

Faculty of Electrical and Electronic Engineering Technology

LEE SZUE LING

Bachelor of Computer Engineering Technology (Computer Systems) with Honours

DEVELOPMENT OF IOT BASED SMART PARCEL RECEIVER

LEE SZUE LING

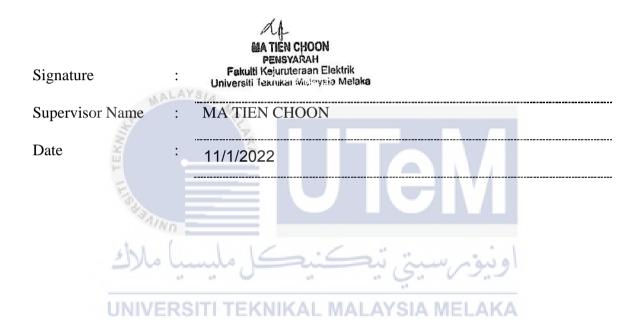
A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Computer Engineering Technology (Computer Systems) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

UTEM اونيۇم سيپتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA	UNIVERSITI TEKNIKAL MALAYSIA MELAKA fakulti teknologi kejuteraan elektrik dan elektronik borang pengesahan status laporan PROJEK SARJANA MUDA II
Tajuk Projek : DEVELOPME	ENT OF IOT BASED SMART PARCEL RECEIVER
Sesi Pengajian : 2020/2021	
Saya LEE SZUE LING	G mengaku membenarkan laporan Projek Sarjana
Muda ini disimpan di Perpustak 1. Laporan adalah hakmilik Uni 2. Perpustakaan dibenarkan me	aan dengan syarat-syarat kegunaan seperti berikut: versiti Teknikal Malaysia Melaka. embuat salinan untuk tujuan pengajian sahaja. embuat salinan laporan ini sebagai bahan pertukaran antara
institusi pengajian tinggi.	
4. Sila tandakan (✓):	
SULIT*	(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia seperti yang termaktub di dalam AKTA RAHSIA RASMI 1972) (Mengandungi maklumat terhad yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan)
	Disahkan oleh:
(TANDATANGAN PENU Alamat Tetap:	LIS)
12A, Jalan Tempua, Taman Hijau, 31000 Batu Gajah, Perak.	
Tarikh: 10/1/2022	Tarikh: 11/1/2022

*CATATAN: Jika laporan ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh laporan ini perlu dikelaskan sebagai SULIT atau TERHAD.


DECLARATION

I declare that this project report entitled "Development of IoT Based Smart Parcel Receiver" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report is adequate in terms of scope and quality for the award of the degree of Bachelor of Computer Engineering Technology (Computer Systems) with Honours.

DEDICATION

I would like to dedicate this project to my beloved family who have never failed to give me support and motivation all the time during the development of the project. Also, I would like to dedicate this project to the lecturers and friends who guided and encouraged me until the project is successfully completed.

ABSTRACT

This project is proposed to develop an IoT based smart parcel receiver which is able to provide a guarantee of safety to the parcel. This development is mainly focused on building a system at a low cost and to fulfil the objectives. The proposed system is based on Arduino UNO microcontroller with a group of hardware components such as ESP32-CAM module, microwave radar motion sensor, IR sensor and Blynk application in achieving the goals in monitoring and tracking of the parcel. Apart from that, the use of solenoid door lock and RFID reader are able to ensure that the access of collection slot is only limited to the user. This system works when there is motion detected that is moving around the parcel receiver, the signal ALAYSI received by the microwave radar motion sensor will then be sent to the ESP32-CAM, and the alert notification will be sent to the user via Blynk application. The appearance can be streamed and captured by the user in the application. At the internal side of the receiver box, the IR sensor is will detect the presence of parcel and a notification will be sent to the user through Blynk application. At the collection slot, the parcel receiver is kept in a locked state by the solenoid door lock and any unauthorized access is prohibited. The ID of the tag or card will be read by the RFID reader and the authoritative will be identified. The solenoid door lock can only be unlocked by using the authorized RFID. Furthermore, to increase the conveniency, the solenoid door lock can also be unlocked using the Blynk application whenever the RFID is not with the user.

ABSTRAK

Projek ini dicadangkan untuk menghasilkan sebuah penerima bungkusan pintar berdasarkan Internet untuk segalanya (IoT) yang dapat memastikan keselamatan terhadap bungkusan serta penggunanya. Penghasilan ini memfokuskan pembinaan sebuah system yang rendah dalam kos dan dapat merealisasikan ojektifnya. System yang dicadang ini berdasarkan mikropengawal Arduino UNO dengan kumpulan perkakasan seperti modul ESP32-CAM, sensor radar gerakan gelombang mikro, sensor inframerah, dan aplikasi Blynk. Selain itu, penggunaan selak soleniod serta alat pembaca RFID dapat memastikan pembukaan slot pengumpul hanya terhad kepada pengguna sahaja. System ini berfungsi ketika gerakan yang di sekeliling kotak penerima bungkusan dikesan, isyarat tersebut yang diterima oleh sensor radar gerakan mikro gelombang akan dihantar ke ESP32-CAM, dan pesanan amaran akan dihantar kepada pengguna melalui aplikasi Blynk. Rakaman dapat disiar dan ditangkap oleh pengguna di dalam aplikasi tersebut. Di bahagian dalaman kotak penerima bungkusan, sensor inframerah akan mengesan kemunculan bungkusan dan satu pesanan akan dihantar kepada pengunna melalui aplikasi Blynk. Pada slot pengumpul, penerima bungkusan akan dikekal dalam keadaan dikunci oleh selak solenoid dan sebarang pengaksesan yang tidak diberi kuasa adalah dihalangkan. ID daripada tag atau kad akan dibaca oleh alat pembaca RFID dan pemberian-kuasaan tersebut akan dikenalpasti. Selak solenoid dapat dibuka hanya dengan ID yang diberi kuasaan. Tambahan pula, untuk menambahkan kemudahan, selak solenoid juga dapat dibuka dengan aplikasi Blynk apabila RFID tidak berada dengan pengguna.

ACKNOWLEDGEMENTS

First and foremost, I would like to grab this chance to convey my thankfulness to all wonderful people around me who always radiating good vibes and giving me support, guidance, knowledge, and tender along this project until the completion.

Particularly, I would like to reveal my heartfelt gratefulness to my supervisor, Mr. Ma Tien Choon for his guidance, advice, and inspiration throughout this project. I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) and Faculty of Electrical and Electronic Engineering Technology (FTKEE) for the financial support which enables me to accomplish the project.

Last but not least, I would also like to express my deepest appreciation to my family members for their love and support during the period of my study. Not forgetting all the lecturers and staffs at the faculty, fellow friends, as well as other individuals who are not listed here for giving me motivation and support from every aspect.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

		INGL
DECI	LARATION	
APPR	ROVAL	
DEDI	ICATION	
ABST	TRACT	i
ABST	TRAK	ii
ACK	NOWLEGEMENTS	iii
	LE OF CONTENTS	i
	OF TABLES	iii
LIST	OF FIGURES	iv
LIST	OF ABBREVIATIONS	vii
LIST	OF APPENDICES	viii
CHAI	PTER 1 🔨 INTRODUCTION	1
1.1	Background	1
1.2 1.3	Problem Statement	1
1.3 1.4	اويور سيتي تيڪنيڪل مليب Research Objective Scope of Project	2 2
CHAI	PTER 2 UNIVERTERATURE REVIEWIALAYSIA MELAKA	3
2.1	Introduction	3
2.2	Literature Reviews of Existing Security Monitoring System	3
	2.2.1 Security System using Motion Detector Sensor with Communication (GSM) Module	n 4
	2.2.2 Security System using Web Camera and Sensor with Mobile	-
	Application	6
	2.2.3 Surveillance System Using System-On-Chip Technology	7
	2.2.4 Home Security System Using Magnetic Sensor	11
0.0	2.2.5 Surveillance System Using Image Processing	12
2.3 2.4	Comparison Between Security Monitoring System Summary	15 21
CHAI	PTER 3 METHODOLOGY	22
3.1	Introduction	22
3.2	Overview of Project Methodology	22
	3.2.1 Project Initiation	22 23
	3.2.2 Project Planning3.2.3 Project Execution	23 23
	3.2.4 Monitoring and Control	23

PAGE

	3.2.5	Close-Out and Evaluation	24
3.3	Project	et Management	24
		Gantt Chart	25
3.4	Project	et Methodology of Smart Parcel Receiver	26
	3.4.1	Flowchart	26
		3.4.1.1 Flowchart of the Developed System	27
	3.4.2	Hardware Setup	28
		3.4.2.1 Circuit Design	28
		3.4.2.2 Components Used	28
		3.4.2.2.1 Arduino UNO Module	29
		3.4.2.2.2 ESP32-CAM Module	29
		3.4.2.2.3 Microwave Radar Motion Sensor	30
		3.4.2.2.4 Infrared (IR) Sensor	31
		3.4.2.3 Hardware Prototype	32
	3.4.3	Software Implement	39
		3.4.3.1 Software and Application Used	39
		3.4.3.2.1 Arduino Software (IDE)	40
		3.4.3.2.2 Proteus Design Suite	40
		3.4.3.2.3 Fritzing	41
		3.4.3.2.4 Blynk App	42
		3.4.3.2 Application Interface	42
3.5	Summ	ary	46
-	PTER 4		47
4.1	Introdu		47
4.2		ts and Analysis	47
		Parcel Receiver Monitoring System	47
		Parcel Detection Using IR Sensor	49
		RFID Authorization	51
		Control via Blynk Application	53
4.3	Summ	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	55
СНАР	PTER 5		56
5.1	Conclu		56
5.2		e Works	57
0.2			0,
REFE	RENC	CES	58
	NDICT		<u> </u>
	NDICE		60
Appen	uix A		60

LIST OF TABLES

TITLE

TABLE PAGE

- Table 2.1Comparison between the method used in the existing security
monitoring system15
- Table 2.2Comparison between the the existing security monitoring system in
terms of hardware, software, system used, advantages and disadvantages

18

LIST OF FIGURES

FIGURE PAGE

TITLE

Figure 2.1	Block diagram of the hybrid security system	4
Figure 2.2	Operation of space security system in a shop	5
Figure 2.3	Block diagram of the web camera surveillance system	6
Figure 2.4	System architecture of the home security and monitoring system	7
Figure 2.5	Block diagram of motion activated surveillance system	8
Figure 2.6	Block diagram of the motion activated surveillance system	9
Figure 2.7	Use-case diagram for the smart indoor home surveillance monitoring system	10
Figure 2.8	SMS interface for the smart indoor home surveillance monitoring system	10
Figure 2.9	Email interface for the smart indoor home surveillance monitoring system	11
Figure 2.10	Principle of the reed sensor in open and closed state	11
Figure 2.11	Architecture diagram of the surveillance system using reed sensor	12
Figure 2.12	Algorithm flow of the face recognition system	13
Figure 2.13	Block diagram of the human detection system	14
Figure 3.1	Gantt Chart for BDP1 and BDP2	25
Figure 3.2	Flowchart of the developed system	27
Figure 3.3	Circuit design of Smart Parcel Receiver	28
Figure 3.4	Arduino UNO board module (CH340)	29
Figure 3.5	ESP32-CAM module	30
Figure 3.6	Microwave radar motion sensor	31
Figure 3.7	Working principle of IR sensor	31
Figure 3.8	The design plan of the parcel receiver (front view)	33

Figure 3.9	The design plan of the parcel receiver (side view)	34
Figure 3.10	The design plan of the parcel receiver (back view)	34
Figure 3.11	The hardware prototype of the development	35
Figure 3.12	The IR sensor installed inside the parcel receiver (side view)	36
Figure 3.13	The IR sensor installed inside the parcel receiver	37
Figure 3.14	The relay, DC to DC converter and battery slots installed on the prototype	38
Figure 3.15	The RFID reader and LEDs installed near the door of the parcel receiver.	39
Figure 3.16	Arduino Software (IDE)	40
Figure 3.17	Proteus Design Suite	41
Figure 3.18	Fritzing	41
Figure 3.19	Blynk Application	42
Figure 3.20	Configuration of the widget with pin connecting with the hardware	44
Figure 3.21	The configuration of IP address for video streaming in video streaming widget	45
Figure 3.22	The interface of the Blynk application	46
Figure 4.1	The message shown in the Serial Monitor as motion is detected and photo is captured using Blynk application	48
Figure 4.2	The notification receveid and shown on the smart phone through Blynk application	48
Figure 4.3	The data shown in Serial Monitor when video is streamed and photo is captured	49
Figure 4.4	The message displayed as motion detected and parcel received at the same time	50
Figure 4.5	The Blynk notification shown as the arrival of parcel is detected	50
Figure 4.6	The solenoid remains locked when the unauthorized RFID tag is scanned	51
Figure 4.7	The solenoid unlocked when the authorized RFID card is scanned	52
Figure 4.8	The output shown in Serial Monitor with the access of authorized and unauthorized RFID	52
Figure 4.9	Blynk application with video streaming and photo capturing at the same time	53

- Figure 4.10 Blynk application with an "Open" button to unlocked the parcel receiver 54
- Figure 4.11 The output shown in serial monitor when the solenoid is being unlocked using Blynk application 55

LIST OF ABBREVIATIONS

ESP	Espressif System
IoT	Internet of Things
RFID	Radio Frequency Identification
GSM	Global System for Mobile Communication
PIR	Passive Infrared
SMS	Short Message Service
RTC	Realtime Clock
LCD	Liquid Crystal Display
MIT	Massachusetts Institute of Technology
SOC	System-On-Chip
IP	Internet Protocol
SD	Secure Digital
Wi-Fi	اويو سيني تيڪنيڪ Wireless Fidelity
Open-CV	UNIV Open Source Computer Vision Library A MELAKA
ATM	Automatic Teller Machines
GUI	Graphical User Interface
NodeMCU	Node MicroController Unit
USB	Universal Serial Bus
LED	Light Emitting Diode
IR	Infrared

LIST OF APPENDICES

TITLE

APPENDIX

Appendix A Turnitin Report

60

PAGE

CHAPTER 1

INTRODUCTION

1.1 Background

In this era of digitalization, online shopping has become a new trend among most people, especially the young generation. People tend to purchase goods from online and wait for the items to be received without getting out from home. However, the delivery of parcel requires a recipient at home so that the parcel can be received in a safe condition. If there is nobody at home, it will cause inconvenience for the individual as the parcel would not be able to deliver successfully. Other than that, dropping parcel at an unsecured area, such as doorway or car porch will also expose the security risk of the parcel that it may be damaged or stolen easily. Hence, a secured parcel receiver would be a necessity in receiving and sheltering the parcel.

اونيونر سيتي تيڪنيڪل مليس Problem Statement

The parcels often being delivered during office hours while people are out for work or class. Generally, the parcel will be returned to the courier office if there is no recipient at home. This causes inconvenience for them to request for the second delivery or pick up the parcel at the courier office. There are also some couriers that simply drop the parcel in front of the house to avoid the process of returning the parcel to the courier office. Nevertheless, this will expose the parcel to a security risk as it is unprotected from being damaged or stolen by others. In addition, a parcel receiver with low security level, whether it is unlocked or locked with simple locker may also unprotected from being opened or damaged, causing the parcel to be stolen.

1.3 Research Objective

The objectives of this project are:

- 1. To develop an IoT based smart parcel receiver system using Arduino UNO microcontroller.
- 2. To monitor the parcel receiver using ESP32-CAM module and Blynk app.
- To analyse the performance of the developed system towards parcel receiver using IoT.

1.4 Scope of Project

The scope of this project is mainly focus on the utilization of Arduino UNO microcontroller in controlling all the elements using in this project. The parcel receiver is monitored by using the ESP32-CAM module with microwave radar motion sensor and Blynk app. This monitoring system is used to detect and record the appearance in front of the parcel receiver when there is somebody comes near around it. Besides, whenever the parcel is detected by the infrared sensor inside the receiver box, the user will get a notification via Blynk app. In addition, the collection slot of the parcel receiver is locked by a solenoid lock with RFID authorization to increase the security level and prevent it to be opened by the outsiders.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The system used in this research can be mainly divided into two categories, which is security monitoring system and security lock system. The monitoring system is used as a security camera and sensors to monitor the parcel receiver to guarantee the safety of the parcel receiver from any prank actions and damages, while the internal side of the parcel receiver is used to detect the presence of parcel and notify to the user. The security lock system used in this research is to lock the collection slot of the receiver box and protect the parcel from being stolen by any outsiders. Based on the techniques nowadays, there are many types of smart security monitoring system are introduced whether commercially or self-made that seems effective and handy. Generally, this kind of system requires different types of elements blended with some related techniques to produce different kind of operations that suitable for the respective environment or budget.

2.2 Literature Reviews of Existing Security Monitoring System

In this chapter, the techniques used in the existing security monitoring system will be reviewed. Those existing techniques will also be compared in this chapter. Besides, the advantages and disadvantages of the discovered techniques will also be discussed. In short, the existing techniques of the monitoring system will be explored theoretically and methodologically.

2.2.1 Security System using Motion Detector with Communication (GSM) Module

This technique is used to detect moving object and send a notification to alert the user. As the presence of human is detected by the motion detector sensor, the security alert is triggered and will send a notification such as SMS or email to the user through GSM (Global System for Mobile communications) module. (S., 2018) (Darmawan & Taufan, 2019)

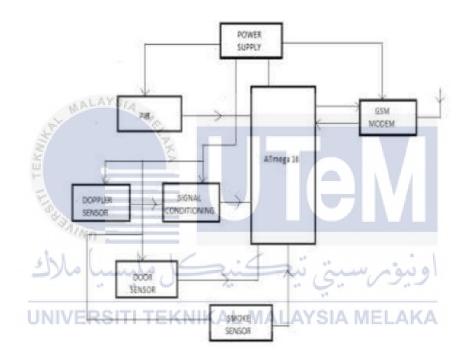
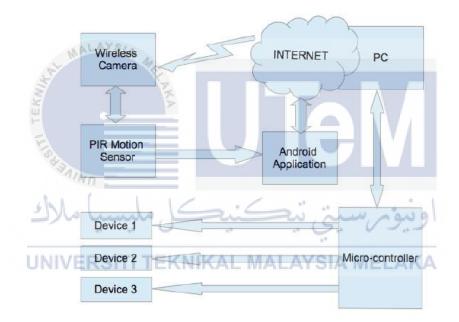


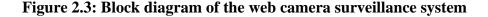
Figure 2.1: Block diagram of the hybrid security system

Source: (S., 2018)

This kind of technique can be used in home, business firm or any places that attempted to improve the security levels and prevent from any malicious attacks. This security system is controlled by ATmega16 microcontroller and GSM sim900 module with sensors such as PIR sensor in detecting human movement, and doppler sensor in detecting the velocity of the object at a distance. The other sensors such as door sensor which is a switch that senses the position of door whether it is opened or closed, and gas sensor that senses any harmful gas leakage to trigger the buzzer. Once the security system is triggered, the GSM module will alert the user by sending an SMS or call to the saved contacts. (S., 2018)

During 2019, a study has developed a space security system which detects human movement in the shop, warehouse, and cashier slot when it is outside the operating hours. This security system using the hardware including Arduino UNO microcontroller which used to control the system, GSM Sim900A module to send SMS notification, and Realtime Clock (RTC) in measuring the time. By using the predetermined real time clock state using fuzzy logic algorithm, the alarm and the SMS notification will be operated when there is motion detected from the PIR sensors during non-operating hours. Besides, the magnetic switch is used to detect the door whether it is opened or closed. The 2x16 LCD keypad is used to key in the door password and buzzer to emit a sound as the security system is triggered. (Darmawan & Taufan, 2019)




Figure 2.2: Operation of space security system in a shop

Source: (Darmawan & Taufan, 2019)

2.2.2 Security System using Web Camera and Sensor with Mobile Application

This technique is a technique that used to develop a smart surveillance system with the combination technology of sensor and web camera with mobile application. It is a low-cost High-Definition security surveillance system which is controlled by the AT89S52 microcontroller. The PIR motion sensor is used to detect if there is any movement at a certain area, while the D-Link DCS930L web camera will record the footage of the movement and send to the Android application which is developed using MIT's App Inventor. (Rushambwa, Chamunorwa, & Nyachionjeka, 2016)

Source: (Rushambwa et al., 2016)

According to a study (Taryudi, Adriano, & Ciptoning Budi, 2018), the security system uses the hardware such as Quectel M33 web camera, GSM module and Blynk app which is controlled by the microcontroller AT89C52 with RFID (Radio Frequency Identification). This system uses an RFID tag to activate the keypad to read the correct password and open the door lock. The Blynk app is used to receive and display the data of the sensor. If the password is incorrect, the buzzer will be triggered and an email notification will be sent to the user through the GSM module. The alert notification and video recorded by the web camera will also be sent when there is movement detected by the PIR sensor. When a notification about fire detected is received, user is able to control the solenoid valve through the smart phone. Apart from that, whenever there is rain or light detected, the notification will also be sent to the user.

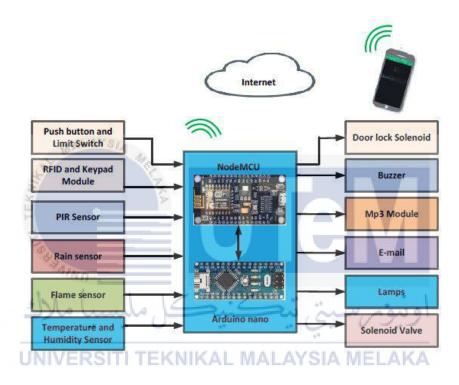


Figure 2.4: System architecture of the home security and monitoring system

Source: (Taryudi et al., 2018)

2.2.3 Surveillance System Using System-On-Chip Technology

This technique uses the "System-On-Chip" technology which is the Raspberry Pi module as the base of the development for the IoT application. It is an IP-based system that able to capture image, provide live video feed send notification and access through android device at the same time. According to a research paper (Gujral &