

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MUHAMMAD AZHAN BIN KHALID

Bachelor of Electrical Engineering Technology (Industrial Power) with Honours

2021

ENERGY SAVING DEPARTMENTAL STORE SYSTEM USING EFFECTIVE ENERGY CONSUMPTION SYSTEM

MUHAMMAD AZHAN BIN KHALID

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II

Tajuk Projek : ENERGY SAVING DEPARTMENTAL STORE SYSTEM USING EFFECTIVE ENERGY CONSUMPTION SYSTEM

Sesi Pengajian : 2021

Saya MUHAMMAD AZHAN BIN KHALID mengaku membenarkan laporan Projek Sarjana

Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972)

Х

TIDAK TERHAD

x.kks/

(Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)

Disahkan oleh: (TZAHASRAPBIN ZAKARIA

(Muhammad Azhan bin Khalid) Alamat Tetap: Lot 843, Kampung Seberang Pasir Mas, Salor, 15100, Kota Bharu, Kelantan

Tarikh: 11/01/2022

Pensyarah Jabatan Teknologi Kejuruteraan Elektrik Fakulti Teknologi Kejuruteraan Elektrik Dan Elektronik Universiti Teknikal Malaysia Melaka

Tarikh: 25 Februari 2022

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Energy Saving Departmental Store System using Effective Energy Consumption System" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	stat MALA	Kar. Kda/	
Student Name	TEKN	MUHAMMAD AZHAN BIN KHALID	
Date	FIGRATINA	11/01/2022	
	UNIVER	SITI TEKNIKAL MALAYSIA MELAKA	

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical Engineering Technology (Industrial Power) with Honours.

Signature :
Supervisor Name : Ts. Zaihasraf bin Zakaria
Date : 25 Februari 2022
Signature اونيونرسيني تركنيك رمايسيا:
Co-Supervisor : Co-Supervisor : Co-Supervisor
Name (if any)
Date :

DEDICATION

I am deeply indebted to my family especially my father, Khalid bin Abu Bakar, and my mother, Rosnani bt Ab Halim, whom have always give the support that I need. Also to my supervisor, Ts. Zaihasraf bin Zakaria for his guidance, suggestion and encouragement throughout the course of this project.

ABSTRACT

Departmental store has become one of the essentials that most of the human population depends on. In this paper, the possibilities of amplifying the user comfort and the cost of smart departmental store is explored. This project introduces utility-based departmental store that able to sense human presence in each section and a control system that automatically make adjustments according to situation including human presence, daylight availability, the surrounding humidity, and the temperature of the refrigerator. The variability of products needs a thorough maintenance in terms of temperature and humidity. So, with the help of multiple sensors, the humidity can be stabilyze, thus, help to maintain the quality of the ambience. This project suggest a smart lighting control system with the help of external factors such as sensors and Graphical User Interface (GUI) by the mean to lower the energy consumption and operational cost, including using daylight optimally.

ABSTRAK

Pasaraya merupakan salah satu kepentingan asas dalam kehidupan seharian umat manusia yang telah menjadi kebergantungan bagi mereka. Dalam projek ini, peningkatan tahap keselesaan pengguna dan kos pasaraya pintar dikaji. Projek ini mengemukakan idea pasaraya yang berasaskan utiliti mampu untuk mengesan kehadiran manusia di setiap lorong dalam pasaraya dan sistem kawalan secara automatik yang seterusnya membuat penyesuaian mengikut keadaan termasuklah kehadiran manusia, cahaya matahari, kelembapan sekeliling, dan suhu peti sejuk. Produk dan perkhidmatan yang pelbagai memerlukan penyelenggaraan yang teliti dari segi kelembapan. Oleh itu, dengan bantuan pelbagai peranti pengesan, kelembapan dapat dikawal supaya berada ditahap yang stabil seterusnya, membantu menjaga kualiti suasana persekitaran. Projek ini mencadangkan sistem kawalan pencahayaan pintar dengan bantuan faktor luaran seperti pelbagai jenis peranti pengesan dan Antaramuka Grafik Pengguna (AGP) dengan tujuan untuk mengurangkan penggunaan tenaga dan kos operasi sesebuah pasaraya, termasuklah penggunaan cahaya pada siang hari secara optimum.

اونيۈم سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Ts. Zaihasraf bin Zakaria for his precious guidance, suggestions and patient throughout this project.

My highest appreciation goes to my father, Khalid bin Abu Bakar and also my mother, Rosnani bt Ab Halim for their love, support, encouragement and prayer throughout my years of study.

I am also grateful to be blessed with supportive friends and classmates who always be there if I need them. Without them, surely my years of study would not be so colourful and filled with memories worth reminiscing.

TABLE OF CONTENTS

	PAGE
DECLARATION	
APPROVAL	
DEDICATIONS	
ABSTRACT	i
ABSTRAK	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	i
LIST OF TABLES	iii
LIST OF FIGURES	iv
LIST OF SYMBOLS	vi
LIST OF ABBREVIATIONS	vii
LIST OF APPENDICES	viii
CHAPTER 1 INTRODUCTION	و اويوم سيتي ش
1.1 Background	9
1.2 Problem Statement	AYSIA MELAKA 9
1.3 Project Objective	10
1.4 Scope of Project	11
CHAPTER 2 LITERATURE REVIEW	12
2.1 Introduction	12
2.2 Smart Building	12
2.3 Temperature Controller	tablas 16
2.4 Maintaining the Freshness of Fruits and Veger 2.5 Energy Saving Component	10 10 10
2.6 Summary	18
CHAPTER 3 METHODOLOGY	21
3.1 Introduction	21
3.2 Methodology	21
3.2.1 Experimental setup	23
3.2.1.1 Parameters	23
3.2.1.2 Equipment	24
3.2.1.2.1 Occupancy Sensors 3.2.1.2.1.1 DIR Sensor Working Prin	ciple 27
3.2.1.2.2 Temperature Sensors	30
i	

	3.2.1.2.2.1 LM35 Working Principle	31	
	3.2.1.2.3Humidity Sensors	32	
	3.2.1.2.4 Light Dependant Resistor (LDR)	33	
	3.2.1.2.5Lighting System		
	3.2.1.2.5.1 LED Bulbs	34	
	3.2.1.2.6Humidifier	36	
	3.2.1.2.7 Arduino Uno R3	37	
	3.2.1.2.8TFT Touchscreen Module	37	
	3.2.1.2.9Thermoelectric Cooling Module	39	
3.3	Graphic User Interface	39	
3.4	Automatic Lighting Control System	42	
3.5	Automatic Temperature Control System	46	
3.6	Automatic Humidity Control System	49	
3.7	Integrated Circuit	51	
3.8	Coding	51	
	3.8.1 Coding for Automatic Control System	52	
	3.8.2 Coding for Graphic User Interface	54	
3.9	Gantt Chart	64	
3.10	Limitation of proposed methodology	66	
3.11	Summary	66	
СНАБ	TER A RESULTS AND DISCUSSIONS	67	
	Introduction	67	
$\frac{1}{4}$	Results and Analysis	67	
7.2	4.2.1 Calculation for Lamp Necessary to Light Up the Whole Area	70	
	4.2.1 Calculation for Energy Saving	70	
	4.2.3 Humidity Level	75	
	4.2.4 Refrigerator Temperature	76	
4.3	Discussion	78	
CILAT	TED 5 CONCLUSION AND DECOMMENDATIONS	70	
CHAP 5 1	Conclusion AND RECOMMENDATIONS	/ð 78	
5.1	Euture Works	70	
5.2 5.2	Commercialization	79	
5.5	Commercialization	19	
REFE	RENCES	80	
APPE	NDICES	81	

LIST OF TABLES

TABLETITLE	PAGE
Table 2. 1: Energy Saving from Smart Building Technologies [2]	14
Table 2. 2: Percentage of energy saved after using motion sensor [3]	14
Table 3. 1: Power saving by using occupancy sensors	25
Table 3. 2: Equivalent Wattages and Lumens of LED, CFL and Incandescent	35
Table 3. 3: Cost Comparison between LEDs, CFLs and Incandescent Bulbs.	36
Table 3. 4: PSM 1 Progress	64
Table 3. 5: PSM 2 Progress	65
Table 4. 1: Area of Section in Departmental Store	68
Table 4. 2: Operating Time of Departmental Store	72
Table 4. 3: Total Time of Occupancy	73
Table 4. 4: Energy Consumption Comparison	74
Table 4. 5: Total Energy Consumption Comparison	75
Table 4. 6: Time Taken for the Changes in Humidity Level	76
Table 4. 7: Temperature Drop	76

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2. 1 : Circuit of Air	Humidifier and Dehumidifier	17
Figure 3. 1: Flowchart Proj	ect	22
Figure 3. 2: PIR Sensors		26
Figure 3. 3: Ultrasonic Sens	sor	26
Figure 3. 4: Microwave Mo	otion Sensor	27
Figure 3. 5: PIR sensor rang	ge and its angle	28
Figure 3. 6: Pin configuration	on of PIR sensor.	28
Figure 3. 7: Working Princi	iple of PIR sensor	29
Figure 3. 8: IC Temperature	e Sensor	30
Figure 3. 9: Pin configuration	on and LM35 circuit.	31
Figure 3. 10: DHT11	اونىۋىرىسىت تىكنىكا ملىس	32
Figure 3. 11: Light Depend	ent Resistor (LDR)	33
Figure 3. 12: LED Bulbs	TTTTERNIRAL MALATSIA MELARA	34
Figure 3. 13: Ultrasonic Mi	st Maker Water Atomizer	36
Figure 3. 14: Arduino Uno	R3	37
Figure 3. 15: TFT Touch So	creen Module	38
Figure 3. 16: Thermoelectri	ic Scheme	39
Figure 3. 17: Touchscreen I	Module Shows the Level of Humidity and Temperature	e 40
Figure 3. 18: Turning Off tl	he Lamp Using GUI	41
Figure 3. 19: Turning On L	amp Using GUI	41
Figure 3. 20: Main Menu of	f the GUI	42
Figure 3. 21: Lighting Cont	rol Circuit	42

Figure 3. 22: Flowchart of Lighting Control System	43
Figure 3. 23: Both LED is Turned On	44
Figure 3. 24: No LED Bulbs is Turned On	44
Figure 3. 25: Only Lamp 2 is Turned On	45
Figure 3. 26: Only Lamp 3 is Turned On	45
Figure 3. 27: Temperature Control Circuit	46
Figure 3. 28: Flowchart of Temperature Control System	47
Figure 3. 29: Inside the Chamber of Refrigerator	48
Figure 3. 30: Back View of the Refrigerator	48
Figure 3. 31: Humidity Control Circuit	49
Figure 3. 32: Flowchart of Humidity Control System	50
Figure 3. 33: Air Humidifier System	50
Figure 3. 34: Integrated Circuit of the Control System	51
اونيۆس سيتي تيكنيكل مليسيا ملاك	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF SYMBOLS

- Voltage Celcius V -
- С _
- Resistance R _ o
 - Degree _
- A _
- Ampere Percentage % _
- Watt W _
- Micro μ _

LIST OF ABBREVIATIONS

Cases

AC : Air Conditioner	
CFL : Compact Fluorescent Lamp	
DC : Direct Current	
GND : Ground	
HDTV : High Definition Television	
HVAC : Heating, Venting and Air Conditioning	
IC : Integrated Circuit	
ICT : Information and Communication Technology	
LDR : Light Dependent Resistor	
LED : Light Emitting Diode	14
PCB : Printed Circuit Board	
PID : Proportional Integral Derivative	
PIR : Passive Infra Red	
PWM : Pulse Width Modulation	
RGB : Red Green Blue	
TFT : Thin Film Transistor	
USB : Universal Serial Bus	
WiFi : Wireless Fidelity	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	The Hardware Prototype of the System	81
Appendix B	Different Sections in Departmental Store	82

CHAPTER 1

INTRODUCTION

1.1 Background

In this modern age, majority of the population of the Earth who lives in the urban area get their daily needs from the supermarket since it is more convenient. This is because, they come from working class people that mostly having a nine to five job. Since they spent their whole day at the work place, so they did not have the time to grow their own crops or breed their own livestock. So, they have to get their source of foods from the market. The easiest and most convenient way to get their daily needs is from the departmental store. The high demand from the people open up opportunity for the conglomerate to establish more departmental store across the country. With the increasing amount of departmental store, the power consumption is also increasing. The rising of power consumption has leads to multiple complication. It is very crucial that we control this issues before it get out of hand. The automated control system is a fruitful idea that helps reduce the power consumption that will minimize the cost of production. Furthermore, this automated control system does not require human interaction to be executed.

1.2 Problem Statement

Day by day, the Earth is facing an imminent threat due to over usage of energy. When we consume more energy, the amount of toxic fumes release by power plant is also increasing, perishing the earth's natural resources and destructing ecosystems. Including thermal plants and renewables, there are approximately 30,000 power plants from 164 countries throughout the world [1]. Most power plants burn oil, fossil fuel and coal to generate energy. The result of this combustion, carbon dioxide, sulphur dioxide and nitrogen oxides are release to the air that we breath. The greenhouse effect is a natural phenomenon that causes the temperature of the earth's surface to rise. Carbon dioxide is a greenhouse gas that leads to majority of air pollution. Since the power plants burning more fuel to generate more energy, too much heat trapped by the extra carbon waste. The greenhouse gas emissions affecting the earth by rising the temperature, heat waves and drought. Other than making the sea level higher, it also increases the intensity of natural disaster such as haze and acid rain.

Nowadays, most of the people are struggling to live their daily life. This is due to the fact that their daily expenditure increased or their monthly income has decreased. In this Covid-19 era, we have heard a lot of individual that lost their job because their company cannot survive the lost that hit them. In order to lift a little bit of burden upon the shoulder, this automated system can help lower the daily expenditure by decreasing the groceries' price in the departmental store. If the power consumption of a certain departmental store is high, the electricity bill will also be high. When the energy consumption is reduced, less amount of cost needed for the departmental store to be paid to the electricity provider. Hence, it can lead to departmental store lowering the price of daily needs that is sold in the departmental store.

1.3 Project Objective

The main objective of this project is to lower the energy consumption of departmental store. In order to do that, these objectives are to be achieved:

- a) To design an intelligent system that aims to minimize the energy consumption.
- b) To develop a system that automatically control the output of appliances.

c) To compare the energy usage before and after the energy saving system has been implemented.

1.4 Scope of Project

For this project, the scope is to develop an energy saving departmental store system using effective energy consumption system. In order to do so, Arduino Uno is chosen to be the microcontroller connected to electronic circuit, multiple sensors, and outputs. The presence of human in a certain area is to be detected by a motion sensor that will send a signal to the Arduino. The air moisture surrounding the fruits and vegetables section will be detected by humidity sensor that will send a signal to the Arduino. The temperature inside the refrigerator is to be detected by a temperature sensor. Then, Arduino will control the respective output device such as lights, air humidifier, and refrigerator depends on the situation with the help of relay.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

alu

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this chapter, the original concept structure, specification, theory and other data related to the project will be explained. Previous projects or publications and research papers related to this project were reviewed and studied. Hence, there is a little bit of similarity between this project and the previous related papers. The objective of this research is to develop and produce an energy saving departmental store as well as to make sure it consumes energy effectively. Furthermore, it is also a system that is automatically controlled based on the current situation such as the presence of people, the level of moisture in the air, and the temperature inside the refrigerator.

Before this project take place, literature review and technical research are first to be performed. Literature review is revolving around previous projects that has been done and somehow related to this project. On the other hand, technical research will cover about electronic components that is related to this project, programming language and other devices that may be related to this project. The research is done by obtaining the source from the websites, articles and publications. For this project to be completed, this information is very useful in helping and become a guidance throughout the journey of making of this project.

2.2 Smart Building

One of the most popular alternative to save energy is by developing a smart building. There is various way to implement this method. According to a paper by Jennifer King and Christopher Perry (2017), using information and communication technologies (ICT), smart buildings are able to automatically control the buildings operation [2]. While using less energy than a conventional building, they can intensify peoples comfort and productivity. Smart buildings use ICT to connect building systems together to improve operations and performance, meanwhile standard buildings operate their systems independently. Smart buildings also provide their occupants with visibility into its operations by allowing operators and occupants to interact and collaborate with the buildings. Nowadays, it is increasingly important for smart buildings to communicate with the power grid, so it is a feature that is practical for smart buildings to own. The use of smart buildings is expanding constantly in all building types although the biggest involvement of smart technologies in existing buildings has been in offices.

Smart heating, venting, and air conditioning (HVAC) systems use several sensors for control and monitoring. While improving occupants comfort, various sensor helps software to interpret information to optimize the HVAC system's operation. Smart HVAC controls help to restrict energy consumption if building zones are unoccupied, faults are detected and reduce the usage of HVAC specifically during peak times of energy demand.

Smart lighting includes advanced controls that contain dimming functions, daylight presence and human occupancy to eradicate over-lit spaces. Smart lighting systems can manage lighting systems by programming and can be controlled wirelessly. Lighting management platforms let user access control through web-based dashboard, meanwhile wireless control made it easy to modify.

Building Type	Floor Area (sq. ft,)	Smart Building Technology	Average energy consumption (kWh/year)	Percent Savings	Average Savings (kWh/year)
Education	100,000	Occupancy Sensors Web-based lighting control management system	190,000	11%	20,900
Office	50,000	Lighting controls Remote HVAC control system	850,000	23%	200,000
Hotel	200,000	Guest room occupancy control	4,200,000	6%	260,000
Laboratory	70,000	Air quality sensors Real time ventilation controllers	980,000	40%	390,000
Hospital	120,000	Lighting control + LED upgrade Data analytics software package	7,900,000	18%	1,400,000

Table 2. 1: Energy Saving from Smart Building Technologies [2]

Another paper written by Jong-Won Lee and Young II Kim (2020), suggest that using motion sensor that has been installed in underground parking lots, lecture rooms, and dormitories of a university building to study the effect of a motion detector sensor [3]. A comparison has been made before and after the motion sensors were implemented. As the result, they found that there is a different in energy used before and after the motion sensor was installed.

Table 2. 2:	Percentage of	energy save	ed after using	motion sensor	[3]
	0	01	0		_

Area	Percentage of Energy Saved
Underground Parking Lot	77.6%
Classroom (Lighting)	32.4%
Classroom (HVAC)	27.9%
Dormitory	28.2%

2.3 Temperature Controller

In industry, it is critical topic to reduce the energy consumption of refrigeration systems. Refrigeration systems is the main electrical appliances that contribute to energy consumption. to make sure the power consumption is at minimal level, it is crucial to control the refrigeration systems. A paper by Miklos Kassai, Laszlo Kajtar, and Jozsef Nyers (2019), compares the optimization of energy consumption for direct current refrigerator by PID controller tuning with On/Off refrigerator [4]. This study claims that by tuning of the PID controller, the energy consumption has decrease by 62.4% as opposed to the On/Off refrigerator.

Parameter	On/Off	PID
Maintaining air temperature (°C)	0	0
Mean air temperature (°C)	-0.203	-0.103
Energy consumption (kWh/day)	14.65	5.5

Table 2.3 : Result of the experimental test

Meanwhile, Hazim Moria, Munner Ahmed, Ashraf Alghanmi, Taib Iskandar Mohamad, and Yusli Yaakob (2018), in their paper suggest using thermoelectric effect for solar based refrigerator [5]. The compressor-less refrigerator will be using thermoelectric cooler operates by Peltier effect for the solar thermoelectric refrigerator. The usage of solar panel as the crucial source of energy in the study will converts the light energy into electrical energy that will powers the refrigerator.

Another paper written by K. O. Daffallah, M. Benghanem, S. N. Alamri, A. A. Joraid, and A. A. Al-Mashraqi (2017), suggest to harness the solar power to power up the refrigerator using the photovoltaic panel [6]. The power generated from the PV operate the refrigerator and the remaining power produced by the PV are reserved in the battery. When there is no source of light, the refrigerator will operate using the power stored in the battery.