,
 cmdSettings,
 cmdTest,
 cmdHelp,
};

/**
*/
/** temprory data */
uint8_t buf[255];
uint8_t records[7]; // save record

void setup(void)
{
 myVR.begin(9600);

 /** initialize */
 Serial.begin(115200);
 Serial.println(F("Elechouse Voice Recognition V3 Module \"train\" sample."));

 printSeperator();
 Serial.println(F("Usage:"));
 printSeperator();
 printHelp();
 printSeperator();
 cmd_cnt = 0;
}

void loop(void)
{
 int len, paraNum, paraLen, i;

 /** receive Serial command */
 len = receiveCMD();
 if(len>0){
 /** check if the received command is valid */

65

 if(!checkCMD(len)){

 /** check parameter number of the received command */
 paraNum = checkParaNum(len);

 /** display the receved command back */
 Serial.write(cmd, len);

 /** find the first parameter */
 paraLen = findPara(len, 1, ¶Addr);

 /** compare the received command with command in the list */
 for(i=0; i<CMD_NUM; i++){
 /** compare command length */
 if(paraLen == cmdLen[i]){
 /** compare command content */
 if(compareCMD(paraAddr, (uint8_t *)cmdList[i], paraLen) == 0){
 /** call command function */
 if(cmdFunction[i](len, paraNum) != 0){
 printSeperator();
 Serial.println(F("Command Format Error!"));
 printSeperator();
 }
 break;
 }
 }
 }

 /** command is not supported*/
 if(i == CMD_NUM){
 printSeperator();
 Serial.println(F("Unkonwn command"));
 printSeperator();
 }
 }
 else{
 /** received command is invalid */
 printSeperator();
 Serial.println(F("Command format error"));
 printSeperator();
 }
 }

 /** try to receive recognize result */
 int ret;
 ret = myVR.recognize(buf, 50);
 if(ret>0){
 /** voice recognized, print result */
 printVR(buf);
 }

66

}

/**
 * @brief receive command from Serial.
 * @param NONE.
 * @retval command length, if no command receive return -1.
 */
int receiveCMD()
{
 int ret;
 int len;
 unsigned long start_millis;
 start_millis = millis();
 while(1){
 ret = Serial.read();
 if(ret>0){
 start_millis = millis();
 cmd[cmd_cnt] = ret;
 if(cmd[cmd_cnt] == '\n'){
 len = cmd_cnt+1;
 cmd_cnt = 0;
 return len;
 }
 cmd_cnt++;
 if(cmd_cnt == CMD_BUF_LEN){
 cmd_cnt = 0;
 return -1;
 }
 }

 if(millis() - start_millis > 100){
 cmd_cnt = 0;
 return -1;
 }
 }
}

#include <SoftwareSerial.h>
#include <Wire.h>
#include <LiquidCrystal_I2C.h>
#include "VoiceRecognitionV3.h"
#include <ESP8266WiFi.h>
#include <FirebaseArduino.h>

LiquidCrystal_I2C lcd(0x27,20,4);
VR myVR(2,3); // 2:RX 3:TX, you can choose your favourite pins.

#define FIREBASE_HOST "latest-fyp-default-rtdb.asia-southeast1.firebasedatabase.app/"
#define FIREBASE_AUTH "PItwMXEBCrh6eDjDlWb958dslUokwtF9nEtmyLGm"
#define WIFI_SSID "HUAWEI nova 2i"

67

#define WIFI_PASSWORD "1234abcd"

void setup() {
 Serial.begin(9600);

 // connect to wifi.
 WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
 Serial.print("connecting");
 while (WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 Serial.println();
 Serial.print("connected: ");
 Serial.println(WiFi.localIP());

 Firebase.begin(FIREBASE_HOST, FIREBASE_AUTH);
}

int n = 0;

void loop() {
 // set value
 Firebase.setFloat("number", 42.0);
 // handle error
 if (Firebase.failed()) {
 Serial.print("setting /number failed:");
 Serial.println(Firebase.error());
 return;
 }
 delay(1000);

 // update value
 Firebase.setFloat("number", 43.0);
 // handle error
 if (Firebase.failed()) {
 Serial.print("setting /number failed:");
 Serial.println(Firebase.error());
 return;
 }
 delay(1000);

 // get value
 Serial.print("number: ");
 Serial.println(Firebase.getFloat("number"));
 delay(1000);

 // remove value
 Firebase.remove("number");
 delay(1000);

68

 // set string value
 Firebase.setString("message", "hello world");
 // handle error
 if (Firebase.failed()) {
 Serial.print("setting /message failed:");
 Serial.println(Firebase.error());
 return;
 }
 delay(1000);

 // set bool value
 Firebase.setBool("truth", false);
 // handle error
 if (Firebase.failed()) {
 Serial.print("setting /truth failed:");
 Serial.println(Firebase.error());
 return;
 }
 delay(1000);

 // append a new value to /logs
 String name = Firebase.pushInt("logs", n++);
 // handle error
 if (Firebase.failed()) {
 Serial.print("pushing /logs failed:");
 Serial.println(Firebase.error());
 return;
 }
 Serial.print("pushed: /logs/");
 Serial.println(name);
 delay(1000);
}

uint8_t records[7]; // save record
uint8_t buf[64];

int led1 = 9;
int led2 = 10;
int led3 = 11;
int led4 = 12;
int led5 = 13;

#define led1Record (0)
#define led2Record (1)
#define led3Record (2)
#define led4Record (3)
#define led5Record (4)
#define led6Record (5)

69

/**
 @brief Print signature, if the character is invisible,
 print hexible value instead.
 @param buf --> command length
 len --> number of parameters
*/
void printSignature(uint8_t *buf, int len)
{
 int i;
 for(i=0; i<len; i++){
 if(buf[i]>0x19 && buf[i]<0x7F){
 Serial.write(buf[i]);
 }
 else{
 Serial.print("[");
 Serial.print(buf[i], HEX);
 Serial.print("]");
 }
 }
}

/**
 @brief Print signature, if the character is invisible,
 print hexible value instead.
 @param buf --> VR module return value when voice is recognized.
 buf[0] --> Group mode(FF: None Group, 0x8n: User, 0x0n:System
 buf[1] --> number of record which is recognized.
 buf[2] --> Recognizer index(position) value of the recognized record.
 buf[3] --> Signature length
 buf[4]~buf[n] --> Signature
*/
void printVR(uint8_t *buf)
{
 Serial.println("VR Index\tGroup\tRecordNum\tSignature");

 Serial.print(buf[2], DEC);
 Serial.print("\t\t");

 if(buf[0] == 0xFF){
 Serial.print("NONE");
 }
 else if(buf[0]&0x80){
 Serial.print("UG ");
 Serial.print(buf[0]&(~0x80), DEC);
 }
 else{
 Serial.print("SG ");
 Serial.print(buf[0], DEC);
 }
 Serial.print("\t");

70

 Serial.print(buf[1], DEC);
 Serial.print("\t\t");
 if(buf[3]>0){
 printSignature(buf+4, buf[3]);
 }
 else{
 Serial.print("NONE");
 }
 Serial.println("\r\n");
}

void setup()
{
 /** initialize */
 myVR.begin(9600);
 lcd.init();
 lcd.backlight();
 Serial.begin(115200);
 Serial.println("Elechouse Voice Recognition V3 Module\r\nControl LED sample");

 //pinMode(led, OUTPUT);

 if(myVR.clear() == 0){
 Serial.println("Recognizer cleared.");
 }
 else{
 Serial.println("Not find VoiceRecognitionModule.");
 Serial.println("Please check connection and restart Arduino.");
 while(1);
 }
 if(myVR.load((uint8_t)led1Record) >= 0){
 Serial.println("led1Record loaded");
 }
 if(myVR.load((uint8_t)led2Record) >= 0){
 Serial.println("led2Record loaded");
 }
 if(myVR.load((uint8_t)led3Record) >= 0){
 Serial.println("led3Record loaded");
 }
 if(myVR.load((uint8_t)led4Record) >= 0){
 Serial.println("led4Record loaded");
 }
 if(myVR.load((uint8_t)led5Record) >= 0){
 Serial.println("led5Record loaded");
 }
 if(myVR.load((uint8_t)led6Record) >= 0){
 Serial.println("led6Record loaded");
 }
}

71

void loop()
{
 int ret;
 ret = myVR.recognize(buf, 50);
 if(ret>0){
 switch(buf[1]){
 case led1Record:
 digitalWrite(led1, HIGH);
 lcd.print("Econsave");
 delay(1000);
 digitalWrite(led1, LOW);
 break;
 case led2Record:
 digitalWrite(led2, HIGH);
 lcd.print("Refill Febreze");
 delay(1000);
 digitalWrite(led2, LOW);
 break;
 case led3Record:
 digitalWrite(led3, HIGH);
 lcd.print("Ketchup");
 delay(1000);
 digitalWrite(led3, LOW);
 break;
 case led4Record:
 digitalWrite(led4, HIGH);
 lcd.print("Chilli Sauce");
 delay(1000);
 digitalWrite(led4, LOW);
 break;
 case led5Record:
 digitalWrite(led5, HIGH);
 lcd.print("Bread");
 delay(1000);
 digitalWrite(led5, LOW);
 break;
 case led6Record:
 lcd.print("Milo");
 delay(1000);
 break;
 default:
 Serial.println("Record function undefined");
 break;
 }
 /** voice recognized */
 printVR(buf);
 lcd.clear();
 }

