

# Faculty of Electrical and Electronic Engineering Technology



# MOHAMMAD NOR MUSTAQIM BIN JOHARI

# Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours

### DEVELOPMENT OF AN AUTOMATED COMPUTER NUMERICAL CONTROL (CNC) ENGRAVING ROUTER SYSTEM

## MOHAMMAD NOR MUSTAQIM BIN JOHARI

A project report submitted in partial fulfillment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics) with Honours

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# UNIVERSITI TEKNIKAL MALAYSIA MELAKA



### BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

## Tajuk: DEVELOPMENT OF AN AUTOMATED COMPUTER NUMERICAL CONTROL (CNC) ENGRAVING ROUTER SYSTEM

Sesi Pengajian: 2021

Saya MOHAMMAD NOR MUSTAQIM BIN JOHARI mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.

- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinanuntuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaranantara institusi pengajian tinggi.
- 4. \*\*Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau

SULIT\* kepentingan Malaysia sebagaimana yang termaktub dalam AKTARAHSIA RASMI 1972.

|                                   | TERHAD*         | Mengandungi maklumat TERHAD yang telah<br>ditentukan oleh<br>organisasi/badan di mana penyelidikan<br>dijalankan. |
|-----------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------|
| $\boxtimes$                       | TIDAK<br>TE HAD |                                                                                                                   |
| Yang benar,                       |                 | Disahkan oleh penyelia:                                                                                           |
| Ent                               |                 |                                                                                                                   |
| MOHAMMAD MUSTAQIM BI              | √OR<br>N JOHARI | SUPERVISOR NAME                                                                                                   |
| Alamat Tetap:<br>103B,<br>KAMPUNG | ALL AKA         | Cop Rasmi Penyelia                                                                                                |
| TALANG,<br>TANJONG                | کل ملیہ         | اونيۇم,سىتى تيكنىد                                                                                                |
| IPOHAIVERS                        | ITI TEKNI       | KAL MALAYSIA MELAKA                                                                                               |
| 71500                             |                 |                                                                                                                   |
| NSDK                              |                 |                                                                                                                   |
| Tarikh: 10/02/20                  | )22             | Tarikh:                                                                                                           |
|                                   |                 |                                                                                                                   |

\*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

### DECLARATION

I declare that this project report entitled "Development of an automated Computer Numerical Control (CNC) Engraving Router System" is the result of my own research except as cited in the references. The project report has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.



### APPROVAL

.....

I approve that this Bachelor Degree Project 1 (PSM1) report entitled "Development Of An Automated Computer Numerical Control (Cnc) Engraving Router System" is sufficient for submission.



### DEDICATION

I am dedicating this thesis to my beloved mother, Kamsiah Binti Mohamad Siad, and father, Johari Bin Jelani, who always support and encourage me everything that I involve in and do during the whole time in my life without any doubt.

and

To all teachers and lectures that have taught me from not knowing an alphabet until I know and understand engineering discipline including about life.

and

All my friends that some of them become family.



#### ABSTRACT

Computer Numerical Control (CNC) is widely used in the industry. For a mini scale of CNC machine is only available only a single process. To develop a low cost mini CNC machine with three processes in one machine continuously without any post-process in every process using MKS DLC V2 board and GRBL firmware. This project integrated algorithm and electronic components from MKS DLC board and GRBL firmware with Arduino and relay for process switching. We did the machine accuracy evaluation by measuring the product length, which results in high accuracy of length cut in the range of 0.10mm.



#### ABSTRAK

Computer Numerical Control (CNC) digunakan secara meluas dalam industri. Untuk mesin CNC skala kecil hanya tersedia satu proses sahaja. Dengan menggunakan MKS DLC V2 dan perisian GRBL untuk membangunkan mesin CNC mini kos rendah dengan tiga proses dalam satu mesin secara berterusan tanpa proses pasca dalam setiap proses. Projek mengintegrasikan algoritma dan komponen elektronik daripada papan MKS DLC dan perisian tegar GRBL dengan Arduino dan geganti untuk penukaran proses. Kami melakukan penilaian ketepatan mesin dengan mengukur panjang produk, yang menghasilkan ketepatan pemotongan panjang yang tinggi dalam julat 0.10mm.



#### ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor, Ts. Dr. Sahazati Binti Md. Rozali and co-supervisor, Ts. Dr. Norfariza Binti Ab Wahab for their precious guidance, words of wisdom and patient throughout this project.

I am also indebted to Universiti Teknikal Malaysia Melaka (UTeM) and Ts. Dr. Norfariza Binti Ab Wahab for the financial support through her grants which enables me to accomplish the project. Not forgetting my fellow colleague, Kalishwaran, Amirul Adli, Wafiudin, Aiman Nasirudin, Tan Kim Long, and Iszuzuldin for the willingness of sharing his thoughts and ideas regarding the project.

My highest appreciation goes to my parents, and family members for their love and prayer during the period of my study. An honourable mention also goes to me for all the motivation and understanding. And to Tc. Basri Bin Bidin, Tc. Zulkifli Bin Jantan, and Mohd Shauqat Bahari, thanks for industrial advice on machine calibration, machine parameter and method of calibration testing.

ە ىيەم سىت

Finally, I would like to thank all the staffs at the Faculty of Electric and Electronic Engineering Technology, Faculty of Mechanical and Manufacturing Engineering Technology especially Plastic Lab and Project Lab, fellow colleagues and classmates, the Faculty members, as well as other individuals who are not listed here for being cooperative and helpful.

# TABLE OF CONTENTS

| APPR                                   | ROVAL                                                                                                                                                                                                                                                                                                       |                                                          |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| ABST                                   | 'RACT                                                                                                                                                                                                                                                                                                       | i                                                        |
|                                        |                                                                                                                                                                                                                                                                                                             |                                                          |
| ABSI                                   | KAK                                                                                                                                                                                                                                                                                                         | 11                                                       |
| ACK                                    | NOWLEDGEMENTS                                                                                                                                                                                                                                                                                               | iii                                                      |
| TABI                                   | LE OF CONTENTS                                                                                                                                                                                                                                                                                              | 4                                                        |
| LIST                                   | OF TABLES                                                                                                                                                                                                                                                                                                   | 7                                                        |
| LIST                                   | OF FIGURES                                                                                                                                                                                                                                                                                                  | 8                                                        |
| LIST                                   | OF SYMBOLS                                                                                                                                                                                                                                                                                                  | 11                                                       |
| LIST                                   | OF ABBREVIATIONS                                                                                                                                                                                                                                                                                            | 12                                                       |
| LIST                                   | OF APPENDICES                                                                                                                                                                                                                                                                                               | 13                                                       |
| CHAI<br>1.1<br>1.2<br>1.3<br>1.4       | PTER 1 INTRODUCTION<br>Background<br>Problem Statement<br>Project Objective<br>Scope of Project                                                                                                                                                                                                             | <b>14</b><br>15<br>16<br>16<br>17                        |
| CHAI<br>2.1<br>2.2<br>2.3              | PTER 2 LITERATURE REVIEW   Introduction   Introduction of Computer Numerical Control (CNC)   Basic CNC Machining Process Flow   2.3.1 Design the CAD model   2.3.2 Convert CAD file to a CNC program   2.3.3 Prepare CNC machine   2.3.4 Execute machining operation                                        | <b>18</b><br>18<br>20<br>21<br>22<br>23<br>24            |
| 2.4<br>2.5<br>2.6<br>2.7<br>2.8<br>2.9 | CNC Router Machine<br>CNC Laser<br>CNC Plotter<br>Mini CNC Type in the Market<br>The Process Similarity of CNC Operating Mechanism and System<br>Control Board<br>2.9.1 Controll Board Language<br>2.9.2 Software use to generate G-Code<br>2.9.3 CNC Machine Controller<br>2.9.4 CNC Product Accuracy Test | 24<br>26<br>28<br>31<br>35<br>35<br>36<br>37<br>38<br>39 |

PAGE

| 2.10 | Summ           | ary                                           | 40       |
|------|----------------|-----------------------------------------------|----------|
| CHAI | PTER 3         | METHODOLOGY                                   | 45       |
| 3.1  | Introdu        | uction                                        | 45       |
| 3.2  | Metho          | dology                                        | 46       |
| 3.3  | Compo          | onent of engraving router system              | 47       |
|      | 3.3.1          | Mechanical part                               | 47       |
|      |                | 3.3.1.1 Aluminium Profile                     | 48       |
|      |                | 3.3.1.2 Linear Shaft                          | 49       |
|      |                | 3.3.1.3 Lead Screw Rod                        | 50       |
|      |                | 3.3.1.4 Bearing                               | 51       |
|      |                | 3.3.1.5 Coupler                               | 52       |
|      |                | 3.3.1.6 Bolt & Nut                            | 53       |
|      | 3.3.2          | Electronic Part                               | 55       |
|      |                | 3.3.2.1 Processor                             | 55       |
|      |                | 3.3.2.2 Arduino Nano                          | 56       |
|      |                | 3.3.2.3 Stepper Motor                         | 56       |
|      |                | 3.3.2.4 Servo Motor                           | 58       |
|      |                | 3.3.2.5 Motor Driver                          | 59       |
|      |                | 3.3.2.6 Relay                                 | 60       |
|      |                | 3.3.2.7 Step Down                             | 61       |
|      |                | 3.3.2.8 Power Supply Unit                     | 61       |
|      | 3.3.3          | Feeder Head                                   | 62       |
|      |                | 3.3.3.1 Spindel                               | 63       |
|      |                | 3.3.2 Laser Module                            | 64       |
| 2.4  | <b>G</b> (     | 3.3.3.3 Ploter                                | 65       |
| 3.4  | Systen         | n Integration                                 | 6/       |
|      | 3.4.1          | Design and Prototyping Development            | 68<br>70 |
|      | 3.4.2          |                                               | 70       |
|      | 3.4.3          | Algorithm Integration EKNIKAL MALAYSIA MELAKA | 12       |
| 25   | 3.4.4          | work Area                                     | /4       |
| 3.5  |                | ne Calibration                                | 80       |
|      | 5.5.1<br>2.5.2 | Bed Leveling<br>V V Z Avia Calibration        | 81<br>02 |
|      | 3.3.2          | A, I, Z AXIS Calibration                      | 02<br>02 |
|      | 3.3.3          | Detum & Offeet A divergent                    | 03<br>05 |
| 26   | 5.5.4<br>Summ  | Datum & Onset Aujustment                      | 03<br>07 |
| 5.0  | Summ           | aly                                           | 07       |
| CHAI | PTER 4         | RESULTS AND DISCUSSIONS                       | 88       |
| 4.1  | Introdu        | uction                                        | 88       |
| 4.2  | Discus         | ssion                                         | 88       |
| 4.3  | Produc         | et                                            | 90       |
| 4.4  | Calibra        | ation Analysis                                | 93       |
| 4.5  | Accura         | acy Analysis                                  | 96       |
| 4.6  | Summ           | ary                                           | 98       |
| CHAI | PTER 5         | CONCLUSION                                    | 99       |

| 5.1<br>5.2 | Conclusion<br>Future Works | 99<br>100 |
|------------|----------------------------|-----------|
| REFE       | RENCES                     | 101       |
| APPE       | NDICES                     | 104       |



# LIST OF TABLES

| TABLE                          | TITLE                     | PAGE |
|--------------------------------|---------------------------|------|
| Table 2.1 Table of comparison  | of CNC machine in Shopee  | 33   |
| Table 2.2 List Of Paper Cited  | And Their Point Of Method | 42   |
| Table 3.1 Coordinate Offset to | Spindel                   | 76   |
| Table 3.2 Summaries of Work    | Area                      | 79   |



# LIST OF FIGURES

| FIGURE                                                           | TITLE | PAGE |
|------------------------------------------------------------------|-------|------|
| Figure 2.1 3D printer example                                    |       |      |
| Figure 2.2 CNC Milling example                                   |       | 19   |
| Figure 2.3 Example of G-code.                                    |       | 20   |
| Figure 2.4 Example of 2D Drawing                                 |       | 22   |
| Figure 2.5 Example of 3D Drawing in a C                          | CAD   | 22   |
| Figure 2.6 Fusion 360 CAM Software                               |       | 23   |
| Figure 2.7 Manual Router Work                                    |       | 24   |
| Figure 2.8 CNC Router machine                                    |       | 25   |
| Figure 2.9 Visualize of laser cutting proce                      | ess   | 27   |
| Figure 2.10 Example of CNC plotter drawing type                  |       | 29   |
| Figure 2.11 Stepper motor driver attached with Arduino           |       | 30   |
| اويوم سيبي يبه يستبي المارية<br>Figure 2.12 Snapmaker A350 model |       | 31   |
| Figure 2.13 Example of mini CNC machine. KAL MALAYSIA MELAKA     |       | 32   |
| Figure 2.14 Basic pattern created by the 3D printer              |       | 40   |
| Figure 3.1 General process flow                                  |       | 46   |
| Figure 3.2 Study on component need process flow                  |       | 47   |
| Figure 3.3 Example of aluminium profile                          |       | 49   |
| Figure 3.4 Example of the liner shaft with the straight bearing. |       | 50   |
| Figure 3.5 Example of lead screw rod.                            |       | 51   |
| Figure 3.6 Linear ball bearing                                   |       | 52   |
| Figure 3.7 Flexible Coupler                                      |       | 53   |
| Figure 3.8 Hammerhead Nut                                        |       | 54   |

| Figure 3.9 Installation Diagram                   | 54 |
|---------------------------------------------------|----|
| Figure 3.10 Core Screw                            | 54 |
| Figure 3.11 MKS DLC Control Board                 | 55 |
| Figure 3.12 Arduino Nano Board                    | 56 |
| Figure 3.13 Stepper Motor                         | 58 |
| Figure 3.14 Servo Motor                           | 59 |
| Figure 3.15 BTS7960 Motor Driver 43A              | 60 |
| Figure 3.16 12V 100A 5pin Relay                   | 60 |
| Figure 3.17 Lm256s DC-DC 3A Step Down Module      | 61 |
| Figure 3.18 TNK PSU 24V 15A                       | 62 |
| Figure 3.19 Design of Feeder Head Holder          | 62 |
| Figure 3.20 775 Spindle Motor                     | 64 |
| Figure 3.21 Laser Module                          | 65 |
| Figure 3.22 The Specification Of The Laser Module | 65 |
| Figure 3.23 Example of the ploter mechanism.      | 66 |
| Figure 3.24 System Intigration Flow Chart         | 67 |
| Figure 3.25 Custom Circuit Board                  | 69 |
| Figure 3.26 Relay Circuit                         | 71 |
| Figure 3.27 Manipulation Board Circuit            | 71 |
| Figure 3.28 Algorithm Flow Chart                  | 72 |
| Figure 3.29 gcode.h Example Code                  | 73 |
| Figure 3.30 cpu_map.h Example Code.               | 73 |
| Figure 3.31 MKS DLC Board Layout                  | 74 |
| Figure 3.32 Pointing for Each Feeder              | 75 |
| Figure 3.33 Pointing for Each Feeder in CAD       | 76 |

| Figure 3.34 Overall Work Area                                            | 77 |
|--------------------------------------------------------------------------|----|
| Figure 3.35 Spindel Work Area                                            | 77 |
| Figure 3.36 Laser Work Area                                              | 78 |
| Figure 3.37 Plotter Work Area                                            | 78 |
| Figure 3.38 Integrated Process Work Area                                 | 79 |
| Figure 3.39 Flow Chart for Machine Calibration                           | 80 |
| Figure 3.40 Work Table End Point Check                                   | 82 |
| Figure 3.41 Height Adjustment                                            | 82 |
| Figure 3.42 Digital Vernier Caliper INSIZE                               | 84 |
| Figure 3.43 Vernier Caliper Code and Serial Number                       | 84 |
| Figure 3.44 X,Y, Z Workpiece Calibration and Analysis Patern             | 85 |
| Figure 3.45 The Crossing Line Datum Adjustment Method                    | 86 |
| Figure 3.46 Crossing Line is At Zero Set Point of Spindel                | 86 |
| Figure 4.1 Milling Process Output (Analysis Patent)                      | 90 |
| Figure 4.2 Lsser Process Product Output (Basmallah Islamic Caligraphy)   | 91 |
| Figure 4.3 Plotter Process Product Output (Basmallah Islamic Caligraphy) | 91 |
| Figure 4.4 Integrated Process Product Output                             | 92 |
| Figure 4.5 Integrated Process Machine                                    | 92 |
| Figure 4.6 X Axis Calibration Test Graph                                 | 93 |
| Figure 4.7 Y Axis Calibration Test Graph                                 | 94 |
| Figure 4.8 Z Axis Calibration Test Graph                                 | 95 |
| Figure 4.9 Evaluation of X Axis Accurancy Graph                          | 96 |
| Figure 4.10 Evaluation of Y Axis Accurancy Graph                         | 97 |
| Figure 4.11 Evaluation of Z Axis Accurancy Graph                         | 97 |

# LIST OF SYMBOLS

v - Voltage



# LIST OF ABBREVIATIONS

| V   | - | Voltage                    |
|-----|---|----------------------------|
| MB  | - | Manipulation Board         |
| PSU | - | Power Supply Unit          |
| CNC | - | Computer Numarical Control |
| mm  | - | millimeter                 |
|     |   |                            |



# LIST OF APPENDICES

| APPENDIX   | TITLE                      | PAGE |
|------------|----------------------------|------|
| Appendix A | Feeder Holder Drawing      | 104  |
| Appendix B | GRBL Configuration Setting | 105  |
| Appendix C | Summary of G-Code Commands | 107  |
| Appendix D | Datum Setup G-Code Coding  | 109  |
| Appendix E | Gann Chart                 | 110  |



#### **CHAPTER 1**

#### **INTRODUCTION**

CNC refers to a machine that has the ability to run a fabrication numerically of computer design by reading the G-code or M-code language and fully operating automatically without any human interference during the process. The design is made by any Computer-Aided Design (CAD) or Computer-Aided Manufacturing (CAM). CNC routers are used to produce a precise product for lighter material such as wood, plastic, acrylic, form and may work on soft metal like aluminum.

Engraving is one of the processes that can be done by a CNC machine. The method to do the process is by using different types of heads such as Spindle, Laser, Plotter, and Extruder depending on the suitable process. Engraving is a slow cutting process based on the shape designed by CAD or CAM.

The flow of fabricating a product using a CNC router is started by using CAD or CAM to get a file that is suitable for any G-code converter. Then the converter program produces a Gcode file for the CNC machine. The CNC controller will read, interpret and extracts commands code and move based on the G-code. The CNC controller is a circuit board with an embedded system microprocessor chip to process the input data and control the output process. The controller algorithm will process the G-code and interpret it to the output. It will control the movement of the CNC router machine automatically base on the design created by CAD or CAM.

The project goal is to make a machine control system that integrates spindle laser and plotter to work in one sequence. This system will minimize the difficulty of machine operation, improve precision and reduce time in the head change process.

#### 1.1 Background

Most of the small-scale CNC router machines have either spindle or laser and the double spindle is rare. Double spindle types are only used in industries for a specific operation. Few small-scale CNC router machines are exchangeable which can use one cutting element in one process. It needs to be fixed in and fix out manually. Each time the process change, the head needs to set a new datum point and level setting. The opportunity is innovating the machine to work with spindle laser and marker pen autonomously..

There are many parts in CNC router machine that can be modified, such as structure, material, working area, cutting tool, working table, clamping, and many more. This project is focusing on providing a system that can control these three elements. This is caused by one

cutting element system will have its limitations. The machine can perform more operations as it has more cutting elements with a synchronized system.

The development of small-scale CNC machines with the integration of spindle, laser, and marker change control systems will increase production efficiency. The idea of the project is to place the laser source and a marker beside the spindle and make them work with one another in a single operation.

#### 1.2 Problem Statement

Small-scale CNC routers machines have some cutting limitations. With one cutting element, the machine can perform one task only. Manual exchange of cutting elements leads to imprecision processing when in a mesh process and time consuming on head change. The system read only one specific task file either routing or lasering or plotting. The expectation for this project is to combine three types of feeders in one CNC machine system.

#### **1.3 Project Objective**

The objectives of the project are as follows:

- a) To design a control system that integrated laser, engraving, and plotter processes..
- b) To fabricate a low cost CNC router machine that integrated laser, engraving, and plotter processes feeder.
- c) To evaluate the accuracy of the design control system based on machining performance.

#### **1.4** Scope of Project

This system design is focused on the automatic cutting elements change on spindle or laser and marker. This new integration of spindle and laser will increase efficiency. The machine will be developed by positioning the spindle, laser and marker closed to each other. It will be integrated by using machine language (G-code) and this combination will help users to cut and plot on any dimensions. The spindle will cut the large parts, the laser makes markings and cuts small curves, the marker draws the required part. This combination allows small scale machines to work with three tools within one process.

