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ABSTRACT 

Network bandwidth and storage capacity are becoming increasingly constrained as the 

demand for multimedia products grows. That's why it's so critical to reduce redundant data 

and save as much storage and bandwidth as possible. Data compression, also known as 

source coding, is a technique used in computer science and information theory to encode 

information using fewer bits or other information-bearing units than an unencoded version 

of the same information. Because it reduces the consumption of expensive resources like 

memory and transmission bandwidth, compression is a cost-effective method of data storage. 

Singular Value Decomposition (SVD) is used as an image compression method in this 

research. In addition, a MATLAB programme based on Singular Value Decomposition will 

be created to mimic the image compression algorithm (SVD). 
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ABSTRAK 

Lonjakan kadar penggunaan dan permintaan produk multimedia dalam masa beberapa tahun 

ini menyebabkan jalur lebar rangkaian dan kapasiti peranti memori tidak mengcukupi. 

Hasilnya, pemampatan data menjadi lebih penting untuk meminimumkan data lewah dan ini 

dapat mengurangkan ruang di dalam perkakasan simpanan dan juga mengurangkan kadar 

jalur levar yang diperlukan.Di dalam sains computer dan teori maklumat, pemampatan data 

adalah pengekodan maklumat yang menggunakan bit yang lebih sedikit atau unit yang 

mengandungi maklumat lain daripada versi yang tidak dikodkan. Pemampatan memberi 

kelebihan kerana dapat menjimatkan wang dengan mengurangkan penggunaan memory dan 

jalur lebar yang kadang kala mahal. Kajian ini membincangkan kelebihan menggunakan 

Penguraian Nilai Singular (SVD) sebagai kaedah pemampatan gambar dalam kajian ini. Di 

samping itu, program yang menerapkan algoritma ini juga akan dicipta di dalam aplikasi 

MATLAB untuk melihat fungsinya. 
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INTRODUCTION 

1.1 Background 

In today's digital society, technology is becoming an increasingly important part of our 

daily lives. We produce ever-increasing quantities of data every day. There are many different 

types of data out there, including text, audio, video, and photos. Humans frequently use images 

to convey information, which makes photos one of the most popular data-sharing methods. 

When smartphones were introduced, the amount of data being shared and the size of the data 

that was being shared both increased. The amount of memory and bandwidth needed to store 

and transmit all of these photos is staggering. Storing these data has proven to be prohibitively 

expensive due to the high cost of storage technology. Many researchers are now looking into 

ways to reduce the amount of data that can be stored and transmitted before it can be used. This 

is especially true for fields like artificial intelligence or pattern recognition. In order to reduce 

the amount of storage space required for an image file, this research will concentrate on picture 

compression using singular value decomposition. 

Compression of digital images is a hot topic in the field of digital image processing. An 

image's storage and transmission bandwidth can be kept to a minimum by implementing 

various techniques for compression. When compressing images, the goal is to reduce the 

amount of information that is irrelevant or unnecessary, thus reducing storage space and 

increasing transmission speed. Image quality should not be reduced so much that the user is 

unable to decipher the content. It's important to use a suitable image compression method to 
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balance this trade-off the requirements of the application usually determine the 

compression/data quality trade-off. 

For image compression, there are two main methods: lossy and lossless. To determine 

whether or not the original data can be recovered when a compressed file is decompressed, use 

the words "lossy" and "lossless." Lossless compression preserves all of the original data in a 

compressed file when it is decompressed. On the other hand, lossless compression shrinks a 

file without altering its content by removing redundant data permanently. When the file is 

uncompressed, only a small portion of the original data is recovered. 

That which this paper discusses is the Singular Value Decomposition procedure (SVD). 

In the singular-value decomposition, a real or complex matrix is factored into its components 

using an extension of the polar decomposition to generalise the eigen decomposition, which 

only exists for square normal matrices. Examples include object detection, face recognition, 

field matching, and meteorological and oceanographic data processing.  

1.2 Problem Statement 

Currently available storage servers are becoming increasingly full due to the growing 

number of consumers who regularly share and exchange images. People working from home 

are increasing exponentially as a result of the pandemic, and the traffic of data exchange is 

becoming increasingly congested as the number of people working from home continues to 

rise. 

The cost of equipment and data bandwidth prices went up as a result of this issue. SVD 

may be a potential solution to this problem, as this paper's research explores the possibility.  
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1.3 Project Objective 

Methods for observing and simulating the application of the SVD algorithm as an 

image compression method using MATLAB are an important goal in this research. The 

following are the specific goals: 

 To investigate how Singular Value Decomposition can be used as an image 

compression approach. 

 To develop image compression script using SVD for both grayscale and colour 

images in MATLAB. 

 To reduce the size of the reconstructed image. 

 To analyse and compare the reconstructed image to the original image. 

 

1.4 Scope of Project 

The scope of this project are as follows: 

 Consumers who are just storing data on daily basis. 

 Consumers who prefer to lower their incoming and outgoing data to reduce the 

amount of bandwidth consumption.  

 Server operators that want to reduce the size data stored so it can reduce the cost of 

storage hardware.  
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LITERATURE REVIEW 

2.1 Introduction 

In recent years, data compression has become more and more important in our daily 

lives. Powerful but unseen forces like data compression are at work in today's digital world. 

Without the numerous advancements in compression, our current computer age may not have 

taken off in the first place. 

This chapter has a lot of. Additionally, this chapter will explain the fundamentals of 

SVD. Image compression, as well as the use of Singular Value Decomposition (SVD) in image 

compression, is examined. 

2.2 Understanding Image Compression 

An image compression technique is one in which the original image is encoded using a 

small number of bits, according to [10].It is the goal of picture compression to reduce the 

amount of redundant data in an image so that it can be stored or transmitted more efficiently. 

There are two types of image compression techniques, according to [5]. 

Lossless image compression: 

Lossless compression preserves the integrity of the original image while reducing its 

file size. Here you can reassemble a compressed image. In this case, it is a reversible procedure. 

Some files will always be uncompressed by lossless data compression algorithms, and this is 

the case regardless of the type of algorithm used. [16] 

According to [43] in their journal, attempts to compress previously compressed data as 

well as attempts to compress encrypted data often result in an expansion. This technique is 
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particularly well-suited for use in the medical field. In the case of medical images, technical 

drawings, clip art and comics, lossless compression is preferred for archival storage. 

With image compression coding, the image is reduced to its smallest possible size, and 

the decoded image is shown on the monitor with the greatest possible accuracy. Researchers 

(Joshi et al., 2014) claim that current data compression methods may not have reached their 

theoretical limit. 

Lossy image compression: 

This is an irreversible compression approach, according to (Swathi et al., 2017), 

because the compound image cannot be reversed to its original image. Data and information 

that are no longer needed are deleted or rearranged in order to reduce and compress the file 

size. The most common application of this technique is to reduce the file size of extremely 

large bitmap images. For natural images, such as photographs, the lossy approach is ideally 

suited because it allows for a significant reduction in the bit rate while retaining some degree 

of fidelity. Lossy compression has a higher compression ratio than lossless compression. Fig. 

1 shows the lossy compression algorithm.  
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Figure 1 shows the lossy compression algorithm 

The original image is processed in four stages: decomposition, quantization, 

modelling, encoding and compression. The image loses portion of its original size while 

maintaining its original quality, but in compressed form, as a result of this procedure. Lossy 

approach, as a schematic approach for compressing photos, could be used with any of the 

following methods: 

i. Chroma subsampling: The human eye is more sensitive to variations in 

visual brightness than to color variances connected with it. As a result, 

this method makes use of the human eye by lowering or diminishing 

the image's chrominance data while enhancing the brightness data. This 

technique is used to decrease or compress an image to a lesser 

resolution while maintaining its quality. 
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ii.  Transform coding: This method entails compressing natural data, such 

as photographic photographs, to a lossy or lossless format. The image 

is reversible in a lossless method, but the benefit is that it enables 

greater quantization of the image. Its method converts images into 

coefficient values, resulting in a low-resolution or low-quality output. 

There is no information loss, resulting in an equal number of 

coefficients and pixels altered. The coefficients are quantized, and the 

output is used to generate the final output using a symbol encoding 

approach. 

iii. Fractal coding: Parts of textures and natural images are turned to 

mathematical data known as fractal codes, which are then employed to 

generate the encoded image. When this happens, the image's resolution 

is lost, making it resolution dependent. The input image's low self-

similarity index is blamed for the image's degradation. 

 

Lossy compression that produces negligible differences may be called visually lossless. 

Singular Value Composition is a type of lossy compression 

2.2.1 Data Redundancy 

It is the process of reducing the amount of data needed to convey a given amount of 

information. An important and commercially successful method in Digital Image Processing 

is picture compression, which attempts to reduce the number of bits needed for an image 

description by eliminating redundant information. This study by (seshaiah et al., 2016) found 

three types of redundancy in their datasets: 
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A. Coding redundancy: Coding redundancy consists of variable length code words 

selected as to match the statistic of the original source. In the case of Digital Image 

Processing, it is the image itself or processed version of its pixel values. Examples of 

image coding schemes that explore coding redundancy are the Huffman codes and the 

Arithmetic coding technique. [43][7] 

B. Spatial redundancy/Inter-pixel redundancy: Here because the pixels of most 2D 

intensity arrays are correlated spatially that is each pixel is similar to or independent on 

neighbouring pixels, information is unnecessarily replicated in the representation of the 

correlated pixels. Similar to how [6] define which it said that original 2D pixel array is 

mapped into a different format. Other names of inter-pixel redundancy are spatial 

redundancy. Examples of this type of redundancy include Constant area coding and 

many Predictive coding algorithms. [7] 

 

C. Psycho-visual redundancy: Human eyes is not fine-tuned to process every band of 

frequencies. Hence all the incoming data is not responded to with equal sensitivity. 

Some parts of the information will be more prominent than the others. This fact can be 

exploited when image redundancies are being removed. Psycho-visual redundancy 

makes use of this factor. [36] 

2.3 Singular Value Decomposition 

We'll be focusing on the singular value decomposition method for image compression 

in this paper. An SVD (Singular Value Decomposition) is an algorithm for reducing a real or 

complex matrix in linear algebra. [14]SVD outperforms other linear approximation techniques. 

As stated by [16], the least squares matrix decomposition, the SVD, is the best method for 

cramming the most signal energy into the smallest number of coefficients. SVM is a stable and 
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effective method for partitioning the system into a series of linearly independent components, 

each one of which contributes its own energy, according to the journal in question [16]. In 

order to produce a smaller image, the SVD implementation makes use of as much redundancy 

as possible. According to [30], this may work because the algorithm can delete only the parts 

of the image that are identical to each other. This does not compromise the quality of the image 

in any way. 

Mathematicians use an algorithm known as singular value decomposition (SVD) in 

order to diagonalize matrices. They also stated [42]that there are numerous advantages to using 

SVD as an algebraic transform for image processing. These include the ability to compress 

images with maximum energy and to perform noise filtering and watermarking on images by 

using two distinct data and noise subspaces 

2.3.1 The Techniques of SVD 

In this subtopic, we will discuss about the techniques of SVD. In [42], [11] journals, 

both of them explain the techniques of SVD. The techniques of SVD are as follows. 

Assume A is a m x n matrix. When you apply SVD to A, you get a product of 

orthogonal matrices, diagonal matrices, and another orthogonal matrix. 

𝐴 = 𝑈𝑆𝑉𝑇 

Where, 

A = image matrix 

U = m x m orthogonal matrix 

S = m x n matrix 

V = n x n orthogonal matrix 
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A given matrix is split into a product of orthonormal matrices and a diagonal matrix 

using Singular Value Decomposition techniques. The theoretical approach for performing SVD 

is as follows  

 Determine the image matrix's Eigen values. Obtain unique values (square root 

of Eigen values). 

 As a diagonal matrix, S matrix, arrange singular values in decreasing order. 

 Using image matrix, say A, obtain AAT and ATA. 

 Determine the Eigen vector of the matrices above. These vectors are transformed into 

U and V matrices columns. 

 Now, using S, U and V matrices represent A matrix 

 Figure below will show how matrices created after splitting the original image would 

look. 

 

Figure 2 shows the matrices that were created after the original picture matrix 

was split
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2.3.2 Image Compression Using SVD. 

In [11] journal, they also explain about image compression using SVD. We must 

remove the unneeded singular values in the S matrix after obtaining the U, S, and V values 

of the original image as shown before. After deleting some singular values, create 

compressed image A with the new diagonal matrix. If we use SVD to represent the image 

matrix, then A may be written as 

𝐴 = 𝑈𝑆𝑉𝑇 

In a particular way A can also be written as [33]: 

𝐴 = 𝑢1 𝜎1 𝑣1
𝑇 +  𝑢2 𝜎2 𝑣2

𝑇 + ⋯ + 𝑢𝑖  𝜎𝑖  𝑣𝑖
𝑇 + 𝑢𝑛 𝜎𝑛 𝑣𝑛

𝑇 

or 

𝐴 = 𝜎1 𝑢1 𝑣1 +  𝜎2 𝑢2 𝑣2 + ⋯ + 𝜎𝑖  𝑢𝑖  𝑣𝑖 + 𝜎𝑛 𝑢𝑛 𝑣𝑛 

The terms above are in order of dominance from greatest to the lease.  

Singular values with small enough values are dropped when image compression 

does not perform the sum to the very last Singular Values. The values that fall below the 

required rank are rounded to the nearest integer[19]. 

2.3.3 SVD Image Compression Measures 

The following performance measure can be used to determine how much an image 

has been compressed. [27] An image compression method known as SVD can be evaluated 

by its compression factor and image quality.[9] This ratio can be used to calculate the 

compression factor for an image. [2] 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 = 𝑚 ∗ 𝑛 / (𝑘 ∗ (𝑚 + 𝑛 + 1)) 

It measures the amount of compression an image has.[9] 
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If you want to compare the quality of compressed image Ak to the original image A, 

you can use the measurement of Mean Square Error (MSE). [2] 
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METHODOLOGY 

3.1 Introduction 

This project aims to show the process of image processing by using SVD in 

MATLAB. Methodology serves as a framework to pursue for completion of the project. To 

ensure that the project is completed successfully, the methods mention in this chapter should 

be followed to the letter.  

3.2 Methodology 

This project’s flow was detailed in this chapter, from start to finish. To simplify and 

exemplify methods taken to perform this project, a flow chart is needed. It is created early 

in the project as a guide to ensure the efficiency of the project. In conjunction with that a 

Gantt chart is constructed to indicate how the project is planned and whether it is ahead of 

or behind the time.  

 

 

  



30 

 

 

3.3 The Project Flowchart 

 

Figure 3 shows the flowchart of  the development of this project 

 

It's the project flowchart's job to make sure everything goes according to plan while 

the project is being completed. In the following sections, we'll go into greater detail about 

each of these steps. 
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3.3.1 Research and Data Collection 

This project starts with a multitude of research regarding the scope of the project. 

During this process also some data were collected regarding the interest of this project. 

Because the issue of SVD being utilised in image compression is an old method compared 

to other compression methods, some of the data and research publication were a little out of 

date. 

3.3.2 Literature Review 

While working on this project, the literature review serves as a learning tool. During 

this stage, the majority of the knowledge obtained about the project’s completion is gathered. 

Furthermore, a literature review aids in the analysis of the evolution of image compression 

between prior and current initiatives. 

3.3.3 Develop Program 

Development stage was the most crucial part of this project. This is where the heart 

of the project will be constructed and used for implementation. Flowchart below represents 

the process of the project’s program. 
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Figure 4 shows the program flowchart 

The program's goal is to compress an image using SVD in MATLAB. To begin, the 

software uses the image previously entered into the code as its starting point. The image is 

then rescaled and reprojected twice as accurately. The image is then decomposed in 

MATLAB using the SVD() function. This function will be explored in greater depth in a 

subsequent section of the document. Decomposition of the image allows it to be 

reconstructed and the quality of the image can be determined by using any number of 
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singular values (diagonals of S). In addition to the reconstructed images, all values regarding 

the intend to analyses the outputs such as compression ratio and PSNR will also be outputted 

alongside the reconstructed image and all the values will be save it a separate file. 

 

3.3.4 Equipment 

As this project consists solely of writing and running a MATLAB program, only a 

few pieces of equipment are required to complete it. The following items are required: 

• MATLAB software 

• Personal computer / Desktop 

Multi paradigm programming language and numeric computation environment 

MATLAB (short for "matrix laboratory") is developed by MathWorks. MATLAB allows 

for the manipulation of matrices, the visualisation of functions and data, the implementation 

of algorithms, the creation of user interfaces, and the integration of programmes written in 

other languages. Programming languages run smoothly in MATLAB's modern environment. 

Debugging, editing, and object-oriented programming can all be done in the same 

environment, making it ideal for highly complex data structures. What makes this 

programme such an effective tool for education and research is its unique set of features and 

capabilities. MATLAB has a number of advantages over traditional computer languages 

when it comes to solving technological problems. The software package is now considered 

a standard tool in most institutions and industries around the world. There are a wide variety 

of computations possible due to the powerful integrated routines An easy-to-understand 

layout that provides immediate results. This software includes many device boxes useful for 

optimizatin, signal and image processing, and other tasks, and all of the specific 

program?Smes are then assembled in toolbox packages. 
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Figure 5 shows the logo of MATLAB 

 

Figure 6 shows the overview of MATLAB 
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3.4 Singular Value Decomposition 

The content that people want to share can be quickly and efficiently shared using 

compression techniques. It would take far too long and consume far too much bandwidth if 

data were not compressed before transmission. It's possible to achieve this by encoding the 

blocks of pixels that are transmitted. 

Singular Value Decomposition had already been used extensively in 

telecommunications and computer science before this method was introduced. With this 

method, current publications show a significant improvement in image compression. This 

method is in high demand for information processing and communication, along with other 

common multimedia applications and related products. 

 

Figure 7 shows the image compression block diagram 
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A large, highly variable set of data is reduced to a smaller, lower-dimensional space 

that more clearly reveals the underlying structure of the data and arranges it from the greatest 

degree of variability down to the slightest degree. 

Linear Algebra's singular value decomposition is a factorization of a real or complex 

matrix, whether square or non-square, according to the definition. There are few steps in 

mathematical to calculate SVD of matrix: 

1. Given an input image matrix A 

2. First, calculate AAT and ATA 

3. Use AAT to find the eigenvalues and eigenvectors to form the columns of U: 

(AAT - ʎI) ẍ = 0 

4. Use ATA to find the eigenvalues and eigenvectors to form the columns of V: 

(ATA - ʎI) ẍ =0 

5. Divide each eigen vectors by its magnitude to form the columns of U and V. 

6. Take the square root of the eigenvalues to find the singular values, and 

arrange them in the diagonal matrix Sin descending order: ϭ1≥ ϭ2.≥…. 

≥ϭr≥0 

7. In MATLAB: [U,W,V] =svd (A, 0) 

3.5 Expected Outcome 

It is predicted that the program will have been constructed and run satisfactorily by 

the end of the project. All of the codes and functions work as expected. The program would 

also pass all the basic check such as really compression an image and also can compress 

multiple formats of images.  
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3.6 Summary 

In this chapter, a method for developing an image compression software in 

MATLAB using the concept of SVD is presented. Main objective of proposed method: 

create an application that can demonstrate the results of SVD compression in pictures. In 

addition, the techniques were developed to take advantage of data that is freely available. 

An image compression algorithm known as SVD has been demonstrated to be feasible, not 

to produce the best picture compression. 
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RESULTS AND DISCUSSIONS 

4.1 Introduction 

This chapter presents the results and analysis on the image compression by using 

singular value decomposition with MATLAB. As previously stated, this project uses only 

computer simulation that uses MATLAB without any additional hardware devices. As a 

result, this project’s simulation will be shown and explained in detail. A simple program was 

created with MATLAB programming language simulate how would a image compression 

by using SVD inside MATLAB. 

4.2 Analysis Method 

With the script working and the program can finally deconstruct an image and 

reconstruct it with using singular value decomposition, we will need some way to validate 

the efficiency of said program. By properly analyze the reconstructed image, we can safety 

conclude the practicality of using singular value decomposition in image compression. 

4.2.1 Compression Ratio 

An algorithm's ability to reduce the size of its output is measured in terms of its data 

compression ratio, or compression power. Uncompressed size divided by compressed size 

is a common way to express it. Data compression ratio is defined as the ratio between 

the uncompressed size and compressed size: 
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Figure 8 shows the formula of compression ratio 

A compression ratio of 10/2 = 5 is often notated as an explicit ratio, 5:1 (read "five" 

to "one"), or as an implicit ratio, 5/1, when compressing a file's storage size from 10 MB to 

2 MB. This formula holds true for both compression and decompression, where the 

uncompressed size is that of the original and the uncompressed size is that of the 

reproduction. 

4.2.2 Peak Signal-to-Noise Ratio 

When comparing two images, a PSNR block calculates the peak signal-to-noise ratio 

(PSNR), which is expressed in decibels. This ratio is used to compare the original image's 

quality to that of a compressed one. The compressed or reconstructed image's quality 

improves with increasing PSNR. 

Mean-square error (MSE) and PSNR are used to measure image compression quality 

and are used to compare the quality of the compression. PSNR measures the peak error, 

while MSE measures the cumulative squared error between compressed and uncompressed 

images. The smaller the MSE error, the better. 

The PSNR is calculated by first calculating the mean-squared error using the 

following formula: 

 

Figure 9 shows the formula of mean-square error 

In the previous equation, M and N are the number of rows and columns in the input 

images. Then the block computes the PSNR using the following equation: 
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Figure 10 shows the formula or PSNR 

The input image data type's maximum range of variation is represented by the 

variable R in the previous equation. If the input image is a double-precision floating point 

data type, then R is 1. " R is 255 if the data type is 8-bit unsigned integer, etc. 

Computing PSNR for Colour Images 

It is possible to calculate the PSNR of a colour image using a variety of methods. 

It's possible to calculate the PSNR for colour images by first converting them to one of 

several colour spaces that separates the intensity (luma) channel from the others, such as 

YCbCr. The Y (luma) in YCbCr is a weighted average of the R, G, and B components of the 

chrominance. When it comes to determining a letter's importance, G is given more weight 

than any other letter. Only the luma channel should be used to calculate PSNR. 

4.3 Result and Analysis 

For this project, the aim of it is to use SVD as a viable image compression. Since 

we are comparing the results of original and the compressed image, the output of the program 

should have the original with the compressed image file. This is because, with both of the 

image, we can verify whether or not the image has been compressed or not. 

To achieve the objective of this project bnwSVD.m and colourSVD.m is proposed 

as our script to run on and both scripts have its individual purpose. This way we can easily 

observe and analyses the images. 

.  
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4.3.1 bnwSVD.m 

Since JPEG or JPG are the most image format used currently, this program will try 

to compress a JPEG format image. The image is named image.jpg, which shows a photo of 

a famous theoretical physicist, Albert Einstein size with dimension of 1000 x 910. 

1 MODE 2 MODES 4 MODES 6 MODES 

 
Size: 24.2 KB 

 
Size: 27.2 KB 

 
Size: 31.0 KB 

 
Size: 33.9 KB 

8 MODES 10 MODES 12 MODES 14 MODES 

 
Size: 36.7 KB 

 
Size: 38.8 KB 

 
Size: 40.3 KB 

 
Size: 41.5 KB 

16 MODES 18 MODES 20 MODES 25 MODES 

 
Size: 42.8 KB 

 
Size: 43.9 KB 

 
Size: 45.1 KB 

 
Size: 47.4 KB 

50 MODES 75 MODES 100 MODES ORIGINAL IMAGE 

 
Size: 55.8 KB 

 
Size: 60.9 KB 

 
Size: 64.4 KB 

 
Size: 89.2 KB 

Table 1 shows the compilation of all compressed image and the original 

with respective to its mode and image size for bnwSVD.m 
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In Table 1 we can see the quality of the compress image starts from the worst to the 

original image. This is to show the use of multiple modes, so we can compare which photo 

looks nearly identical to the original photo. 

In addition to that, in the same table we can see the size of images decreases as the 

number of modes decreases. This verify that the program is indeed compressing the image 

given. We can see that these modes do actually save on memory quite a bit, more than 

halving the amount of memory used at mode 20. 

Mode(s) Compression Ratio 

1 4.46 

2 3.98 

4 3.48 

6 3.18 

8 2.94 

10 2.79 

12 2.68 

14 2.60 

16 2.52 

18 2.46 

20 2.39 

25 2.28 

50 1.94 

75 1.77 

100 1.68 

Table 2 shows the compression ratio of the results from bnwSVD.m 

From table above, we can see that the compression ratio at higher number of singular 

values decreases exponentially which indicates that if we use higher number of singular 

values, we will get compression ratio not far farm the compression ratio when we use 100 

number of singular values. Also, as we can see the compression ratio is only around 1.5:1 to 
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4.5:1 which is quite low but that seems to be because of the size of the original image is 

already small. 

Mode(s) PNSR 

1 19.17 

2 21.18 

4 23.26 

6 24.85 

8 26.05 

10 26.93 

12 27.67 

14 28.32 

16 28.83 

18 29.31 

20 29.75 

25 30.78 

50 34.18 

75 36.43 

100 38.24 

Table 3 shows the PNSR values of the results from bnwSVD.m 

Table 3 shows the value of PSNR between compress and original image increases. 

Also at higher number of singular values use (modes) the value of PNSR seems to be less 

significant increase. We can safely say the as the number of singular values used increases 

the values of PSNR will increase insignificantly which tells us that at higher number of 

singular values the value of PSNR will not be far from the value of PSNR at mode 100. 

As we can see the program can successfully compress an image. Even though this 

image is using JPG format, theoretically this program also can be use with any image format. 

However, the program only outputs a black and white image as its output. All the information 

gathers also only valid if the user wants to compress the image and convert it into black and 

white. 
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4.3.2 colourSVD.m 

This script solves the problem faced in bnwSVD.m, this program will take any 

coloured images and reconstruct it with singular value decomposition with full colour. In 

this case, we are going to use ‘chicken.png’ as our test image. The dimension of 

‘chicken.png’ is 3904x2604 with the image size of 12.7mb. 

Image ‘chicken.png’ was chosen for few purposes, this to ensure that the program 

works with PNG photo and the size of image is enormous compared to previous image. 
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1 MODE 2 MODES 4 MODES 6 MODES 

 
Size: 272 KB 

 
Size: 304 KB 

 
Size: 365 KB 

 
Size: 412 KB 

8 MODES 10 MODES 12 MODES 14 MODES 

 
Size: 441 KB 

 
Size: 462 KB 

 
Size: 483 KB 

 
Size: 503 KB 

16 MODES 18 MODES 20 MODES 25 MODES 

 
Size: 519 KB 

 
Size: 536 KB 

 
Size: 550 KB 

 
Size: 580 KB 

50 MODES 75 MODES 100 MODES 150 MODES 

 
Size: 670 KB 

 
Size: 731 KB 

 
Size: 771 KB 

 
Size: 832 KB 

200 MODES 250 MODES 300 MODES 350 MODES 

 
Size: 868 KB 

 
Size: 901 KB 

 
Size: 932 KB 

 
Size: 960 KB 

400 MODES 450 MODES 500 MODES ORIGINAL IMAGE 

 
Size: 986 KB 

 
Size: 0.96 MB 

 
Size: 1.00 MB 

 
Size: 12.7 MB 

Table 4 shows the compilation of all compressed image and the original 

with respective to its mode and image size for colourSVD.m 
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In Table 2 we can see the quality of the compress image starts from the smallest 

mode use ‘1’ until the original image. This way we can easily see that around mode 50 and 

above, the image is indistinguishable from the original image. 

Furthermore, from Table 2 we can see the size of images decreases to a great extent 

at mode 1 until mode 500 compared to the size of the original image. Also, from mode 1 we 

can see that the size of reconstructed image increases as the mode until mode 500, which 

follows our theory of using singular value decomposition. This verifies that the program 

indeed reconstructs an image, and the reconstructed image is compressed by using the 

method of SVD. 

Mode(s) Compression Ratio 

1 47.91 

2 42.81 

4 35.72 

6 31.59 

8 29.56 

10 28.20 

12 26.97 

14 25.91 

16 25.11 

18 24.30 

20 23.67 

25 22.45 

50 19.43 

75 17.82 

100 16.89 

150 15.66 

200 15.01 

250 14.47 

300 13.98 

350 13.57 

400 13.21 

450 12.91 

500 12.65 

Table 5 shows the compression ratio of the results from colourSVD.m 
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From Table 5, we can see the compression ratio of the image reconstructed by the 

program colourSVD.m. We can see that at higher modes, there are less insignificant different 

on the compression size. Interestingly, the compression ratio of the reconstructed image is 

much more at 10:1, compared to the compression ratio we see during the run of program 

bnwSVD.m. However, this might be because of the very large size of original photo used 

here compared to the one use in bnwSVD.m. 

Mode(s) PNSR 

1 13.57 

2 15.64 

4 17.35 

6 18.23 

8 19.04 

10 19.85 

12 20.52 

14 21.07 

16 21.54 

18 21.99 

20 22.41 

25 23.35 

50 26.35 

75 28.02 

100 29.22 

150 30.95 

200 32.27 

250 33.32 

300 34.20 

350 34.97 

400 35.66 

450 36.32 

500 36.94 

Table 6 shows the PNSR values of the results from colourSVD.m 

From the table above we can see the pattern of PSNR is almost identical with the 

pattern of PSNR in bnwSVD.m despite the compression ratio is much higher here. Also, we 

can see that at higher values of mode there is less significant increase in the different between 
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their PSNR values. Furthermore, it shows that any photo above mode 50 is good enough 

since it barely increases in PSNR and it is visually good enough. 

4.4 Summary 

Depending on the task, image compression can be a basic method of image 

processing. Singular value decomposition (SVD) is used in this project to reduce the image 

size. As a result, the compressed image quality can be maintained given the reduced image 

volume. The paper, journal, web, and other studies were the first steps in this project's 

development. This is the process of learning by reading and analyzing the approach proposed 

in such reviews of literature. It demonstrates the differences in approaches and contains all 

the pertinent information required to carry out the project as planned. 

A flowchart is used to track the progress of this project throughout its development. 

As long as the project flowchart is used, hiccups can be improvised, and flaws can be 

controlled. MATLAB software is the primary tool for this project, as previously stated. This 

software alone will be sufficient to meet all of the project's goals. In order to study the use 

of singular value decomposition (SVD) in image compression, we have already written a 

script. 

Earlier in this chapter the result of the project is shown where both of the script 

bnwSVD.m and colourSVD.m successfully deconstructed and reconstructed the image that 

was assigned to it. Also, both scripts have proven that every reconstructed image has been 

decrease in its size which prove that the image is compressed. In bnwSVD.m we can see that 

there is no high number of compression ratio compared to colourSVD.m, but this might be 

because the size of the original image.  
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While using both script is using different type of image format (JPG for bnwSVD.m 

and PNG for colourSVD.m) it is doubt that any image format would work when using the 

scripts. The only thing matter if the user wants the output in black and white or colour image. 

In both scripts, we can see the curve of PSNR graph is pretty similar. Even though 

colourSVD.m is run with more modes (up to 500 mode) where is negligible difference 

between both of the program’s PNSR graph. Each graph shows a minor change in PNSR 

value after mode 50. 

Overall, it can be concluded that at around 50 modes or above, there it is safe to say 

the reconstructed image will be cut from the same cloth when comparing with the original 

image. The program also achieves the purpose of compressing an image with using the 

method of SVD. It is also shown that the method of SVD for compressing image is very 

viable. 
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CONCLUSION AND RECOMMENDATIONS  

5.1 Introduction 

This chapter will conclude all the results, analysis, observation, objectives and 

evaluation needed based on project completion. The suggestion of future work will also\sbe 

addressed because of this issue. 

5.2 Conclusion 

As a result, this project proves that the method of singular value decomposition or 

SVD can be used for compressing images. MATLAB also shows that is it a great platform 

to use for any image processing needed. Both scripts were written in MATLAB 

programming language and run on the MATLAB software itself.  

Also, with success of the program reconstructing the image that was deconstructed 

by using SVD, we can study the effectiveness of the method. The result was very pleasing 

as the image ‘chicken.png’ were able to obtain a whopping compression ratio of 10:1 while 

being able to be very indistinguishable from the original image. With use of some clever 

functions, we were also able to study and analyze the differences between both image by 

using compression ratio and PNSR values.  

There is so much potential when using SVD in image compression. In conclusion, 

the project objectives were met, and the project is a success. 
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5.3 Future Works 

For future improvements, the accuracy of the analysis and the script itself could be 

enhanced as follows: 

• Wider range of image format tested with both scripts 

• Some sort of combination of both script and to use it as a program for end 

user 

• Better analysis methods  
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APPENDICES 

 

Appendix A Gantt Chart of Progression of PSM 1 

 

Appendix B Gantt Chart of Progression of PSM 2 

 

  

Activity W1 W2 W3 W4 W6 W7 W8 W9 W10 W11 W12 W13 W14 

Title Confirmation              

Introduction              

Journal Study              

Literature Review              

Methodology              

Initial Results              

Full Report and Turnitin              

Slide Preparation              

Presentation of PSM 1              

Activity W1 W2 W3 W4 W5 W7 W8 W9 W10 W11 W12 W13 W14 

Planning Requirement Project              

Analysis of PSM 1              

Improving program              

Results and Analysis              

Conclusion              

Submit Draft Report              

Finalize Report              

Create Poster              

Slide Preparation and Video              

Presentation of PSM 2              
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Appendix C Milestones of PSM 1 

No Task Name Start Date End Date Duration 

1. Briefing 17th March 2021 17th March 2021 1 day 

2. Title Selection 18th March 2021 18th March 2021 1 day 

3. Project title Discussion 

with SV 

25th March 2021 25th March 2021 1 day 

4. Research and learning 

about Image 

Compression 

18th March 2021 30th June 2021 105 days 

5. Research and learning 
about Singular Value 
Decomposition 

18th March 2021 30th June 2021 105 days 

6. Chapter 1: Introduction 6th May 2021 12th May 2021 7 days 

7. Journal Study 18th March 2021 26th May 2021 70 days 

8. Chapter 2: Literature 

Writing 

13th May 2021 26th May 2021 14 days 

9. Chapter 3: 
Methodology 

27th May 2021 3rd June 2021 8 days 

10. Design Initial Program 4th June 2021 13th June 2021 10 days 

11. Chapter 4: Initial 

Result and Analysis 

14th June 2021 16th June 2021 3 days 

12. Full report checks and 
submit 

17th June 2021 17th June 2021 1 day 

13. Slide Preparation & 
Video Making 

18th June 2021 18th June 2021 1 day 

14. Submit presentation 
video and 
documentation to 
panels and supervisor. 

18th June 2021 18th June 2021 1 day 

15. Presentation of PSM 1 21st June 2021 21st June 2021 1 day 
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Appendix D Milestones of PSM  2

No Task Name Start Date End Date Duration 

1. 
PSM 2 Implementation Briefing 6th Oct 2021 6th Oct 2021 1 day 

2. 
PSM 1 Revision 13th Oct 2021 19th Oct 2021 6 days 

3. 
Writing the script for colourSVD.m 20th Oct 2021 1st Nov 2021 12 days 

4. 
Progress update with SV 3rd Nov 2021 3rd Nov 2021 1 day 

5. Completing colourVD.m and 

improving bnwSVD.m 
10th Nov 2021 6th Jan 2022 57 days 

6. 
Chapter 4: Result and Discussion 15th Dis 2021 6th Jan 2022 22 days 

7. Chapter 5: Conclusion and 
Recommendations 

1st Jan 2022 5th Jan 2022 4 days 

8. 
Submit first draft for SV evaluation 7th Jan 2022 7th Jan 2022 1 day 

9. Polishing report based on 
SV’s comment 

8th Jan 2022 10th Jan 2022 2 days 

10. 
Creating poster 6th Jan 2022 11th Jan 2022 5 days 

11. 
Creating video for presentation 6th Jan 2022 11th Jan 2022 5 days 

12. Second submission of report and 

poster for SV’s evaluation 
10th Jan 2022 10th Jan 2022 1 day 

13. Submit video and finalize report 
with documentation to panels and 
SV 

11th Jan 2022 11th Jan 2022 1 day 

14. Presentation of PSM 2 (QnA 
session) 

12th Jan 2022 12th Jan 2022 1 day 

15. Final submission of report on 
ePSM platform 

31st Jan 2022 31st Jan 2022 1 day 
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close all 
clear all 
clc 
 
displayError = []; 
numofSVals = []; 
valuePSNR = []; 
imgSize = []; 
compressionRatio = []; 
bnwData = []; 
 
a=imread('!!ae.jpg'); 
fileinfo = dir('!!ae.jpg'); 
sizeofImg = (fileinfo.bytes/1024); 
original = sizeofImg; 
bnwData(16).name =sprintf('Original.jpg'); 
bnwData(16).size = sizeofImg; 
compressionratio = original/sizeofImg; 
bnwData(16).compressionRatio = compressionratio; 
 
a=rgb2gray(a); 
[rows, columns] = size(a); %for psnr 
aDouble=double(a); 
%imwrite(uint8(aDouble), '!!aeoriginal.jpg'); 
[U,S,V]=svd(aDouble); 
 
N = 1; 
C = S; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
D=U*C*V'; 
figure; 
buffer = sprintf('Image output using %d singular values', N); 
imshow(uint8(D)); 
imwrite(uint8(D), sprintf('%dbw.jpg', N)); 
 
%getting image size 
filename = sprintf('%dbw.jpg',N); 
fileinfo = dir(filename); 
sizeofImg = (fileinfo.bytes/1024); 
title(buffer); 
 
%calculating and adding PSNR 
squaredErrorImage = (double(a) - double(D)) .^ 2; 
mse = sum(sum(squaredErrorImage)) / (rows * columns); 
PSNR = 10 * log10( 255^2 / mse); 
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse, 
PSNR); 
xlabel(message); 
 
%calculating error rate & storing its values 
error=sum(sum((aDouble-D).^2)); 
displayError = [displayError; error]; 
numofSVals = [numofSVals; N]; 
 
%calculating compresssion ratio 
compressionratio = original/sizeofImg; 
compressionRatio = [compressionRatio ;compressionratio]; 
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%saving values in bnwData 
valuePSNR = [valuePSNR; PSNR]; 
bnwData(N).name =sprintf('Image %dbw.jpg',N); 
bnwData(N).size = sizeofImg; 
bnwData(N).mse = mse; 
bnwData(N).pnsr = PSNR; 
bnwData(N).compressionRatio = compressionratio; 
imgSize = [imgSize; sizeofImg]; 
 
figure; 
for N=2:2:20 
C = S; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
D=U*C*V'; 
subplot(2,5,N/2); 
buffer = sprintf('Image output using %d singular values', N); 
imshow(uint8(D)); 
imwrite(uint8(D), sprintf('%dbw.jpg', N)); 
 
%getting image size 
filename = sprintf('%dbw.jpg',N); 
fileinfo = dir(filename); 
sizeofImg = (fileinfo.bytes/1024); 
title(buffer); 
 
squaredErrorImage = (double(a) - double(D)) .^ 2; 
mse = sum(sum(squaredErrorImage)) / (rows * columns); 
PSNR = 10 * log10( 255^2 / mse); 
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse, 
PSNR); 
xlabel(message); 
 
error=sum(sum((aDouble-D).^2)); 
displayError = [displayError; error]; 
numofSVals = [numofSVals; N]; 
 
%calculating compresssion ratio 
compressionratio = original/sizeofImg; 
compressionRatio = [compressionRatio ;compressionratio]; 
 
valuePSNR = [valuePSNR; PSNR]; 
imgSize = [imgSize; sizeofImg]; 
bnwData((N/2)+1).name =sprintf('Image %dbw.jpg',N); 
bnwData((N/2)+1).size = sizeofImg; 
bnwData((N/2)+1).mse = mse; 
bnwData((N/2)+1).pnsr = PSNR; 
bnwData((N/2)+1).compressionRatio = compressionratio; 
 
end 
figure; 
for N=25:25:100 
C = S; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
D=U*C*V'; 
subplot(2,2,N/25); 
buffer = sprintf('Image output using %d singular values', N); 
imshow(uint8(D)); 
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imwrite(uint8(D), sprintf('%dbw.jpg', N)); 
 
%getting image size 
filename = sprintf('%dbw.jpg',N); 
fileinfo = dir(filename); 
sizeofImg = (fileinfo.bytes/1024); 
title(buffer); 
 
squaredErrorImage = (double(a) - double(D)) .^ 2; 
mse = sum(sum(squaredErrorImage)) / (rows * columns); 
PSNR = 10 * log10( 255^2 / mse); 
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse, 
PSNR); 
xlabel(message); 
 
error=sum(sum((aDouble-D).^2)); 
displayError = [displayError; error]; 
numofSVals = [numofSVals; N]; 
 
%calculating compresssion ratio 
compressionratio = original/sizeofImg; 
compressionRatio = [compressionRatio ;compressionratio]; 
 
valuePSNR = [valuePSNR; PSNR]; 
imgSize = [imgSize; sizeofImg]; 
bnwData((N/25)+11).name =sprintf('Image %dbw.jpg',N); 
bnwData((N/25)+11).size = sizeofImg; 
bnwData((N/25)+11).mse = mse; 
bnwData((N/25)+11).pnsr = PSNR; 
bnwData((N/25)+11).compressionRatio = compressionratio; 
end 
 
figure; 
title('Error rate in compression') 
plot(numofSVals, displayError); 
xlabel('Number of Singular Values used'); 
ylabel('Error rate between compress and original image'); 
grid on; 
 
figure; 
title('PSNR values in compression') 
plot(numofSVals, valuePSNR); 
ylabel('Value of PSNR between compress and original image'); 
xlabel('Number of Singular Values used'); 
grid on 
 
figure; 
title('Compression Ratio') 
plot(numofSVals,compressionRatio); 
ylabel('Compression Ratio'); 
xlabel('Number of Singular Values used'); 
grid on 
 
%seperate files for values 
save ('fileSize','bnwData'); 

 

Appendix E script for bnwSVD.m 
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close all 
clear all 
clc 
 
displayError = []; 
numofSVals = []; 
colourData = []; 
valuePSNR = []; 
sizeDifference = []; 
compressionRatio = []; 
psnrData = []; 
imgSize = []; 
 
filename = 'chicken.png'; 
fileinfo = dir('chicken.png'); 
sizeofImg = (fileinfo.bytes/1024); 
original = sizeofImg; 
colourData(24).name =sprintf('Original.jpg'); 
colourData(24).size = sizeofImg; 
compressionratio = original/sizeofImg; 
colourData(24).compressionRatio = compressionratio; 
 
[X, map] = imread(filename); 
figure('Name','ORIGINAL component of the imported image'); 
imshow(X); 
%imwrite(X, '!original.jpg'); 
[rows columns ~] = size(X); 
 
R = X(:,:,1); 
G = X(:,:,2); 
B = X(:,:,3); 
 
Rimg = cat(3, R, zeros(size(R)), zeros(size(R))); 
Gimg = cat(3, zeros(size(G)), G, zeros(size(G))); 
Bimg = cat(3, zeros(size(B)), zeros(size(B)), B); 
%{  
figure('Name','RED component of the imported image'); 
imshow(Rimg); 
imwrite(Rimg, '!red.jpg'); 
figure('Name','GREEN component of the imported image'); 
imshow(Gimg); 
imwrite(Gimg, '!green.jpg'); 
figure('Name','BLUE component of the imported image'); 
imshow(Bimg); 
imwrite(Bimg, '!blue.jpg'); 
%} 
Red =double(R); 
Green = double(G); 
Blue = double(B); 
 
N = 1; 
% Compute values for the red image 
[U,S,V]=svd(Red); 
C = S; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Dr=U*C*V'; 
%{ Rebuild the data back into a displayable image and show it 
%figure; 
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buffer = sprintf('Red image output using %d singular values', N); 
Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr))); 
%imshow(uint8(Rimg)); 
imwrite(uint8(Rimg), sprintf('%dred.jpg', N)); 
title(buffer); 
% Compute values for the green image 
[U2, S2, V2]=svd(Green); 
C = S2; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Dg=U2*C*V2'; 
% Rebuild the data back into a displayable image and show it 
%figure; 
buffer = sprintf('Green image output using %d singular values', N); 
Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg))); 
%imshow(uint8(Gimg)); 
imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N)); 
title(buffer); 
% Compute values for the blue image 
[U3, S3, V3]=svd(Blue); 
C = S3; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Db=U3*C*V3'; 
% Rebuild the data back into a displayable image and show it 
%figure; 
buffer = sprintf('Blue image output using %d singular values', N); 
Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db); 
%imshow(uint8(Bimg)); 
imwrite(uint8(Bimg), sprintf('%dblue.jpg', N)); 
title(buffer); 
 
% Thake the data from the Red, Green, and Blue image 
% Rebuild a colored image with the corresponding data and show it 
figure; 
buffer = sprintf('Colored image output using %d singular values', N); 
Cimg = cat(3, Dr, Dg, Db); 
imshow(uint8(Cimg)); 
imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N)); 
title(buffer); 
 
%Calculating and adding PSNR 
 
% Calculate mean square error of R, G, B.    
mseRImage = (double(X(:,:,1)) - double(Cimg(:,:,1))) .^ 2; 
mseGImage = (double(X(:,:,2)) - double(Cimg(:,:,2))) .^ 2; 
mseBImage = (double(X(:,:,3)) - double(Cimg(:,:,3))) .^ 2; 
mseR = sum(sum(mseRImage)) / (rows * columns); 
mseG = sum(sum(mseGImage)) / (rows * columns); 
mseB = sum(sum(mseBImage)) / (rows * columns); 
% Average mean square error of R, G, B. 
mse = (mseR + mseG + mseB)/3; 
% Calculate PSNR (Peak Signal to noise ratio). 
PSNR = 10 * log10( 255^2 / mse); 
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse, 
PSNR); 
xlabel(message); 
 
%getting image size 
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filename = sprintf('%dcolor.jpg',N); 
fileinfo = dir(filename); 
sizeofImg = (fileinfo.bytes/1024); 
title(buffer); 
 
%calculating compresssion ratio 
compressionratio = original/sizeofImg; 
compressionRatio = [compressionRatio ;compressionratio]; 
 
%saving values 
numofSVals = [numofSVals; N]; 
psnrData = [psnrData; PSNR]; 
valuePSNR = [valuePSNR; PSNR]; 
imgSize = [imgSize; sizeofImg]; 
colourData(N).name =sprintf('%dcolor.jpg',N); 
colourData(N).size = sizeofImg; 
colourData(N).compressionRatio = compressionratio; 
colourData(N).mse = mse; 
colourData(N).pnsr = PSNR; 
 
 
 
for N=2:2:20 
% Recompute modes for the red image - already solved by SVD above 
C = S; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Dr=U*C*V'; 
% Rebuild the data back into a displayable image and show it 
 
%figure; 
buffer = sprintf('Red image output using %d singular values', N); 
Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr))); 
%imshow(uint8(Rimg)); 
imwrite(uint8(Rimg), sprintf('%dred.jpg', N)); 
title(buffer); 
% Recompute modes for the green image - already solved by SVD above 
C = S2; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Dg=U2*C*V2'; 
% Rebuild the data back into a displayable image and show it 
 
%figure; 
buffer = sprintf('Green image output using %d singular values', N); 
Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg))); 
%imshow(uint8(Gimg)); 
imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N)); 
title(buffer); 
% Recompute modes for the blue image - already solved by SVD above 
C = S3; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Db=U3*C*V3'; 
% Rebuild the data back into a displayable image and show it 
 
%figure; 
buffer = sprintf('Blue image output using %d singular values', N); 
Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db); 
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%imshow(uint8(Bimg)); 
imwrite(uint8(Bimg), sprintf('%dblue.jpg', N)); 
title(buffer); 
% Thake the data from the Red, Green, and Blue image 
 
% Rebuild a colored image with the corresponding data and show it 
figure; 
buffer = sprintf('Colored image output using %d singular values', N); 
Cimg = cat(3, Dr, Dg, Db); 
imshow(uint8(Cimg)); 
imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N)); 
title(buffer); 
 
%Calculating and adding PSNR 
 
% Calculate mean square error of R, G, B.    
mseRImage = (double(X(:,:,1)) - double(Cimg(:,:,1))) .^ 2; 
mseGImage = (double(X(:,:,2)) - double(Cimg(:,:,2))) .^ 2; 
mseBImage = (double(X(:,:,3)) - double(Cimg(:,:,3))) .^ 2; 
mseR = sum(sum(mseRImage)) / (rows * columns); 
mseG = sum(sum(mseGImage)) / (rows * columns); 
mseB = sum(sum(mseBImage)) / (rows * columns); 
% Average mean square error of R, G, B. 
mse = (mseR + mseG + mseB)/3; 
% Calculate PSNR (Peak Signal to noise ratio). 
PSNR = 10 * log10( 255^2 / mse); 
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse, 
PSNR); 
xlabel(message); 
 
%getting image size 
filename = sprintf('%dcolor.jpg',N); 
fileinfo = dir(filename); 
sizeofImg = (fileinfo.bytes/1024); 
title(buffer); 
 
%calculating compresssion ratio 
compressionratio = original/sizeofImg; 
compressionRatio = [compressionRatio ;compressionratio]; 
 
%saving values 
numofSVals = [numofSVals; N]; 
psnrData = [psnrData; PSNR]; 
valuePSNR = [valuePSNR; PSNR]; 
imgSize = [imgSize; sizeofImg]; 
colourData((N/2)+1).name =sprintf('%dcolor.jpg',N); 
colourData((N/2)+1).size = sizeofImg; 
colourData((N/2)+1).compressionRatio = compressionratio; 
colourData((N/2)+1).mse = mse; 
colourData((N/2)+1).pnsr = PSNR; 
 
end 
for N=25:25:100 
% Recompute modes for the red image - already solved by SVD above 
C = S; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Dr=U*C*V'; 
% Rebuild the data back into a displayable image and show it 
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%figure; 
buffer = sprintf('Red image output using %d singular values', N); 
Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr))); 
%imshow(uint8(Rimg)); 
imwrite(uint8(Rimg), sprintf('%dred.jpg', N)); 
title(buffer); 
% Recompute modes for the green image - already solved by SVD above 
C = S2; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Dg=U2*C*V2'; 
% Rebuild the data back into a displayable image and show it 
%figure; 
buffer = sprintf('Green image output using %d singular values', N); 
Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg))); 
%imshow(uint8(Gimg)); 
imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N)); 
title(buffer); 
% Recompute modes for the blue image - already solved by SVD above 
C = S3; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Db=U3*C*V3'; 
% Rebuild the data back into a displayable image and show it 
%figure; 
buffer = sprintf('Blue image output using %d singular values', N); 
Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db); 
%imshow(uint8(Bimg)); 
imwrite(uint8(Bimg), sprintf('%dblue.jpg', N)); 
title(buffer); 
% Thake the data from the Red, Green, and Blue image 
% Rebuild a colored image with the corresponding data and show it 
figure; 
buffer = sprintf('Colored image output using %d singular values', N); 
Cimg = cat(3, Dr, Dg, Db); 
imshow(uint8(Cimg)); 
imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N)); 
title(buffer); 
 
%Calculating and adding PSNR 
 
% Calculate mean square error of R, G, B.    
mseRImage = (double(X(:,:,1)) - double(Cimg(:,:,1))) .^ 2; 
mseGImage = (double(X(:,:,2)) - double(Cimg(:,:,2))) .^ 2; 
mseBImage = (double(X(:,:,3)) - double(Cimg(:,:,3))) .^ 2; 
mseR = sum(sum(mseRImage)) / (rows * columns); 
mseG = sum(sum(mseGImage)) / (rows * columns); 
mseB = sum(sum(mseBImage)) / (rows * columns); 
% Average mean square error of R, G, B. 
mse = (mseR + mseG + mseB)/3; 
% Calculate PSNR (Peak Signal to noise ratio). 
PSNR = 10 * log10( 255^2 / mse); 
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse, 
PSNR); 
xlabel(message); 
 
%getting image size 
filename = sprintf('%dcolor.jpg',N); 
fileinfo = dir(filename); 
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sizeofImg = (fileinfo.bytes/1024); 
title(buffer); 
 
%calculating compresssion ratio 
compressionratio = original/sizeofImg; 
compressionRatio = [compressionRatio ;compressionratio]; 
 
%saving values 
numofSVals = [numofSVals; N]; 
psnrData = [psnrData; PSNR]; 
valuePSNR = [valuePSNR; PSNR]; 
imgSize = [imgSize; sizeofImg]; 
colourData((N/25)+11).name =sprintf('%dcolor.jpg',N); 
colourData((N/25)+11).size = sizeofImg; 
colourData((N/25)+11).compressionRatio = compressionratio; 
colourData((N/25)+11).mse = mse; 
colourData((N/25)+11).pnsr = PSNR; 
 
end 
for N=150:50:500 
% Recompute modes for the red image - already solved by SVD above 
C = S; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Dr=U*C*V'; 
% Rebuild the data back into a displayable image and show it 
%figure; 
buffer = sprintf('Red image output using %d singular values', N); 
Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr))); 
%imshow(uint8(Rimg)); 
imwrite(uint8(Rimg), sprintf('%dred.jpg', N)); 
title(buffer); 
% Recompute modes for the green image - already solved by SVD above 
C = S2; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Dg=U2*C*V2'; 
% Rebuild the data back into a displayable image and show it 
%figure; 
buffer = sprintf('Green image output using %d singular values', N); 
Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg))); 
%imshow(uint8(Gimg)); 
imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N)); 
title(buffer); 
% Recompute modes for the blue image - already solved by SVD above 
C = S3; 
C(N+1:end,:)=0; 
C(:,N+1:end)=0; 
Db=U3*C*V3'; 
% Rebuild the data back into a displayable image and show it 
%figure; 
buffer = sprintf('Blue image output using %d singular values', N); 
Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db); 
%imshow(uint8(Bimg)); 
imwrite(uint8(Bimg), sprintf('%dblue.jpg', N)); 
title(buffer); 
% Thake the data from the Red, Green, and Blue image 
% Rebuild a colored image with the corresponding data and show it 
figure; 
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buffer = sprintf('Colored image output using %d singular values', N); 
Cimg = cat(3, Dr, Dg, Db); 
imshow(uint8(Cimg)); 
imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N)); 
title(buffer); 
 
%Calculating and adding PSNR 
 
% Calculate mean square error of R, G, B.    
mseRImage = (double(X(:,:,1)) - double(Cimg(:,:,1))) .^ 2; 
mseGImage = (double(X(:,:,2)) - double(Cimg(:,:,2))) .^ 2; 
mseBImage = (double(X(:,:,3)) - double(Cimg(:,:,3))) .^ 2; 
mseR = sum(sum(mseRImage)) / (rows * columns); 
mseG = sum(sum(mseGImage)) / (rows * columns); 
mseB = sum(sum(mseBImage)) / (rows * columns); 
% Average mean square error of R, G, B. 
mse = (mseR + mseG + mseB)/3; 
% Calculate PSNR (Peak Signal to noise ratio). 
PSNR = 10 * log10( 255^2 / mse); 
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse, 
PSNR); 
xlabel(message); 
 
%getting image size 
filename = sprintf('%dcolor.jpg',N); 
fileinfo = dir(filename); 
sizeofImg = (fileinfo.bytes/1024); 
title(buffer); 
 
%calculating compresssion ratio 
compressionratio = original/sizeofImg; 
compressionRatio = [compressionRatio ;compressionratio]; 
 
%saving values 
numofSVals = [numofSVals; N]; 
psnrData = [psnrData; PSNR]; 
valuePSNR = [valuePSNR; PSNR]; 
imgSize = [imgSize; sizeofImg]; 
colourData((N/50)+13).name =sprintf('%dcolor.jpg',N); 
colourData((N/50)+13).size = sizeofImg; 
colourData((N/50)+13).compressionRatio = compressionratio; 
colourData((N/50)+13).mse = mse; 
colourData((N/50)+13).pnsr = PSNR; 
end 
 
figure; 
title('PSNR values in compression') 
plot(numofSVals, valuePSNR); 
ylabel('Value of PSNR between compress and original image'); 
xlabel('Number of Singular Values used'); 
grid on 
figure; 
title('Compression Ratio') 
plot(numofSVals, compressionRatio); 
ylabel('Compression Ratio'); 
xlabel('Number of Singular Values used'); 
grid on 

Appendix F script for colourSVD.m 




