

Faculty of Electrical and Electronic Engineering Technology

IMAGE COMPRESSION BY USING SINGULAR VALUE

DECOMPOSITION WITH MATLAB SIMULATION

MUHAMAD IZZAT SYAFIQ BIN NORMAN

Bachelor of Computer Engineering Technology (Computer Systems) with Honours

2022

IMAGE COMPRESSION BY USING SINGULAR VALUE DECOMPOSITION

WITH MATLAB SIMULATION

MUHAMAD IZZAT SYAFIQ BIN NORMAN

A project report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Computer Engineering Technology (Computer Systems) with Honours

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2022

DECLARATION

Aside from the information cited in the references, I certify that this project report entitled

"IMAGE COMPRESSION BY USING SINGULAR VALUE DECOMPOSITION WITH

MATLAB SIMULATION" was written entirely by me and represents my original research.

The project report has not been accepted for any degree and is not being submitted for

consideration for any other degree at the time of submission.

Signature :

Student Name : MUHAMAD IZZAT SYAFIQ BIN NORMAN

Date : 4 JANUARI 2022

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Computer

Engineering Technology (Computer Systems) with Honours.

Signature :

Supervisor Name : TS. DR. ROSTAM AFFENDI BIN HAMZAH

Date : 11 Januari 2022

Signature :

Co-Supervisor

Name (if any)

:

Date :

DEDICATION

This research is lovingly dedicated to my parents,

 Hapizah and Norman

To my beloved brother and sister,

Edzuan and Fathehah

And to my long-time partner,

Atikah

i

ABSTRACT

Network bandwidth and storage capacity are becoming increasingly constrained as the

demand for multimedia products grows. That's why it's so critical to reduce redundant data

and save as much storage and bandwidth as possible. Data compression, also known as

source coding, is a technique used in computer science and information theory to encode

information using fewer bits or other information-bearing units than an unencoded version

of the same information. Because it reduces the consumption of expensive resources like

memory and transmission bandwidth, compression is a cost-effective method of data storage.

Singular Value Decomposition (SVD) is used as an image compression method in this

research. In addition, a MATLAB programme based on Singular Value Decomposition will

be created to mimic the image compression algorithm (SVD).

ii

ABSTRAK

Lonjakan kadar penggunaan dan permintaan produk multimedia dalam masa beberapa tahun

ini menyebabkan jalur lebar rangkaian dan kapasiti peranti memori tidak mengcukupi.

Hasilnya, pemampatan data menjadi lebih penting untuk meminimumkan data lewah dan ini

dapat mengurangkan ruang di dalam perkakasan simpanan dan juga mengurangkan kadar

jalur levar yang diperlukan.Di dalam sains computer dan teori maklumat, pemampatan data

adalah pengekodan maklumat yang menggunakan bit yang lebih sedikit atau unit yang

mengandungi maklumat lain daripada versi yang tidak dikodkan. Pemampatan memberi

kelebihan kerana dapat menjimatkan wang dengan mengurangkan penggunaan memory dan

jalur lebar yang kadang kala mahal. Kajian ini membincangkan kelebihan menggunakan

Penguraian Nilai Singular (SVD) sebagai kaedah pemampatan gambar dalam kajian ini. Di

samping itu, program yang menerapkan algoritma ini juga akan dicipta di dalam aplikasi

MATLAB untuk melihat fungsinya.

iii

ACKNOWLEDGEMENTS

Thank you to my mentor, TS. DR. ROSTAM AFFENDI BIN HAMZAH, for all of

your help and wisdom, as well as your patience.

A special thanks to my parents and family members for their support and prayers

while I was in college.

Finally, I would like to thank all of my classmates, faculty members, and other

unnamed individuals for their cooperation and assistance.

i

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS i

LIST OF TABLES iii

LIST OF FIGURES iv

LIST OF SYMBOLS v

LIST OF ABBREVIATIONS vi

LIST OF APPENDICES vii

 INTRODUCTION 17
1.1 Background 17

1.2 Problem Statement 18
1.3 Project Objective 19

1.4 Scope of Project 19

 LITERATURE REVIEW 20

2.1 Introduction 20
2.2 Understanding Image Compression 20

2.2.1 Data Redundancy 23
2.3 Singular Value Decomposition 24

2.3.1 The Techniques of SVD 25
2.3.2 Image Compression Using SVD. 27

2.3.3 SVD Image Compression Measures 27

 METHODOLOGY 29

3.1 Introduction 29
3.2 Methodology 29
3.3 The Project Flowchart 30

3.3.1 Research and Data Collection 31

3.3.2 Literature Review 31
3.3.3 Develop Program 31
3.3.4 Equipment 33

ii

3.4 Expected Outcome 35
3.5 Summary 37

 RESULTS AND DISCUSSIONS 38
4.1 Introduction 38

4.2 Analysis Method 38
4.2.1 Compression Ratio 38
4.2.2 Peak Signal-to-Noise Ratio 39

4.3 Result and Analysis 40
4.3.1 bnwSVD.m 41

4.3.2 colourSVD.m 44
4.4 Summary 48

 CONCLUSION AND RECOMMENDATIONS 50

5.1 Introduction 50

5.2 Conclusion 50
5.3 Future Works 51

REFERENCES 52

APPENDICES 56

iii

LIST OF TABLES

TABLE TITLE PAGE

Table 1 shows the compilation of all compressed image and the original with

respective to its mode and image size for bnwSVD.m 41

Table 2 shows the compression ratio of the results from bnwSVD.m 42

Table 3 shows the PNSR values of the results from bnwSVD.m 43

Table 4 shows the compilation of all compressed image and the original with

respective to its mode and image size for colourSVD.m 45

Table 5 shows the compression ratio of the results from colourSVD.m 46

Table 6 shows the PNSR values of the results from colourSVD.m 47

iv

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 1 shows the lossy compression algorithm 22

Figure 2 shows the matrices that were created after the original picture matrix was

split 26

Figure 6 shows the flowchart of the development of this project 30

Figure 7 shows the program flowchart 32

Figure 8 shows the logo of MATLAB 34

Figure 9 shows the overview of MATLAB 34

Figure 10 shows the formula of compression ratio 39

Figure 11 shows the formula of mean-square error 39

Figure 12 shows the formula or PSNR 40

v

LIST OF SYMBOLS

𝑚 - Matrix m

𝑛 - Matrix n
T - Transpose

𝐴 - Image matrix

𝑈 - 𝑚 𝑥 𝑚 orthogonal matrix

𝑆 - 𝑚 𝑥 𝑛 matrix

𝑉 - 𝑛 𝑥 𝑛 orthogonal matrix

∑ - Summation

vi

LIST OF ABBREVIATIONS

𝑆𝑉𝐷 - Singular Value Decompostion

JPEG/JPG - Joint Photograhic Experts Group

PNG - Portable Network Graphics

MSE - Mean-Square Error

PNSR - Peak Noise-to-Signal Ratio

CR - Compression Ratio

vii

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Gantt Chart of Progression of PSM 1 56

Appendix B Gantt Chart of Progression of PSM 2 56

Appendix C Milestones of PSM 1 57

Appendix D Milestones of PSM 2 58

Appendix E script for bnwSVD.m 61

Appendix F script for colourSVD.m 68

17

INTRODUCTION

1.1 Background

In today's digital society, technology is becoming an increasingly important part of our

daily lives. We produce ever-increasing quantities of data every day. There are many different

types of data out there, including text, audio, video, and photos. Humans frequently use images

to convey information, which makes photos one of the most popular data-sharing methods.

When smartphones were introduced, the amount of data being shared and the size of the data

that was being shared both increased. The amount of memory and bandwidth needed to store

and transmit all of these photos is staggering. Storing these data has proven to be prohibitively

expensive due to the high cost of storage technology. Many researchers are now looking into

ways to reduce the amount of data that can be stored and transmitted before it can be used. This

is especially true for fields like artificial intelligence or pattern recognition. In order to reduce

the amount of storage space required for an image file, this research will concentrate on picture

compression using singular value decomposition.

Compression of digital images is a hot topic in the field of digital image processing. An

image's storage and transmission bandwidth can be kept to a minimum by implementing

various techniques for compression. When compressing images, the goal is to reduce the

amount of information that is irrelevant or unnecessary, thus reducing storage space and

increasing transmission speed. Image quality should not be reduced so much that the user is

unable to decipher the content. It's important to use a suitable image compression method to

18

balance this trade-off the requirements of the application usually determine the

compression/data quality trade-off.

For image compression, there are two main methods: lossy and lossless. To determine

whether or not the original data can be recovered when a compressed file is decompressed, use

the words "lossy" and "lossless." Lossless compression preserves all of the original data in a

compressed file when it is decompressed. On the other hand, lossless compression shrinks a

file without altering its content by removing redundant data permanently. When the file is

uncompressed, only a small portion of the original data is recovered.

That which this paper discusses is the Singular Value Decomposition procedure (SVD).

In the singular-value decomposition, a real or complex matrix is factored into its components

using an extension of the polar decomposition to generalise the eigen decomposition, which

only exists for square normal matrices. Examples include object detection, face recognition,

field matching, and meteorological and oceanographic data processing.

1.2 Problem Statement

Currently available storage servers are becoming increasingly full due to the growing

number of consumers who regularly share and exchange images. People working from home

are increasing exponentially as a result of the pandemic, and the traffic of data exchange is

becoming increasingly congested as the number of people working from home continues to

rise.

The cost of equipment and data bandwidth prices went up as a result of this issue. SVD

may be a potential solution to this problem, as this paper's research explores the possibility.

19

1.3 Project Objective

Methods for observing and simulating the application of the SVD algorithm as an

image compression method using MATLAB are an important goal in this research. The

following are the specific goals:

 To investigate how Singular Value Decomposition can be used as an image

compression approach.

 To develop image compression script using SVD for both grayscale and colour

images in MATLAB.

 To reduce the size of the reconstructed image.

 To analyse and compare the reconstructed image to the original image.

1.4 Scope of Project

The scope of this project are as follows:

 Consumers who are just storing data on daily basis.

 Consumers who prefer to lower their incoming and outgoing data to reduce the

amount of bandwidth consumption.

 Server operators that want to reduce the size data stored so it can reduce the cost of

storage hardware.

20

LITERATURE REVIEW

2.1 Introduction

In recent years, data compression has become more and more important in our daily

lives. Powerful but unseen forces like data compression are at work in today's digital world.

Without the numerous advancements in compression, our current computer age may not have

taken off in the first place.

This chapter has a lot of. Additionally, this chapter will explain the fundamentals of

SVD. Image compression, as well as the use of Singular Value Decomposition (SVD) in image

compression, is examined.

2.2 Understanding Image Compression

An image compression technique is one in which the original image is encoded using a

small number of bits, according to [10].It is the goal of picture compression to reduce the

amount of redundant data in an image so that it can be stored or transmitted more efficiently.

There are two types of image compression techniques, according to [5].

Lossless image compression:

Lossless compression preserves the integrity of the original image while reducing its

file size. Here you can reassemble a compressed image. In this case, it is a reversible procedure.

Some files will always be uncompressed by lossless data compression algorithms, and this is

the case regardless of the type of algorithm used. [16]

According to [43] in their journal, attempts to compress previously compressed data as

well as attempts to compress encrypted data often result in an expansion. This technique is

21

particularly well-suited for use in the medical field. In the case of medical images, technical

drawings, clip art and comics, lossless compression is preferred for archival storage.

With image compression coding, the image is reduced to its smallest possible size, and

the decoded image is shown on the monitor with the greatest possible accuracy. Researchers

(Joshi et al., 2014) claim that current data compression methods may not have reached their

theoretical limit.

Lossy image compression:

This is an irreversible compression approach, according to (Swathi et al., 2017),

because the compound image cannot be reversed to its original image. Data and information

that are no longer needed are deleted or rearranged in order to reduce and compress the file

size. The most common application of this technique is to reduce the file size of extremely

large bitmap images. For natural images, such as photographs, the lossy approach is ideally

suited because it allows for a significant reduction in the bit rate while retaining some degree

of fidelity. Lossy compression has a higher compression ratio than lossless compression. Fig.

1 shows the lossy compression algorithm.

22

Figure 1 shows the lossy compression algorithm

The original image is processed in four stages: decomposition, quantization,

modelling, encoding and compression. The image loses portion of its original size while

maintaining its original quality, but in compressed form, as a result of this procedure. Lossy

approach, as a schematic approach for compressing photos, could be used with any of the

following methods:

i. Chroma subsampling: The human eye is more sensitive to variations in

visual brightness than to color variances connected with it. As a result,

this method makes use of the human eye by lowering or diminishing

the image's chrominance data while enhancing the brightness data. This

technique is used to decrease or compress an image to a lesser

resolution while maintaining its quality.

23

ii. Transform coding: This method entails compressing natural data, such

as photographic photographs, to a lossy or lossless format. The image

is reversible in a lossless method, but the benefit is that it enables

greater quantization of the image. Its method converts images into

coefficient values, resulting in a low-resolution or low-quality output.

There is no information loss, resulting in an equal number of

coefficients and pixels altered. The coefficients are quantized, and the

output is used to generate the final output using a symbol encoding

approach.

iii. Fractal coding: Parts of textures and natural images are turned to

mathematical data known as fractal codes, which are then employed to

generate the encoded image. When this happens, the image's resolution

is lost, making it resolution dependent. The input image's low self-

similarity index is blamed for the image's degradation.

Lossy compression that produces negligible differences may be called visually lossless.

Singular Value Composition is a type of lossy compression

2.2.1 Data Redundancy

It is the process of reducing the amount of data needed to convey a given amount of

information. An important and commercially successful method in Digital Image Processing

is picture compression, which attempts to reduce the number of bits needed for an image

description by eliminating redundant information. This study by (seshaiah et al., 2016) found

three types of redundancy in their datasets:

24

A. Coding redundancy: Coding redundancy consists of variable length code words

selected as to match the statistic of the original source. In the case of Digital Image

Processing, it is the image itself or processed version of its pixel values. Examples of

image coding schemes that explore coding redundancy are the Huffman codes and the

Arithmetic coding technique. [43][7]

B. Spatial redundancy/Inter-pixel redundancy: Here because the pixels of most 2D

intensity arrays are correlated spatially that is each pixel is similar to or independent on

neighbouring pixels, information is unnecessarily replicated in the representation of the

correlated pixels. Similar to how [6] define which it said that original 2D pixel array is

mapped into a different format. Other names of inter-pixel redundancy are spatial

redundancy. Examples of this type of redundancy include Constant area coding and

many Predictive coding algorithms. [7]

C. Psycho-visual redundancy: Human eyes is not fine-tuned to process every band of

frequencies. Hence all the incoming data is not responded to with equal sensitivity.

Some parts of the information will be more prominent than the others. This fact can be

exploited when image redundancies are being removed. Psycho-visual redundancy

makes use of this factor. [36]

2.3 Singular Value Decomposition

We'll be focusing on the singular value decomposition method for image compression

in this paper. An SVD (Singular Value Decomposition) is an algorithm for reducing a real or

complex matrix in linear algebra. [14]SVD outperforms other linear approximation techniques.

As stated by [16], the least squares matrix decomposition, the SVD, is the best method for

cramming the most signal energy into the smallest number of coefficients. SVM is a stable and

25

effective method for partitioning the system into a series of linearly independent components,

each one of which contributes its own energy, according to the journal in question [16]. In

order to produce a smaller image, the SVD implementation makes use of as much redundancy

as possible. According to [30], this may work because the algorithm can delete only the parts

of the image that are identical to each other. This does not compromise the quality of the image

in any way.

Mathematicians use an algorithm known as singular value decomposition (SVD) in

order to diagonalize matrices. They also stated [42]that there are numerous advantages to using

SVD as an algebraic transform for image processing. These include the ability to compress

images with maximum energy and to perform noise filtering and watermarking on images by

using two distinct data and noise subspaces

2.3.1 The Techniques of SVD

In this subtopic, we will discuss about the techniques of SVD. In [42], [11] journals,

both of them explain the techniques of SVD. The techniques of SVD are as follows.

Assume A is a m x n matrix. When you apply SVD to A, you get a product of

orthogonal matrices, diagonal matrices, and another orthogonal matrix.

𝐴 = 𝑈𝑆𝑉𝑇

Where,

A = image matrix

U = m x m orthogonal matrix

S = m x n matrix

V = n x n orthogonal matrix

26

A given matrix is split into a product of orthonormal matrices and a diagonal matrix

using Singular Value Decomposition techniques. The theoretical approach for performing SVD

is as follows

 Determine the image matrix's Eigen values. Obtain unique values (square root

of Eigen values).

 As a diagonal matrix, S matrix, arrange singular values in decreasing order.

 Using image matrix, say A, obtain AAT and ATA.

 Determine the Eigen vector of the matrices above. These vectors are transformed into

U and V matrices columns.

 Now, using S, U and V matrices represent A matrix

 Figure below will show how matrices created after splitting the original image would

look.

Figure 2 shows the matrices that were created after the original picture matrix

was split

27

2.3.2 Image Compression Using SVD.

In [11] journal, they also explain about image compression using SVD. We must

remove the unneeded singular values in the S matrix after obtaining the U, S, and V values

of the original image as shown before. After deleting some singular values, create

compressed image A with the new diagonal matrix. If we use SVD to represent the image

matrix, then A may be written as

𝐴 = 𝑈𝑆𝑉𝑇

In a particular way A can also be written as [33]:

𝐴 = 𝑢1 𝜎1 𝑣1
𝑇 + 𝑢2 𝜎2 𝑣2

𝑇 + ⋯ + 𝑢𝑖 𝜎𝑖 𝑣𝑖
𝑇 + 𝑢𝑛 𝜎𝑛 𝑣𝑛

𝑇

or

𝐴 = 𝜎1 𝑢1 𝑣1 + 𝜎2 𝑢2 𝑣2 + ⋯ + 𝜎𝑖 𝑢𝑖 𝑣𝑖 + 𝜎𝑛 𝑢𝑛 𝑣𝑛

The terms above are in order of dominance from greatest to the lease.

Singular values with small enough values are dropped when image compression

does not perform the sum to the very last Singular Values. The values that fall below the

required rank are rounded to the nearest integer[19].

2.3.3 SVD Image Compression Measures

The following performance measure can be used to determine how much an image

has been compressed. [27] An image compression method known as SVD can be evaluated

by its compression factor and image quality.[9] This ratio can be used to calculate the

compression factor for an image. [2]

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜 = 𝑚 ∗ 𝑛 / (𝑘 ∗ (𝑚 + 𝑛 + 1))

It measures the amount of compression an image has.[9]

28

If you want to compare the quality of compressed image Ak to the original image A,

you can use the measurement of Mean Square Error (MSE). [2]

29

METHODOLOGY

3.1 Introduction

This project aims to show the process of image processing by using SVD in

MATLAB. Methodology serves as a framework to pursue for completion of the project. To

ensure that the project is completed successfully, the methods mention in this chapter should

be followed to the letter.

3.2 Methodology

This project’s flow was detailed in this chapter, from start to finish. To simplify and

exemplify methods taken to perform this project, a flow chart is needed. It is created early

in the project as a guide to ensure the efficiency of the project. In conjunction with that a

Gantt chart is constructed to indicate how the project is planned and whether it is ahead of

or behind the time.

30

3.3 The Project Flowchart

Figure 3 shows the flowchart of the development of this project

It's the project flowchart's job to make sure everything goes according to plan while

the project is being completed. In the following sections, we'll go into greater detail about

each of these steps.

31

3.3.1 Research and Data Collection

This project starts with a multitude of research regarding the scope of the project.

During this process also some data were collected regarding the interest of this project.

Because the issue of SVD being utilised in image compression is an old method compared

to other compression methods, some of the data and research publication were a little out of

date.

3.3.2 Literature Review

While working on this project, the literature review serves as a learning tool. During

this stage, the majority of the knowledge obtained about the project’s completion is gathered.

Furthermore, a literature review aids in the analysis of the evolution of image compression

between prior and current initiatives.

3.3.3 Develop Program

Development stage was the most crucial part of this project. This is where the heart

of the project will be constructed and used for implementation. Flowchart below represents

the process of the project’s program.

32

Figure 4 shows the program flowchart

The program's goal is to compress an image using SVD in MATLAB. To begin, the

software uses the image previously entered into the code as its starting point. The image is

then rescaled and reprojected twice as accurately. The image is then decomposed in

MATLAB using the SVD() function. This function will be explored in greater depth in a

subsequent section of the document. Decomposition of the image allows it to be

reconstructed and the quality of the image can be determined by using any number of

33

singular values (diagonals of S). In addition to the reconstructed images, all values regarding

the intend to analyses the outputs such as compression ratio and PSNR will also be outputted

alongside the reconstructed image and all the values will be save it a separate file.

3.3.4 Equipment

As this project consists solely of writing and running a MATLAB program, only a

few pieces of equipment are required to complete it. The following items are required:

• MATLAB software

• Personal computer / Desktop

Multi paradigm programming language and numeric computation environment

MATLAB (short for "matrix laboratory") is developed by MathWorks. MATLAB allows

for the manipulation of matrices, the visualisation of functions and data, the implementation

of algorithms, the creation of user interfaces, and the integration of programmes written in

other languages. Programming languages run smoothly in MATLAB's modern environment.

Debugging, editing, and object-oriented programming can all be done in the same

environment, making it ideal for highly complex data structures. What makes this

programme such an effective tool for education and research is its unique set of features and

capabilities. MATLAB has a number of advantages over traditional computer languages

when it comes to solving technological problems. The software package is now considered

a standard tool in most institutions and industries around the world. There are a wide variety

of computations possible due to the powerful integrated routines An easy-to-understand

layout that provides immediate results. This software includes many device boxes useful for

optimizatin, signal and image processing, and other tasks, and all of the specific

program?Smes are then assembled in toolbox packages.

34

Figure 5 shows the logo of MATLAB

Figure 6 shows the overview of MATLAB

35

3.4 Singular Value Decomposition

The content that people want to share can be quickly and efficiently shared using

compression techniques. It would take far too long and consume far too much bandwidth if

data were not compressed before transmission. It's possible to achieve this by encoding the

blocks of pixels that are transmitted.

Singular Value Decomposition had already been used extensively in

telecommunications and computer science before this method was introduced. With this

method, current publications show a significant improvement in image compression. This

method is in high demand for information processing and communication, along with other

common multimedia applications and related products.

Figure 7 shows the image compression block diagram

36

A large, highly variable set of data is reduced to a smaller, lower-dimensional space

that more clearly reveals the underlying structure of the data and arranges it from the greatest

degree of variability down to the slightest degree.

Linear Algebra's singular value decomposition is a factorization of a real or complex

matrix, whether square or non-square, according to the definition. There are few steps in

mathematical to calculate SVD of matrix:

1. Given an input image matrix A

2. First, calculate AAT and ATA

3. Use AAT to find the eigenvalues and eigenvectors to form the columns of U:

(AAT - ʎI) ẍ = 0

4. Use ATA to find the eigenvalues and eigenvectors to form the columns of V:

(ATA - ʎI) ẍ =0

5. Divide each eigen vectors by its magnitude to form the columns of U and V.

6. Take the square root of the eigenvalues to find the singular values, and

arrange them in the diagonal matrix Sin descending order: ϭ1≥ ϭ2.≥….

≥ϭr≥0

7. In MATLAB: [U,W,V] =svd (A, 0)

3.5 Expected Outcome

It is predicted that the program will have been constructed and run satisfactorily by

the end of the project. All of the codes and functions work as expected. The program would

also pass all the basic check such as really compression an image and also can compress

multiple formats of images.

37

3.6 Summary

In this chapter, a method for developing an image compression software in

MATLAB using the concept of SVD is presented. Main objective of proposed method:

create an application that can demonstrate the results of SVD compression in pictures. In

addition, the techniques were developed to take advantage of data that is freely available.

An image compression algorithm known as SVD has been demonstrated to be feasible, not

to produce the best picture compression.

38

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter presents the results and analysis on the image compression by using

singular value decomposition with MATLAB. As previously stated, this project uses only

computer simulation that uses MATLAB without any additional hardware devices. As a

result, this project’s simulation will be shown and explained in detail. A simple program was

created with MATLAB programming language simulate how would a image compression

by using SVD inside MATLAB.

4.2 Analysis Method

With the script working and the program can finally deconstruct an image and

reconstruct it with using singular value decomposition, we will need some way to validate

the efficiency of said program. By properly analyze the reconstructed image, we can safety

conclude the practicality of using singular value decomposition in image compression.

4.2.1 Compression Ratio

An algorithm's ability to reduce the size of its output is measured in terms of its data

compression ratio, or compression power. Uncompressed size divided by compressed size

is a common way to express it. Data compression ratio is defined as the ratio between

the uncompressed size and compressed size:

39

Figure 8 shows the formula of compression ratio

A compression ratio of 10/2 = 5 is often notated as an explicit ratio, 5:1 (read "five"

to "one"), or as an implicit ratio, 5/1, when compressing a file's storage size from 10 MB to

2 MB. This formula holds true for both compression and decompression, where the

uncompressed size is that of the original and the uncompressed size is that of the

reproduction.

4.2.2 Peak Signal-to-Noise Ratio

When comparing two images, a PSNR block calculates the peak signal-to-noise ratio

(PSNR), which is expressed in decibels. This ratio is used to compare the original image's

quality to that of a compressed one. The compressed or reconstructed image's quality

improves with increasing PSNR.

Mean-square error (MSE) and PSNR are used to measure image compression quality

and are used to compare the quality of the compression. PSNR measures the peak error,

while MSE measures the cumulative squared error between compressed and uncompressed

images. The smaller the MSE error, the better.

The PSNR is calculated by first calculating the mean-squared error using the

following formula:

Figure 9 shows the formula of mean-square error

In the previous equation, M and N are the number of rows and columns in the input

images. Then the block computes the PSNR using the following equation:

40

Figure 10 shows the formula or PSNR

The input image data type's maximum range of variation is represented by the

variable R in the previous equation. If the input image is a double-precision floating point

data type, then R is 1. " R is 255 if the data type is 8-bit unsigned integer, etc.

Computing PSNR for Colour Images

It is possible to calculate the PSNR of a colour image using a variety of methods.

It's possible to calculate the PSNR for colour images by first converting them to one of

several colour spaces that separates the intensity (luma) channel from the others, such as

YCbCr. The Y (luma) in YCbCr is a weighted average of the R, G, and B components of the

chrominance. When it comes to determining a letter's importance, G is given more weight

than any other letter. Only the luma channel should be used to calculate PSNR.

4.3 Result and Analysis

For this project, the aim of it is to use SVD as a viable image compression. Since

we are comparing the results of original and the compressed image, the output of the program

should have the original with the compressed image file. This is because, with both of the

image, we can verify whether or not the image has been compressed or not.

To achieve the objective of this project bnwSVD.m and colourSVD.m is proposed

as our script to run on and both scripts have its individual purpose. This way we can easily

observe and analyses the images.

.

41

4.3.1 bnwSVD.m

Since JPEG or JPG are the most image format used currently, this program will try

to compress a JPEG format image. The image is named image.jpg, which shows a photo of

a famous theoretical physicist, Albert Einstein size with dimension of 1000 x 910.

1 MODE 2 MODES 4 MODES 6 MODES

Size: 24.2 KB

Size: 27.2 KB

Size: 31.0 KB

Size: 33.9 KB

8 MODES 10 MODES 12 MODES 14 MODES

Size: 36.7 KB

Size: 38.8 KB

Size: 40.3 KB

Size: 41.5 KB

16 MODES 18 MODES 20 MODES 25 MODES

Size: 42.8 KB

Size: 43.9 KB

Size: 45.1 KB

Size: 47.4 KB

50 MODES 75 MODES 100 MODES ORIGINAL IMAGE

Size: 55.8 KB

Size: 60.9 KB

Size: 64.4 KB

Size: 89.2 KB

Table 1 shows the compilation of all compressed image and the original

with respective to its mode and image size for bnwSVD.m

42

In Table 1 we can see the quality of the compress image starts from the worst to the

original image. This is to show the use of multiple modes, so we can compare which photo

looks nearly identical to the original photo.

In addition to that, in the same table we can see the size of images decreases as the

number of modes decreases. This verify that the program is indeed compressing the image

given. We can see that these modes do actually save on memory quite a bit, more than

halving the amount of memory used at mode 20.

Mode(s) Compression Ratio

1 4.46

2 3.98

4 3.48

6 3.18

8 2.94

10 2.79

12 2.68

14 2.60

16 2.52

18 2.46

20 2.39

25 2.28

50 1.94

75 1.77

100 1.68

Table 2 shows the compression ratio of the results from bnwSVD.m

From table above, we can see that the compression ratio at higher number of singular

values decreases exponentially which indicates that if we use higher number of singular

values, we will get compression ratio not far farm the compression ratio when we use 100

number of singular values. Also, as we can see the compression ratio is only around 1.5:1 to

43

4.5:1 which is quite low but that seems to be because of the size of the original image is

already small.

Mode(s) PNSR

1 19.17

2 21.18

4 23.26

6 24.85

8 26.05

10 26.93

12 27.67

14 28.32

16 28.83

18 29.31

20 29.75

25 30.78

50 34.18

75 36.43

100 38.24

Table 3 shows the PNSR values of the results from bnwSVD.m

Table 3 shows the value of PSNR between compress and original image increases.

Also at higher number of singular values use (modes) the value of PNSR seems to be less

significant increase. We can safely say the as the number of singular values used increases

the values of PSNR will increase insignificantly which tells us that at higher number of

singular values the value of PSNR will not be far from the value of PSNR at mode 100.

As we can see the program can successfully compress an image. Even though this

image is using JPG format, theoretically this program also can be use with any image format.

However, the program only outputs a black and white image as its output. All the information

gathers also only valid if the user wants to compress the image and convert it into black and

white.

44

4.3.2 colourSVD.m

This script solves the problem faced in bnwSVD.m, this program will take any

coloured images and reconstruct it with singular value decomposition with full colour. In

this case, we are going to use ‘chicken.png’ as our test image. The dimension of

‘chicken.png’ is 3904x2604 with the image size of 12.7mb.

Image ‘chicken.png’ was chosen for few purposes, this to ensure that the program

works with PNG photo and the size of image is enormous compared to previous image.

45

1 MODE 2 MODES 4 MODES 6 MODES

Size: 272 KB

Size: 304 KB

Size: 365 KB

Size: 412 KB

8 MODES 10 MODES 12 MODES 14 MODES

Size: 441 KB

Size: 462 KB

Size: 483 KB

Size: 503 KB

16 MODES 18 MODES 20 MODES 25 MODES

Size: 519 KB

Size: 536 KB

Size: 550 KB

Size: 580 KB

50 MODES 75 MODES 100 MODES 150 MODES

Size: 670 KB

Size: 731 KB

Size: 771 KB

Size: 832 KB

200 MODES 250 MODES 300 MODES 350 MODES

Size: 868 KB

Size: 901 KB

Size: 932 KB

Size: 960 KB

400 MODES 450 MODES 500 MODES ORIGINAL IMAGE

Size: 986 KB

Size: 0.96 MB

Size: 1.00 MB

Size: 12.7 MB

Table 4 shows the compilation of all compressed image and the original

with respective to its mode and image size for colourSVD.m

46

In Table 2 we can see the quality of the compress image starts from the smallest

mode use ‘1’ until the original image. This way we can easily see that around mode 50 and

above, the image is indistinguishable from the original image.

Furthermore, from Table 2 we can see the size of images decreases to a great extent

at mode 1 until mode 500 compared to the size of the original image. Also, from mode 1 we

can see that the size of reconstructed image increases as the mode until mode 500, which

follows our theory of using singular value decomposition. This verifies that the program

indeed reconstructs an image, and the reconstructed image is compressed by using the

method of SVD.

Mode(s) Compression Ratio

1 47.91

2 42.81

4 35.72

6 31.59

8 29.56

10 28.20

12 26.97

14 25.91

16 25.11

18 24.30

20 23.67

25 22.45

50 19.43

75 17.82

100 16.89

150 15.66

200 15.01

250 14.47

300 13.98

350 13.57

400 13.21

450 12.91

500 12.65

Table 5 shows the compression ratio of the results from colourSVD.m

47

From Table 5, we can see the compression ratio of the image reconstructed by the

program colourSVD.m. We can see that at higher modes, there are less insignificant different

on the compression size. Interestingly, the compression ratio of the reconstructed image is

much more at 10:1, compared to the compression ratio we see during the run of program

bnwSVD.m. However, this might be because of the very large size of original photo used

here compared to the one use in bnwSVD.m.

Mode(s) PNSR

1 13.57

2 15.64

4 17.35

6 18.23

8 19.04

10 19.85

12 20.52

14 21.07

16 21.54

18 21.99

20 22.41

25 23.35

50 26.35

75 28.02

100 29.22

150 30.95

200 32.27

250 33.32

300 34.20

350 34.97

400 35.66

450 36.32

500 36.94

Table 6 shows the PNSR values of the results from colourSVD.m

From the table above we can see the pattern of PSNR is almost identical with the

pattern of PSNR in bnwSVD.m despite the compression ratio is much higher here. Also, we

can see that at higher values of mode there is less significant increase in the different between

48

their PSNR values. Furthermore, it shows that any photo above mode 50 is good enough

since it barely increases in PSNR and it is visually good enough.

4.4 Summary

Depending on the task, image compression can be a basic method of image

processing. Singular value decomposition (SVD) is used in this project to reduce the image

size. As a result, the compressed image quality can be maintained given the reduced image

volume. The paper, journal, web, and other studies were the first steps in this project's

development. This is the process of learning by reading and analyzing the approach proposed

in such reviews of literature. It demonstrates the differences in approaches and contains all

the pertinent information required to carry out the project as planned.

A flowchart is used to track the progress of this project throughout its development.

As long as the project flowchart is used, hiccups can be improvised, and flaws can be

controlled. MATLAB software is the primary tool for this project, as previously stated. This

software alone will be sufficient to meet all of the project's goals. In order to study the use

of singular value decomposition (SVD) in image compression, we have already written a

script.

Earlier in this chapter the result of the project is shown where both of the script

bnwSVD.m and colourSVD.m successfully deconstructed and reconstructed the image that

was assigned to it. Also, both scripts have proven that every reconstructed image has been

decrease in its size which prove that the image is compressed. In bnwSVD.m we can see that

there is no high number of compression ratio compared to colourSVD.m, but this might be

because the size of the original image.

49

While using both script is using different type of image format (JPG for bnwSVD.m

and PNG for colourSVD.m) it is doubt that any image format would work when using the

scripts. The only thing matter if the user wants the output in black and white or colour image.

In both scripts, we can see the curve of PSNR graph is pretty similar. Even though

colourSVD.m is run with more modes (up to 500 mode) where is negligible difference

between both of the program’s PNSR graph. Each graph shows a minor change in PNSR

value after mode 50.

Overall, it can be concluded that at around 50 modes or above, there it is safe to say

the reconstructed image will be cut from the same cloth when comparing with the original

image. The program also achieves the purpose of compressing an image with using the

method of SVD. It is also shown that the method of SVD for compressing image is very

viable.

50

CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This chapter will conclude all the results, analysis, observation, objectives and

evaluation needed based on project completion. The suggestion of future work will also\sbe

addressed because of this issue.

5.2 Conclusion

As a result, this project proves that the method of singular value decomposition or

SVD can be used for compressing images. MATLAB also shows that is it a great platform

to use for any image processing needed. Both scripts were written in MATLAB

programming language and run on the MATLAB software itself.

Also, with success of the program reconstructing the image that was deconstructed

by using SVD, we can study the effectiveness of the method. The result was very pleasing

as the image ‘chicken.png’ were able to obtain a whopping compression ratio of 10:1 while

being able to be very indistinguishable from the original image. With use of some clever

functions, we were also able to study and analyze the differences between both image by

using compression ratio and PNSR values.

There is so much potential when using SVD in image compression. In conclusion,

the project objectives were met, and the project is a success.

51

5.3 Future Works

For future improvements, the accuracy of the analysis and the script itself could be

enhanced as follows:

• Wider range of image format tested with both scripts

• Some sort of combination of both script and to use it as a program for end

user

• Better analysis methods

52

REFERENCES

[1] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image

compression,” 5th Int. Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc.,

2017.

[2] L. Cao, “Singular Value Decomposition Applied To Digital Image Processing,” pp.

1–15.

[3] M. Rehman, M. Sharif, and M. Raza, “Image compression: A survey,” Res. J. Appl.

Sci. Eng. Technol., vol. 7, no. 4, pp. 656–672, 2014, doi: 10.19026/rjaset.7.303.

[4] G. Vijayvargiya, S. Silakari, and R. Pandey, “A Survey: Various Techniques of

Image Compression,” vol. 11, no. 10, 2013, [Online]. Available:

http://arxiv.org/abs/1311.6877.

[5] I. Charles and I. C. Udousoro, “The Application of Selective Image Compression

Techniques,” vol. 6, no. 4, pp. 116–120, 2019, doi: 10.11648/j.se.20180604.12.

[6] A. Hameed Khaleel, I. Q. Abduljaleel, and A. H. Khaleel, “Significant Medical

Image Compression Techniques: A Review,” TELKOMNIKA Telecommun. Comput.

Electron. Control, vol. 19, no. 5, 2021, doi: 10.12928/TELKOMNIKA.v18i1.xxxxx.

[7] U. Jayasankar, V. Thirumal, and D. Ponnurangam, “A survey on data compression

techniques: From the perspective of data quality, coding schemes, data type and

applications,” J. King Saud Univ. - Comput. Inf. Sci., vol. 33, no. 2, pp. 119–140,

2021, doi: 10.1016/j.jksuci.2018.05.006.

[8] M. R. e Souza and H. Pedrini, “Adaptive Lossy Image Compression Based on

Singular Value Decomposition,” J. Signal Inf. Process., 2019, doi:

10.4236/jsip.2019.103005.

[9] M. B. V. seshaiah, M. R. K N, and S. Michahial, “Image Compression using

Singular Value Decomposition,” Ijarcce, vol. 5, no. 12, pp. 208–211, 2016, doi:

10.17148/ijarcce.2016.51246.

[10] M. A. Joshi, M. S. Raval, Y. H. Dandawate, K. R. Joshi, and S. P. Metkar,

“Introduction to Image Compression,” Image and Video Compression, pp. 18–21,

2014, doi: 10.1201/b17738-4.

[11] H. R. Swathi, S. Sohini, Surbhi, and G. Gopichand, “Image compression using

singular value decomposition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 263, no. 4,

2017, doi: 10.1088/1757-899X/263/4/042082.

[12] R. Ashin, A. Morimoto, R. Vaillancourt, and M. Nagase, “Image compression with

multiresolution singular value decomposition and other methods,” Math. Comput.

Model., vol. 41, no. 6–7, pp. 773–790, 2005, doi: 10.1016/j.mcm.2003.12.014.

53

[13] Zaida Victoria Narcisa Betancourth Aragón, “No Title بببببببببئئئئئ,”

 :vol. 3, no. 2, pp. 148–150, 2010, [Online]. Available ,ببببب

https://repositorio.flacsoandes.edu.ec/bitstream/10469/2461/4/TFLACSO-

2010ZVNBA.pdf.

[14] K. El Asnaoui, “Image Compression Based on Block SVD Power Method,” J. Intell.

Syst., vol. 29, no. 1, pp. 1345–1359, 2020, doi: 10.1515/jisys-2018-0034.

[15] F. Yeganegi, V. Hassanzade, and S. M. Ahadi, “Comparative Performance

Evaluation of SVD-Based Image Compression,” 26th Iran. Conf. Electr. Eng. ICEE

2018, pp. 464–469, 2018, doi: 10.1109/ICEE.2018.8472544.

[16] K. Mounika, D. S. N. Lakshmi, and K. Alekya, “SVD Based Image Compression,”

Int. J. Eng. Res. Gen. Sci., 2015.

[17] L. Keviczky, R. Bars, J. Hetthéssy, and C. Bányász, “Control engineering:

MATLAB exercises,” Adv. Textb. Control Signal Process., pp. 1–275, 2019, doi:

10.1007/978-981-10-8321-1.

[18] A. Thakur, R. Kumar, A. Bath, and J. Sharma, “Design of Image Compression

Algorithm Using Matlab,” no. February, 2014.

[19] K. M. Aishwarya, R. Ramesh, P. M. Sobarad, and V. Singh, “Lossy image

compression using SVD coding algorithm,” Proc. 2016 IEEE Int. Conf. Wirel.

Commun. Signal Process. Networking, WiSPNET 2016, pp. 1384–1389, 2016, doi:

10.1109/WiSPNET.2016.7566363.

[20] U. Bhade, S. Kumar, P. Dwivedy, S. Soofi, and A. Ray, “Comparative study of

DWT, DCT, BTC and SVD techniques for image compression,” Int. Conf. Recent

Innov. Signal Process. Embed. Syst. RISE 2017, vol. 2018-January, pp. 279–283,

2018, doi: 10.1109/RISE.2017.8378167.

[21] J. Izadian and M. Jalili, “A Hybrid SVD Method Using Interpolation Algorithms for

Image Compression A Hybrid SVD Method Using Interpolation Algorithms for

Image Compression,” no. June, 2014.

[22] D. I. Processing and M. Page, “Introduction to image processing in Matlab,” Image

Process., no. March, pp. 1–18, 2011.

[23] “Lossless Image Compression Using Wavelets.” 2000.

[24] K. V. Indukuri, A. A. Ambekar, and A. Sureka, “Similarity analysis of patent claims

using natural language processing techniques,” Proc. - Int. Conf. Comput. Intell.

Multimed. Appl. ICCIMA 2007, vol. 4, pp. 169–175, 2008, doi:

10.1109/ICCIMA.2007.386.

[25] S. K. Singh and S. Kumar, “A framework to design novel SVD based color image

compression,” EMS 2009 - UKSim 3rd Eur. Model. Symp. Comput. Model. Simul.,

pp. 235–240, 2009, doi: 10.1109/EMS.2009.100.

54

[26] S. K. Singh and S. Kumar, “Singular value decomposition based sub-band

decomposition and multi-resolution (SVD-SBD-MRR) representation of digital

colour images,” Pertanika J. Sci. Technol., vol. 19, no. 2, pp. 229–235, 2011.

[27] J. P. Pandey and L. Singh Umrao, “Digital Image Processing using Singular Value

Decomposition,” SSRN Electron. J., pp. 2–4, 2019, doi: 10.2139/ssrn.3350278.

[28] W. Renkjumnong, “ScholarWorks @ Georgia State University SVD and PCA in

Image Processing,” 2007.

[29] B. Khan, M. Poonam, and M. M. Talib, “Matlab Based Image Compression Using

Various Algorithm,” Int. J. Trend Sci. Res. Dev., vol. Volume-2, no. Issue-4, pp.

1638–1642, 2018, doi: 10.31142/ijtsrd14394.

[30] H. R. Swathi, S. Sohini, Surbhi, and G. Gopichand, “Image compression using

singular value decomposition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 263, no. 4,

2017, doi: 10.1088/1757-899X/263/4/042082.

[31] A. J. Hussain, A. Al-Fayadh, and N. Radi, “Image compression techniques: A

survey in lossless and lossy algorithms,” Neurocomputing, 2018, doi:

10.1016/j.neucom.2018.02.094.

[32] M. Singh, S. Kumar, S. Singh, and M. Shrivastava, “Various Image Compression

Techniques: Lossy and Lossless,” Int. J. Comput. Appl., vol. 142, no. 6, pp. 23–26,

2016, doi: 10.5120/ijca2016909829.

[33] S. Verma and J. P. Krishna, “Image Compression and Linear Algebra Mathematics

Behind the SVD,” 2013.

[34] A. AbuBaker, M. Eshtay, and M. AkhoZahia, “Comparison Study of Different

Lossy Compression Techniques Applied on Digital Mammogram Images,” Int. J.

Adv. Comput. Sci. Appl., vol. 7, no. 12, pp. 149–155, 2016, doi:

10.14569/ijacsa.2016.071220.

[35] V. Cheepurupalli, S. Tubbs, K. Boykin, and N. Naheed, “Comparison of SVD and

FFT in image compression,” Proc. - 2015 Int. Conf. Comput. Sci. Comput. Intell.

CSCI 2015, pp. 526–530, 2016, doi: 10.1109/CSCI.2015.56.

[36] T. R. Hsing and K. H. Tzou, “Video Compression Techniques: a Review.,” vol. 5,

no. 1, pp. 1521–1526, 1984, doi: 10.14445/22315381/ijett-v13p264.

[37] M. Singh, S. Kumar, S. Singh, and M. Shrivastava, “Various Image Compression

Techniques: Lossy and Lossless,” Int. J. Comput. Appl., vol. 142, no. 6, pp. 23–26,

2016, doi: 10.5120/ijca2016909829.

[38] F. Mentzer and M. Tschannen, “1. Introduction Fabian Mentzer ETH Zurich,”

IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020.

55

[39] H. R. Swathi, S. Sohini, Surbhi, and G. Gopichand, “Image compression using

singular value decomposition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 263, no. 4,

2017, doi: 10.1088/1757-899X/263/4/042082.

[40] S. Anwar Lashari, R. Ibrahim, N. S. A. Md Taujuddin, N. Senan, and S. Sari,

“Thresholding And Quantization Algorithms for Image Compression Techniques: A

Review,” Asia-Pacific J. Inf. Technol. Multimed., vol. 07, no. 01, pp. 83–89, 2018,

doi: 10.17576/apjitm-2018-0701-07.

[41] P. Aguilera, “Comparison of different image compression formats ECE 533 Project

Report,” pp. 5–9, 2007.

[42] R. A, “SVD Based Image Processing Applications: State of The Art, Contributions

and Research Challenges,” Int. J. Adv. Comput. Sci. Appl., vol. 3, no. 7, pp. 26–34,

2012, doi: 10.14569/ijacsa.2012.030703.

[43] R. Kaur and P. Choudhary, “A Review of Image Compression Techniques,” Int. J.

Comput. Appl., 2016, doi: 10.5120/ijca2016909658.

56

APPENDICES

Appendix A Gantt Chart of Progression of PSM 1

Appendix B Gantt Chart of Progression of PSM 2

Activity W1 W2 W3 W4 W6 W7 W8 W9 W10 W11 W12 W13 W14

Title Confirmation

Introduction

Journal Study

Literature Review

Methodology

Initial Results

Full Report and Turnitin

Slide Preparation

Presentation of PSM 1

Activity W1 W2 W3 W4 W5 W7 W8 W9 W10 W11 W12 W13 W14

Planning Requirement Project

Analysis of PSM 1

Improving program

Results and Analysis

Conclusion

Submit Draft Report

Finalize Report

Create Poster

Slide Preparation and Video

Presentation of PSM 2

57

Appendix C Milestones of PSM 1

No Task Name Start Date End Date Duration

1. Briefing 17th March 2021 17th March 2021 1 day

2. Title Selection 18th March 2021 18th March 2021 1 day

3. Project title Discussion

with SV

25th March 2021 25th March 2021 1 day

4. Research and learning

about Image

Compression

18th March 2021 30th June 2021 105 days

5. Research and learning
about Singular Value
Decomposition

18th March 2021 30th June 2021 105 days

6. Chapter 1: Introduction 6th May 2021 12th May 2021 7 days

7. Journal Study 18th March 2021 26th May 2021 70 days

8. Chapter 2: Literature

Writing

13th May 2021 26th May 2021 14 days

9. Chapter 3:
Methodology

27th May 2021 3rd June 2021 8 days

10. Design Initial Program 4th June 2021 13th June 2021 10 days

11. Chapter 4: Initial

Result and Analysis

14th June 2021 16th June 2021 3 days

12. Full report checks and
submit

17th June 2021 17th June 2021 1 day

13. Slide Preparation &
Video Making

18th June 2021 18th June 2021 1 day

14. Submit presentation
video and
documentation to
panels and supervisor.

18th June 2021 18th June 2021 1 day

15. Presentation of PSM 1 21st June 2021 21st June 2021 1 day

58

Appendix D Milestones of PSM 2

No Task Name Start Date End Date Duration

1.
PSM 2 Implementation Briefing 6th Oct 2021 6th Oct 2021 1 day

2.
PSM 1 Revision 13th Oct 2021 19th Oct 2021 6 days

3.
Writing the script for colourSVD.m 20th Oct 2021 1st Nov 2021 12 days

4.
Progress update with SV 3rd Nov 2021 3rd Nov 2021 1 day

5. Completing colourVD.m and

improving bnwSVD.m
10th Nov 2021 6th Jan 2022 57 days

6.
Chapter 4: Result and Discussion 15th Dis 2021 6th Jan 2022 22 days

7. Chapter 5: Conclusion and
Recommendations

1st Jan 2022 5th Jan 2022 4 days

8.
Submit first draft for SV evaluation 7th Jan 2022 7th Jan 2022 1 day

9. Polishing report based on
SV’s comment

8th Jan 2022 10th Jan 2022 2 days

10.
Creating poster 6th Jan 2022 11th Jan 2022 5 days

11.
Creating video for presentation 6th Jan 2022 11th Jan 2022 5 days

12. Second submission of report and

poster for SV’s evaluation
10th Jan 2022 10th Jan 2022 1 day

13. Submit video and finalize report
with documentation to panels and
SV

11th Jan 2022 11th Jan 2022 1 day

14. Presentation of PSM 2 (QnA
session)

12th Jan 2022 12th Jan 2022 1 day

15. Final submission of report on
ePSM platform

31st Jan 2022 31st Jan 2022 1 day

59

close all
clear all
clc

displayError = [];
numofSVals = [];
valuePSNR = [];
imgSize = [];
compressionRatio = [];
bnwData = [];

a=imread('!!ae.jpg');
fileinfo = dir('!!ae.jpg');
sizeofImg = (fileinfo.bytes/1024);
original = sizeofImg;
bnwData(16).name =sprintf('Original.jpg');
bnwData(16).size = sizeofImg;
compressionratio = original/sizeofImg;
bnwData(16).compressionRatio = compressionratio;

a=rgb2gray(a);
[rows, columns] = size(a); %for psnr
aDouble=double(a);
%imwrite(uint8(aDouble), '!!aeoriginal.jpg');
[U,S,V]=svd(aDouble);

N = 1;
C = S;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
D=U*C*V';
figure;
buffer = sprintf('Image output using %d singular values', N);
imshow(uint8(D));
imwrite(uint8(D), sprintf('%dbw.jpg', N));

%getting image size
filename = sprintf('%dbw.jpg',N);
fileinfo = dir(filename);
sizeofImg = (fileinfo.bytes/1024);
title(buffer);

%calculating and adding PSNR
squaredErrorImage = (double(a) - double(D)) .^ 2;
mse = sum(sum(squaredErrorImage)) / (rows * columns);
PSNR = 10 * log10(255^2 / mse);
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse,
PSNR);
xlabel(message);

%calculating error rate & storing its values
error=sum(sum((aDouble-D).^2));
displayError = [displayError; error];
numofSVals = [numofSVals; N];

%calculating compresssion ratio
compressionratio = original/sizeofImg;
compressionRatio = [compressionRatio ;compressionratio];

60

%saving values in bnwData
valuePSNR = [valuePSNR; PSNR];
bnwData(N).name =sprintf('Image %dbw.jpg',N);
bnwData(N).size = sizeofImg;
bnwData(N).mse = mse;
bnwData(N).pnsr = PSNR;
bnwData(N).compressionRatio = compressionratio;
imgSize = [imgSize; sizeofImg];

figure;
for N=2:2:20
C = S;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
D=U*C*V';
subplot(2,5,N/2);
buffer = sprintf('Image output using %d singular values', N);
imshow(uint8(D));
imwrite(uint8(D), sprintf('%dbw.jpg', N));

%getting image size
filename = sprintf('%dbw.jpg',N);
fileinfo = dir(filename);
sizeofImg = (fileinfo.bytes/1024);
title(buffer);

squaredErrorImage = (double(a) - double(D)) .^ 2;
mse = sum(sum(squaredErrorImage)) / (rows * columns);
PSNR = 10 * log10(255^2 / mse);
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse,
PSNR);
xlabel(message);

error=sum(sum((aDouble-D).^2));
displayError = [displayError; error];
numofSVals = [numofSVals; N];

%calculating compresssion ratio
compressionratio = original/sizeofImg;
compressionRatio = [compressionRatio ;compressionratio];

valuePSNR = [valuePSNR; PSNR];
imgSize = [imgSize; sizeofImg];
bnwData((N/2)+1).name =sprintf('Image %dbw.jpg',N);
bnwData((N/2)+1).size = sizeofImg;
bnwData((N/2)+1).mse = mse;
bnwData((N/2)+1).pnsr = PSNR;
bnwData((N/2)+1).compressionRatio = compressionratio;

end
figure;
for N=25:25:100
C = S;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
D=U*C*V';
subplot(2,2,N/25);
buffer = sprintf('Image output using %d singular values', N);
imshow(uint8(D));

61

imwrite(uint8(D), sprintf('%dbw.jpg', N));

%getting image size
filename = sprintf('%dbw.jpg',N);
fileinfo = dir(filename);
sizeofImg = (fileinfo.bytes/1024);
title(buffer);

squaredErrorImage = (double(a) - double(D)) .^ 2;
mse = sum(sum(squaredErrorImage)) / (rows * columns);
PSNR = 10 * log10(255^2 / mse);
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse,
PSNR);
xlabel(message);

error=sum(sum((aDouble-D).^2));
displayError = [displayError; error];
numofSVals = [numofSVals; N];

%calculating compresssion ratio
compressionratio = original/sizeofImg;
compressionRatio = [compressionRatio ;compressionratio];

valuePSNR = [valuePSNR; PSNR];
imgSize = [imgSize; sizeofImg];
bnwData((N/25)+11).name =sprintf('Image %dbw.jpg',N);
bnwData((N/25)+11).size = sizeofImg;
bnwData((N/25)+11).mse = mse;
bnwData((N/25)+11).pnsr = PSNR;
bnwData((N/25)+11).compressionRatio = compressionratio;
end

figure;
title('Error rate in compression')
plot(numofSVals, displayError);
xlabel('Number of Singular Values used');
ylabel('Error rate between compress and original image');
grid on;

figure;
title('PSNR values in compression')
plot(numofSVals, valuePSNR);
ylabel('Value of PSNR between compress and original image');
xlabel('Number of Singular Values used');
grid on

figure;
title('Compression Ratio')
plot(numofSVals,compressionRatio);
ylabel('Compression Ratio');
xlabel('Number of Singular Values used');
grid on

%seperate files for values
save ('fileSize','bnwData');

Appendix E script for bnwSVD.m

62

close all
clear all
clc

displayError = [];
numofSVals = [];
colourData = [];
valuePSNR = [];
sizeDifference = [];
compressionRatio = [];
psnrData = [];
imgSize = [];

filename = 'chicken.png';
fileinfo = dir('chicken.png');
sizeofImg = (fileinfo.bytes/1024);
original = sizeofImg;
colourData(24).name =sprintf('Original.jpg');
colourData(24).size = sizeofImg;
compressionratio = original/sizeofImg;
colourData(24).compressionRatio = compressionratio;

[X, map] = imread(filename);
figure('Name','ORIGINAL component of the imported image');
imshow(X);
%imwrite(X, '!original.jpg');
[rows columns ~] = size(X);

R = X(:,:,1);
G = X(:,:,2);
B = X(:,:,3);

Rimg = cat(3, R, zeros(size(R)), zeros(size(R)));
Gimg = cat(3, zeros(size(G)), G, zeros(size(G)));
Bimg = cat(3, zeros(size(B)), zeros(size(B)), B);
%{
figure('Name','RED component of the imported image');
imshow(Rimg);
imwrite(Rimg, '!red.jpg');
figure('Name','GREEN component of the imported image');
imshow(Gimg);
imwrite(Gimg, '!green.jpg');
figure('Name','BLUE component of the imported image');
imshow(Bimg);
imwrite(Bimg, '!blue.jpg');
%}
Red =double(R);
Green = double(G);
Blue = double(B);

N = 1;
% Compute values for the red image
[U,S,V]=svd(Red);
C = S;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Dr=U*C*V';
%{ Rebuild the data back into a displayable image and show it
%figure;

63

buffer = sprintf('Red image output using %d singular values', N);
Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr)));
%imshow(uint8(Rimg));
imwrite(uint8(Rimg), sprintf('%dred.jpg', N));
title(buffer);
% Compute values for the green image
[U2, S2, V2]=svd(Green);
C = S2;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Dg=U2*C*V2';
% Rebuild the data back into a displayable image and show it
%figure;
buffer = sprintf('Green image output using %d singular values', N);
Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg)));
%imshow(uint8(Gimg));
imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N));
title(buffer);
% Compute values for the blue image
[U3, S3, V3]=svd(Blue);
C = S3;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Db=U3*C*V3';
% Rebuild the data back into a displayable image and show it
%figure;
buffer = sprintf('Blue image output using %d singular values', N);
Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db);
%imshow(uint8(Bimg));
imwrite(uint8(Bimg), sprintf('%dblue.jpg', N));
title(buffer);

% Thake the data from the Red, Green, and Blue image
% Rebuild a colored image with the corresponding data and show it
figure;
buffer = sprintf('Colored image output using %d singular values', N);
Cimg = cat(3, Dr, Dg, Db);
imshow(uint8(Cimg));
imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N));
title(buffer);

%Calculating and adding PSNR

% Calculate mean square error of R, G, B.
mseRImage = (double(X(:,:,1)) - double(Cimg(:,:,1))) .^ 2;
mseGImage = (double(X(:,:,2)) - double(Cimg(:,:,2))) .^ 2;
mseBImage = (double(X(:,:,3)) - double(Cimg(:,:,3))) .^ 2;
mseR = sum(sum(mseRImage)) / (rows * columns);
mseG = sum(sum(mseGImage)) / (rows * columns);
mseB = sum(sum(mseBImage)) / (rows * columns);
% Average mean square error of R, G, B.
mse = (mseR + mseG + mseB)/3;
% Calculate PSNR (Peak Signal to noise ratio).
PSNR = 10 * log10(255^2 / mse);
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse,
PSNR);
xlabel(message);

%getting image size

64

filename = sprintf('%dcolor.jpg',N);
fileinfo = dir(filename);
sizeofImg = (fileinfo.bytes/1024);
title(buffer);

%calculating compresssion ratio
compressionratio = original/sizeofImg;
compressionRatio = [compressionRatio ;compressionratio];

%saving values
numofSVals = [numofSVals; N];
psnrData = [psnrData; PSNR];
valuePSNR = [valuePSNR; PSNR];
imgSize = [imgSize; sizeofImg];
colourData(N).name =sprintf('%dcolor.jpg',N);
colourData(N).size = sizeofImg;
colourData(N).compressionRatio = compressionratio;
colourData(N).mse = mse;
colourData(N).pnsr = PSNR;

for N=2:2:20
% Recompute modes for the red image - already solved by SVD above
C = S;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Dr=U*C*V';
% Rebuild the data back into a displayable image and show it

%figure;
buffer = sprintf('Red image output using %d singular values', N);
Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr)));
%imshow(uint8(Rimg));
imwrite(uint8(Rimg), sprintf('%dred.jpg', N));
title(buffer);
% Recompute modes for the green image - already solved by SVD above
C = S2;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Dg=U2*C*V2';
% Rebuild the data back into a displayable image and show it

%figure;
buffer = sprintf('Green image output using %d singular values', N);
Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg)));
%imshow(uint8(Gimg));
imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N));
title(buffer);
% Recompute modes for the blue image - already solved by SVD above
C = S3;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Db=U3*C*V3';
% Rebuild the data back into a displayable image and show it

%figure;
buffer = sprintf('Blue image output using %d singular values', N);
Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db);

65

%imshow(uint8(Bimg));
imwrite(uint8(Bimg), sprintf('%dblue.jpg', N));
title(buffer);
% Thake the data from the Red, Green, and Blue image

% Rebuild a colored image with the corresponding data and show it
figure;
buffer = sprintf('Colored image output using %d singular values', N);
Cimg = cat(3, Dr, Dg, Db);
imshow(uint8(Cimg));
imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N));
title(buffer);

%Calculating and adding PSNR

% Calculate mean square error of R, G, B.
mseRImage = (double(X(:,:,1)) - double(Cimg(:,:,1))) .^ 2;
mseGImage = (double(X(:,:,2)) - double(Cimg(:,:,2))) .^ 2;
mseBImage = (double(X(:,:,3)) - double(Cimg(:,:,3))) .^ 2;
mseR = sum(sum(mseRImage)) / (rows * columns);
mseG = sum(sum(mseGImage)) / (rows * columns);
mseB = sum(sum(mseBImage)) / (rows * columns);
% Average mean square error of R, G, B.
mse = (mseR + mseG + mseB)/3;
% Calculate PSNR (Peak Signal to noise ratio).
PSNR = 10 * log10(255^2 / mse);
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse,
PSNR);
xlabel(message);

%getting image size
filename = sprintf('%dcolor.jpg',N);
fileinfo = dir(filename);
sizeofImg = (fileinfo.bytes/1024);
title(buffer);

%calculating compresssion ratio
compressionratio = original/sizeofImg;
compressionRatio = [compressionRatio ;compressionratio];

%saving values
numofSVals = [numofSVals; N];
psnrData = [psnrData; PSNR];
valuePSNR = [valuePSNR; PSNR];
imgSize = [imgSize; sizeofImg];
colourData((N/2)+1).name =sprintf('%dcolor.jpg',N);
colourData((N/2)+1).size = sizeofImg;
colourData((N/2)+1).compressionRatio = compressionratio;
colourData((N/2)+1).mse = mse;
colourData((N/2)+1).pnsr = PSNR;

end
for N=25:25:100
% Recompute modes for the red image - already solved by SVD above
C = S;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Dr=U*C*V';
% Rebuild the data back into a displayable image and show it

66

%figure;
buffer = sprintf('Red image output using %d singular values', N);
Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr)));
%imshow(uint8(Rimg));
imwrite(uint8(Rimg), sprintf('%dred.jpg', N));
title(buffer);
% Recompute modes for the green image - already solved by SVD above
C = S2;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Dg=U2*C*V2';
% Rebuild the data back into a displayable image and show it
%figure;
buffer = sprintf('Green image output using %d singular values', N);
Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg)));
%imshow(uint8(Gimg));
imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N));
title(buffer);
% Recompute modes for the blue image - already solved by SVD above
C = S3;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Db=U3*C*V3';
% Rebuild the data back into a displayable image and show it
%figure;
buffer = sprintf('Blue image output using %d singular values', N);
Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db);
%imshow(uint8(Bimg));
imwrite(uint8(Bimg), sprintf('%dblue.jpg', N));
title(buffer);
% Thake the data from the Red, Green, and Blue image
% Rebuild a colored image with the corresponding data and show it
figure;
buffer = sprintf('Colored image output using %d singular values', N);
Cimg = cat(3, Dr, Dg, Db);
imshow(uint8(Cimg));
imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N));
title(buffer);

%Calculating and adding PSNR

% Calculate mean square error of R, G, B.
mseRImage = (double(X(:,:,1)) - double(Cimg(:,:,1))) .^ 2;
mseGImage = (double(X(:,:,2)) - double(Cimg(:,:,2))) .^ 2;
mseBImage = (double(X(:,:,3)) - double(Cimg(:,:,3))) .^ 2;
mseR = sum(sum(mseRImage)) / (rows * columns);
mseG = sum(sum(mseGImage)) / (rows * columns);
mseB = sum(sum(mseBImage)) / (rows * columns);
% Average mean square error of R, G, B.
mse = (mseR + mseG + mseB)/3;
% Calculate PSNR (Peak Signal to noise ratio).
PSNR = 10 * log10(255^2 / mse);
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse,
PSNR);
xlabel(message);

%getting image size
filename = sprintf('%dcolor.jpg',N);
fileinfo = dir(filename);

67

sizeofImg = (fileinfo.bytes/1024);
title(buffer);

%calculating compresssion ratio
compressionratio = original/sizeofImg;
compressionRatio = [compressionRatio ;compressionratio];

%saving values
numofSVals = [numofSVals; N];
psnrData = [psnrData; PSNR];
valuePSNR = [valuePSNR; PSNR];
imgSize = [imgSize; sizeofImg];
colourData((N/25)+11).name =sprintf('%dcolor.jpg',N);
colourData((N/25)+11).size = sizeofImg;
colourData((N/25)+11).compressionRatio = compressionratio;
colourData((N/25)+11).mse = mse;
colourData((N/25)+11).pnsr = PSNR;

end
for N=150:50:500
% Recompute modes for the red image - already solved by SVD above
C = S;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Dr=U*C*V';
% Rebuild the data back into a displayable image and show it
%figure;
buffer = sprintf('Red image output using %d singular values', N);
Rimg = cat(3, Dr, zeros(size(Dr)), zeros(size(Dr)));
%imshow(uint8(Rimg));
imwrite(uint8(Rimg), sprintf('%dred.jpg', N));
title(buffer);
% Recompute modes for the green image - already solved by SVD above
C = S2;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Dg=U2*C*V2';
% Rebuild the data back into a displayable image and show it
%figure;
buffer = sprintf('Green image output using %d singular values', N);
Gimg = cat(3, zeros(size(Dg)), Dg, zeros(size(Dg)));
%imshow(uint8(Gimg));
imwrite(uint8(Gimg), sprintf('%dgreen.jpg', N));
title(buffer);
% Recompute modes for the blue image - already solved by SVD above
C = S3;
C(N+1:end,:)=0;
C(:,N+1:end)=0;
Db=U3*C*V3';
% Rebuild the data back into a displayable image and show it
%figure;
buffer = sprintf('Blue image output using %d singular values', N);
Bimg = cat(3, zeros(size(Db)), zeros(size(Db)), Db);
%imshow(uint8(Bimg));
imwrite(uint8(Bimg), sprintf('%dblue.jpg', N));
title(buffer);
% Thake the data from the Red, Green, and Blue image
% Rebuild a colored image with the corresponding data and show it
figure;

68

buffer = sprintf('Colored image output using %d singular values', N);
Cimg = cat(3, Dr, Dg, Db);
imshow(uint8(Cimg));
imwrite(uint8(Cimg), sprintf('%dcolor.jpg', N));
title(buffer);

%Calculating and adding PSNR

% Calculate mean square error of R, G, B.
mseRImage = (double(X(:,:,1)) - double(Cimg(:,:,1))) .^ 2;
mseGImage = (double(X(:,:,2)) - double(Cimg(:,:,2))) .^ 2;
mseBImage = (double(X(:,:,3)) - double(Cimg(:,:,3))) .^ 2;
mseR = sum(sum(mseRImage)) / (rows * columns);
mseG = sum(sum(mseGImage)) / (rows * columns);
mseB = sum(sum(mseBImage)) / (rows * columns);
% Average mean square error of R, G, B.
mse = (mseR + mseG + mseB)/3;
% Calculate PSNR (Peak Signal to noise ratio).
PSNR = 10 * log10(255^2 / mse);
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse,
PSNR);
xlabel(message);

%getting image size
filename = sprintf('%dcolor.jpg',N);
fileinfo = dir(filename);
sizeofImg = (fileinfo.bytes/1024);
title(buffer);

%calculating compresssion ratio
compressionratio = original/sizeofImg;
compressionRatio = [compressionRatio ;compressionratio];

%saving values
numofSVals = [numofSVals; N];
psnrData = [psnrData; PSNR];
valuePSNR = [valuePSNR; PSNR];
imgSize = [imgSize; sizeofImg];
colourData((N/50)+13).name =sprintf('%dcolor.jpg',N);
colourData((N/50)+13).size = sizeofImg;
colourData((N/50)+13).compressionRatio = compressionratio;
colourData((N/50)+13).mse = mse;
colourData((N/50)+13).pnsr = PSNR;
end

figure;
title('PSNR values in compression')
plot(numofSVals, valuePSNR);
ylabel('Value of PSNR between compress and original image');
xlabel('Number of Singular Values used');
grid on
figure;
title('Compression Ratio')
plot(numofSVals, compressionRatio);
ylabel('Compression Ratio');
xlabel('Number of Singular Values used');
grid on

Appendix F script for colourSVD.m

