

Faculty of Electrical and Electronic Engineering Technology

Development Of IoT Based Water Tank Level Detector Using Arduino

2

3.9

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

No

10

MOHAMMAD ZHAFIR IDRIS BIN MOHD ZAKHAIR

Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours

Development Of IoT Based Water Tank Level Detector Using Arduino

MOHAMMAD ZHAFIR IDRIS BIN MOHD ZAKHAIR

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UTEMUNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: Development of IoT based Water Tank Level Detector using Arduino

Sesi Pengajian: 2021

NIVERSITI TEKNIKAL MALAYSIA MELAKA

Saya MOHAMMAD ZHAFIR IDRIS BIN MOHD ZAKHAIR mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaranantara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau

SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTARAHSIA RASMI 1972.

Mengandungi maklumat TERHAD yang **TERHAD*** telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan. TIDAK \mathbf{X} TERHAD Yang benar, Disahkan oleh penyelia: MOHAMMAD ZHAFIR IDRIS TS. ABDUL HALIM BIN DAHALAN BIN MOHD ZAKHAIR Alamat Tetap: Cop Rasmi Penyelia Ts. Abdul Halim Bin Dahalan 36, Jalan Uranus U5/128D Pensyarah Subang Impian Seksyen U5, Jabatan Teknologi Kejuruteraan Elektronik dan Komputer Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik 40150 Shah Alam, Universiti Teknikal Malaysia Melaka Selangor UNIVERSITI TEKNIKAL MALAYSIA MELAKA Tarikh: 9/1/2022 Tarikh: 10/1/2022

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I declare that this project report entitled "Development of IoT based Water Tank Level Detector using Arduino" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours.

DEDICATION

This thesis is dedicated to:

My beloved mother Alifah Binti Jalil and father Mohd Zakhair Bin Mohd Idris

My brilliant supervisor

Ts. Abdul Halim Bin Dahalan

ABSTRACT

The water level detector system is a straightforward method for detecting and indicating the amount of water in the water tank and other containers. The majority of households nowadays use pumps to store water in water tanks. However, no one can tell how much water is in the tank or when it will fill up. As a result, the tank will be empty, resulting in not knowing the condition of water in the water tank. A water level detector is a device that collects data on the water level in reservoirs or tanks in residences. Therefore, we can prevent water from being empty in the tanks by using the water level monitor. Besides that, all the connections between the power supply, the microcontroller and the switches are simple and straight forward to make the installation easy and fast. The system is designed to hook on the water tank with its water buoy customized to the height of the water tank, resulting in easy installation. The NodeMCU ESP8266 microcontroller serves as the project's brain, bridging the gap between all input and output devices. EEPROM in this project is used to store data in this system. The cycle for the switches to on and off at the water tank bouy will be read by the NodeMCU ESP8266 microcontroller. By using Arduino IDE software, the NodeMCU ESP8266 is programmed to read the level of water in the tank which is triggered by the switches and LED light will light up according to the level of the water. The water level will also be displayed in the Blynk application which shows the data based on the 14 14 height of the water in a tank.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Sistem pengesan paras air adalah kaedah mudah untuk mengesan dan menunjukkan jumlah air di dalam tangki air dan bekas lain. Kebanyakkan penduduk rumah pada masa ini menggunakan pam untuk menyimpan air di tangki air rumahnya. Walau bagaimanapun, tiada siapa yang dapat mengetahui jumlah air di dalam tangki atau bila tangki akan kosong. Ini mengakibatkan pengguna tidak mengetahui keadaan air di dalam tangki. Pengesan paras air adalah alat yang mengumpulkan data mengenai paras air di takungan atau tangki di kediaman. Oleh itu, kita dapat mengelakkan air di dalam tangki kosong adalah dengan cara memantau paras air. Selain itu, semua sambungan antara bekalan kuasa, mikrokontroler dan suisnya mudah dan senang untuk difahami, maka menjadikan pemasangan mudah dan cepat. Sistem ini direka untuk menggantung ke dalam tangki air dengan pelampung yang direka khas untuk kesesuaian dengan ketinggian tangki air, ini menbolehkan pemasangannya mudah. Mikrokontroler NodeMCU ESP8266 adalah komponen utama iaitu sebagai otak kepada projek ini, yang akan menghubungkan antara semua peralatan dan peranti input serta output. EEPROM dalam projek ini digunakan supaya boleh menyimpan data kepada sistem ini. Kitaran untuk menghidupkan dan mematikan pada tangki air akan diberitahu oleh mikrokontroler NodeMCU ESP8266. Dengan menggunakan perisian Arduino IDE, NodeMCU ESP8266 diprogramkan untuk membaca ketinggian air di tangki yang dikawal oleh suis dan lampu LED akan menyala mengikut ketinggian air. Paras air juga akan dipaparkan di Aplikasi Blynk yang menunjukkan data berdasarkan ketinggian air di dalam tangki.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, TS. ABDUL HALIM BIN DAHALAN for his precious guidance, words of wisdom and patient throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) for the financial support throughout the entire project which enables me to accomplish the Development of IoT Based Water Tank Level Detector Using Arduino. Not forgetting my fellow housemates for the willingness of sharing their thoughts and ideas regarding the project.

My highest appreciation goes to my parents, and family members for their love and prayer during the period of my study. I would also like to thank all the staffs at the Faculty of Electrical and Electronic Engineering Technology (FTKEE), fellow colleagues and classmates, the Faculty members, as well as other individuals who are not listed here for being co-operative and helpful.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

PAGE

APPR	OVAL		
ABST	RACT		i
ABST	RAK		ii
ACKN	NOWL	EDGEMENTS	iii
TABL	E OF (CONTENTS	i
LIST	OF TA	RLES	iv
		GURES	
			v
LIST	OF SY	MBOLS	vii
LIST	OF AB	BREVIATIONS	viii
	PTER 1 Backg Statem Proble Projec	round hent of the Purpose m Statement t Objective of Project	ix 1 2 2 3 3 4
CHAH 2.1 2.2	Introdu	UNIVERLITERATURE REVIEW LAYSIA MELAKA uction d Research to Investigate the Development of IoT-based water tank lev	5 5 vel
	detecto	or using Arduino	5
	2.2.1 2.2.2	A Review on Wireless Water Level Indication Using IoT by Mr.D.Ponkumar (2020) A Review on Tank Water Level Indicator & Controller Using Arduino by Amrit Kumar Panigrahi, Chandan Kumar Singh, Diwesh Kumar, Nemisha Hota (2017)	5
	2.2.3	A Review On Measurement And Control Of Water Tank Level System By A.Jagadeesan, R.Dhanasekar, M.Kalaiyarasi (2018)	, 9
	2.2.42.2.5	A Review On Low-Cost Method To Measure And Remotely Monitor Water Tank Level By Gustavo Lemos Schwartz, Sara Da Cunha Monteiro De Souza, Rogerio Atem De Carvalho, Luiz Gustavo Lourenço Moura, Henrique Rego Monteiro Da Hora (2021) A Review On Implementing Of Liquid Tank Level Control Using Arduino-Labview Interfaceing With Ultrasonic Sensor By Riadh	11

		Adnan Kadhim, Abdul Kareem Kasim Abdul Raheem, Sabah Abdul Hassan Gitaffa (2016)	14
	2.2.6	A Review On Automated Water Tank Level Indicator Using 8051	14
		Microcontroller By Ramarajan Thileeban, Sundar (2020)	15
	2.2.7	A Review On An Automated Smart Water Level Indicator Using Iot-	
		An Effective Practice Of Smart Irrigation By Palaghat Yaswanth Sai	
		(2017)	17
	2.2.8	A Review On Water Level Monitoring By Anirudh Kodavatiganti	
	220	(2018)	18
	2.2.9	A Review On Microcontroller Based Automated Water Level Sensing And Controlling: Design And Implementation Issue By S. M.	
		Khaled Reza, Shah Ahsanuzzaman Md. Tariq, S.M. Mohsin Reza	
		(2010)	19
	2.2.10	A Review On Water Level Detection System Based On Ultrasonic	17
		Sensors Hc-Sr04 And Esp8266-12 Modules With Telegram And	
		Buzzer Communication Media By Hanan, Anak Agung Ngurah	
		Gunawan, Made Sumadiyasa (2019)	22
2.3	Summ	ary	25
CHAI	PTER 3	METHODOLOGY	28
3.1	Introdu		28
3.2	Project		28
3.3	Planni	-	29
3.4	Resear		32
3.5	Design		33 33
3.6	3.5.1 Impler	Design of Water Tank Level Detector	33 34
5.0	-	Hardware Implementation	35
		3.6.1.1 NodeMCU ESP8266 Microcontroller	35
		3.6.1.2 9V Battery	36
	_	3.6.1.3 LED Light	36
	3.6.2	Software Configuration KAL MALAYSIA MELAKA	37
		3.6.2.1 Arduino IDE	37
		3.6.2.2 Proteus	38
		3.6.2.3 Blynk Application	39
3.7		inary Result	40
3.8	Summ	ary	41
CHAI	PTER 4	RESULTS AND DISCUSSIONS	42
4.1	Introdu		42
4.2		tImplementation	42
		Development Tools	43
4.2		Application Creation	43
4.3		t Hardware Layout	45
4.4		Hardware Setup t Software Layout	46 47
4.4	•	t Testing	48
4.5		t Analysis	40 52
1.0		The Performance of the Developed System	52
		1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-

	4.6.2	The Acc	curacy of Water Level Reading	53
		4.6.2.1	The Comparison of Real-Time Data and Sensor Data	53
		4.6.2.2	Response Time to Internet Speed	55
4.7	Discu	ssion		56
СНА	PTER 5	5	CONCLUSION AND RECOMMENDATIONS	57
5.1	Introc	luction		57
5.2	Projec	Project Achievement		57
5.3	Projec	Project Limitation		58
5.4	Recommendation of Future Works		58	
REF	ERENC	ES		60
APP	ENDIC	ES		61

LIST OF TABLES

TABLE PAGE

5

TITLE

Table 2.1	Summary of Literature Review	25
Table 3.1	NodeMCU ESP8266 Pin Configuration	35
Table 4.1	Blynk Application Display	50
Table 4.2	Result of System Testing	52
Table 4.3	Result of System Functionality Test	53
Table 4.4	Result of System Error Test	54
Table 4.5	Average Response Time of Internet Speed	55

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

29

LIST OF FIGURES

FIGURE PAGE

TITLE

Figure 3.1	Project Flow	29
Figure 3.2	Planning Flow Chart	30
Figure 3.3	Block Diagram	31
Figure 3.4	Project Flow Chart	32
Figure 3.5	Water Tank Level Detector Design	33
Figure 3.6	Project Schematic Diagram	34
Figure 3.7	NodeMCU ESP8266	35
Figure 3.8	9V Battery	36
Figure 3.9	LED Light	36
Figure 3.10	Arduino IDE Interface	37
Figure 3.11	Proteus Interface	38
Figure 3.12	Blynk Application Interface	39
Figure 3.13	Breadboard Layout for Water Level Detector	40
Figure 4.1	New Project Creation Using Blynk	44
Figure 4.2	Label And Device Declaration Using Blynk	44
Figure 4.3	Auth Token Sent To Email Account	45
Figure 4.4	Image of the outside and inside components	46
Figure 4.5	Water Buoy Switching Conditions	47
Figure 4.6	Blynk WiFi Credentials and Library	48
Figure 4.7	Device Installation Ouside View	49
Figure 4.8	Device Installation Inside View	49
Figure 4.9	User's Notification When Water Level at LOW	51
Figure 4.10	User's Notification When Water Level at HIGH	51

Figure 4.11	Blynk Server Notification When Device Offline	51
Figure 4.12	Data Comparison Graph	54
Figure 4.13	Water Level Data Transmission Performance Graph	55

LIST OF SYMBOLS

V	-	voltage
mm	-	millimeter
cm	-	centimeter
m/s	-	milli per second
μΑ	-	micro ampere
k	-	kilo
kW	-	kilo watt
mAh	-	milli ampere per hour
Hz	-	hertz

LIST OF ABBREVIATIONS

BCD	-	Binary Coded Decimal
CPU	-	Central Processing Unit
DAQ	-	Data Acquisition
DC	-	Direct Current
DIY	-	Do It Yourself
EEPROM	-	Electrically Erasable Programmable Read-Only Memory
GSM	-	Global System For Mobile Communication
HMI	-	Human Machine Interface
IC	-	Integrated Circuit
IDE	-	Integrated Development Environment
IoT	-	Internet Of Things
LCD	-	Liquid Crystal Display
LDR	-	Light-Dependent Resistor
LED	-	Light-Emitting Diode
MCU	-	Microcontroller Unit
PC		Personal Computer
PCB	57	Peripheral Interface Controller
PIC	3-	Peripheral Interface Controller
RAM	ž -	Random-Access Memory
VCC	H -	Voltage Common Collector
WIFI	FI-	Wireless Local Area Network
	411	Nn
	del	
	ملاك	اوىبۇم سىتى بىكىنكا مىسىيا ،

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

APPENDIX PAGE

TITLE

Appendix A	Datasheet of NodeMCU ESP8266	61
Appendix B	Project Source Code	65
Appendix C	Gantt Chart	69

CHAPTER 1

INTRODUCTION

1.1 Background

In Malaysia, many houses and high-rise constructions are outfitted with a roofmounted water tank. Water from the main inflow is frequently pumped up to the tanks using an electric water pump, with gravity supplying the bulk of the structure with water. Currently, water meters are used to count and measure the quantity of water utilized in homes. This isn't an effective technique to keep track of how much water is consumed. Every outlet wastes water, whether intentionally or unintentionally, and this adds up to a significant amount of money in the end. Water waste from a full tank is now a potentially dangerous situation. In a variety of ways, the supply of usable water resources is becoming a significant challenge. Bad water allocation, inefficient usage, and a lack of comprehensive and consolidated water management worsen the situation. Water is used in agriculture, industry, and domestic consumption. As a result, water monitoring and efficient use may be a challenge for home water management systems.

Water is incredibly vital in today's environment. If we fail to monitor water from the reservoir, we can be subjected to leaks, devastation, and waste without even realizing it. As a result, water prices would rise, putting customers at risk. In order to avoid this, a sensor tool should be created to address the issue. This design is meant to solve that problem. This design shows how much water is in the water tank and indicates when it is full. On the other hand, a water level monitoring system for the tank must be built. It must eventually be capable of alerting the tank's present status to the person in charge or the technician. In this

system, water level detector circuitry is integrated with wireless appliances. When the water level in the tank reaches a critical level, wireless gadgets provide information to the person in control for further action. Several control systems utilizing water level sensors have become widely recognized in recent decades. Measuring water levels is a critical responsibility for both the government and the general people. By including numerous regulatory activities, it will be possible to monitor the actual implementation of such programs. As a result, the use of a water management device in the home can be substantial. Automatic water level indicator and controller systems are beneficial for reducing water waste while filling any reservoir without thinking about turning off the motor until the reservoir is filled.

1.2 Statement of the Purpose

The research is to develop a monitoring system of water level in the water tank which are commonly used in houses and industries. Besides that, remotely monitor the water level condition and alert users on any warnings.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 1.3 Problem Statement

Every day, much water is wasted in residential areas, offices, and hospitals, according to the existing situation. Water is crucial in many ways, and such massive water waste could lead to a shortage in the future. In today's world, everyone has an overhead tank in their home. The concept of measuring and displaying the water level in a container to prevent overflow can be applied implicitly to determining and controlling the level of water in overhead tanks to avoid waste. Many parts of the world confront water scarcity and natural disasters such as drought. Because the water level in the tank cannot be decided at random,

the tank overflows. This leads to higher energy consumption, which is a significant concern in today's globe. People must also wait until the tank is completely full before moving on to other activities.

All living things require water as one of their most necessities. Unfortunately, uncontrolled use wastes a significant amount of water. Other automated water level monitoring systems have been proposed, but most of them are ineffective in practice. A device can tackle the water loss problem by implementing an effective automated water level monitoring and controlling system with a versatile, inexpensive, and easily adaptable system.

1.4 **Project Objective**

The overall objective of this study is to design an IoT based water tank level detector using Arduino. The specific objectives that must be achieved are as follows:

- a) To monitor the condition of water level in a water tank at home or in industries.
- b) To develop a water level detector to monitor the water level in the tank.
- c) To display the water level and other important informations via wireless appliances.

1.5 Scope of Project

To avoid any project-related uncertainty as a result of some restrictions and constraints, the scope of this project are as follows:

 a) Develop a prototype of water tank level detector using wireless appliances and electronic circuit.

- b) Design a program using NodeMCU ESP8266 to collect data of water level condition from water level detector.
- c) Monitor information of water level via IOT based such as Blynk application.

1.6 Summary

The goal of this project is to detect the water level in a water tank. This report is divided into five chapters based on the stated goal. A brief overview of the research background, issue statements, aims, and scopes is given first. The following chapter presents a review of the literature on existing methodologies and other advancements that have been implemented in previous projects. In the meantime, the advantage and disadvantages of comparison will be discussed. The approach that has been devised for the components and the portrayal approach that was desired to employ will be clarified in this chapter three. A summary of the project's outline stream may appear here as well. The fourth chapter will go over the models created and the information gathered, including data tabulation and project analysis. Finally, chapter five summarises the main findings and the work completed during the research and makes recommendations for future research.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In today's world, numerous water tank level detectors have been developed for usage in homes and businesses. This chapter will provide an overview of the background of the water level monitoring system based on articles, papers, and other project-related sources.

2.2 Related Research to Investigate the Development of IoT-based water tank level detector using Arduino

2.2.1 A Review on Wireless Water Level Indication Using IoT by Mr.D.Ponkumar (2020)

The goal of this research is to create a self-contained water control system using ultrasonic transducers. It explains how the Internet of Things (IoT) can be used to achieve the best irrigation results. It also considers how the proposed mobile application can help save water supplies. The automatic water level monitoring system detects and indicates water levels in reservoirs, overhead tanks, and other storage containers. Motor pumps are used by homeowners to store water in overhead tanks. Water is wasted unnecessarily in many homes due to overflowing above the tanks. Agriculture, industry, and household eating are all common uses for water. For a home or business water management strategy, well-organized usage and water monitoring are possible restraints. The implementation of a water monitoring system has the potential to have a lot of relevance in household applications.