

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CONTROL DESIGN OF A LINE FOLLOWER ROBOT WITH IOT-BASED MONITORING SYSTEM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

b

LIM SHI RONG B081810168 961205016923

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: CONTROL DESIGN OF A LINE FOLLOWER ROBOT WITH IOT-BASED

MONITORING SYSTEM

Sesi Pengajian: 2021

Saya **LIM SHI RONG** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

SULIT*

TERHAD

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

TERHAD* Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

NIVERSITI TEKNIKAL MALAYSIA MELAKA

Yang benar,

X

Disahkan oleh penyelia:

LIM SHI RONG Alamat Tetap: No 41 JALAN SATRIA 4/1 TAMAN SEROM UTAMA 4 SUNGAI MATI 84400 TANGAK JOHOR Tarikh: 6/2/2022 Ar -

DR. SYED NAJIB BIN SYED SALIM Cop Rasmi Penyelia

Tarikh:

*Jika Laporan PSM ini SULIT atau TER<u>H</u>AD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled CONTROL DESIGN OF A LINE FOLLOWER ROBOT WITH IOT-BASED MONITORING SYSTEM is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Industrial Automation and Robotic) with Honours. The member of the supervisory is as follow:

ABSTRAK

Di dunia sekarang ini penggunaan robot sangat biasa bukan sahaja di bidang perindustrian tetapi juga termasuk dalam kehidupan seharian kita. Oleh kerana robot mudah alih autonomi menjadi semakin terkenal sejak kebelakangan ini, masih terdapat beberapa robot yang boleh diubahsuai. Robot pengikut garis umum yang ada di pasaran sekarang lebih banyak untuk tujuan pendidikan tetapi masih ada beberapa industri yang menggunakan robot pengikut garis sebagai pengangkut barang berat dan ada beberapa bahagian dan performance yang dapat diperbaiki sejak robot digunakan sebagai pengangkut pemantauan fungsi sistem untuk mencegah kesalahan sangat penting. Robot tidak mempunyai sistem pemantauan yang dapat membolehkan pengguna memantau robot sehingga sukar untuk dipantau sejak berada di kawasan industri. Dengan menerapkan sistem pemantauan IoT ia membolehkan pengguna memonitor keadaan robot melalui telefon atau komputer, ia akan mengurangkan masa yang diperlukan untuk memonitor robot secara manual, ia juga dapat menambahkan fitur penghalang penghalang untuk membolehkan robot berfungsi dengan lebih efisien. کنیکل ملیسیا اويىۋىر،سىتى يې

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

In the world maket today the usage of robot are very common not only in the industrial field but also included in our daily life. As the autonomous mobile robot are became more and more famous this lately there are still a few robot that can be improvised. The common line follower robot that exist on the market now a days are more to education purpose but there still a few of industry using line follower robot as the transporter for heavy object and there are some week point that can be improve since the robot is used as transporter the monitoring of the system function to prevent fault is very important. The robot didnt have monitoring system that can allow the user to monitor the robot thus it is hard to monitor since it in the industry area. By implementing the IoT monitoring system it allow the user to moniter the condition of the robot through phone or computer it will reduce the time need to moniter the robot manually it also can added the obstacle avioding feature to allow the robot to function more efficiently.

اونيۈم سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEDICATION

Dedicated to my beloved parents Mr. LIM JIN JOCK and Mrs. TEO CHOON BER, who have respected and supported me in everything I do.

Dedicated to Dr. Syed Najib bin Syed Salim, who taught and guided me throughout the journey of completing the final year project.

ACKNOWLEDGEMENTS

Firstly, I would like to express my heartfelt gratitude to everyone who made it possible for me to complete this report. I owe a special thanks to Dr. Syed Najib bin Syed Salim, my final-year project supervisor, whose stimulating suggestions and encouragement assisted me in coordinating my project, especially in writing this report. Without your invaluable supervision, advice, support, and patience, this would have not been possible.

Furthermore, I would like to extend my sincere appreciation to the Faculty of Electrical and Electronic Engineering Technology for the funding opportunity to complete my final year project at University Technical Malaysia Melaka. My gratitude extends to my course mate, miss Ng Chee Khei, who help me to assemble the parts and gave suggestion about the report writing.

Last but not least, many thanks to my dearest parents for their continuous support, love and understanding.

John ol ىتى تېكنىچ UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

	TABLE OF CONTENTS	PAGE ix
	LIST OF TABLES	xiii
	LIST OF FIGURES	xiv
	LIST OF APPENDICES	xviii
	LIST OF SYMBOLS	xix
	LIST OF ABBREVIATIONS	XX
СНА	PTER 1 INTRODUCTION	21
1.1	Project Background	21
1.2	اونيوبرسيتي تيڪنيڪل مProblem Statement	22
1.3	Project Objectives TEKNIKAL MALAYSIA MELAKA	22
1.4	Work Scope	22
СНА	PTER 2 LITERATURE REVIEW	24
2.1	Introduction	24
2.2	Line Follower Robot	24
2.3	Robot Movement control theory	27
2.4	Hardware	29
	2.4.1 Microcontroller Devices ix	29

	2.4.2	Sensor	35
	2.4.3	H-Bridge Motor Driver	38
	2.4.4	Actuator	39
2.5	Controllers		41
	2.5.1	PID Controller Theory	41
2.6	Internet of T	hings	49
	2.6.1	The Things	49
	2.6.2 NAL	Device Management platform	50
	2.6.3	Connectivity Block and Communication Protocols	51
	2.6.4	Wi-Fi	53
2.7	Related Jour	nals	54
	2.7.1 L	Comparison Between Different Method used by Previous	
2.8	UNIVER. Conclusion	SITI TEKNIKAL MALAYSIA MELAKA	56
СНА	PTER 3	METHODOLOGY	57
3.1	Introduction		57
3.2	Project Wor	kflow	57
	3.2.1	Process Flow Explanation	58
3.3	Flow Chart		60
3.4	Block Diagr	am	61

3.5	Hardware		62
	3.5.1	Arduino Uno	63
	3.5.2	NodeMCU ESP8266 WIFI with motor shield	64
	3.5.3	Maker-Line IR array sensor	65
	3.5.4	Maker-Driver MX1508 motor driver	67
	3.5.5	6V DC Motor with gearbox	70
	3.5.6	Hardware connection	71
3.6	Software	NYSIA MA	73
	3.6.1	Arduino Integrated Development Environment	73
	3.6.2	Implementation of PID controller	74
	3.6.3 11NN	Software code explanation	75
3.7	Data collect	اونيومرسيني تيڪنيڪل	85
	3.7.1 UNIVER	Excel Data Streamer	85
3.8	PID controll	er tuning method	86
	3.8.1	Systematic Trial Error Method	86
	3.8.2	Ziegler-Nichols Method	87
3.9	Blynk Appli	cation	87
3.10	Summary		89
СНА	PTFR 4	RESULT	90
			70
4.1	Introduction		90

4.2	Data collect	ion	90
	4.2.1	Basic LFR	91
	4.2.2	Application of PID algorithm	91
СНА	APTER 5	CONCLUSION	110
5.1	Introduction	L Contraction of the second	110
5.2	Conclusion		110
5.3 REF	Recommender ERENCES ENDIX	اونيونرسيتي تيڪنيڪل مليس	110
	UNIVER	SITI TEKNIKAL MALAYSIA MELAKA	

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2-1: Moven	nent of Robot with Motor Direction	28
Table 2-2: Compa	rison Between Types of Arduino Boards	33
Table 2-3: Compa	rison Between NodeMCU ESP8266 and NodeMCU ESP32	34
Table 2-4: Compa	rison Between Different Types of Motor Drivers	39
Table 2-5: Compa	rison Between Types of Communication Protocols	52
Table 2-6: Compa	rison Between Different Method Used by Previous Researche	ers 54
Table 4-1 LFR ou	tput when tuning with Kp=0.05	98
Table 4-2 LFR ou	tput when tuning with Kp=0.05 Kd=0.5	99
Table 4-3 LFR ou	tput when tuning with Kp=0.05 Kd=0.005	100
Table 4-4 Tu calcu	ulation	103
Table 4-5 Ziegler-	Nichols Tuning Method calculation	105
Table 4-6 LFR ou	tput with value using Ku=0.0778	106
Table 4-7 LFR ou	tput with value using Ku=0.05	107
Table 4-8 Compar	rison of tuning method	109
Table 4-9 Parame	ter tuning effect	109

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1: Basic Co	oncept of Line Follower Robot	25
Figure 2.2 Basic blo	ck diagram of Line Follower Robot(Tayal et al., 2020)	25
Figure 2.3 Basic Str	ucture of Line Follower Robot	26
Figure 2.4 Labelled	Diagram of LFR	27
Figure 2.5 Movemen	nt of Robot with Motor Direction	28
Figure 2.6: Block D	iagram of Microcontroller	30
Figure 2.7: Labelled	Diagram of Arduino UNO	31
Figure 2.8: Labelled	Diagram of Arduino MEGA	32
Figure 2.9: NodeMC	CU ESP8266 Pinout	34
Figure 2.10: IR Sens	sor Module	36
Figure 2.11: Schema	atic Diagram of IR Sensor Module	36
Figure 2.12: Workin	g Principle of Ultrasonic Sensor	37
Figure 2.13: Ultraso	nic Sensor Module	38
Figure 2.14: L293D	Motor Driver Module	38
Figure 2.15: SN7544	410 Motor Driver IC	39
Figure 2.16: Genera	l Controller Structure	41

Figure 2.17: General Structure of PID Controller	42
Figure 2.18: Variation of Proportional Controller with Variation of Kp	43
Figure 2.19 Overall Cascaded PID Diagram(Binugroho et al., 2016)	48
Figure 2.36: Architecture of IoT	49
Figure 2.37: Wi-Fi Network	53
Figure 3.1 Project Flow Chart	58
Figure 3.2 LFR working Flow chart	60
Figure 3.3 PID LFR Working Flow chart	61
Figure 3.4 LFR block Diagram	62
Figure 3.5 Maker Uno	64
Figure 3.6 Arduino Uno with Label	64
Figure 3.7 NodeMCU ESP8266 Board	65
Figure 3.8 NodeMCU Motor shield	65
Figure 3.9 MAKER-LINE	66
Figure 3.10 MAKER-LINE Board Functions	66
Figure 3.11 MAKER-DRIVE Board Functions	68
Figure 3.12 Connection Diagram for Brushed DC Motor	68
Figure 3.13 DC Motor with gearbox	70
Figure 3.14 LFR Motor control circuit	71
Figure 3.15 Ultrasonic sensor connection	72

Figure 3.16 Arduino Uno and NodeMcu connection	72
Figure 3.17 Final circuit of LFR	73
Figure 3.18 PID line follower block diagram	74
Figure 3.19 Arduino Uno coding Part 1	75
Figure 3.20 Arduino Uno void setup	76
Figure 3.21 Arduino Uno void loop	76
Figure 3.22 Arduino Uno coding Part 2	77
Figure 3.23 ReadLineSensor function Part1	78
Figure 3.24 ReadLineSensor function Part2	78
Figure 3.25 LineSensor function Part3	79
Figure 3.26 PID control Algorithm	79
Figure 3.27 Motor movement control	80
اونيوم سيتي تيڪنيڪل ملسبا ملاك Figure 3.28 upserial function	81
Figure 3.29 NodeMCU coding Part 1 KAL MALAYSIA MELAKA	82
Figure 3.30 NodeMCU coding Part 2	82
Figure 3.31 NodeMCU coding part 3	83
Figure 3.32 catchData function	84
Figure 3.33 CheckData function	84
Figure 3.34 BlynkWrite function	84
Figure 3.35 Excel Data Streamer	85
Figure 3.36 Data Streamer in Excel xvi	86

Figure 3.37 Blynk Web Dashboard	88
Figure 3.38 Blynk Mobile Dashboard	89
Figure 4.1 LFR Step input test	90
Figure 4.2 Basic LFR step response	91
Figure 4.3 LFR response when Kp=0.0775	93
Figure 4.4 LFR response when Kp=0.3875	93
Figure 4.5 response when Kp=0.5	94
Figure 4.6 LFR response when Kp=0.02	95
Figure 4.7 LFR output when been push while travel with Kp=0.05	96
Figure 4.8 LFR output when been push while travel with Kp=0.02	96
Figure 4.9 LFR corner testing	97
Figure 4.10 LFR response when Kp=0.068and Kd=0.48	101
Figure 4.11 LFR output when Ku=0.0778	102
Figure 4.12 LFR output when Ku=0.05AL MALAYSIA MELAKA	103
Figure 4.13 LFR output with Tu reading	104
Figure 4.14 LFR output with Tu reading	104
Figure 4.15 LFR response with Kp=0.048, Ki=0.02 and Kd=0.2	108

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix 1 GRANTT CHART		116
Appendix 2 Arduino Uno LFR Code		117
Appendix 3 NodeMCU Blynk Code		121

LIST OF SYMBOLS

q Angle

LIST OF ABBREVIATIONS

LFR Line Follower Robot

CHAPTER 1

INTRODUCTION

1.1 Project Background

This project is to develop the controller that suitable for the line follower robot with IoT-Based monitoring system with infrared sensor and microcontroller. This line follower robot is a common autonomous robot that can travel from a location to another by following the line. It is commonly used on the industry for transporting item automatically with the help of this type of robot the item can be transport trough for a place to another without the manual control of a human. This type of robot usually need sensor to detect the line and follow the line that have been drown on the surface and it will start moving when the signal is given and react based on the line the turning will occur when the line is curved. The movement of the robot is controlled using motor and motor driver and can be program using microcontroller and the reacting of the robot can be improve using PID controller method. The IoT monitoring system is conduct by using NodeMCU microcontroller board that have ESP 8266 module build in to allow connection with internet and by setting up a cloud that allow information exchange between the phone, laptop and also the robot, instruction can be given to the robot and the condition or progress of the robot can be monitored. The line following robot will be adding obstacles avoids which allow the robot to avoid obstacles that occur at the front of the robot that will cause crash of the robot that will cause the damage to the item. The Arduino software is program using PID control method to smoothen the robot motor movement.

1.2 Problem Statement

Line follower robot is widely used on the industry to carry heavy or dangerous material or item that not suitable for human to carry. There are some problems that the robot facing when operating in the industry. There are some of the lines follower robot that didn't contain advance controller and causes the robot fail to travel smoothly when there is a turn or curve occur and there will have some error that create an unstable oscillation that cause fault to happen. When there is an interrupt on the travel path or obstacle that blocked the path, the user must spend a lot of time to check and monitor the condition of the robot. By implement the IoT-based monitoring system the user will allow to monitor the condition of the robot and the robot is allowed to feedback task progress to the user and sending fault report through the IoT-monitoring system.

1.3 Project Objectives

i. Develop a line follower robot which based on microcontroller with IoT Based monitoring system into the robot to monitoring the robot activities condition.

ii. Design PID controller for line follower.

iii. To analyse the performance to the system with difference type of controller and without controller.

1.4 Work Scope

To archive the objective of the project, there are several criteria that need to be consider:

- i. Development of Line Follower Robot.
- ii. Implementation of the IoT monitoring system to monitor the progress of the robot car.

- iii. Implementation controller that suitable for the robot to smoothen the movement.
- iv. PID tuning with trial error method and Ziegler-Nichols Method.
- v. Compare the performance of robot with P, PD and PID controller as well as without controller.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This section will discuss the summaries overall of Line follower robot system with controller and the IoT based monitoring system. This chapter is to explain past research and existing research. This project is made up using microcontroller to control the movement of car robot and using infrared sensor and ultrasonic sensor as input to allow the robot to follow the line on the ground and avoid obstacles. This chapter will discuss the theory and the concept using to solve the project problem. Journal, articles, and case studies are the main sources of information.

2.2 Line Follower Robot

Line follower robot or LFR is a self-operating mobile robot that can detect the line that drawn on the floor which difference with the floor colour and follow the line, generally the path is predefined and can be visible as black line on a white surface with high contrasted colour or can be invisible like magnetic field depend on the sensor used (Pakdaman and Sanaatiyan, 2009; Pakdaman, Sanaatiyan and Ghahroudi, 2010).

The basic of LFR function is by capturing the line that been premade with sensor on the robot and the signal will be send to the microcontroller. In an act of millisecond, the microcontroller will send the signal to the motor driver and motor driver will control the rotation direction and speed of wheel and allow the robot to move in difference