

Faculty of Electrical and Electronic Engineering Technology

Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours

DEVELOPMENT OF ELECTRICAL CAPACITANCE SENSOR FOR NON-DESTRUCTIVE TEST ON COMPOSITE

MUHAMMAD AFIF HANAFI BIN MOHD FUZI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this project report entitled "DEVELOPMENT OF ELECTRICAL CAPACITANCE SENSOR FOR NON-DESTRUCTIVE TEST ON COMPOSITE

" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics Engineering Technology (Industrial Electronics) with Honours

DEDICATION

This project is especially dedicated to the Lecterur, who assisted and directed us in completing it successfully. I also want to thank our parents for never failing to provide us with financial and spiritual support, for providing us with all of our requirements throughout the time we were developing our system, and for showing us that even the most difficult endeavour can be completed if done one step at a time.

ABSTRACT

Today, new powerful appliances and instruments, and simple techniques for the application of NDT methods in the qualitative control of materials and manufacturing, are being developed. Nondestructive Testing (NDT) consists of a variety of non-invasive inspection techniques used to evaluate material properties, components, or entire process units. The techniques can also be utilized to detect, characterize, or measure the presence of damage mechanisms. Many NDT techniques are capable of locating defects and determining the features of the defects, such as their size, shape, and orientation. We applied Non-contact capacitive sensors work by measuring changes in an electrical property called capacitance. Capacitance describes how two conductive objects with a space between them respond to a voltage difference applied to them. If the polarity of the voltage is reversed, the charges will also reverse. Capacitive sensors use an alternating voltage which causes the charges to continually reverse their positions. The moving of the charges creates an alternating electric current which is detected by the sensor, current flow is determined by the capacitance, and the capacitance is determined by the area and proximity of the conductive objects. The capacitance is also affected by the type of nonconductive material in the gap between the objects. For the implementation of this project, the use of COMSOL Multiphysics computer software can build the design of the capacitive parallel plate as the main design needed to detect and release different readings on composite items that will serve as a testament to being placed in the middle of the parallel plate. Thus, the production of data released with different capacitance readings on each item can classify the types of composites that are included in detecting damage or cracks in the composite material as the main objective of this project.

ABSTRAK

Hari ini, peralatan dan instrumen baru yang kuat, dan teknik mudah untuk penerapan kaedah NDT dalam kawalan kualitatif bahan dan pembuatan, sedang dikembangkan. Nondestructive Testing (NDT) terdiri daripada pelbagai teknik pemeriksaan bukan invasif yang digunakan untuk menilai sifat bahan, komponen, atau keseluruhan unit proses. Teknik ini juga dapat digunakan untuk mengesan, mencirikan, atau mengukur adanya mekanisme kerosakan. Banyak teknik NDT mampu mengesan kecacatan dan menentukan ciri-ciri kecacatan, seperti ukuran, bentuk, dan orientasi mereka. kami menggunakan kerja sensor kapasitif Noncontact dengan mengukur perubahan dalam sifat elektrik yang disebut kapasitansi. Kapasiti menerangkan bagaimana dua objek konduktif dengan ruang di antara mereka bertindak balas terhadap perbezaan voltan yang dikenakan padanya. Sekiranya kekutuban voltan dibalikkan, cas juga akan terbalik. Sensor kapasitif menggunakan voltan bergantian yang menyebabkan cas terus membalikkan kedudukannya. Pergerakan cas menghasilkan arus elektrik bergantian yang dikesan oleh sensor, aliran arus ditentukan oleh kapasitansi, dan kapasitansi ditentukan oleh kawasan dan jarak objek konduktif. Kapasiti juga dipengaruhi oleh jenis bahan bukan konduktif dalam jurang antara objek. Untuk pelaksanaan projek ini, penggunaan perisian komputer Multifizik COMSOL dapat membina reka bentuk plat selari kapasitif sebagai reka bentuk utama yang diperlukan untuk mengesan dan melepaskan bacaan yang berbeza pada item komposit yang akan berfungsi sebagai bukti untuk diletakkan di tengah-tengah plat selari. Oleh itu, pengeluaran data yang dikeluarkan dengan bacaan kapasitansi yang berbeza pada setiap item dapat mengklasifikasikan jenis komposit yang termasuk dalam mengesan kerosakan atau retakan pada bahan komposit sebagai objektif utama projek ini.

TABLE OF CONTENTS

	PAGE
APPROVAL	
ABSTRACT	i
ABSTRAK	ii
TABLE OF CONTENTS	i
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF SYMBOLS	vii
CHAPTER 1	8
1.1 Project Background	6
اونيوبرسيتي تيڪنيڪل ملي Problem Statement	6
1.3 Research Objective	7
1.4 Scope of Research	7
CHAPTER 2	10
2.1 Introduction	8
2.2 Non-destructive testing (NDT) technique	8
2.3 Electrical Capacitance Tomography	8-9
2.3.1 Concept of Capacitance Sensor	9-10

i

2.4 Type of NDT	10-16
2.5 Comparison of major NDT methods	16-17
2.6 Past Project	17-22
CHAPTER 3	25
3.1 Introduction	23
3.2 Project Flow	23
3.2.1 Planning WALAYSIA	24-26
3.2.2 Information of Past Study	26
3.3 COMSOL Simulation	26-27
اونيون سيني تيڪنيڪل مليSolidworks Software	27
3.5 Design INIVERSITI TEKNIKAL MALAYSIA MELAKA	27
3.5.1 Development of Parallel plate capacitive sensor	27
3.5.2 Capacitor sensor and material plate	28
CHAPTER 4	31
4.1 Introduction	29
4.2 COMSOL Multiphysics simulation	
4.2.1 SOLIDWORKS Livelink with COMSOL	29

ii

4.2.2 Electrostatic(es) selection design	30
4.2.2.1 Charges conservation	30
4.2.2.2 Zero Charges	31
4.2.2.3 Terminal	31
4.2.2.4 Ground	32
4.2.3 Plate	32
4.2.4 Difference value of relative normittivity of motorial	22
4.2.4 Difference value of relative permittivity of material	55
4.4 Result	34
4.4.1 Simulation of circle crack	34
اوينوس سيتي تيڪنيڪل ملسب املاك 4.4.2 Simulation of single line crack	36
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	
4.4.3 Simulation of parallel line crack	38
4.4.4 Simulation of Zig-Zag line crack	40
4.3 Data Simulation	42
4.3.1 Line graph	43
CHAPTER 5	49
5.1 Introduction	47
5.2 Conclusion	47

iii

5.3 Recommendation	47-48
REFERENCE	51
APPENDIX	50

LIST OF TABLES

TABLES	TITLES	PAGES
Table 2.1	Comparison of major NDT methods	16-17
Table 2.2	Past Project	17-22
Table 2.3	Gant Chart of progress	26
Table 4.1	Size of plate of material	32
Table 4.2	Value of relative permittivity	33
Table 4.3	Data comparison with different crack and material	42

LIST OF FIGURES

FIGURES	TITLES	PAGES
Figure 2.1	Block Diagram of the Electrical Capacitance Tomography (ECT)	9
Figure 2.2	Parallel plate of capacitor	10
Figure 2.3	Physical principles of dye-penetrant examination	10
Figure 2.4	Principle of magnetic particles non-destructive testing	11
Figure 2.5	Process of Radiographic Non-Dectructive Testing	12
Figure 2.6	Schematic Diagram of Ultrasonic Inspection	12
Figure 2.7	Diagram of Operation of Eddy Current Testing	13
Figure 2.8	Schematic of Acoustic Emission Testing	14
Figure 2.9	Application of Leaking Testing	14
Figure 2.10	Characteristic of Infrared Thermography	15
Figure 2.11	Inspection of Visual Testing	16
Figure 3.1	Project flow	23
Figure 3.2	Flowchart of Research Progress	24-25
Figure 3.3	Parallel plate capacitive sensor	28
Figure 3.4	Capacitor sensor and material plate	29
Figure 4.1	Livelink with COMSOL AL MALAYSIA MELAK	29
Figure 4.2	Charge conservation selection	30
Figure 4.3	Zero charges selection	31
Figure 4.4	Terminal selection	31
Figure 4.5	Ground selection	32
Figure 4.6	Label of material	33
Figure 4.7	Strength of electric field of circle crack plate	35
Figure 4.8	Strength of electric field of straight line crack plate	37
Figure 4.9	Strength of electric field of parallel line crack plate	39
Figure 4.10	Strength of electric field of zig-zaq line crack plate	41
Figure 4.11	Average value of capacitance vs crack of material	43
Figure 4.12	Average value of capacitance vs distance	43

LIST OF SYMBOLS

-	capacitance
-	magnitude of charges
-	voltage
-	dielectric constant of free space
-	the permittivity of the material
-	meter
-	distance
-	area of the capacitive plate
-	positive electrical charge
-	negative electrical charge
-	Farad

CHAPTER 1

INTRODUCTION

1.1 Project Background

The rapid development of technology, with intense competition between countries, is an aim in this era of globalisation. It is to develop the country's economy and at the same time to demonstrate the skills and knowledge that this small country can compete with large countries. Composite materials are currently used in many applications where light weight and highly specific module and strength are critical. Composites also contribute decisively to our society's sustainable development. Furthermore, NDT (non-destructive techniques) are popular in the industry and are used by ECT (Electrical Capacitance Tomography). This project proposes a conceptual framework for non-destructive testing to identify the material defects by using parallel plates and electrical capacitance tomography, which is particularly useful for construction or related projects. The likelihood of employing this method is simulated in the first stage using Comsol Multiphysical software.

1.2 Problem Statement

Surprisingly, although it has been around for decades, the application of electrical capacitance tomography (ECT) in composites has not yet been studied thoroughly. In only a few published studies, the effectiveness of ECT on dielectric materials has been thoroughly tested. NDT has been used in a few investigations to examine problems with composite materials using ECT. This means that numerous opportunities and studies in the use of ECT on composite materials can be conducted. The aim of this research is to assess how effective electric capacitance tomography on parallel plates is in detecting defects in composites. This study contributes significantly because the findings can be used as a springboard to investigate further the possible use of ECT as one of the composite NDT techniques.

1.3 Research Objective

The main aim of this project:

- To classify type of composite
- To stimulate the behavior of capacitance sensor
- To create capacity of differentiate type of cracks.

1.4 Scope of Research

The scope of this research are as follows:

- Copper, concrete, PVC, uluminium and brick are uses as a testing material to detect element in composite.
- Comsol Multiphysics and solidworks software
- Four type of crack such as circle, straight line, parallel line and zigzag line.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The analysis in different zones a recently constructed design will be reviewed in this chapter. Literature reviews were compiled from a variety of publications, including informative articles, papers, study reports, trustworthy websites, and other sources. The following keywords have been used to categorise the scriptures for this task: simulation of parallel plates, Dielectric, non-destructive testing technique and electrical capacitance tomography.

2.2 Non-destructive testing (NDT) technique

Non-Destructive testing is form of testing, examination, or assessment on an object in order to study the absence or presence of conditions or imperfections which may have an impact on the functions of the objects as they do not cause any change or alteration to the object's performance. Also, The non-destructive test includes all of the technology to detect and measure significant properties and imperfections, from research specimens to finished hardware and products[1]. In general, the goal of NDT is to figure out what properties a material has. It can also be used to identify, characterise, locate, and size product discontinuities and defects[2].

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2.3 Electrical Capacitance Tomography

The multiple measurements at the periphery of a process vessel or pipeline are used and combined to inform the process volume about electrical properties in accordance with the basic principles of Electrical Capacitance Tomography.[3]Also stated that, Electrical capacitance tomography (ECT) is a technique for determining capacitance variations between electrode pairs and generating a cross-sectional image that depicts permittivity and material distribution[4]. The sensors for tomographic imaging must allow for multiple, localised measurements throughout the investigation area, according to the requirements. For example, resistance tomography is used to determine conductivity distributions, capability tomography detects different permittivities, and inductance tomography detects the distribution of permeability. Impedance tomography is useful for determining both the resistive and reactive components of a system[5].

Figure 2.1: Block Diagram of the Electrical Capacitance Tomography (ECT)

An ECT system consists of three modules as shown in Figure 2.1 such as module for capacitance sensing, a module for measurement and data collecting, and a module for picture reconstruction. The ECT system operates in the following manner. The capacitance data are recorded using capacitance sensors, then communicated to the computer, where the field distribution image is rebuilt.

2.3.1 Concept of Capacitance Sensor

The capacitance is calculated by multiplying the magnitude of charges (Q) on both electrodes by the potential difference (V) between them.

اوييۇم سيتي بيڪنيڪل مليسيا ملاك *c = 9* UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Capacitance can also be calculated as a function of the distance between two electrodes Where, $\varepsilon 0$ is the dielectric constant of free space (εr) is the permittivity of the material, A plate is the area of the capacitive plate (m2) and distance (d) is the spacing between the two plates (m).

$$C = \frac{\varepsilon_0 \varepsilon_r A_{plate}}{d}$$

The capacity of the insulator between the plates increased it because, the capacity factor is raised since the material between plates is relatively permitted. Permittivity is defined as electrical field potential of the substance. This equation suggests that the ability is proportional to permittivity. Furthermore, an ECT sensor must be constructed to satisfy specific requirements to obtain high performance. The distribution of capacity and ability of the medium in the vessel or pipe is also crucial in the ECT idea. The measured element is

identifiable by knowing the capacitance and voltage between the electrodes since each measured element's permittivity is constant[6].

Figure 2.2: Parallel plate of Capacitor

2.4 Liquid Penetrant Testing

Cracks or other faults in materials related to their surface may be detected through fluid penetrating tests. Due to the ambiguous proof of faults in porous materials, liquid penetration is the most useful for non-porous materials. As part of this test process, materials are coated or soaked in an indication fluid. This fluid flows through the surface of the material and into the openings. When the liquid is removed from the surface, the liquid returns from the fissures. A flaw emerges whenever a liquid resurfaces; the greater the flaw, the more liquid resurfaces. The fluid cannot penetrate a defect without a pathway linking it to the surface. As a result, other methods for detecting enclosed voids or honeycombing must be used. Oils and other residues must not obstruct the liquid's ability to penetrate cracks, so the material's surface must be clean as well. In addition, handling liquid penetrant necessitates a significant amount of equipment, setup, and clean up. While this technique is effective, it is often slower and more difficult to use than other NDT techniques[7].

Figure 2.3: Physical principles of dye-penetrant examination 2.4.1 Magnetic Particle Testing

The movement of the indicator particles used by the magnet particle test shows internal discontinuities in ferromagnetic materials. The test part must be covered with teared magnetic particles, either in dry powder form or in liquid suspension. A magnet induces the test material with an electromagnetic field. This field causes magnetic particles to move in the direction of the magnetic field towards any discontinuity's transverse, which provides visual indications of defects. Magnetic particulate testing is a wide range of methods and can be used to induced magnetic fields. Magnetic particles testing requires considerable set-up, cleanup and cannot be done easily on the ground [8].

Figure 2.4: Principle of magnetic particles non-destructive testing.

2.4.2 Radiographic Testing

Radiographic testing through x-ray machines has entered the public imagination. The method penetrates an object and a radiation medium. Darker zones on the recording medium indicate more radiation that crosses the object area, indicating cracks, voids or variation in density. X-rays are usually used in the case of thinner materials, thicker gamma rays. As recording media, film or computerised sensors can be used. Extensive equipment and expertise as well as safety precautions are required to prevent over-exposure to radiation in radiographic testing. Neutron radiographic testing uses a concentrated ray of neutrons instead of X- or gamma rays to penetrate objects. To generate these neutron beams, a linear or particles accelerator must be used. Neutrons, but not most organic materials pass through metals. This provides a more detailed picture of the interiors of objects when combined with standard with radiography. This technology is used only in laboratory environments[9].

Figure 2.5: Process of Radiographic Non-Dectructive Testing

2.4.3 Ultrasonic Testing

Ultrasonic tests have shown to be one of the most efficient methods of current NDT. This process is used to transform high-frequency soundwaves, generally metals or composites, into solid things. Irregularities like density variations, fissures, vacancies, honeycombs, or foreign objects influence the travel of sound waves. Ultrasound test equipment can map many solid things through the collection and interpretation of returning sound waves. Waves can be caught as they are reflective or pass through the scanned substance, depending on the technology employed and the application requirements. Ultrasound tests are conducted using electrical energy transducer to convert ultrasound waves. While previous systems are using one transducer simultaneously, new PAUT (Phased Array Ultrasonic Testing) technology employs a number of transducers operating in combination. Modern PAUT equipment approach enhances examination speed, coverage and specificity greatly[10].

Figure 2.6: Schematic Diagram of Ultrasonic Inspection

2.4.4 Eddy Current Testing

Eddy current is non-destructive tests may be utilised to swiftly evaluate wide regions, and coupling liquids are not required. Eddy current is also utilised for finding and cracking metal stress breaks and other cracks, as well as for checking metal hardness and conductivity when such features are of importance. It is also often used to inspect thin layers of non-conductive coatings like as paint on metal components. Because of these constraints, eddy current testing only works on materials that carry electrical energy, such as metals, and can therefore not be used for plastics. In some instances, eddy current and ultrasonic tests are utilised as additional approaches, eddy current is helpful for fast measurement of surface characteristics, and ultrasonic tests provide superior penetration of depth.

Figure 2.7: Diagram of Operation of Eddy Current Testing

Eddy's current testing figures out the physical phenomena of electromagnetic induction. An alternative current passes by across the wire belt and forms a magnetic field termed in an eddy current samples. A whirling electron stream is sometimes referred to as an eddy current when a conducting object like a metal probe is placed near a magnetic probe. The magnetic flux in turn interacts through mutual inductance with the coil and its field because of the eddy stream that passes through the metal. Any variations in metal thickness and flaws such as near- surface cracking disrupt or affect the magnitude and pattern of the eddy current. When the electrical impedance of the spindle is different, this is turn changes the electrons moving in the spindle. A skilled operator can utilise the Eddy Current to determine changes to the amplitude and phase angle of the test piece[11].

2.4.5 Acoustic Emission Testing

In acoustic emission testing, sensors are attached to the component being tested. When a stressed person goes about their day, stress sensors on their body convert the stress waves into electrical signals, which are then transmitted to an acquisition PC for processing. When an external stimulus, such as high pressures, loads, or temperatures, is applied to the

component, the waves are caught. The energy released is proportional to the damage that occurs in the component. To help assess structural integrity and overall health, the rate at which the acoustic emission is detected the activity and the intensity of the acoustic emission, the loudness, are monitored and used. Acoustic emission is a type of seismic activity which occurs in materials, and that is exactly what it is: small quakes. The method of global monitoring provides for the accurate detection of defects in large-scale structures and machines while they are operating, in contrast to destructive testing. Acoustic emission sources and hence the damage can be located using multiple sensors. The distinct origin of each source mechanism can be deduced through signal analysis [12].

2.4.6 Leaking Testing

Leak detection's basic functions include locating and measuring the leak's size in products and systems that are closed. To ensure device integrity, a leak test procedure is a one-time non-destructive test. "Leak" and "leakage" refer to the physical hole and the flow of a fluid through a leak in non-destructive testing. therefore, Vessel or system leaks such as holding or process tanks, radiators, empty vessels, tanks, liquid containment systems, pipe system, pipe system, or hydraulic systems must be detectable and repairable in order to maintain vessel or system safety[13].

Figure 2.9: Application of Leaking Testing

2.4.7 Thermal Infrared Testing

Therma Infrared or IR thermography is a non-destructive test that measures component temperature variances as the heat flows through, from or to that component. Informal names for IR thermography include IR testing, thermal testing, thermal imaging, and IR thermometry. Changes in temperature cause thermal radiation. As a component warms, the amount of radiation it emits changes. Electromagnetic waves, invisible to the human eye, are utilised in this form of radiation analysis. Thus, components must be examined using infrared cameras. The infrared cameras can detect and display infrared energy that is emitted, reflected, or transmitted. After taking the thermal image, the temperature can be read on the component. Furthermore, it is able to detect corrosion damage, delaminations, voids, inclusions, and other flaws that affect heat transfer[14].

Figure 2.10: Characteristic of Infrared Thermography

2.4.8 Visual Testing/ERSITI TEKNIKAL MALAYSIA MELAKA

Also known as visual testing examination, non-destructive inspection, or non-destructive evaluation or examination, VT is an example of visual testing. The most common non-destructive testing method is visual testing. Because it is easy to do, inexpensive, and requires minimal equipment, visual testing is frequently used for NDT. In VT, you examine a component to see if there are surface discontinuities using your naked eye. In addition to using visual magnifying glasses, boroscopes, mirrors, and other computer equipment, VT can also benefit from optical equipment such as microscopes, teleziers, and magnifying glasses. Non-destructive testing is used to detect if components can be viewed, so visual testing is used as the first step in the NDT process. Welds, storage tanks, piping, boilers, and pressure vessels are some of the components that can be examined for visible corrosion or degradation to evaluate the integrity of their components[15].

Figure 2.11: Inspection of Visual Testing

· ·			
NDT method	Applications	Advantages	Limitations
N.	Materials with	-Easy and	The discontinuities
	uncoated surfaces	inexpensive.	must be open to the
Penetrant Testing	that are not	-Very sensitive	surface in order to
E K	contaminated and	versatile.	be visible. The
F	are solid	- Minimal training	surface must be
E	nonabsorbent	required.	generally smooth
643	materials.		and free of
11	Vn .		impurities in order
4.1	1 1 1/		for this to be
200	Lundo, Sa	ريستن بيك	successful.
	For surface and	-Easy to operate	surface are limited to
LIMIVE	slightly subsurface	-the equipment is	the inspection area.
Magnetic Particle	discontinuities, use	inexpensive.	Only ferromagnetic
Testing	ferromagnetic	- Highly sensitive	substances.
materials.		and very fast.	
	Be used for almost	- Provide a	The thickness of the
	any manufactured or	permanent record.	inspection is based
Radiography Testing	in-service materials,	- heightened	on the material
	forms and structures.	sensitivity.	density. It is
		- Used and accepted	important to orient
		widely.	discontinuities and
			radiation is
			sometimes harmful.
	In most cases, if the	-The precise and	In many
	conditions for the	sensitive results can	circumstances, there
	transmission and	be achieved very	is no lasting record
Ultrasonic Testing	finishing of the	quickly.	of what happened.
	sound are	-Material	Couplant is required
	satisfactory and the	information such as	for testing.
	shape of the object is	thickness, depth	
	not complex,		

2.5 Comparison of major NDT methods

	virtually any	and flaw can be got	
	material can be used.	only from one side	
		of the object.	
	All leading materials	-Absolutely	It is difficult to
	can be inspected.	Non-contacting	interpret the
		-easy to operate.	measured signal. It
Eddy Current		-The testing is fast	is necessary to the
Testing		and versatile.	penetration depth,
			lift-off effect, and
			surface condition.
	Include detection of	-Large areas can be	Sensors must make
Acoustic Emission	abnormalities in	tested	physical contact
Testing	fluidized beds and		with the test surface.
	batch granulation		
	end points		
	that makes use of	Can detect many	When there is a
Leaking Testing	either a pressurised	types of defects such	significant leak and
	or an evacuated	as surface defects,	the water is pumped
	system to detect the	cavities, corrosion,	out during the pump
C.M	location of a leak	pitting.	down phase of the
S.	and, if possible,		leak testing
S .	measure the amount		procedure. Helium is
Ē	of leakage that is		removed from the
2	passing through the		atmosphere before
	leak		the LD can detect it.
× 211	Condition	Sensitive to slight	Discontinuities in
	monitoring and	temperature change	surface and near
Thermal Infrared	predictive	· 6	surface can be found
Testing -/	maintenance are		2.2
	widely used in the	14 1	
UNIV	oil and gas industry	L MALAYSIA ME	LAKA
	as inspection tools		
	for condition		
	monitoring and		
	predictive		
Vieual Testing	Surface condition of	Inovnoncivo	It is passagery to
visual resting	surface condition of	-mexpensive	have good vision or
	a component and the	required	to have your vision
	surfaces are being		corrected to $20/40$
	investigated In		Internal defects may
	addition to that		go unnoticed
	Identifying the		50 uniforicou.
	nresence of leaks		
	Prosenice of leaks		

 Table 2.1: Comparison of major NDT methods

2.6 Past Project

Title	Objective	Description	Author	Year
An Electrical	in order to detect	Using the suggested	Rui Li, Yi Li	2019
Capacitance array	water leakage	capacitance sensor array,	and Lihui	
for Imaging of	within insulating	the map of electrical	Peng	
water leakage	slabs that	distribution and		
inside insulating	contain porous	sensitivity was		
slabs with	cells	calculated using the		
pronous cells.		methodology of the		
		finite element. It		
		comprises of a sensor		
		range of eight electrodes		
		and a commercially		
		accessible capacitance		
		bridge tool for capacity		
		measurements.		
Curing and	to use electrical	The circle-shaped	Kenneth J	2018
subsurface	capacitation	arrangement of	Loh	
damage	tomography for	noncontact electrodes to		
monitoring of	the monitoring	interrogate a sensing		
epoxy-based on	of	area by applying		
composite.	nanocomposite	different patterns of		
i i i i i i i i i i i i i i i i i i i	epoxy and 💦	electric field excitations.		
5	quantification of	In order to address the		
50	subsurface	reverse electric		
5 BA	damage.	capacitance tomography		
	wn .	problem, the		
shi	1.14	concurrently measured	1.1.1	
200	_ مىسى ا	border capacitance is	او يوم	
		employed to rebuild the		
UNIV	ERSITI TEKNI	electric permittivity	LAKA	
		region		
Canacitive	To determine	All ultrasonic shakes are	Pongsakun	2017
measuring of	whether the	concerned with the	Sriphant	2017
crude palm oil-	electrical	immiscible fluid and	Supitatio	
water mixture.	capacitance	another. The mass		
	measuring	concentration (x) of		
	technique can be	CPO was varied from 0		
	used as a low-	g/cm3 to 0.9 $g/cm3$, and		
	cost, non–	then all experiments		
	destructive	were carried out at room		
	alternative to	temperature to verify		
	traditional	their results (250 C). A		
	methods.	parallel guard structure		
		with AD7747 capacitive		
		to digital converter was		
		used to obtain		
		capacitance value.		

Noise diagnostics	Use of	The measured voltage at	Pavel	2013
of composite	electromagnetic	the output of the sensor	Koktavy	
materials by using	emission signals	system is used to		
spectral	and spectrum	measure the power		
characteristics of	signals for	spectrum density of the		
electromagnetic	mechanical	crack dipole electric		
emission.	composite load	moment waveform.		
	evaluation			
	damages			
Electronic design	By monitoring	The development	E.Johana	2011
for portable	fluctuations in	consists of a signal	Mohamad,	
electrical	the dielectric	processing circuit and a	O.M. Faizan	
capacitance	permittivity of	sensing electrode built	Marwah	
sensor: a	the material, this	into a single module.		
multiphase flow	non-intrusive	The manufacturing of		
measurement.	technique may	the sensor electrodes,		
	be used to	including information on		
	determine the	the signal conditioning		
	concentration of	circuit/electronic		
14	flow inside a	measuring portion, such		
	closed pipe.	as the stray immune		
ST.	2	capacitance		
EK.	8	measurement circuit,		
F		amplifier circuit, an AC		
E		to DC circuit, and a filter		
23		circuit, were described		
-11	Nn .	in depth.		
Distributed	The concept is	the spatial distribution of	Edward L.	2017
sensing in ΔM	demonstrated in	strain is resolved by	White,	
capacitive	a one-	employing several	Michelle C.	
conductive	dimensional	stimulation frequencies	Yuen, and	
composites.	scenario using	at different frequencies.	Rebecca K.	
	finite element	Specifically, the system	Kramer	
	simulation.	we describe is an		
		illustration of a		
		condenser built from an		
		acrylic binder with a		
		silicone dielectrical layer		
		on the top, a graphite-		
		based conductor		
		elastomer composite.		
		Based on the magnitude		
		of the measured		
		impedance, the strain		
		was rebuilt using an		
		artificial neural network.		

ECT sensor	Two-phase flow	Demonstrate that the	Haijun Tian	2020
simulation and	and multiphase	fuzzy optimization	5	
fuzzy	flow are both	design based on the		
optimization	detected using	experiments of multi-		
design base on	this technique.	index orthogonal sensors		
multi-index	-	allows the sensor to		
orthogonal		achieve simultaneous		
experiment.		uniform sensitivity of		
1		field distribution and		
		high image quality		
		reconstruction while		
		retaining a uniform		
		sensitive field		
		distribution.		
Analysis study on	Surface and sub-	MPCD is currently a	Umesh	2012
surface and sub-	surface defects	globally acceptable	Singh1*,	
surface	are detected	technology, simplifying	Mohan	
imperfections	using a	inspection procedures	Singh2 and	
through magnetic	Magnetic Crack	that result in	M. K. Singh	
particle crack	Detection	considerable cost		
detection for	test without	reductions and		
nonlinear	impairing the	strengthening of quality		
dynamic model of	integrity of 🚬	control and trust. It is		
some mining	material.	important to detect		
components.		surface defects in		
23.		magnetic materials such		
-a)	Nn .	as mild and alloy steels,		
shill	1 11/	cast iron. The	* 1	
276	- Lunis j=	methodology not only	اويوم	
		reveals non-visible		
LINIV	FRSITI TEKNI	surface faults in the	ΙΔΚΔ	
ontre		naked eye but also aids		
		the detection of fissures		
		only identified in closer		
		and painstaking surveys		
		of the surface under		
x 1 1 .		normal circumstances.		0016
Leak detection	Validation of	Soil test field has been	Patrick P.	2016
with linear soil	linear sensors	established with a gas	Neumann	
gas sensors under	and presentation	injection system that		
field conditions.	of results from	allows the experimental		
	repeated carbon	validation of linear gas		
	uloxide injection	sensors in an application		
	and watering	on a scale relevant for		
	operations on a	specific applications and		
	newiy	gases. Several injection		
	field	with carbon dioxide		
	11010.	with carbon divide $(CO2)$ were carried out		
		on different days and		
	1	on unificient days and		

		with variable boundary		
		conditions,		
		demonstrating the		
		method's potential.		
		1		
			5.1.4	• • • • •
Infrared	temperature	When it comes to non-	Rub´en	2014
thermography for	measurement	destructive testing,	Usamentiaga	
temperature	and non-	infrared thermography is		
measurement and	destructive	an established approach.		
non-destructive	testing are two	Recent advancements in		
testing.	of the most	this sector have made it		
	common	possible for this		
	applications for	technology to detect a		
	infrared	wide range of problems.		
	thermography-	Although a flaw can be		
	based sensors,	discovered using		
	and they are the	infrared thermography,		
	topic of this	it can only be noticed if		
	paper.	it opposes enough		
	440	thermal resistance to		
E.	Ka I	provide visible thermal		
N. S.	2	contrast.		
Electromagnetic	Small fractures	The use of transient	Liang Jin,	2010
stimulation of the	in thin-walled	electromagnetic fields	Qingxin	
acoustic emission	metallic	induced by a coil to	Yang,	
for fatigue crack	constructions are	produce localised	Suzhen Liu,	
detection of the	more easily	dynamic stresses is	Chuang	
sheet metal.	detected using	described in detail here.	Zhang, and	
-/~	this technique.	This may be used to	Peng Li	
	1	discover faults in a	U	
UNIVI	ERSITI TEKNI	component after it has	ELAKA	
		been assembled. The		
		deformation of the		
		sample generated by		
		local dynamic stress		
		may result in the		
		generation of an		
		auditory emission signal		
		Acoustic emission may		
		be produced by		
		electromagnetic		
		stimulation and this		
		emission may be utilised		
		to detect and find flaws		
		in the system		
		in the system.		

Investigation on	to demonstrate	thorough research of the	Fei Yuan,	2015
velocity effect in	the efficiency of	velocity effect for the	Yating Yu	
pulsed eddy	an innovative	PEC technique is carried		
currect technique	high inspection	out, and the correlations		
for detection	methodology for	between the speed and		
cracks in	crack	the PEC signal are		
ferromagnetic	characterisation	discovered. The velocity		
material.	in ferromagnetic	impact can cause the		
	material	baseline value of the		
	components.	detection signal in a		
		PEC detecting system to		
		fluctuate significantly.		
		Furthermore, when the		
		crack occurs in the high-		
		level stage of the		
		excitation signal, PEC		
		with high-speed may be		
		used to characterise the		
		position, width, and		
1	ALAYSIA	depth of the crack. In		
S	10	comparison to static		
3	3	PEC testing, motion		
ă.	7	detection has a greater		
		ability to characterise the		
E		fracture depths.		
Ultrasonic	The possibility	the ultrasonic	Said Alzebda	2010
sensing of	of significantly	transducers utilised in	and	
temperature of	reducing the	this investigation were	Alexander N.	
liqueids using	costs of the	designed for air	Kalashnikov	
inexpensice	minimum	operation, they were	14 T	
narrowband	intrusive NDE	able to function properly	LAKA	
piezoelectric	(NES) of	while submerged in		
transducers.	liquids, in	liquid for extended		
	particular	periods of time. They		
	temperature	have number of		
	sensing, with the	that make them suited		
	use of low-cost	for functioning in a		
	narrowband	for functioning in a		
	avamined	agentro frequencias of		
	exammed.	most resonances are		
		several times greater		
		than their centre		
		frequencies in air		
		indicating that they are		
		more nowerful		
		more poweriui.		

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter purpose to discuss the various stages of developing the methodology in details such as overview of the project, block diagram, flowchart, hardware and software development and lastly the gantt chart of the project report progress. Process of developing the research methods needed to complete the experimentation portion of the capacitor sensor.

3.2 Project Flow

This section will summarise the project's process flow. All data are gathered from the start, and a composition analysis is conducted based on the problem's articulations. The analysis assists in clearly explaining the concept, methodology, and some of the terminology used throughout the project. Following the completion of the written audit, the entire project's enhancement is only one section, the software, as previously referenced. The flowchart for this project is shown in Figure 3.0 below, along with a description of how the project was carried out from start to finish.

Figure 3.1: Project flow

3.2.1 Planning

The motive was conceived during the planning stage, when a capacity sensor was designed to detect cracking and elements within te using non-destructive testing (NDT). Α To create a schedule, a Gantt chart wa finance the task on a scheduled basis. The details of this project are shown in Figure 3.3. With the variable detail, this flowchart starts at the beginning and ends with the system flow. Because non-destructive testing (NDT) plays a key role in the safety of numerous products, transportation systems, and infrastructure used around the world, the goal of the project was to test a new and more detailed system that can be used without damaging the material in current industrial technology. To solve this problem, all of the information gathered during the research was used to provide a simple and basic solution. In addition, all research-related information will be gathered and continued through the creation of a literature review. The capacitance sensor detector technique is examined in this review of the literature. The following step is to plan the software design.

Figure 3.2: Flowchart of Research Progress

No Task Name	Task Name	ACHIEVEMENT	WEEK										
			1	2	3	4	5	6	7	8	9	10	11
	TARGET												
1	1 I Itle Selection And Briefing	ACTUAL											
•	Introduction, Problem Statement.	TARGET											
2	Objective and Scope	ACTUAL											
	3 Literature Review	TARGET											
3		ACTUAL											
	4 Project Flow, Planning, Research	TARGET											
4		ACTUAL											
_		TARGET											
5	Design, Implementation	ACTUAL											
		TARGET											
6	6 Software Configuration	ACTUAL											
	Barlining Barli	TARGET											
1	Preliminary Result	ACTUAL											

Table 2.3: Gant Chart of progress

3.2.2 Information of Past Study

In a project's progress or development process, it is important to mention current and previous innovation and information that is available. To move any project forward, creativity and analysis of the main project are absolute necessary. The method for organising that information and providing it as a reference will be composing evaluation. The review provides users with a practical perspective on the appropriate data working standard as well as recommendations for the most effective way to improve it.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

3.3 COMSOL Multipyhsics Simulation

Through software analysis, a process of simulating reality is carried out in an environment that is appropriate. Calculations at a high rate are actually one of the boundary conditions to see what results will be obtained from costly experiments and can also comprehend something outside of the confines of a laboratory experiment. Also, to evaluate a system's performance and generate new ideas quickly. Other than that, the use of Comsol multiphysics is essentially environmental, it is scientifically reliable. Experts in engineering and physics have also recommended it with accuracy in the relatively fast calculation. In addition, features that enable easy access in the calculation, the Finite Element Method (FEM) is used. It also showcases new areas of research such as photonic, plasmonic, electronic, and material engineering. So, I decided to use this software as a simulation for NDT on capacitance sensor for testing on composite.

3.4 Solidworks Software

The concepts of this software are the SOLIDWORKS software's basic building blocks. Assemblies are made up of parts or other assemblies known as subassemblies. A SOLIDWORKS model is made up of three-dimensional geometry that defines its edges, faces, and surfaces.SOLIDWORKS software allows you to create models quickly and precisely. Models in SOLIDWORKS are defined by 3D design and also by components. SOLIDWORKS employs a three-dimensional design approach. It is possible to create a 3D model when designing a part, from the initial sketch to the final result. This software can generate 2D drawings from this model or mate components made up of parts or subassemblies to generate 3D assemblies. It is also possible to create 2D drawings of 3D assemblies. When using SOLIDWORKS to design a model, it can visualise it in three dimensions, allowing you to see how the model will look once it is manufactured.

3.5 Design

Figure 3.3: Parallel plate capacitive sensor

The main process of this project is to find a more reliable solution for applications measuring material composition. The basic capacitive sensor is any metal or conductor and can detect anything like cracks in conductive materials or has different dielectric constants from the air. For this project, a composite material will be placed in the middle of a parallel plate in the simulation, and the capacitance reading is taken.

3.5.2 Capacitor sensor and material plate

Figure 3.4 : Capacitor sensor and material plate

The beginning of prosess with a sketch and then transformed into a 3D design by using Solidworks Software, as shown in figure 4.1, where the diameter of the design sensor capacitor plate is 200mm with distance between capacitor plate is 30mm and the measurements on the plate are 100mm X 100mm X 5mm.

SAIND تيكنيكل مليسيا م

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 4

DISCUSSION AND RESULTS

4.1 Introduction

The process flow will be clarified and analysed in this chapter, as well as the challenges encountered during the development phase, the performance evaluation of the data obtained from the experiment, and the study for the proposed capacitance sensor that has been developed. This chapter dealt with the gathering of data.

4.2 COMSOL Multiphysics Simulation

a= Variau..... Δ da LiveLink pplicat mpor Settings /ersions.mph (roo Global Definitions Build Se Build All Objects Label: LiveLink for SOLIDWORKS E Parameters 1 Default Model Inp Synchronize Active do 100 LiveLink Synchronize · Parameters in CAD Packag Controllable para CAD n Table 200 -100 ogress Sunc CAD nan

4.2.1 SOLIDWORKS Livelink with COMSOL

Figure 4.1 : Livelink with COMSOL

LiveLink for SOLIDWORKS also simplifies and expedites simulation setup on the synchronised CAD design. In SOLIDWORKS software, I can create selections such as bodies, faces, edges, or points that are synchronised with the COMSOL model and may be used to assign materials, physics settings, or any other model specifications. Make selections from the SOLIDWORKS software's Feature Manager Design Tree as well as the CAD assembly's components. Additionally, LiveLink for SOLIDWORKS may generate and synchronise selections based on material allocations in the SOLIDWORKS software CAD design. The simulation can also control the SOLIDWORKS software file's CAD design parameters.

4.2.2 Electrostatic(es) selection design

4.2.2.1 Charges conservation

Figure 4.2 : Charges conservation selection

A closed system's total electric charge does not change, as shown in figure 4.2. The total amount positive and negative charge in the universe is always conserved. In an isolated system, the net charge is always constant because of the law of charge conservation. System net charges are then evenly distributed among each object. When electrons are transferred from higher to lower polarity rather than concentrated in few objects, the charge on the object is evenly distributed. Electrons, not protons, are capable of participating in the transfer of charge.

As shown in figure 4.2, the formula chosen to charge for the Electric Flux Density is referred to as Electric Displacement, denoted by D. This is a type of vector field found in Maxwell's equations. It is equal to the electric field strength multiplied by the permittivity of the material (ϵ_r) through which the electric field extends. The Electric Flux Density (**D**) is proportional to the Electric Field (E).

4.2.2.2 Zero Charges

Figure 4.3 : Zero Charges selection

The energy stored in the capacitor changes as it charges or discharges. Additionally, the total amout of energy supplied by the voltage remains constant. As can be seen, the loop rule expresses this fact of energy conservation. The sum of all possible variations around the design is zero.

4.2.2.3 Terminal

Figure 4.4 : Terminal selection

4.2.2.4 Ground

Figure 4.5 : Ground selection

As we have seen, two conducting plates, one for the positive terminal on the upper plate and one for the negative terminal on the lower plate, or we can call ground as shown in figure 4.5, then the charges will move through, since they continuously repel one another, these conducting paths, and the furthest distance that they can travel away from one another is the boundary of this surface, which is the lower surface of the upper plate.

As illustrated in Figure 4.4, the voltage in the terminal is V=1, because if the voltage becomes too high, the dielectric will breakdown, allowing a discharge. If someone overcharge a capacitor, for example by applying a high voltage for an extended period of

time, the gap voltage may become excessively large. Thus, the more appropriate value to enter at the terminal is one that is closer to zero, which is 1.

4.2.3 Plate

The Solidworks software assisted me in creating four designs in which the plate had a sketch of 100mm X 100mm X 5mm on each plate of the material, as well as a different crack on each plate of the material.

Types of crack	Height(mm)	Length(mm)	Width(mm)
Circle	5	100	100
Straight line	5	100	100
Parallel line	5	100	100
Zig-Zag line	5	100	100

4.2.4 Difference value of relative permittivity of Material

Figure 4.6 : Label of material

MATERIAL	RELATIVE PERMITTIVITY
COPPER	10
CONCRETE	6
PVC	3
ALUMINIUM	1
BRICK	4

Table 4.2 : Value of relative permittivity

As shown in figure 4.6, a selected material is a concrete with a relative permittivity of 6 and has been chosen as a study material for the purpose of this experiment. In addition, as shown in table 4.2, I have placed 5 difference values of relative permittivity of the material to be studied in the appropriate locations.

4.4.1 Simulation of circle crack COPPER Graphics Surface: Electric potential (V) Slice: Electric field norm (V/m) Arrow Volume: Electric field -×10⁻⁷ 100 50 45 50 40 35 30 mm 25 C 20 15 10 -50 5 0 Messages Progress Log Table 1 🔛 8.85 AUTO 8.5 859 🔤 🥅 🌚 📐 📋 🔳 🖬 🗁 🖽 🛩 Average: Maxwell capacitance (pF) 14.216 CONCRETE Graphics ~ 1 Q Q ⊕ + ⊕ ↓ + ⋈ ⋈ ⋈ ⋈ ⋈ • ● ⊡ ⊡ ⊡ 5 + ∞ 🖴 -200 -100 0 100 200 Surface: Electric potential (V) Slice: Electric field norm (V/m) Arrow Volume: Electric field ×10⁻⁷ 100 50 45 40 50 35 30 mm 25 0 20 15 10 -50 5 z 0 0 Messages × Progress Log Table 1 × 🔛 | 8.55 AUTO 8.5 859 🔤 | 🥅 🌚 | 🍾 📋 🗮 🖬 🖙 🇮 🖛 Average: Maxwell capacitance (pF) 14.163

4.4 Result

Figure 4.7 : Strength of Electric Field of circle crack plate

4.4.2 Simulation of straight line crack

Figure 4.8 : Strength of Electric Field of straight line crack

4.4.3 Simulation of parallel line crack

Figure 4.9 : Strength of Electric Field of parallel line crack

4.4.4 Simulation of Zig-Zag line crack

Figure 4.10 : Strength of Electric Field of zig-zag line crack

The electric field at a parallel plate, as simulated by the COMSOL Multiphysics simulation software. The figure above shows two identical conducting plates, each with a surface area (A), that are separated by a distance (d), indicating that they are separated by a different material from one another. In this case, the bottom plate is negatively charged, while one of the top plates is positively charged. An electric field is created between the plates of the capacitor sensor's plates and a central plate of the capacitor sensor's plates, as indicated by an arrow surrounding the capacitor sensor.

Near the edges of the plates, however, there are some noticeable variations in colour. It has been observed that the fringing fields extend only a short distance away from the capacitor when the capacitor is turned off. It is necessary to determine the capacitance of the device. In accordance with the different materials with different relative permittivity used, the average capacitance value varies accordingly.

 Table 4.3 : Data comparison with different crack and material

4.3.1 Line Graph

Figure 4.11 : Average value of Capacitance vs crack of material

Figure 4.12 : Average value of capacitance vs Distance

As demonstrated in figures 4.11 and 4.12, the data simulation graphs have factors affecting capacitance. Three fundamental factors in capacitor construction affect the amount of capacitance generated. These factors all contribute to capacitance by determining the amount of electric field flux, or the relative difference of electrons with both plates, that will develop for a given amount of electric field force.

The average value of capacitance versus crack for each material is shown in Figure 4.11, indicating that each material has a different amount of relative permittivity and thats already mention at table 4.2. Greater permittivity of the dielectric results in greater capacitance; conversely, if less permittivity of the dielectric results in less capacitance, it demonstrates that copper has greater capacitance in the graph line because its relative permittivity is 10. Otherwise, aluminium has a lower relative permittivity, one, and thus a lower capacitance. Certain materials exhibit less resistance to flux when subjected to a given amount of field force. Additionally, materials with a higher permittivity permit more field flux, which results in less opposition.

Capacitance is affected by a number of factors, one of which is plate spacing. Why? As demonstrated in figure 4.12, increasing the plate spacing, or the distance between parallel plates, results in decreased capacitance, while decreasing the plate spacing results in increased capacitance. When closer spacing results in a greater field force, defined as the voltage across the capacitor divided by the distance between the plates, it also results in a greater field flux, defined as the charge collected on the plates for a given applied voltage. Unfortunately, I was unable to alter the distance between the parallel plates due to technical issue with the SolidWorks software used to create the design, but in theory, the formula demonstrated that such an alteration would occur when altering the distance between the parallel plates.

The capacitor plate area is the final factor that affects the amount of capacitance. I even mentioned the diameter in figure 3.4, where I specified 200 mm for the capacitor plate's diameter. As a result, the larger plate also provides more capacitance, while the smaller plate provides less. For a given field force, which is voltage across the plates, a larger plate area results in more field flux, which is charged collected on the plates.

48

CHAPTER 5

CONCLUSION

5.1 Introduction

About this chapter, it is explained the conclusions reached for this FYP 2 (Final Year Project) in terms of achieving the research goal. This chapter emphasises the importance of the research.

5.2 Conclusion

COMSOL Multiphysics and Solidworks software were used to successfully simulate the image reconstructed from the parallel plate and various types of material cracks. The electrical parameters of two electrodes can be determined using simulation results, and capacitor sensors with 2D and 3D geometries have been successfully implemented. When I conducted this experiment, I discovered that the capacitor sensor I designed was capable of detecting changes in capacitance or anything else associated with capacitor effects, such as the electrical field between the capacitive sensor and the intended material plate. Additionally, I discovered that it can sense both metallic and non-metallic objects and can thus vary in response to changes in the plate distance, the effective plate surface, or the dielectric. For non-conducting materials, the sensor concept is based on changes in dielectric constant, while for conducting materials, the sensor concept is based on changes in plate distance.

5.3 Recommendation

Numerous recommendations for future work on the development of a non-destructive electrical capacity sensor for composites are included. As previously stated, a few points need to be improved and upgraded to ensure that the simulation runs flawlessly.

Additional research should be conducted to determine the effect of varying the parallel plate's distance from the material plate on the simulation and the size of the material plate. Due to flaws in my project, one of which is that I am unable to adjust the distances between parallel plates due to technical difficulties with SolidWorks Software, we can proceed to the hardware implementation stage once the simulation is complete. To comply with industry specifications, it is necessary to implement hardware that generates

accurate data results during testing in order to inspect for metal flaws or cracks, as well as material differences that occur in the majority of industrial sectors.

REFERENCES

- X. Li, "Eddy Current Techniques for Non-destructive Testing of Carbon Fibre Reinforced Plastic (CFRP) List of Contents," 2012.
- P. Sriphant, A. Srongprapa, and B. Klongratog, "Capacitive Measuring of Crude Palm Oil – Water Mixture," no. Iccas, pp. 306–309, 2017.
- [3] Z. Cui, H. Wang, and W. Yin, "Electrical Capacitance Tomography With Differential Sensor," vol. 15, no. 9, pp. 5087–5094, 2015.
- [4] Z. Ren, S. Member, and W. Yang, "A Miniature Two plate Electrical Capacitance Tomography Sensor," no. c, 2015, doi: 10.1109/JSEN.2014.2383491.
- [5] W. N. Abd Rashid *et al.*, "Design of non destructive testing on composite material using parallel plate electrical capacitance tomography: A conceptual framework," *J. Teknol.*, vol. 79, no. 5–2, pp. 71–76, 2017, doi: 10.11113/jt.v79.11286.
- [6] "Principles of Electrical Capacitance Tomography," 1980.
- [7] Y. Suhaila *et al.*, "Development time in liquid penetration testing for metal butt joint," *Appl. Mech. Mater.*, vol. 465–466, pp. 1109–1113, 2014, doi: 10.4028/www.scientific.net/AMM.465-466.1109.
- [8] Umesh Singh, "Analysis study on surface and sub surface imperfections through magnetic particle crack detection for nonlinear dynamic model of some mining components," J. Mech. Eng. Res., vol. 4, no. 5, pp. 185–191, 2012, doi: 10.5897/jmer11.094.
- [9] V. V. Nagarkar, J. S. Gordon, S. Vasile, P. Gothoskar, and F. Hopkins, "High resolution X-ray sensor for non destructive evaluation," *IEEE Trans. Nucl. Sci.*, vol. 43, no. 3 PART 2, pp. 1559–1563, 1996, doi: 10.1109/23.507103.
- [10] S. Alzebda and A. N. Kalashnikov, "Ultrasonic sensing of temperature of liquids using inexpensive narrowband piezoelectric transducers," *IEEE Trans. Ultrason. Ferroelectr. Freq. Control*, vol. 57, no. 12, pp. 2704–2711, 2010, doi: 10.1109/TUFFC.2010.1744.
- [11] F. Yuan, Y. Yu, B. Liu, and G. Tian, "Investigation on Velocity Effect in Pulsed Eddy Current Technique for Detection Cracks in Ferromagnetic Material," *IEEE Trans. Magn.*, vol. 56, no. 9, pp. 1–8, 2020, doi: 10.1109/TMAG.2020.3012341.
- [12] L. Jin, Q. Yang, S. Liu, C. Zhang, and P. Li, "Electromagnetic Stimulation of the Acoustic Emission for Fatigue Crack Detection of the Sheet Metal," vol. 20, no. 3,

pp. 1848–1851, 2010.

- [13] P. P. Neumann, M. Bartholmai, and A. E. Setup, "Leak Detection with Linear Soil Gas Sensors under Field Conditions - First Experiences Running a New Measurement Technique," pp. 5–7, 2016.
- [14] R. Usamentiaga, P. Venegas, J. Guerediaga, L. Vega, J. Molleda, and F. G. Bulnes, "Infrared thermography for temperature measurement and non-destructive testing," *Sensors (Switzerland)*, vol. 14, no. 7, pp. 12305–12348, 2014, doi: 10.3390/s140712305.
- [15] S. Agarwal and D. Singh, "An Adaptive Statistical Approach for Non-Destructive Underline Crack Detection of Ceramic Tiles Using Millimeter Wave Imaging Radar for Industrial Application," *IEEE Sens. J.*, vol. 15, no. 12, pp. 7036–7044, 2015, doi: 10.1109/JSEN.2015.2469157.

APPENDIX

Appendix 1: Gantt Chart for Project

