

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MOHAMAD AIMAN BIN ABDUL LATEF

Bachelor of Electronics Engineering Technology with Honours

2021

DEVELOPMENT OF EPILEPTIC SEIZURES DETECTION BASED ON EEG SIGNALS ANALYSIS USING MATLAB

MOHAMAD AIMAN BIN ABDUL LATEF

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electronics Engineering Technology with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

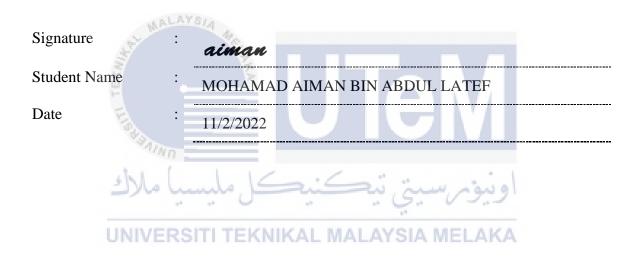
UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek: Development of Epileptic Seizures Detection Based On
Eeg Signals Analysis Using Matlab

Sesi Pengajian : 2020/2021

Saya MOHAMAD AIMAN BIN ABDUL LATEF mengaku membenarkan laporan Projek Sarjana Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut: 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.


- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.

<u>sulit</u> *	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana
TIDAK TERHAD aiman	penyelidikan dijalankan) Disahkan oleh:
MOHAMAD AIMAN BIN ABDUL LATEF	TS. KHAIRUL AZHA BIN A AZIZ
Alamat Tetap: NO 98, JALAN ORKID, TAMAN ORKID, PONGSU SERIBU, 13200 KEPALA BATAS, PULAU PINANG.	Ts. KHAIRUL AZHA BIN A AZIZ Pensyarah Kanan Jabatan Teknologi Kejuruteraan Elektronik Dan Komputer Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik Universiti Teknikal Malaysia Melaka
Tarikh: 11 February 2022	Tarikh:

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Development of Epileptic Seizures Detection Based on EEG Signals Analysis using MATLAB" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

·····I·hereby··declare·that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electronics Engineering Technology with Honours

Signature

•

Supervisor Name

Date

DEDICATION

This thesis is dedicated to Abdul Latef bin Ahmad Sawri and Azizah binti Talib, my beloved parents for their constant love, encouragement, and inspiration. To my supervisor Ts. Khairul Azha Bin A. Aziz who never giving up to taught and guide me to complete my project. To my helpful classmate and housemate who always keep supporting me.

ABSTRACT

Brain epilepsy is classified as a brain-related disorder that affects the entire brain's nervous system and is caused by brain waves undergoing high-frequency voltage changes or seizures. The disease is one of the uncontrolled movements performed by unconscious epilepsy patients. Therefore, the purpose of this study is to develop the detection of epilepsy seizures based on EEG signal analysis using Matlab. For results, this study initially used the feed-forward neural network technique. The feed-forward neural network technique is used in machine learning to execute the exact processes of the human brain. The system was inspired by the way the human brain thinks. This study uses input data such as standard deviation and mean, and then this epilepsy detection procedure is implemented using MATLAB software. Testing was performed sequentially from 10 to 20 neurons to obtain the best values. In addition, this study also uses an electroencephalogram (EEG) to diagnose and access activity in the human brain using a data set obtained from the University of Bonn (UBonn), which other researchers in this epilepsy study have widely used. A MindLink EEG sensor was used, and the sensor sent data via PLX- DAQ software to detect healthy or epilepsy. The standard deviation provides the best overall accuracy compared to mean, which is 80.8% at seventeen neuron while mean highest overall accuracy only 72.6%. Then, a Matlab Graphical User Interface (GUI) is used to execute editor Matlab file by pressed the pressed the button. GUI acts as shortcut keys to perform a task that takes couple of actions.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Epilepsi diklasifikasikan sebagai salah satu gangguan berkaitan otak yang mempengaruhi keseluruhan sistem saraf otak dan ini disebabkan oleh gelombang otak yang mengalami perubahan voltan berfrekuensi tinggi, atau disebut sebagai sawan. Penyakit ini adalah salah satu pergerakan tidak terkawal yang dilakukan oleh pesakit epilepsi tanpa sedar. Oleh itu, kajian tesis ini adalah untuk mengembangkan pengesanan kejang epilepsy berdasarkan analisis isyarat EEG menggunakan Matlab. Kami menggunakan Teknik Rangkaian Neural Feedforward. Teknik Rangkaian Neural Feed-forward digunakan dalam pembelajaran mesin sebagai alat untuk melaksanakan proses persis otak manusia. Sistem ini diilhamkan dengan bertujuan untuk mencipta kembali cara pemikiran otak manusia. Tesis ini menggunakan pengekstrakan ciri seperti sisihan piawaian dan min dan kemudian prosedur pengecaman epilepsi ini dilaksanakan dengan menggunakan perisian MATLAB. Pengujian dilakukan secara berturutan daripada 10 neuron sehingga 20 neuron untuk mendapatkan nilai yang paling terbaik. Selain itu, kajian ini juga menggunakan elektroensefalogram (EEG) yang kemudiannya digunakan untuk mendiagnosis dan mengakses aktiviti didalam otak manusia dengan menggunakan set data yang diperoleh dari University of Bonn (UBonn), yang telah banyak digunakan oleh penyelidik lain mengenai kajian epilepsi ini. Sensor MindLink EEG digunakan dan data dihantar melalui perisian PLX-DAQ untuk mengesan kejang normal atau epilepsi.Selain itu, selepas ujian dibuat, kami mendapati bahawa sisihan piawai memberikan keputusan ketepatan yang terbaik iaitu 80.8% dibanding dengan min iaitu hanya 72.6%. Kemudian, Antaramuka Pengguna Grafik (GUI) digunakan untuk memaparkan ketepatan keseluruhan dengan latihan pengesahan. GUI bertindak sebagai kekunci pintasan yang digunakan untuk memudahkan pengguna.

ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim,

First and foremost, praises and thanks to the God, the Almighty, for His showers of blessings throughout my project work to complete the project successfully.

I would like to express my deep and sincere gratitude to my project supervisor, Ts Khairul Azha bin A Aziz for his guidance, support, encouragement, advise and most importantly for not giving up on me during the completion of this project.

I am extremely grateful to my parents for their love, prayers, caring and sacrifices for educating and preparing me for my future. Also I express my thanks to my sisters and brother for their support and valuable prayers.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

e up a la

ahmend all

TABLE OF CONTENTS

		PAGE
DECLA	RATION	
APPRO	VAL	
DEDIC	ATIONS	
ABSTR	АСТ	i
ABSTR	AK	ii
ACKNO	OWLEDGEMENTS	iii
TABLE	OF CONTENTS	iv
LIST O	F TABLES WALAYSIA	vi
LIST O	F FIGURES	vii
LIST O	F APPENDICES	ix
LIST O	F SYMBOLS	X
LIST O	FABBREVIATIONS	xi
СНАРТ	اويوم سيني بيڪينڪ مليسيا ملاڪ INTRODUCTION	
1.1		1
1.2	Problem Statement	2
1.3	Project Objective	4
1.4	Scope of Project	5
СНАРТ		
2.1	Introduction	6
2.2	Sub-bands Brain Wave	10
	2.2.1 Delta Wave	10
	2.2.2 Theta Wave	11
	2.2.3 Alpha Wave	11
	2.2.4 Beta Wave	12
	2.2.5 Gamma Wave	13
2.3	EEG Brain Sensors	14
	2.3.1 Neurosky Mindset Sensor	14
2.4	Machine Learning Technique	16
	2.4.1 Multilayer Perception Neural Network	17
	2.4.2 Radial Basic Function Neural-Network	18
	2.4.3 Recurrent Neural Network	18
	2.4.4 Probabilistic Neural Network	18

	2.4.5 Support Vector Machine	19
2.5	Tools for Feature Extraction	
2.6	Types of Signal Processing	24
	2.6.1 Discrete Wavelet Transform(DWT)	24
	2.6.2 Continuous Wavelet Transform(CWT)	25
	Summary	27
CHAPTER	3 METHODOLOGY	
3.1	Project Overview	29
3.2	Project Description and Block Diagram	29
3.3	Methodological Procedures	34
	3.3.1 Real Time Raw EEG Epilepsy Dataset	34
3.4	Hardware Implementation	36
	3.4.1 Mindlink EEG Sensor	36
3.5	Software Implementation	37
3.6	Process Graphical User Interface (GUI)	44
3.7	Outcome	46
CHAPTER	4 RESULTS	
4.1	Overview	48
4.2	Analysis Results for Raw EEG Dataset from UBonn	48
4.3	Analysis before Transform Dataset into Sub-Band Using	55
	DWT	
4.4	Analysis before filtering and after filtering	57
4.5	Analysis by Changing the Number of Neuron in Feed-	58
	Forward Neural Network Hidden Layer in Matlab	
4.6	Analysis by using mean as Input Data of Feed-Forward	62
	Neural Network	
4.7	Analysis by using Standard Deviation and Mean of Feed-	65
	Forward Neural Network	
4.8	Results Real-Time Brainwave Data using Mindlink EEG	67
	Sensor	
4.9	Analysis by Testing the Real-Time EEG Brainwave Data	71
4.10	Graphical User Interface (GUI) AL MALAYSIA MELAKA	73
4.11	Discussion	74
CHAPTER	5 CONCLUSION	
5.1	Overview	77
5.2	Conclusion	77
5.3	Future Work and Recommendation	78
5.4	Project Potential	79
REFEREN		80
APPENDIC	CES	82

LIST OF TABLES

TABLE	TITLE	PAGE
Chapter 2		
Table 2.1	Types of brain lobes and its functions	8
Table 2.2	Comparison of Brain Signal Type	15
Table 2.3	Comparison between epilepsy methods	28
Chapter 3		
Table 3.1	Category of Ubonn Dataset	30
Table 3.2	Categories of raw EEG database University of Bonn	35
Table 3.3	EEG Dataset Description	35
Table 3.4	Example of coefficient of DWT and their types of EEGwaveform	38
Table 3.5	Example of target dataset for each five dataset	39
Chapter 4		
Table 4.1	Overall steps results shows in table.	51
Table 4.2	Steps results for standard deviation.	52
Table 4.3	Target dataset used for (8 x 500) matrix	54
Table 4.4	The results summary for different number of hidden neurons	61
	with percentage of training, validation, testing and overall	
	accuracy.	
Table 4.5	The results summary by input data (X10)	62
Table 4.6	Ten input data tested	66
Table 4.7	Overall Accuracy of Input Data	66
Table 4.8	The real-time brainwave MindLink EEG wavelength results	70
	taken in the range between ten minutes.	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE CHAPTER 2	TITLE	PAGE
Figure 2.1	Basic Structure of a Neuron	7
Figure 2.2	A simple structure of the brain	8
Figure 2.3	The Raw EEG record of a baseline sample	10
Figure 2.4	Delta signal wave	11
Figure 2.5	Theta signal wave	11
Figure 2.6	Alpha signal wave	12
Figure 2.7	Beta signal wave	12
Figure 2.8	Gamma signal wave	13
Figure 2.9	The 10/20 system-standardized placement of electrodes	13
Figure 2.10	Neurosky Mindset Sensors	14
Figure 2.11	Procesure for ML algorithms	16
Figure 2.12	Single channel EEG signal decomposition of set A	22
Figure 2.13	Single channel EEG signal decomposition of set D	22
Figure 2.14	Single channel EEG signal decomposition of set E	23
CHAPTER 3	اونيذه سية تتكنيكا ملسبا ملا	
Figure 3.1	An Illustration of a normal EEG recording	31
Figure 3.2	EEG recordings of a partial seizure	32
Figure 3.3	EEG recordings of a generalized epileptic seizure	32
Figure 3.4	General block diagram of Neural Network epilepsy detection	33
Figure 3.5	system Mindlink Sensor	36
Figure 3.6	The MindLink EEG sensor is wear and connected via Bluetooth	30
Figure 5.0	Module through Arduino and computer	57
Figure 3.7	Feed-forward Neural Network	40
Figure 3.8	Details flow process to produce confusion matrix and plotting	41
	ROC	
Figure 3.9	Process Real-Time data	42
Figure 3.10	Arduino IDE Interface	43
Figure 3.11	PLX-DAQ Interface	44
Figure 3.12	Graphical User Interface (GUI) flow	45

CHAPTER 4

Figure 4.1	The raw data downloaded from official website of UBonn	48
Figure 4.2	After extracting the raw data.	49
Figure 4.3	Each set contains of 100 of type of text file which consist of 4097 samples of one EEG time series in ASCII code.	49
Figure 4.4	The raw data transferred from text file to Excel file.	50
Figure 4.5	Dataset Filtered	50
Figure 4.6	Input data used is (8 x 500) matrix while target data used is (5 x 500) matrix.	54
Figure 4.7	Confusion matrix with seventeen hidden neuron for standard deviation.	55
Figure 4.8	Confusion matrix analysis before transform the dataset into sub- band.	56
Figure 4.8.1	Confusion matrix after and before filtering process	57
Figure 4.9	Process flow for Feed-forward Neural Network training data.	58
Figure 4.10	Confusion matrix by using seventeen hidden neurons.	59
Figure 4.11	Confusion matrix by using ten hidden neurons	60
Figure 4.12	The graph accuracy of different number of hidden neuron.	62
Figure 4.13	The graph accuracy of different number of hidden neuron	63
Figure 4.14	Confusion matrix of input data (X10) with twelve neuron	64
Figure 4.15	Confusion matrix of Pattern Recognition by using neuron ten.	65
Figure 4.16	The data reading which display on Serial Monitor in Arduino Software.	68
Figure 4.17	The data reading which display on Serial Monitor in Arduino Software.	69
Figure 4.18	The graph of brainwave wavelength in the range between ten minutes.	71

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1	Confusion Matrix Changes using Standard Deviation in	82
	Feed-Forward Neural Network.	
Appendix 2	Confusion Matrix Changes using Mean in Feed-Forward	83
	Neural Network.	
Appendix 3	Programming Coding for the System	84

LIST OF SYMBOLS

- *b* Location of the Parameter
- % Percentage

LIST OF ABBREVIATIONS

EEG	Electroencephalogram
MIT	Massachusetts Institute of Technology
CNN	Convolutional Neural Network
СНВ	Children's Hospital Boston
СWT	Continuous Wavelet Transform
BoW	Bags-of-Words
SVM	Support Vector Machine
DWTALAYS	Discrete Wavelet Transform
FFT	Fast Fourier Transform
AR	Autoregressive or Autoregression
MLPNN	Multilayer Perceptron Neural Network
ANFIS	Adaptive Neuro-Fuzzy Interference System
KDD	Knowledge Discovery in Database
	Recurrent Neural Network
LSTM	Long-Short-Term Memory
GRU	Gated-Recurrent Unit
STFT	Short-time Fourier Transform
WT	Wavelet Transform
GPS	Global Positioning System
ANN	Artificial Neural Network
UBonn	University of Bonn

CHAPTER 1

INTRODUCTION

1.1 Background

Epilepsy is the second most prevalent neurological condition after stroke, and one of the most prominent neurological disorders characterized by epileptic seizures, according to the World Health Organization (WHO). Contamination can occur irrespective of the host conditions or characteristics (Ahmadi, 2018). Unregulated seizures in patients with epilepsy are in danger of asphyxia, death or injury from collapse or traffic accidents and are unable to defend themselves (Mutlu, 2018, Yan, 2016). To date, drugs and surgery are the main therapies for this disease; there is no cure and anticonvulsant medication for all forms of epilepsy has not been fully effective (López-Hernández, 2011, Yan, 2015).

Electroencephalography (EEG) is beneficial in detecting epilepsy because it measures ionic currents flowing inside brain neurons and identifies voltage variations between electrodes along the subject's scalp. It also provides temporal and geographical information about the brain (Misulis, 2013, Pachori and Patidar, 2014). EEG detection involves a physician's direct observation as well as a large amount of time and effort. Furthermore, professionals with various degrees of diagnostic experience may hold opposing viewpoints on diagnostic outcomes (Wang, 2016, Yan, 2017). As a result, it is critical to create an integrated, computer-aided approach for epilepsy diagnosis (Iasemidis, 2005, MARTIS, 2015). The data for this study were acquired from the Bonn University site, which is a publicly accessible database utilised by Andrzejak et al. for epilepsy diagnosis. This resource includes five sets of EEG signals. Each package comprises 100 single channel EEG segments that last 23.6 seconds. The five sets are listed below. Datasets A and B were created utilising a consistent electrode implantation methodology on five healthy volunteers. Set A is made up of signals from people in a slowed-down state with their eyes open. Set B comprises the same signal as Set A, but with the eyes closed. Interictal and ictal epileptic events are recorded from epileptic participants employing intracranial electrodes in datasets C, D, and E.

Following the gathering of data, numerous feature extraction strategies were investigated. DWT has been discovered to be the most effective and powerful methodology for processing EEG signals in one-dimensional format. As a result, this procedure was applied using MATLAB, and the results were obtained. Following feature extraction, multiple machine learning approaches were applied to assess how these strategies performed in an epilepsy detection classification task on an EEG data.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.2 Problem Statement

Epilepsy is a neurological disorder that involves recurrent seizures and a sudden behavioural change due to increased brain electrical activity. The effects of this abnormal electrical brain activity will cause seizure. Seizure can cause unconsciousness and excessive body shaking. The epilepsy patient constantly getting seizure event without having to know when and how it might happen. With helps of Electroencephalogram a typical pattern of brain activity changes when seizure happen can be seen on the EEG reading (Szczypka et al., 2001). The EEG signals help to examine the neuronal disturbances that happen because of epilepsy.

The EEG records consists of a large number of hours-to day details and making it very complicated, prolonged, and costly task with a large number of epileptic patients admitted to the hospitals. This will require a huge number of data need to be recorded. Therefore, this method needs to be optimized strongly. A suitable epileptic seizure detection method (Fernandez et al., 2007) in EEG signals based on DWT can be used to analysed EEG signals at different frequency sub-bands and classify using an Artificial Neural Network (ANN).

Essentially, EEG records are rarely observed because the oscillation is complex, pure, and plain. The EEG signal analysis requires the algorithm for accurate measurement (Kreitzer and Malenka, 2008); hence the interpretation is not carefully studied by the analytics. This proposed work investigates the flexibility of using wavelet transform as a pre-processor of an Artificial Neural Network (ANN) based on EGG decomposed data. To solve the problem whether the data is suitable or not, the data is developed by using MATLAB Neural Network toolbox. From the parameter data adopted, the capability of the ANN techniques to classify healthy and epileptic individuals based on their EEG parameters can be proven.

Generally, neurophysiologists or accredited neuro-clinicians have never had their EEG recordings visually inspected for epilepsy detection. It would interrupt the diagnostic process and, in several cases, take many hours or more to record the EEG. Aside from that, they need a framework due to the large number of long-term EEG records (M. Winterhalder, T.Maiwald., 2003) and their increaseduse for successful neurological disorder evaluation and treatment, including epilepsy. It will also limit the expert's willingness to misread the data and make an incorrect judgement. They must also ensure that the data is accurately collected and measured, which is more difficult tocompare and analyse than visual data.

1.3 Project Objective

A detailed evaluation of the EEG signal can help treat a variety of neurological conditions. These signals are predominantly responsible for a wide range of brain disorders. Due to excessive equipment costs and a lack of competent engineering sciences, studying these signals was difficult decades ago. These constraints, however, have lately been overcome, and a variety of low-cost hardware options for capturing the EEG signal are now available. As a result, a variety of methods for recording these signals and directly visualizing the graphs using the software have been created, which may then be assessed by a professional and some observations on the functioning of the brain made. As a result, the following is the project's goal:

- a) To develop an EEG Epilepsy Recognition System using Feed-forward Neural Network as Artificial Neural Network (ANN).
- b) To identify which sort of input data should be utilised to investigate epileptic seizures detection and obtain the optimum results for usage with a neural network. RSITI TEKNIKAL MALAYSIA MELAKA
- c) To test and compare real brainwave data, obtain from EEG sensor by using Artificial Neural Network (ANN) and execute using Matlab's.

1.4 Scope of Project

The scope of this project are:

- a) The epilepsy dataset used for training, testing, and validation was obtained from the Department of Epileptology at the University Hospital of Bonn.
- b) Extracting raw data into sub-bands using the Discrete Wavelet Transform (DWT) methodolody.
- c) Used standard deviation and mean for feature extraction to compare which has better accuracy.
- d) Used the Feedforward neural network (patternet) approach as an Artificial Neural Network (ANN) classifier to analyses data and classify it.
- e) Obtaining raw EEG data with MindLink Sensor for comparing real-time brainwave data from EEG sensor using Feed-forward Neural Network approach as Artificial Neural Network (ANN) and training the data with EEG dataset from University of Bonn.
- f) Used Matlab to execute real-time brainwave data from EEG sensor.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The EEG signal is commonly used to record the electrical movements of the brain signal, which is invented in the human brain. The currents that flow during the synaptic processes of numerous neurons in the cerebral cortex make up an EEG signal (Sanei S, Chambers JA). During activation, small magnitude currents are generated within the dendrites of brain cells. As a result, the currents produce a magnetic field that may be measured using electromyogram equipment.

To determine the state and stimulation of the human brain, depth psychology, and EEG signal monitoring are used. EEG is often used because, like PET and MRI, it can provide great temporal resolution at a reasonable cost. A significant number of neurons make up the human brain. When information enters the brain, these neurons collide. This technique produces very small amounts of power that are merely temporary in nature. Because the frequency of this signal does not remain constant over time, it is also known as a nonstationary signal. Synaptic currents are considered to form within the dendrites of brain cells during activation (Sanei S, Chambers JA).

Hans Berger was the first to measure EEG waves in 1929. He was the first to observe electrical activity in the brain of a human. The collision of distinct neurons produces these signals, which can be read by inserting electrodes into the human scalp. It can be implemented in human brain physiology research and provides a full view of neural activity. Because of their small size, these signals are measured in microvolts. These signals change based on a person's mental state. Distinct human behaviors can result in different EEG signal frequencies. EEG is a test done on the human brain to record these signals and visualize the brain's condition (D. Mantini, M. G. Perrucci). Many neurological disorders can be cured by appropriately analyzing these signals. Neurons are charged most of the time by pumping ions across their membrane. These ions are exchanged on a regular basis by neurons. Ions that have been polarized are attracted to one another. As a result, a number of ions repel each other through their neighbors. Volume conduction is the term for this. Data flows in a mental capacity using this technique, resulting in the development of a little electric arc.

MRI, magnetoencephalography, functional magnetic resonance imaging (Zhang Q, LeeM), and electroencephalograms are used to measure brain activity. The EEG is commonly utilized in BCI research to detect brain activity because it has a faster response time and is less expensive than other technologies (Sanei S, Chambers JA). Figure 2.1 depicts the general architecture of a human neuron.

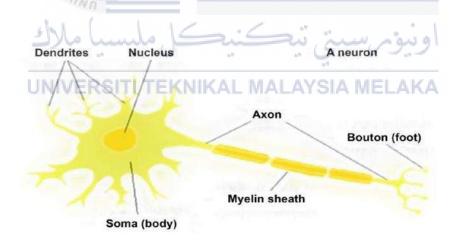


Figure 2.1 Basic Structure of a Neuron