

Faculty of Electrical and Electronic Engineering Technology

OW JUN SHENG

Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours

2021

DEVELOPMENT OF INTERNET OF THINGS (IOT) BASED INDOOR FARMING

OW JUN SHENG

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI TEKNOLOGI KEJUTERAAN ELEKTRIK DAN ELEKTRONIK

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA II


Tajuk Projek : Development Internet of Things (IoT) Based Indoor Farming

Sesi Pengajian : 2021/2022

OW JUN SHENG

..... mengaku membenarkan laporan Projek Sarjana Saya.

- Muda ini disimpan di Perpustakaan dengan syarat-syarat kegunaan seperti berikut:
- 1. Laporan adalah hakmilik Universiti Teknikal Malaysia Melaka.
- 2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
- 3. Perpustakaan dibenarkan membuat salinan laporan ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. Sila tandakan (✓):

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pillak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I declare that this project report entitled "Development of Internet of Things (IoT) Based Indoor Farming" is the result of my research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in the candidature of any other degree.

DEDICATION

To my beloved mother, Tan Mee Chin, and father, Ow Ah Kiang for always motivate and giving courage to complete my final year project.

And

To my supervisor, Pn Siti Nur Suhaila Binti Mirin for her guidance and advices throughout this project. Also, to all my fellow friends in BEEA and the people that provide supports along this studies.

ABSTRACT

Indoor farming has been a topic that is most discussed in the agriculture field. It is a technique that significantly conserves natural resources such as water and land without affecting the surrounding environment. This is crucial because it improves the productivity of the plant. All the environmental factors like temperature, humidity, and soil moisture level are being tracked with the implementation of IoT Technology. The main objective of this project is to build an automated lighting and irrigation system that increase the productivity of the plant and feedback the status of the plant at anywhere and anytime. In this project, sensors such as right-angle floating switch (water level sensor), DHT11 (temperature and humidity sensor), FC-28 (soil moisture sensor), and BH1750FVI (light sensor) are installed to monitor the growth conditions of the plants. At the same time, the data collected from the sensors will be displayed to Blynk, an open-source platform through the ESP-01 Wi-Fi serial transceiver module and processed by Arduino Uno. With such development, the productivity and growth will be tracked from time to time without having the user at the event.

ABSTRAK

Pertanian dalaman merupakan satu topik yang hangat dalam bidang pertanian. Ia merupakan satu teknik yang dapat mempeliharakan sumber semula jadi seperti air dan tanah dengan tidak menjejaskan persekitaran sedunia. Teknik ini amat penting dalam pertanian sebab ia merupakan teknik yang dapat menambahkan produktivity tanaman tanpa mengehadkan syarat-syarat perkembangan tanam-tanaman. Faktor-faktor persikitaran dapat dikesan dengan pengimplimentasi teknologi IoT. Objektif projek ini adalah untuk membinakan satu sistem pencahayaan automatik dan sistem pengairan automatik yang dapat menambahkan produktiviti tanam tanaman dan dapat mengesan status tanaman dengan tidak mengira bilabila masa atau mana orang itu berada. Demi mendapatkan status tanam-tanaman dari semasa ke semasa beberapa sensor telah dipasang untuk kegunaan pemantauan. Antara sensor yang telah dipasang ialah suis terapung bersudut 90 darjah (sensor paras air), DHT11 (sensor suhu dan kelembapan udara), FC-28 (sensor mengesan kelembapan tanah), dan BH1750FVI (sensor cahaya). Pada masa yang sama, data yang dikumpul oleh sensor akan dipaparkan dalam aplikasi Blynk, platform sumber terbuka melalui ESP-01 Wifi serial transceiver modul dan diprocess oleh Arduino Uno. Produktiviti dan pertumbuhan tanam-tanamn dapat dikesan dan dipantau melalui perkembangan teknologi tersebut tanpa penggunaan sumber manusia.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Puan Siti Nur Suhaila for her precious guidance, words of wisdom and patient throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) who has given me the precious opportunity to accomplish the project with professional guidance from experienced supervisor.

My highest appreciation goes to my parents, and family members for their love and prayer during the period of my study. An honorable mention goes to my parents for all the motivation and understanding.

Finally, I would like to thank all my friends and classmates, as well as other individuals who are not listed here for being co-operative and helpful.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

undo.

TABLE OF CONTENTS

		PAGE
DEC	LARATION	
APP	ROVAL	
DED	ICATIONS	
ABS	ТКАСТ	i
ABS	ТПАК	ii
АСК	NOWLEDGEMENTS	iii
TAB	LE OF CONTENTS	iv
LIST	OF TABLES	vi
LIST	C OF FIGURES	vii
LIST	COF SYMBOLS	х
LIST	COF ABBREVIATIONS	xi
LIST	COF APPENDICES	xii
CHA 1.1 1.2 1.3 1.4	PTER 1 INTRODUCTION Background Problem Statement TI TEKNIKAL MALAYSIA MELAKA Project Objective Scope of Project	1 1 2 2 3
CHA 2.1 2.2 2.3 2.4 2.5 2.6	PTER 2LITERATURE REVIEWHistory of Indoor FarmingMicroCEAFarming BoxIoT BackyardIoT-Based Automatic Irrigation SystemSummary Strength and Limitation	4 5 7 9 10 11
CHA 3.1 3.2 3.3 3.4 3.5 3.6	PTER 3METHODOLOGYIntroductionSystem ArchitectureFarming Rack Structure3.3.1Materials3.3.2AssemblySensorsAutomatic Irrigation SystemAutomatic Lighting System	12 12 14 15 16 17 19 23

3.7	Microcontroller		
3.8	0		
	3.8.1 Power-Source	30	
	3.8.2 ESP-01 Wi-Fi Serial Transceiver Module	30	
	3.8.2.1 Flashing ESP-01	31	
	3.8.2.2 ESP-01 Module Setup	33	
	3.8.3 Temperature & Humidity Sensor (DHT 11)	34	
	3.8.4 Automatic Lighting System	35	
	3.8.5 Automatic Irrigation System	36	
	3.8.6 Water Tank Level	37	
3.9	Mobile App (Blynk)	38	
CHAP	TER 4 RESULTS AND DISCUSSIONS	39	
4.1	Introduction	39	
4.2	.2 Results and Analysis		
	4.2.1 Farming Rack	39	
	4.2.2 Crop's Growing Data Analytic	41	
	4.2.2.1 Size of Leaves	41	
	4.2.2.2 Stem Height	44	
	4.2.3 Data Analytic	46	
	4.2.3.1 Temperature & Humidity	46	
	4.2.3.2 Soil Moisture Level (Automatic Irrigation System)	51	
	4.2.3.3 Light Intensity Level (Automatic Lighting System)	55	
	4.2.4 Blynk	60	
-	TER 5 CONCLUSION AND RECOMMENDATIONS	65	
5.1	Conclusion	65	
5.2	Future Works	65	
REFE	RENCES	67	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA		

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1 Summary of streng	th and limitation of existing solution	11
Table 3.1 Listing of materials	S	15
Table 3.2 Automatic lighting	system components required	23
Table 3.3 Components of circ	cuit design	29
Table 4.1 Comparison size of	fleaves	43
Table 4.2 Comparison of ster	n height	46
Table 4.3 Soil moisture readi	ngs across five days	52
Table 4.4 Light intensity valu	e across five days اونيونر،سيتي تيڪنيڪل ملي	59
UNIVERSI	I TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1 History of Indoor Farming		4
Figure 2.2 History of indoor farming 2		5
Figure 2.3 MicroCEA system overview		6
Figure 2.4 Farming box system overview		8
Figure 2.5 IoT backyard system overview		10
Figure 2.6 Soil moisture sensor calibration	n setup	11
Figure 3.1 System Architecture		13
Figure 3.2 Design of rack structure		15
Figure 3.3 First compartment		16
Figure 3.4 Farming rack		17
Figure 3.5 Temperature and humidity sense	sor (DHT11)	18
Figure 3.6 Digital light intensity BH1750	TVI sensor module	18
Figure 3.7 Right angles floating switch	AL MALAYSIA MELAKA	19
Figure 3.8 Soil moisture sensor (FC-28)		19
Figure 3.9 Irrigation system		20
Figure 3.10 Mapping function		20
Figure 3.11 R385 Diaphragm water pump	motor	21
Figure 3.12 Overall automatic irrigation p	rocess	22
Figure 3.13 A 5V relay is connected to the	ee step down converter	24
Figure 3.14 BH1750FVI Light sensor on	op of farming rack	24
Figure 3.15 Automatic lighting system fun	nction	25
Figure 3.16 Automatic lighting system flo	wchart	26
Figure 3.17 Flow chart of data flow in con	ntrol unit	27

Figure 3.18 Circuit design	28
Figure 3.19 Power source setup	30
Figure 3.20 Flashing setup	31
Figure 3.21 Flashing using ESP8266 Flash Downloader tool	32
Figure 3.22 AT commands in serial monitor	32
Figure 3.23 ESP-01 Module is ready to use	33
Figure 3.24 ESP-01 setup	33
Figure 3.25 DHT 11 setup	34
Figure 3.26 Position of DHT 11	34
Figure 3.27 Automatic Lighting System Set up	35
Figure 3.28 Soldering work on LED strips	36
Figure 3.29 Soil moisture sensor setup	37
Figure 3.30 Water Tank Level set up	37
Figure 3.31 Right-angle floating switch in water tank bucket	38
اونيوم سيني تيڪنيڪل مليسRack مليسFigure 4.1 Farming Rack	40
Figure 4.2 Number of plantation versus farming method	40
Figure 4.3 Growing from day 1 to day 9	41
Figure 4.4 Leave's size comparison of Hong Kong Choi Sum in the top (left) and middle compartment (right)	42
Figure 4.5 Leave's size comparison of Mung Bean in the top (left) and middle compartment (right)	42
Figure 4.6 Leave's size comparison of Bok Choy in the top (left) and middle compartment (right)	43
Figure 4.7 Height comparison of Hong Kong Choi Sum in the top (left) and middle compartment (right)	44
Figure 4.8 Height comparison of Mung Bean in the top (left) and middle compartment (right)	45
Figure 4.9 Height comparison of Bok Choy in the top (left) and middle compartment (right)	45

Figure 4.10 DHT 11 sensor position	47
Figure 4.11 Temperature and humidity coding	47
Figure 4.12 Temperature vs. time graph in one day	48
Figure 4.13 Weather forecast in Seberang Jaya on 2nd January 2022	48
Figure 4.14 Humidity vs. time graph	49
Figure 4.15 Weather forecast at Seberang Jaya on 2 nd January 2022	50
Figure 4.16 Three pot soil moisture level vs. time graph in one day	52
Figure 4.17 Soil moisture readings across five days	53
Figure 4.18 Irrigation process took place	54
Figure 4.19 Water used against farming methods	54
Figure 4.20 Light Intensity Level in lux	56
Figure 4.21 Weather from 1300 till 1700	56
Figure 4.22 Sunrise time at Seberang Jaya on 2nd January 2022	57
Figure 4.23 Automatic lighting system	58
Figure 4.24 Light intensity value changes across five days	59
Figure 4.25 Smart IoT system interface in Blynk application	60
Figure 4.26 Light indicator	61
Figure 4.27 Temperature, humidity, and the light intensity level value displayed	61
Figure 4.28 Data shown in superchart	62
Figure 4.29 Soil moisture level and water tank level displayed from 0 to 100%	63
Figure 4.30 Soil moisture level in superchart and value displayed	64

LIST OF SYMBOLS

- Centimeter ст -
- Lux lx -
- Degree Celcius °C -
- V -
- Voltage Plus-Minuis Sign ± -
- milimeter ml _

LIST OF ABBREVIATIONS

IoT	-	Internet of Things
iOS	-	iPhone Operating System
UTeM	-	Universiti Teknikal Malaysia Melaka
Wi-Fi	-	Wireless Fidelity

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

CHAPTER 1

INTRODUCTION

1.1 Background

Indoor farming is designed to grow the plant in a controlled environment so that the status of the plants can be monitored from time to time. As owner can control the climate, indoor farming enable user to grow and harvest any crops almost anywhere when indoor farming is applied[1]. In Malaysia, which is hot and humid, indoor farming is suitable to maintain temperature and humidity for a specific plant to grow. As the world's population is expected to reach 9.7 billion in 2050, there will be a high demand for food[2]. Therefore, indoor farming is needed as it beneficial for agriculture production for the other countries that experienced extreme climate changes or natural disasters such as hurricanes, floods, and droughts.

Additionally, indoor farming drastically minimizes plant contamination, unlike traditional agriculture, which is vulnerable to contamination from animal waste, tainted groundwater, or toxic chemical substances to eliminate the pest. Indoor farming ensures food safety and production quality by tracking all the data collected from the sensors. Traditional agriculture uses human resources to manage plants, such as watering and harvesting, which takes a long time and is costly to hire more workforce. By practicing indoor farming with automation technology, all the plant growth can be monitored 24/7 while combining software and automation with industrial process management to optimize production.

Also, indoor farming no longer depends on large-scale land use cause this practice can be implemented inside buildings and cities. This is very important for an overpopulated area especially developed and advanced city which mostly have a higher concentration of carbon dioxide. Indoor farming can take advantage of unused space in the buildings and create a sustainable environment even in an urban area.

1.2 Problem Statement

Traditional agriculture is easily affected by the external environmental condition and requires many labors to manage the crops. Temperature and humidity are the main issues affecting plant growth for a country with a hot and humid climate. Moreover, no regular feedback of the crop's status causing much wastage of resources such as water and land aregetting limited. Nowadays, people are going to IoT trends, increasing their productivity in managing their crops as they are usually busy with works. An increase in population is alsocausing a lack of land resources for farming and decreased air quality in an urban area. There is a lack of platforms to access plant information in real-time. Constantly monitoring is required to evaluate and check the plant status, which will increase the cost and time to maintain and take care of the crops.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 1.3 Project Objective

This project aims to propose a system that helps to monitor the growth of crops and helps increase productivity with limited resources. Specifically, the objectives are as follows:

- a) To apply an Internet of Thing, IoT-based smart indoor farming system to enhance crops production with adequate resources.
- b) To monitor and analyze the growth of crops through Blynk application by using ESP-8266(01) module and Arduino Uno to read sensors data.
- c) To apply automatic lighting system and irrigation system to reduce the use of labor.

1.4 Scope of Project

The scope of this project are as follows:

a) To monitor the condition of crops with the various sensors.

Parameter	Sensor
Soil moisture	FC-28
Humidity and temperature	DHT11
Light Intensity	BH1750FVI

ALAYSIA

- b) Monitoring the status of environment by receiving the data collected by various sensors and show in the Blynk application to end user.
- c) Applying automatic lighting system and automatic irrigation system when reaching a threshold limit set.
- d) A farming box with a base of 60cm x 40cm x 20cm (Length x Width x
 - Height) dimensions is applied to grow the plant vertically to reduce the space required.

CHAPTER 2

LITERATURE REVIEW

2.1 History of Indoor Farming

At the beginning of the 20th century, farmers struggled to protect their crops from being damaged by natural disasters. The protection is first started by building a box with a flat glass roof on top that covers the crops in the fields. A few years after, a small size of greenhouse is developed. Eventually, these small-scale greenhouses evolved into the first greenhouse as known today[3].

UNIVERSI Figure 2.1 History of Indoor Farming

However, the greenhouse will experience climate variation when the internal temperature is too different from the external temperature. This often limits the plant growth, causing the plant's productivity to decrease and even reduce the nutrition of the plant.

Scientists and engineers tried to create more optimal and fixable circumstances for plant growth in greenhouses to solve the climate variation. Researchers carried out many experiments with a variable such as a temperature and CO2. Scientists and engineers also studied the effects of these variables on plant growth and changed this variable on the greenhouse. As a result, the agricultural carbon footprint was reduced, and better-quality crop yields increased.

Figure 2.2 History of indoor farming 2

Later on, technical innovations such as hydroponics and artificial lighting were used to optimize growing conditions. In the second decade of the 21st century, light-emittingdiode, LED lighting was introduced in greenhouses. This innovation paved the way for farming crops indoors.

Plant scientists and engineers realized that it is not sustainable to control the plants to fit in the environment they create. Instead, they developed a wholly controlled indoor system where the environment is fully controlled based on the plants' needs. This further developed into vertical farming, where the plants are growing in vertically stacked layers.

2.2 MicroCEA

In 2018, Joseph D Stevens developed a personal urban smart farming device that automates growing vegetables in an urban indoor residential setting. The system he proposed consists of an LED lighting system, humidity control, CO2 control, temperature control, and also pH and electrical conductivity for the water. During development, Joseph prioritizes the feasibility and simplicity of the installation of the system. Also, the researcher aimed to provide IoT accessibility through the cloud for monitoring, controlling, and data analysis. The researcher believed that the system developed could contribute to the urban food supplyin a healthy, sustainable way.

Figure 2.3 MicroCEA system overview

MicroCEA is designed to be implemented with RPIv2 for computing and Arduino Mega 2560 with a Grove Base Shield v2 for sensing, and a standard 4 channel relay block for actuation. The installed actuators include a growing LED, humidifier, and fan vent. The system sends the sensor data to the cloud version of Node-Red through MQTT protocol for network architecture, then Node-Red will perform data analysis or data store. For Graphical User Interface, GUI part, users can access all the information from a simple web page and control the system through the GUI. For example, when the temperature is too high, the user can manually turn on the fan vent to lower the temperature using a mobile device with a web browser[4].