

Faculty of Electrical and Electronic Engineering Technology

DEVELOPMENT OF CRANE UTILIZATION SYSTEM BASED ON

IOT

NG WEN JUN

Bachelor of Computer Engineering Technology (Computer Systems) with Honours

2021

DEVELOPMENT OF CRANE UTILIZATION SYSTEM BASED ON IOT

NG WEN JUN

A project report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Computer Engineering Technology (Computer Systems) with Honours

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I declare that this project report entitled “DEVELOPMENT OF CRANE UTILIZATION

SYSTEM BASED ON IOT” is the result of my own research except as cited in the

references. The project report has not been accepted for any degree and is not concurrently

submitted in candidature of any other degree.

Signature :

Student Name : NG WEN JUN

Date : 03/02/2022

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Computer

Engineering Technology (Computer Systems) with Honours.

Signature :

Supervisor Name : TS. GLORIA RAYMOND TANNY

Date : 03 FEBRUARI 2022

Signature :

Co-Supervisor

Name (if any)

:

NORLEZAH BINTI HASHIM

Date : 03 FEBRUARI 2022

DEDICATION

To my beloved mother, Choong Chooi Peng, and father, Ng Chee Chong,

Thank you for supporting me when I decide to resign from the work in Singapore and

return to Malaysia for completing a degree in UTeM.

To Yayasan Tenaga Nasional(TNB)

Thank you for giving me a chance to pursue my education toward the goal of achieving a

better, brighter future.

i

ABSTRACT

Crane utilization rate and health is an important thing for a company to keep tracking. The

condition of the crane cannot be decided by just looking at it, because it is always too late

when the failure of the internal part of the crane was found. The abrupt accidents will

interrupt or delay the work progress and also cause the cost of the work to increase. Due to

that, a monitoring system will be needed. But most of the current monitoring systems are

using wireless communication technology like BLUETOOTH and WIFI. This

communication technique is good but still can be improved because the effective range for

both of these communication technologies is limited. Due to that, LoRa is chosen in this

project because of long-range of detections from LoRa is suitable for monitoring machines

that require large space especially in the heavy engineering industry. For this crane

monitoring system, some data will be transferred and the size for this data is not big. So that,

the advantages for Lora to send and receive data through a long-range and the disadvantages

of LoRa that only able to send data at a low rate is acceptable. Hence, the LoRa module is

used in this project. This project will have a transmitter side that an Arduino UNO place at

the crane part using some sensors to track the health of the crane by measuring temperature,

power consumption, lifting activity, and working hours. Then the data will be sent to the

receiver side which is a NodeMCU ESP8266. The data will be sent to the database if the

NodeMCU is connected to the internet. In the end, the user will be able to do the monitoring

for the crane by using the mobile application. This project aims to design and develop a crane

monitoring system using an android application and it had been successfully done. The result

shows that users will be able to monitor the crane utilization by using the Android application.

In addition, the user will be able to view the real-time data or past data in graph view. For

future works, a controlling system is possible to add and implement in this system so the

approved user or admin can use the mobile application to stop the crane when they had found

something wrong with the crane’s data.

ii

ABSTRAK

Kadar penggunaan dan kesihatan kren adalah satu perkara penting bagi syarikat untuk

memberi perhatian. Keadaan kren tidak dapat diputuskan dengan hanya melihat rupanya, ini

kerana ketika kegagalan bahagian dalaman kren dijumpai maka sudah terlambat.

Kemalangan yang berlaku secara tiba-tiba akan mengganggu atau melambatkan kerja dan

juga menyebabkan kos meningkat. Oleh kerana itu, sistem pemantauan akan diperlukan.

Tetapi kebanyakan sistem pemantauan semasa menggunakan teknologi komunikasi tanpa

wayar seperti BLUETOOTH dan WIFI. Teknik komunikasi ini bagus tetapi masih boleh

diperbaiki kerana jarak efektif untuk kedua-dua teknologi komunikasi ini adalah terhad.

Disebabkan itu, LoRa telah dipilih dalam projek ini kerana kemampuan LoRa untuk dikesan

dalam jarak yang jauh sesuai digunakan untuk pemantauan mesin yang memerlukan ruang

yang besar terutamanya dalam industri kejuruteraan berat. Untuk sistem pemantauan kren

ini, beberapa data akan dihantar dan terima tetapi saiz data ini tidak berapa besar. Oleh itu,

kelebihan Lora untuk menghantar dan menerima data melalui jarak jauh dan kelemahan

LoRa yang hanya dapat menghantar data dalam kadar rendah dapat diterima. Justeru itu,

modul LoRa akan digunakan dalam projek ini. Projek ini akan mempunyai bahagian

pemancar yang ditempatkan dengan Arduino UNO di bahagian kren menggunakan beberapa

sensor untuk mengesan kesihatan kren dengan mengukur suhu, penggunaan kuasa, aktiviti

mengangkat dan waktu kerja. Kemudian data akan dihantar ke sisi penerima yang

merupakan NodeMCU ESP8266. Data akan dihantar ke pangkalan data jika NodeMCU

disambungkan ke internet. Pada akhirnya, pengguna akan dapat melakukan pemantauan

untuk kren dengan menggunakan aplikasi mudah alih. Projek ini bertujuan untuk merancang

dan mengembangkan sistem pemantauan kren menggunakan aplikasi android dan` ia telah

berjaya dicapai. Hasil menunjukkan bahawa pengguna boleh memantau data masa nyata atau

data lepas dalam paparan graf. Bagi kerja masa depan, satu sistem kawalan boleh ditambah

dan dilaksanakan dalam sistem ini supaya pengguna yang telah diluluskan atau admin boleh

menggunakan aplikasi mudah alih untuk menghentikan kren apabila mereka telah mendapati

sesuatu yang tidak kena dengan data kren.

iii

ACKNOWLEDGEMENTS

To complete this project, many people had helped and inspired me. I have received

a lot of support from each of them.

First, I would like to thank my supervisor, TS. GLORIA RAYMOND TANNY, and

co-supervisor, NORLEZAH BINTI HASHIM that help me to research this project. Without

their support and guidance, I feel like I will not be able to do this project.

Then, I would also want to thank my classmates from BEEC for assisting me and

giving me support when I need it. They are never stingy to share their knowledge,

information, and experience with me.

Last but not least, I would like to thank my family that always encouraged me during

the time I am researching to complete this project.

i

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS i

LIST OF TABLES iii

LIST OF FIGURES iv

LIST OF ABBREVIATIONS vi

LIST OF APPENDICES vii

 INTRODUCTION 8

1.1 Introduction 8

1.2 Project Background 8

1.3 Project Statement 9

1.4 Objective 10

1.5 Scope of Project 10

1.6 Thesis Outline 11

 LITERATURE REVIEW 12

2.1 Introduction 12

2.2 Smart Bus Tracking and Management System Using IoT 12

2.3 IoT Based Monitoring System in Smart Agriculture 13

2.4 Garbage Bin Monitoring for Smart Residence 14

2.5 Weight Monitoring Waste Bin Based on Internet of Things (IoT) 14

2.6 Vehicle Tracking and Monitoring System to Enhance the Safety and Security

Driving Using IoT 15

2.7 IoT Enabled Smart and Secure Power Monitor 16

2.8 A smart IoT-based system for monitoring and controlling the sub-station

equipment. 17

2.9 Internet of Things (IoT) using LoRa technology. 18

2.10 Tower Crane remote wireless monitoring system based on Modbus/TCP protocol19

2.11 Warehouse inventory management system using IoT and open-source framework.

 20

2.12 Journal Comparison for Relevant Previous Research 21

ii

2.13 Summary 27

 METHODOLOGY 28

3.1 Introduction 28

3.2 Software 29

3.3 Hardware 30

3.4 Block Diagram 32

3.5 Project Overview 33

3.5.1 Gantt Chart 34

3.5.2 Project Flowchart 36

3.6 Summary 39

 RESULT AND DISCUSSION 40

4.1 Introduction 40

4.2 Hardware Setup 40

4.3 Result Analysis 43

4.4 Summary 55

 CONCLUSION 56

5.1 Conclusion 56

5.2 Future Works 57

REFERENCES 58

APPENDICES 60

iii

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1 Comparison Table For 10 Different Related Research 23

Table 3.1 BOM table 30

Table 3.2 Gantt chart Bachelor Degree Project 1 34

Table 3.3 Gantt chart Bachelor Degree Project 2 35

iv

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 3.5 Block Diagram of Development of Crane Utilization System Based

on IoT 32

Figure 3.6 Block Diagram for Transmitter Side 32

Figure 3.7 Block Diagram for Receiver Side 33

Figure 3.8 Project flowchart 37

Figure 3.9 Algorithm flowchart 38

Figure 4.1 Transmitter Side Hardware Set-Up 41

Figure 4.2 Receiver Side Hardware Set-Up 42

Figure 4.3 ACS712 Current Sensor Load(Servo motor) 42

Figure 4.4 Load Cell 5KG and Load(Broken NodeMCU Chip) 43

Figure 4.5 Transmitter Side Serial Monitor 44

Figure 4.6 Receiver Side Serial Monitor 45

Figure 4.7 Google Firebase Real-Time Database Root Directory 45

Figure 4.8 Google Firebase Real-Time Database Seconds View 46

Figure 4.9 Google Firebase Real-Time Database Hours View 46

Figure 4.10 On Launch Interface 47

Figure 4.11 After Clicked “RealTime Monitoring” button 47

Figure 4.12 After Clicked Past Record button 48

Figure 4.13 After Submitted Data in Specific Format 49

Figure 4.14 Spinner’s Sensor Option 50

Figure 4.15 Zoom In and Selected A Node 50

Figure 4.16 Graph Data Analysis-Current per hour 52

Figure 4.17 Graph Data Analysis-Fuel per hour 52

v

Figure 4.18 Graph Data Analysis-Power per hour 53

Figure 4.19 Graph Data Analysis-Temperature per hour 53

Figure 4.20 Graph Data Analysis-Weight per hour 54

vi

LIST OF ABBREVIATIONS

LoRa - Long Range

RF - Radio Frequency

GPS - Global Positioning System

RTC - Real-Time Clock

IoT - Internet of Things

GSM - Global System for Mobile Communications

GPRS - General Packet Radio Service

LCD - Liquid Crystal Display

𝑉 - Voltage

𝐴 - Current

𝑊 - Watt

vii

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Transmitter Side Arduino IDE(Arduino UNO) coding 60

Appendix B Receiver Side Arduino IDE(NodeMCU) coding 65

Appendix C Android Application Code (MainActivity.java) 70

Appendix D Android Application Code (GraphMenu.java) 73

8

INTRODUCTION

1.1 Introduction

In this chapter, the project’s detail will be explained including the used method and

way to implement the project. This is the first chapter for this thesis and will be started with

the project background, problem statement, objective project scope, and finally the thesis

outline.

1.2 Project Background

This project is created based on the idea to propose and build a crane monitoring

system that can monitor and inspect the crane’s health and utilization of the crane at any time

by using the mobile application. When the utilization percentage of the crane and the health

status of the crane is known, then future management, maintenance, and planning will be

able to complete and executed to prevent an unexpected event like crane shutting down or

accidents that will cause the delay to the working schedule.

When an unexpected problem occurs before we found out, many issues will appear.

Therefore, a crane monitoring system should be proposed to resolve this problem. The

monitoring system should be able to show the condition of the crane so that the user will be

able to notice the condition of the crane when it is bad.

9

1.3 Project Statement

The condition of the crane will directly affect the chance for an accident to happen

and also the cost to maintain the crane. This is because the cranes are usually exposed to

harsh environments and always operate at high duty cycles. So that, the issues of the cranes

should be identified before it occurs to prevent tragedy(Rahim Abdul Hamid et al., 2019).

To solve this problem, a monitoring system will be needed. This monitoring system

should be able to monitor four basic information which is the running hours, the lifting

activity(tonnage), the power consumption, and the temperature of the motor or hydraulic or

other similar things.

The running hours of a crane will tell the user how long the crane had been operated

and should be stopped after a fixed operating time. This action can help to extend the lifespan

of the crane and also make the maintenance schedule work easier.

Besides that, the lifting activity which shows the weight the crane is lifting allows

the user to monitor and control the maximum capacity that a crane can lift. Whenever a crane

is overloaded, it causes irreversible damage and may cause hazards. The most common case

will be the drop of the load or crane is swinging and hard to be controlled.

Lastly, it is the crane’s temperature that should be observed for its motor part and

hydraulic part if available. The motor of the crane is especially important as the temperature

of the motor keep increasing it may cause the system of the crane to fail and stop from

working normally.

10

1.4 Objective

i. To design and develop a crane monitoring system using an android application.

ii. To analyze the system design in terms of its functionality.

1.5 Scope of Project

To achieve the objective of the project, some of the scopes must be identified. The

project should be able to develop a monitoring system for the crane. The project scope is

listed below:

i. The monitoring system is based on the android application so that the result

can be displayed on the mobile platform.

ii. The wireless module for this project is LoRa (Long Range) RF (RADIO

FREQUENCY) wireless transceiver module. To ensure the function range is

better than a normal wireless module like the ESP8266 module.

iii. The microcontroller for this project is Arduino Uno.

The crane’s data will be sent through the Arduino Uno by LoRa wireless module to

the user's mobile. Then the data will be displayed on the application, the user will be able to

monitor the crane’s data immediately. The crane data mentioned in this project are only

simulation data, these data are not the real crane’s data but the data type is the same as the

real crane. For example, the temperature data in this project is refer to the temperature of the

crane, the current and power data, the weight data refer to the load of the crane, and data

from the ultrasonic sensor refer to the fuel level of the crane.

11

1.6 Thesis Outline

The first chapter in this thesis is chapter 1, the introduction for this project. The

project background, problem statement, objectives, and project scope are all written in this

chapter. This chapter helps the reader to understand the reason for the making of this project.

The next chapter will be chapter 2, literature review. In this chapter, the related

research done by the other researcher will be studied and analyzed one by one. Comparison

and review of the research will be done to understand each project’s advantages and

disadvantages.

After that, chapter 3 is talking about the methodology which is the method and

technique applied in this project. Besides that, the design of the procedure used on this

project that represents the process of the hardware and software will also be included.

12

LITERATURE REVIEW

2.1 Introduction

For this chapter, some research had been reviewed to apply the knowledge,

technique, method from previous research into this project. By evaluating other’s people

project, problems or issues that occur on their projects can be seen. So that the same issues

will not be repeated in own project. Besides that, reviewing others people’s literature will be

able to give the chance to compare, contrast, synthesize and analyze different people’s

works. In this chapter, 10 different pieces of literature will be reviewed. The collected

literature was a search based on related IoT projects.

2.2 Smart Bus Tracking and Management System Using IoT

This project is done by K. Sridevi, A. Jeevitha, K.Kavitha, K.Sathya, and K.

Narmadha in 2017. They implemented this project based on IoT and using android as the

application. Aside from that, it has two applications which one for client and one for server.

First, they put the GPS (Global Positioning System) devices on the bus, the bus will GPS

devices will be able to track their positions. Then the positions of the buses will be updated

periodically to the server, the client application will display a map that shows the current

location of the bus. This project allows users to track a bus and the distance between each

station along its route by using Android App on the smartphone. They use the Arduino UNO

microcontroller as their central unit and added a GPS module, RTC (Real Time Clock)

module, and Wi-Fi module for the hardware section. This project uses the DS3231 RTC

13

module to keep track of the current time so that the GPS location of the bus and the time of

the bus at that moment are accurate. To upload the GPS location, it needs the help of a Wi-

Fi or internet connection. So, the problem occurs when the bus is on a location that a weak

internet connection will affect the GPS upload time and accuracy. GPS can work without an

internet connection but still better with a stable internet connection to function faster(K,

2017).

2.3 IoT Based Monitoring System in Smart Agriculture

This project was done by Prathibha S.R., Anupama Hongal, Jyothi M.P. in 2017.

For this project, they aim to make use of IoT technology and smart agriculture using

automation. The purpose of this project can monitor the temperature and humidity in the

agricultural field with sensors using CC3200 and a camera. Then, the images captured by

the camera will be sent to farmers by MMS (Maintenance Management System) using Wi-

Fi. The authors choose to use CC3200 Launchpad because they said that CC3200 is a low-

cost and faster development evaluation platform for a microcontroller and its focus on low

power. Besides that, CC3200 has features such as programmable user buttons, RGB LED,

and onboard emulation for debugging. For the disadvantages of this project, the method to

send the picture with MMS is outdated and this project already installed with a camera so it

can be evolved to a real-time monitoring system through camera to allow the user to monitor

the farm on the go with the camera on their mobile application(Prathibha, Hongal and Jyothi,

2017).

14

2.4 Garbage Bin Monitoring for Smart Residence

As an introduction, this project aims to help garbage collecting companies to

enhance their garbage collection more efficiently by using IoT technology. The author Ng

Tian Xun design the system with the concept of receiving, process, and send which mean

the processing station (Arduino Uno) receive the data from all the bins through 433MHz

Radio Frequency protocol followed by process and data filtering, then send the data to

Raspberry Pi via Ethernet Shield. The project is divided into 3 blocks, it has a remote site, a

base station, and a server site. The remote site is built with ultrasonic sensors, tilt switches,

power supplies, Arduino UNO, and a 433 MHz RF transmitter. Then, the base station block

consists of a 433 MHz RF Receiver, Arduino UNO, Ethernet Shield, and a router. Finally,

the server site is simply just a Raspberry Pi 3 Model B. In the end, this project can display

the collected data on a PC or mobile platform after gathering the data from the remote

microcontroller and send to the central server. Even though the project is good, but the fact

is the RF modules in this project are only able to work below 10 meters before equipping

antenna or 25 meters after equipping antenna. If the garbage bin is accidentally moved by

other people, the monitoring system will be failed(NG TIAN XUN, 2018).

2.5 Weight Monitoring Waste Bin Based on Internet of Things (IoT)

The authors of this project Nor Akmal Ahmad and Mohd Hakimi Zohari were done

this project in 2020. The authors said that the main objective of this project is to monitor the

dustbin by using their developed weight monitoring waste bin system. The second objective

can create a dustbin that has a function to open and close automatically with the help of an

ultrasonic sensor. Then, the third one can tell the user or waste administrator about the

15

condition of the dustbin when it reaches the max level of capacity. Finally, is the function to

observe the temperature and humidity condition for the bin on the Blynk Application. To

build this project, they choose to use Arduino Uno as their main controller to control this

project, then follow by some sensors include weight sensor, temperature, humidity sensor,

and ultrasonic sensor. To implement the function to open and close the lid automatically,

they installed servo moto for the bins. Then, as an IoT project, the help of a Wi-Fi module

is a must for providing the communication function between the bins and user through server

and client. The client for this project is the Blynk Application, this is a platform the allows

users to create amazing interfaces for projects with various widgets to control Arduino,

Raspberry Pi, and other stuff. For the server, they use the ESP8266 to function as a weight

monitoring system. Besides all of this, the disadvantage for this project is very obvious which

is the Wi-Fi module ESP8266 range is only able to reach around 100 meters on space. This

means that every 100 meters will need an extra ESP 8266 module, this will become a

problem to the cost if the quantity of the bins needs to monitor is many for a place like a

residential area will be hard to implement(Akmal, 2020).

2.6 Vehicle Tracking and Monitoring System to Enhance the Safety and Security

Driving Using IoT

In 2017, the authors A. Anusha and Syed Musthak Ahmed designed this vehicle

monitoring and tracking system to monitor the vehicles that move from place to place to

secure the safety of the road. With the help of the GPS and GSM technology, the vehicle's

present location will be provided by GPS and send the tracking data to the server by GPRS.

At the same time, and message will be generated and sent to the vehicle owner as an alert

16

message. The alert message has 2 main purposes which can alert the driver if the driver is

driving in the wrong direction or when the driver feels drowsy or drunk, also the buzzer will

make a warning sound if the alcohol sensor detects the alcohol level reach the allowed level.

Furthermore, a temperature sensor is also installed and used to detect the status of the vehicle

engine’s temperature for further safety enhancement. The microcontroller in this project is

LPC2148 while the GPS and GSM module is used to send the location. Any status will be

displayed on the LCD screen of the project hardware module. Now that the disadvantage of

this project is the lack of the function for the user to monitor the status on computer or

mobile. This project does not have a server to process and send the data to make the tracking

system less effective, if a server is created for this project, then monitoring huge numbers or

car and driver's data will be more obvious and easier to be managed monitoring and tracking.

In addition, only using GPS without an internet connection is less accurate and slow than

with the help of the internet(Anusha and Ahmed, 2017).

2.7 IoT Enabled Smart and Secure Power Monitor

This project proposed an idea to monitor the power for an individual appliance by

the authors Akshay Ramesh Jadhav and P. Rajalakshmi in 2017. The authors aim to build a

project with lower cost, smaller, and easier to install. To build this project, they use only 10

USD dollars to make. The material includes ESP8266, ADE7757 IC, power supply, current

sensor, and 3D printed casing. The authors said that they choose WIFI instead of ZigBee and

Bluetooth because of the widespread availability of WIFI and smartphones also laptops are

more preferred. In addition, they say Wi-Fi provides a longer range than others in the cost

of consuming more power. The concept of the system is divided into three subsystems which

17

are power acquisition module, processing, and communication module, and remote data

logging unit. First, the power acquisition module builds with the current sensor and energy

metering module to measure and calculate the values of main voltage and current flow

through the wire connected to the appliance. Then second, the processing and

communication module is simple a WIFI module ESP8266 to send the data collected to the

server or remote data logging unit. Then the third one, the remote data logging unit is a

computer with a server application running and connected on the same network with the

power monitor sensor. To provide a more user-friendly environment for monitoring,

viewing, and improving user experience, the authors developed an Android application. On

the application, the user can view the collected information in data-view or graph-view if the

user is connected to the internet connection. However, the drawback of this project is the

ESP8266 module’s range is limited and needs to be very close to the router to have a stable

connection. There is no microcontroller in this project to create a low-cost project, but no

microcontroller means the function of this project is also limited where this project lacks the

function example like to turn on or turn off for the appliance(Jadhav and Rajalakshmi, 2017).

2.8 A smart IoT-based system for monitoring and controlling the sub-station

equipment.

In the year 2019, Md. Sanwar Hossaina, Mostafizur Rahmana, Md. Tuhin Sarker b,

Md. Ershadul Haquec and Abu Jahida implement a system for remote monitoring and

controlling the sub-station equipment through IoT. The system allows objects to be sensed

or controlled remotely across the network infrastructure. The system is set up with a

microcontroller Atmel Pico power 8bit microcontroller Atmega328-p then is communicate

18

with the ESP8266 Wi-Fi module by serial communication technique. But before that, some

sensors and actuators will collect information from the transformer and oil circuit breaker

(OCB). The sensors include an infrared sensor, ultrasonic sensor, and also actuators. If the

quality and present amount of oil are in alarming condition, an alarm message will be sent

to the operator with what corrective action needed to be taken immediately. Besides that, the

operator will also be able to do the circuit breaker operation and relay plug/transformer tap

changing operation remotely through this system. To achieve these functions, the

microcontroller must be connected to the web server by internet connections through a WIFI

module. After the WIFI module uploads all the data to the webserver, the operator will be

able to give commands and instructions. At the same time, the monitoring and control for

the sub-station will be able to display at a webpage from the stored web server on any

authorized internet-enabled device. However, the problems are the connectivity issue for

ESP8266 and lacking interface on a mobile platform. ESP8266 can only establish a stable

connection below 100 meters without an antenna, as the sub-station is usually a very large

area hence it is very less efficient using this WIFI module. Then lacking a mobile interface

is optional but adding a mobile interface makes the works smoother because the operator

might not need to bring a laptop which makes them easier to work(Hossain et al., 2019).

2.9 Internet of Things (IoT) using LoRa technology.

The authors Alireza Zourmand, Andrew Lai Kun Hing, Chan Wai Hung, and

Mohammad AbdulRehman presents the performance and the ability to cover a big area of

the LoRa network in both indoor and outdoor condition in 2019. The authors also said that

the quality of the LoRa network depends on both the distance between the gateway and also

19

the structural element. The connection of the LoRa network is divided into three sections,

LoRa end-devices, Integrated with an internet connection, and Cloud server and web

interface. Besides that, the authors state that adding a gateway will improve the indoor

coverage performance, then the outdoor maximum coverage area is 330 meters. In this

project, they use sensors, sx1278(433MHz) and Arduino UNO as the LoRa end-devices

while they use sx1278(433MHz) and ESP8266 for the LoRa gateway. The result shows that

330 meters are the maximum communication coverage if the LoRa gateway setup is put

indoor which does not reach the minimum distance of 1 km stated in the LoRa datasheet.

The authors state the reason is because of the higher noise interference and path loss that

occur inside and outside of the site. Then, the authors added the reason for this is because

the nature of the antenna used in the testing is omnidirectional which send the signal in all

direction through the air and most of the power is lost due to the receiver antenna does not

receive it when the penetration of signal power go through obstacle reduce the power of the

sending signal. To solve this problem, the authors suggest that placing the LoRa gateway

near the window is better than putting it in a room. The disadvantage of this project will be

the interface of the LoRa system that the authors were using. The interface can be designed

to become more user-friendly and better if there is an option to display all the information

on the mobile platform(Zourmand et al., 2019).

2.10 Tower Crane remote wireless monitoring system based on Modbus/TCP

protocol

This project is developed by Bo Li, Geng Chen, Le Wang, Zhe Hao in 2017 that a

wireless system to monitor and manage the tower crane for the aims to control tower cranes

20

more efficiently and safely. The data information of the crane will be detected by the sensors

and process by the ARM/STM32 smart control unit which is also the core Central Processing

Unit (CPU). Then GPRS module is connected to the internet by UART RS485 to allow the

data send to the remote monitoring terminal. In the end, the user will be able to monitor and

supervise tower cranes operation by Internet on the web platform. The drawbacks are only

the web interface is available and at the same time, the web interface is not user-friendly.

The web interface is very complex and not direct to the point to show the crane. Other than

that, the GRPS module used in this project is a very old model which will cause the

connectivity to remote control the crane not smooth when the network ping high(Li et al.,

2017).

2.11 Warehouse inventory management system using IoT and open-source

framework.

The authors B. Sai Subrahmanya Tejesh and S. Neeraja developed this system in

2017. This system helps the user to maintain the product detail and information and can tell

the user where the product is present. The authors choose RFID among all other wireless

communication technologies because they think RFID is the most suitable to be used on their

warehouse management system. To explain this reason, the RFID's ability to identify the

products or goods with attached tags is very unique and preferred. To set up this project, the

authors divide the system into blocks diagram of RFID tags, RFID reader, ESP8266,

Raspberry Pi 3, and a web server. In the beginning, the RFID tags will be placed in each

different warehouse room. Then, by using an RFID reader to scan the tags, the information

will be transmitted as a short string of data by the ESP8266 and sent to the Raspberry Pi 3

21

which functions as a central server. If a user is connected to the internet, the user will be able

to get all the information by searching a specific tag number on the web page. But before the

user does that, the user is also required to get authorization for entering the web page. All

information includes tag number, product description, location, stockroom number, and time

detail will be displayed on the web page in a table format. The weak point for this project

will be the WIFI module and the interface of the web page. The WIFI module used in this

project is ESP8266 which the range only able to reach a 100meter range. If the warehouse

is far larger than this 100meter long, then the system will not be able to function well. Besides

that, this project is only having a web page interface is not convenient for people to look for

many items. Let say when someone wants to find many products in a different warehouse.

Those people will need to use the computer in the office first to search for the products. This

can be improved by implementing the interface on the mobile platform so that any authorized

user will be able to search the products anytime on a small and always carried mobile(Tejesh

and Neeraja, 2018).

2.12 Journal Comparison for Relevant Previous Research

Table 2.1 shows the comparison table for 10 different research that related to this

project so that we can improve or avoid the drawback for this project after analyzing it.

Between ten of this research, most of the projects use ESP8266 WIFI module

because it is cheap and WIFI is a very common wireless method, but the drawback is that

WIFI spread and detection range is still limited to only around 100 meters. Although

22

compared to Bluetooth or infrared, WIFI is better but for this project, a better wireless

module is needed. Then, the research of the Internet of Things (IoT) using LoRa technology

shows that LoRa’s communication can reach 1 km in the paper although LoRa performance

is only able to reach 330 meters on their project. To improve the detectable range for this

project, LoRa has the best range among all the other wireless communication methods in

this 10 related research.

Then, another thing most of this research does not put into consideration is that their

projects do not have a mobile platform/GUI to monitor the data. When take about

monitoring, monitoring the data should be more direct, simple, convenient, and fast. Even

though monitoring data on the computer is good but in this era that almost all people have a

mobile phone, a mobile platform to allow the user to monitor their data in a mobile

application will be better.

23

Table 2.1 Comparison Table For 10 Different Related Research

No

.

Author Title Technique/Component Used Advantages Disadvantages

1 K. Sridevi

, A. Jeevitha

, K. Kavitha

, K. Sathya

and K.

Narmadha

2017

Smart Bus

Tracking and

Management

System Using

IoT

RTC (real-time clock), GPS (Global

Positioning System), Arduino Uno

Track buses

through Android

App which buses

carry GPS devices

to allow tracking.

The server monitors

the location and

stores its data in the

database.

If a bus is on a

weak internet

connection area, the

GPS will be slower

to track the bus

because GPS

without an internet

connection is less

accurate.

2 Prathibha

S.R.,

Anupama

Hongal,

Jyothi M.P.

2017

IoT Based

Monitoring

System In

Smart

Agriculture

CC3200, GPRS, DHT11, LDR, web server

NRF24L01, camera

Monitor

temperature and

humidity through

sensors, use a

camera to capture

images and send the

pictures through

MMS to farmer's

mobile using Wi-Fi.

MMS is an

outdated technique

to send pictures.

3 Ng Tian Xun

2018

Garbage Bin

Monitoring for

Smart

Residence

Raspberry Pi 3 Model B, RF module, Arduino

Uno, Arduino Micro/Nano, UDP (User

Datagram Protocol), MQTT (Message

Queuing Telemetry Transport), Tilt Sensor,

Ultrasonic Sensor

Display data on

PC/mobile after

data gather from the

remote

microcontrollers

and send to the

central server.

RF modules

without antenna are

only able to work

below 10meter

while after

equipping antenna

also around 25

meters.

24

4 Nor Akmal

Ahmad and

Mohd

Hakimi

Zohari

2020

Weight

Monitoring

Waste Bin

Based on

Internet of

Things (IoT)

Arduino Uno, Weight Sensor, Temperature

and Humidity Sensor, Ultrasonic Sensor,

WIFI-module

Since temperature

and humidity

change of the

waste, also the

weight of the

rubbish. Then, send

and display on the

application.

The dustbin needs

to be near the WIFI

signal as ESP8266

does not have a

good WIFI

detection range.

5 A. Anusha,

Syed

Musthak

Ahmed

2017

Vehicle

Tracking and

Monitoring

System to

Enhance the

Safety

And Security

Driving Using

IoT

GPS, GSM, SIM800 module, GPRS,

Microcontroller LPC2148

Monitoring moving

vehicle parameters

and display on

display board then

send message to the

mobile.

Only able to

monitor through the

LCD screen.

6 Akshay

Ramesh

Jadhav, P.

Rajalakshmi

2017

IoT Enabled

Smart and

Secure Power

Monitor

ESP8266, current sensor Monitor the power

consumption and

display value on the

Android application

which the power

data stored on the

server.

ESP8266 detection

range is weak so

that the module

needs to close to

the WIFI signal. No

microcontroller

means limited

function.

25

7 Md. Sanwar

Hossaina

, Mostafizur

Rahmana

, Md. Tuhin

Sarker b

,

Md. Ershadul

Haquec

, Abu Jahida

2019

A smart IoT

based system

for monitoring

and controlling

the

sub-station

equipment

Ultrasonic sensor, IR sensor, actuator,

ESP8266, MQTT

Remote monitoring

and controlling the

sub-station

equipment through

IoT. The system

allows objects to be

sensed or controlled

remotely across the

network

infrastructure.

Only display on a

computer, no

mobile interface.

8 Alireza

Zourmand,

Andrew Lai

Kun Hing,

Chan Wai

Hung,

Mohammad

AbdulRehma

n

2019

Internet of

Things (IoT)

using LoRa

technology.

LoRa, ESP8266, sensors, sx1278, Arduino

Nano

Able to reach the

detectable distance

of the LoRa

communication

network for

330meters.

GUI interface to

monitor the data is

web interface only.

9 Bo Li, Geng

Chen, Le

Wang, Zhe

Hao

2017

Tower Crane

remote wireless

monitoring

system based on

Modbus/TCP

protocol

Modbus/TCP protocol, ARM9 Cortex A8,

GPRS

Monitor and

manage system of

tower crane based

on Modbus/TCP

protocol wirelessly

through GPRS.

Only has a web

interface to monitor

the crane. The

interface is not

user-friendly.

26

10 B. Sai

Subrahmanya

Tejesh, S.

Neeraja

2017

Warehouse

inventory

management

system using

IoT and open-

source

framework

RFID, Raspberry Pi, AIDC (Automatic

identification and data capture), ESP 8266

Use Raspberry Pi as

a central server,

monitoring all the

information. Then,

created a webpage

to provide

convenience and an

interface to the user

to track the

inventory data.

ESP8266 short

WIFI range and

only has a web

interface.

27

2.13 Summary

At the end of this chapter, some advantages, and disadvantages of projects are

analyzed. It is easier to implement the techniques that previous researchers had been used in

this project. Also, the disadvantages can be avoided as much as possible. The result for

reviewing previous researchers’ research affects this project in a good way because the

proper and suitable method will be applied while keeping the weak point aside. After going

through these journals, I want to use LoRa as the wireless communication method to send

and receive data. It is because the usual and common WIFI, BLUETOOTH technique is not

able to provide long-range communication.

28

METHODOLOGY

3.1 Introduction

After doing the review and comparison of 10 different literature reviews in the

previous chapter. The idea to make this project is clarified. To implement this idea, software

and hardware components are involved, so the detail of both the type of the component must

be determined. After the hardware is decided, the block diagram to represent the relationship

for each hardware component will be created. At the same time, the flowchart will also be

created to show the workflow of this project. Besides that, an algorithm flowchart will also

be created to show the workflow for the programming coding. To finish this project on time,

a Gantt chart will be needed for planning and finishing each of the tasks without confusion.

The previous research in chapter 2 shows the data of the wireless connection method

to transfer the sensor’s value. So, in this chapter, I will show the advantage of LoRa for its

ability to reach how long the range will be. Besides that, the result of the initial result for the

sensors will also include in this chapter.

29

3.2 Software

3.2.1 Arduino IDE

Arduino IDE is a software that allows users to communicate with Arduino hardware

by uploading the coding to the Arduino hardware board. The hardware is including the

Arduino board itself, Arduino shields, modules, and sensors. For this chapter, the value for

the sensors will be collected. To collect the data from the sensors, Arduino IDE is needed to

upload the programming code to the Arduino board. Arduino IDE’s environments use C and

C++ languages to write and compile the code.

3.2.2 Android Studio

Android Studio is used to develop an app to monitor the data easier. The health of

the crane will be shown in this application by showing the value get from the sensors. To

show the data in a graphical view, a library called MPAndroidChart had been used. The

function of this library is mainly to display the graph in Android. Java is the official language

for Android Studio development but there are much more support languages like Kotlin,

C++ and many more.

30

3.3 Hardware

3.3.1 BOM (Bill of Material)

Table 3.1 BOM table

No. Components Name Description Quantity

1 Arduino UNO Arduino UNO Board 1

2 LoRa Module LoRa wireless module 2

3 NodeMcu ESP8266 WIFI module 1

4 Load Cell(5Kg) Weight sensor (with HX711) 1

5 DHT22 Temperature sensor 1

6 ACS712 Current sensor 1

3.3.2 Arduino UNO

The reason for using Arduino UNO is due to its programming ease. Besides that, the

low power consumption and low cost of Arduino UNO are also the reason for choosing it.

In this project, Arduino UNO will be used to communicate with the sensors and then a LoRa

module will be connected as a transmitter. So, the sensor data will be processed and sent to

Arduino UNO, then the data will be sent using LoRa modules to the receiver side which in

this project is the NodeMCU.

31

3.3.3 LoRa Module

LoRa module is a new technique that allows data transmission at low data rates to very

long ranges. LoRa has a different type of operation frequency, it can operate in 433MHz,

868MHz, and 915 MHz based on the models. The advantage of LoRa is the long-range

transmission that can at least reach more than 1km which is better than the common wireless

communication method like infrared, Bluetooth, and WIFI. The disadvantage is also

obvious, which is the low data rate transmission. Due to that, LoRa will only be able to send

simple data, but it is still enough and suitable for this project because only the sensor’s value

needs to be sent.

3.3.4 NodeMcu ESP8266

ESP8266 modules allow the microcontroller to connect to WIFI. It is used in this

project to make the Arduino able to send the collected sensor’s value to the database through

a WIFI connection. The sensor’s value will be received through the connected LoRa module

with this board, then it will be sent to the database.

3.3.5 Sensors

To monitor the health and utilization rate of the crane, some sensors will be needed.

Some elements that are needed are the power consumption, working hours, temperature, fuel

status and tonnage of the crane. But in this project, the prototype only will be created, so the

related sensor will be used.

32

3.4 Block Diagram

Figure 3.1 Block Diagram of Development of Crane Utilization System

Based on IoT

Above Figure 3.5 is the block diagram of this development of crane utilization system

based on IoT project. This project has two parts, the left side is the transmitter part, and the

right side is the receiver part. This project start function from the transmitter part, the sensors

will start working when the crane starts to work. Then, the value of the sensor will be sent

to Arduino UNO to process. After that, the processed data will be sent to the receiver side

through the LoRa module. Figure 3.6 shows the transmitter side block diagram of this

project.

Figure 3.2 Block Diagram for Transmitter Side

33

Then, after the LoRa module on the receiver side receives the data, it will be sent to

the database by using the WIFI connection from the NodeMCU ESP8266 internet module.

Finally, the user will be able to start the crane monitoring by running the application on their

mobile phone. Figure 3.7 shows the block diagram for the receiver side of this project.

Figure 3.3 Block Diagram for Receiver Side

3.5 Project Overview

Table 3.2 shows a Gantt chart that represents the project activity execution schedule

time every week until the PSM 1 presentation while table 3.3 shows a Gantt chart that

represents the project activity for PSM2. In PSM 1, the Gantt chart is focusing on the

research and methodology activity to determine the possible and suitable method could be

use in this project. After PSM 1 completed, the method that obtain in PSM 1 will be execute

so a project prototype can be create according to the plan from PSM 1. At the end, what PSM

1 do is planning while PSM 2 is to implement the plan.

34

3.5.1 Gantt Chart

Table 3.2 Gantt chart Bachelor Degree Project 1

No. Project Activity
Expected

/Actual

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
Registration for final year project

Expected

Actual

2
Final year project briefing

Expected

Actual

3 Title discussion and decision with

supervisor

Expected

Actual

4
Study Related Research

Expected

Actual

5 Complete Chapter 2: Literature

Review

Expected

Actual

6
Progress Update to supervisor

Expected

Actual

7
Complete Chapter 1:Introduction

Expected

Actual

8
Complete Chapter 3: Methodology

Expected

Actual

9
Submit report

Expected

Actual

10
Preparation for presentation

Expected

Actual

11
Submit presentation video

Expected

Actual

12
PSM 1 presentation

Expected

Actual

35

Table 3.3 Gantt chart Bachelor Degree Project 2

No. Project Activity
Expected

/Actual

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
Draft Material List

Expected

Actual

2
Test Hardware

Expected

Actual

3 Design application and hardware

coding

Expected

Actual

4
Set up Database

Expected

Actual

5
Analyse Result

Expected

Actual

6 Complete Chapter 4:Result and

Discussion

Expected

Actual

7
Complete Chapter 5:Conclusion

Expected

Actual

8
Submit draft report

Expected

Actual

9
Prepare Project Poster

Expected

Actual

10
Preparation for presentation

Expected

Actual

11
Presentation

Expected

Actual

12
Submit Final Report

Expected

Actual

36

3.5.2 Project Flowchart

To start a project from scratch, a work flow is needed. Figure 3.8 show a project

flow chart that had been used in this project. First, the title of the project need to be decided.

Then, the project objective, problem statement and the project scope must be identified. By

doing this, a possible and suitable method to build this project can be determine. After that,

some research on previous research needs must be done to see how other researcher are

working in their project that related to this project. Then, the methodology that suitable in

this project will be define. Then, start the simulation and testing to find the problem, so

troubleshoot can be done. At the end, if the project works without problems, an analysis of

the result can be make.

An algorithm flow chart helps to build a new program because in a algorithm flow

chart, it explain what is the process of a program step by step. Figure 3.9 shows the algorithm

flow chart of this project. First, the Arduino Uno and the NodeMCU will connected with

each other by LoRa transceiver module. Then, the sensors data of the transmitter

side(Arduino UNO) will be collected and sent to the receiver side(NodeMCU). After that,

the NodeMCU will upload the data to the database if it is connected to the internet. If no

connect to internt, the NodeMCU will try to connect with internet again until it success.

Next, after the data had been uploaded to the database, the user will able to view the data in

the Android mobile application.

37

Figure 3.4 Project flowchart

38

Figure 3.5 Algorithm flowchart

39

3.6 Summary

In this chapter, the method that going to be used in this project and the development

process had been explained. The reasons for the hardware and software used in this project

are also explained one by one. This will help the reader to understand the development of

this project more clearly.

To complete the project and achieve the project’s objective, a plan will be needed.

A plan will consist of planning the working flow and the project development schedule. This

is to make sure each element in this project can be done on time and successfully. The plan

can be carried out by creating a flow chart that shows all the processes and workflow for this

project and makes a Gantt chart to schedule the needed time for completing each task every

week. Last but not least, an algorithm flow chart will also be created.

40

RESULT AND DISCUSSION

4.1 Introduction

When this project can work properly, the result and output will be created. In this

chapter, those outcomes and results will be presented and discussed. In addition, the

hardware implementation for this project Development of Crane Utilization System Based

On IoT will be clarified. To get the data for crane utilization rate simulation, the hardware

needs to be set up first. After the hardware had been tested and can run normally, coding that

based on the programming flow chart needs to compile and install to the hardware. Then,

the output from this project will be shown. At the same time, the obtained data can then be

used for result analysis.

4.2 Hardware Setup

In this section, the implementation or design of the hardware will be discussed. For

this project, two-part of hardware had been set up which are the transmitter side and receiver

side. Figure 4.1 shows the transmitter side of the project while Figure 4.2 shows the receiver

side of the project. At the transmitter side, the data will be collected using sensors then will

be processed in the Arduino UNO and sent through the LoRa transceiver module. The

sensors and modules are labelled in Figure 4.1. Then, the receiver side only has a NodeMCU

ESP8266 connected with the LoRa module. The reason for this is because the receiver side

is only used to process the collected data sent from the transmitter’s LoRa transceiver, then

41

upload to the database after NodeMCU is connected to the internet. The connection and

hardware setup are labelled in Figure 4.2.

After both transmitter and receiver had been set up, some of the sensors need to add

another object for measuring different data. Firstly, the ACS712 Current Sensor needs a load

to allow the sensor for measuring the current data from the load. In this project, a TS90a

Servo Motor has been used as the current sensor’s load. Then, an Arduino NANO is used to

supply power and program the servo motor to rotate occasionally every 15 seconds. Second,

the weight sensor also needs a load for measuring the weight data. So, an object which is a

broken NodeMCU chip is added and placed on the 5KG load cell to become the weight

sensor load. Figure 4.3 shows an ACS 712 Current Sensor that is connected to the

load(TS90a Servo Motor). At the same time, Figure 4.4 shows a 5KG load cell that has a

load(broken NodeMCU chip) placed on it.

Figure 4.1 Transmitter Side Hardware Set-Up

42

Figure 4.2 Receiver Side Hardware Set-Up

Figure 4.3 ACS712 Current Sensor Load(Servo motor)

43

Figure 4.4 Load Cell 5KG and Load(Broken NodeMCU Chip)

4.3 Result Analysis

In this section, the output obtained from the project will be shown. This includes

the data sent and received through the LoRa transceiver. First, the data will be collected by

the sensor on the transmitter side. Then it will be transmitted and received by the LoRa

module. Next, the data will be collected and processed on the receiver side. Figure 4.5 shows

the serial monitor from the Arduino software when a transmitter sends data dan Figure 4.6

shows the serial monitor from the Arduino software when a receiver receives data. There are

some symbols in Figure 4.6, the purpose for this is to capture and fetch data from the serial

monitor which allows different data to store in a different variable. In addition, the SNR and

RSSI values of the LoRa module are also displayed in the serial monitor of the receiver side.

The database has two-part, one is real-time data and another one is recorded data.

The reason to separate and store the data like this is that Google Firebase's real-time database

is a NoSQL database. This means that the data uploaded to the database is unstructured data

44

and hard to manage compared to SQL data. Due to that, this database has three parts. First

part, the real-time data will be shown and displayed in real-time but never recorded, while

the recorded part record and save the date and time as database key with the sensors data as

database value. The reason for the real-time data not being recorded is because there is

already a location to record the data for each second the prototype works. The second part is

the database recording the data for each second the prototype works while the third part is

the database recording the data for each hour the prototype works. By doing this, the data

will be able to be analysed by applying different methods and depending on what the user

wants to do. In this project, the real-time data will be shown directly with the value from the

database. On the other hand, a graphical view will be used to display both recorded seconds

and hours data getting from the database. Speaking of this, the graph view will be displayed

in the android application.

Figure 4.5 Transmitter Side Serial Monitor

45

Figure 4.6 Receiver Side Serial Monitor

Figure 4.7 Google Firebase Real-Time Database Root Directory

46

Figure 4.8 Google Firebase Real-Time Database Seconds View

Figure 4.9 Google Firebase Real-Time Database Hours View

47

Figure 4.10 shows the initial page when a user launches the android application while

Figure 4.11 shows the response when a user clicks on the “RealTime Monitoring button”.

Figure 4.10 On Launch Interface

Figure 4.11 After Clicked “RealTime Monitoring” button

48

After the user clicks on that “RealTime Monitoring” button, the real-time data of

the sensors will be shown. To view the graph, the user will need to click on the Past Record

button. By default, there is a graph view without chart data. It is because the date of the graph

needs to be input by the user first to show the data in graph view. On this page, the user will

need to enter the date in a specific format and click submit date button. Besides that, there is

a button labelled with the name “24H”, this button is used to change the data mode between

seconds mode or hours mode. The default data display mode is seconds mode which shows

all the recorded data in seconds view, while another option is hours mode that shows the

data recorded in each hour the prototype works. Figure 4.12 shows the response when a user

clicks on the Past Record button. Figure 4. shows the graph view after the date was entered

by the user in a specific format.

Figure 4.12 After Clicked Past Record button

49

Figure 4.13 After Submitted Data in Specific Format

The user can change what sensor’s data they want to monitor by clicking on the

spinner. Figure 4.14 shows the sensors option in the spinner. The available option for the

user to monitor is current data, fuel data, power data, temperature data, and weight data. The

graph may have many data, but the user can click on a specific node to get the exact time for

that data uploaded and recorded to the database. The user also can zoom in and zoom out the

graph for a better view experience. The user can zoom in on the graph simply by double-

tapping the graph or zooming in out by dragging and pinching the graph. Figure 4.15 shows

the android application interface when the user zooms in on the graph view and selected a

node. The graph in Figure 4.15 compared to the graph in Figure 4.13 is larger after zooming

in, both graphs are displaying temperature data in the same date and time but just different

in graph size because the latter one had been enlarged.

50

Figure 4.14 Spinner’s Sensor Option

Figure 4.15 Zoom In and Selected A Node

51

The user can analyse the data by viewing the graph in seconds mode or hours mode.

For better graph inspecting and analysing experience, the user can change the mode to show

the recorded data in each hour by clicking on the “24H” button. After the user clicks on the

button, the button label will show “SEC” instead of “24H”, this means the data display mode

had changed from seconds mode to hours mode. The following figures show the sensor’s

data recorded between 12.00 a.m. to 12.00 p.m. on 26 December 2021. Figure 4.16 shows

the current data in per hour graph view. The current value is start with zero because at that

time the load, servo motor havent connected to the current sensor. But after a while the servo

motor had been connected to the current sensor and start to move periodically, so the current

value increase from zero to 0.05 amphere. Figure 4.17 shows the fuel’s data in the per hour

graph view. The value for this fuel sensor is increasing and decreasing because the fuel data

is obtain from an ultrasonic sensor. The ultrasonic sensor will detect the range by reading

the reflection of the signal. The graph data shows unstable value because during the

simulation, the ultrasonic sensor is place on a living room. When people passing, the value

will be interrupted, this result also show that the ultrasonic sensor works without issues. If

the ultrasonic sensor was place in a closed space, the value will be constant. Figure 4.18

shows the power data in the per hour graph view. For the power data, it is actually using the

current sensor’s data but after a multiplication with voltage value. So, the graph pattern is

very similiar with the current graph. Figure 4.19 shows the temperature data in the per hour

graph view. The temperature raise at 8 a.m. because at that time the weather is good and the

sun is rising, then it causes the temperature to increase. But after that, weather become cloudy

which cause the temperature decrease after 8 a.m.. Figure 4.20 shows the weight data in per

hour graph view. In this project, 5KG load cell had been used but the load used in this project

is a 5 grams load, this graph shows a good result that prove it is a 5 grams load.

52

Figure 4.16 Graph Data Analysis-Current per hour

Figure 4.17 Graph Data Analysis-Fuel per hour

53

Figure 4.18 Graph Data Analysis-Power per hour

Figure 4.19 Graph Data Analysis-Temperature per hour

54

Figure 4.20 Graph Data Analysis-Weight per hour

55

4.4 Summary

In this chapter, several sensor data had been collected and shown for the result

analysis. Some of the data getting from the sensors are unstable (i.e., current sensor’s data,

weight sensor’s data, and ultrasonic sensor’s data). The current sensor ACS 712 is getting

data that is inaccurate because of the characteristic of itself that is very sensitive to the

magnetic fields, the accuracy is of course less precise. Then, the ultrasonic sensor HC-SR04

is suitable for the fuel tank that shape is regular or symmetrical. To detect the fuel level for

the fuel tank that other than this, the ultrasonic sensor HC-SR04 should be replaced with

other sensors such as float level sensor. Besides that, the Google Firebase Realtime Database

is not an SQL database based on the concept of documents. Hence, it is important to manage

the database structure for avoiding the collected data messy. The flexibility of a no SQL

database allows the developer to modify the database without providing the detailed database

model before creation is one of its advantage of it.

56

CONCLUSION

5.1 Conclusion

In this thesis, a method had been proposed for implementing the crane utilization

monitoring system based on IoT using the LoRa transceiver module. The LoRa module that

is able to receive and transfer data in a long-range that up to 10 kilometres are very suitable

to implement in this system. Also, by implementing this project, the user will be able to

monitor the crane utilization rate and health through the Android application. As mentioned

before, this system is a simulation type prototype project, the sensors in this system should

be replaced with proper sensors before being implemented in the crane. Then, when any

unusual data is observed, the user can take action immediately. By doing this, the chance

that an accident will happen due to the malfunction of the crane can be decreased to a

minimum level. In addition, the crane owner or company can always monitor the crane and

do maintenance or repairing jobs for the crane when one of the elements such as power

consumption, fuel consumption or engine’s temperature has an unusual value. In a

conclusion, this project had successfully achieved both of the project’s objectives. This

project can perform well and has potential to be used in heavy engineering field that use

crane in their works. By implementing this monitoring system, the crane data will not only

able to be view by the crane operator but anyone that installed the mobile application in their

smartphone. So, it is bmore convinient when people want to know about the crane

performance anytime. Besides the monitoring function, many improvements can be done to

57

this project to make it perform better and do other things. These future works will be

discussed in the next part of this chapter.

5.2 Future Works

For this project, this crane utilization monitoring system is only used for monitoring

the crane utilization rate and crane health. But, there will be great if the admin user can

control the crane through the mobile application. For example, if the admin found that the

crane is working in a bad or dangerous condition, the admin can stop the crane from working

by using the mobile application. To do that, the application will need to implement a way to

verify the user which is to request the user to log in to the application. By doing this, the user

can be divided into many categories such as the normal user that only can monitor the data

or admin that have the permission to interrupt the crane activity.

Then, some modifications can be done to make this project work on the crane for

getting data from it. The sensors that had been used in this project are not the type of sensors

that are suitable for measuring the real crane data, so they should be changed to the proper

ones. Next, to improve the connectivity and coverage range of the LoRa module, it can be

enhanced by using a better antenna.

58

REFERENCES

Akmal, N. (2020) ‘Development of Software Weight Monitoring Waste Bin Based on

Internet of Things (IOT)’, 0(0), pp. 341–352.

Anusha, A. and Ahmed, S. M. (2017) ‘Vehicle Tracking and Monitoring System to

Enhance the Safety and Security Driving Using IoT’, Proceedings - 2017 International

Conference on Recent Trends in Electrical, Electronics and Computing Technologies,

ICRTEECT 2017, 2017-Decem, pp. 49–53. doi: 10.1109/ICRTEECT.2017.35.

Hossain, M. S. et al. (2019) ‘A smart IoT based system for monitoring and controlling the

sub-station equipment’, Internet of Things, 7, p. 100085. doi: 10.1016/j.iot.2019.100085.

Jadhav, A. R. and Rajalakshmi, P. (2017) ‘IoT enabled smart and secure power monitor’,

TENSYMP 2017 - IEEE International Symposium on Technologies for Smart Cities. doi:

10.1109/TENCONSpring.2017.8070096.

K, S. (2017) ‘Smart Bus Tracking and Management System using Iot’, International

Journal for Research in Applied Science and Engineering Technology, V(III), pp. 372–

374. doi: 10.22214/ijraset.2017.3067.

Li, B. et al. (2017) ‘Tower Crane Remote Wireless Monitoring System Based on

Modbus/TCP Protocol’, Proceedings - 2017 IEEE International Conference on

Computational Science and Engineering and IEEE/IFIP International Conference on

Embedded and Ubiquitous Computing, CSE and EUC 2017, 2, pp. 187–190. doi:

10.1109/CSE-EUC.2017.217.

Prathibha, S. R., Hongal, A. and Jyothi, M. P. (2017) ‘IOT Based Monitoring System in

Smart Agriculture’, Proceedings - 2017 International Conference on Recent Advances in

Electronics and Communication Technology, ICRAECT 2017, pp. 81–84. doi:

59

10.1109/ICRAECT.2017.52.

Rahim Abdul Hamid, A. et al. (2019) ‘Causes of crane accidents at construction sites in

Malaysia’, IOP Conference Series: Earth and Environmental Science, 220(1). doi:

10.1088/1755-1315/220/1/012028.

Tejesh, B. S. S. and Neeraja, S. (2018) ‘Warehouse inventory management system using

IoT and open source framework’, Alexandria Engineering Journal, 57(4), pp. 3817–3823.

doi: 10.1016/j.aej.2018.02.003.

Tian Xun Ng (2018) ‘A “missing” family of classical orthogonal polynomials’, GARBAGE

BIN MONITORING FOR SMART RESIDENCE, 44(8), pp. 1689–1699. doi: 10.1088/1751-

8113/44/8/085201.

Zourmand, A. et al. (2019) ‘Internet of Things (IoT) using LoRa technology’, 2019 IEEE

International Conference on Automatic Control and Intelligent Systems, I2CACIS 2019 -

Proceedings, (June), pp. 324–330. doi: 10.1109/I2CACIS.2019.8825008.

60

APPENDICES

Appendix A Transmitter Side Arduino IDE(Arduino UNO) coding

#include <SPI.h>

#include <LoRa.h>

#include <DHT.h>

#include <DHT_U.h>

#include "HX711.h"

#include "RTClib.h"

#define echoPin 5 // attach pin D5 Arduino to pin Echo of HC-SR04

#define trigPin 6 //attach pin D6 Arduino to pin Trig of HC-SR04

long duration; // variable for the duration of sound wave travel

int distance; // variable for the distance measurement

#define DHTPIN 7 //dht22 pin

#define DHTTYPE DHT22//define sensor type

DHT dht(DHTPIN, DHTTYPE);//set pin and dht sensor model

#define VIN A0 //current sensor pin

const float VCC = 5.0;// supply voltage is from 4.5 to 5.5V. Normally 5V.

const int model = 0;

const float QOV = 0.5 * VCC;// set quiescent Output voltage of 0.5V

HX711 scale(4, 3);//hx711 load cell amplifier pin

RTC_DS3231 rtc;//rtc module declare

String yearData,monthData,dayData,hourData,minuteData,

 secondData,dateData,timeData,starting_dateData,starting_timeData;

long startingSeconds,currentSeconds;

float calibration_factor = -711; // this calibration factor is adjusted according to my load

cell

float units,ounces;

float temp;

float cutOffLimit = 0;

float sensitivity[] ={

 0.185,// for ACS712ELCTR-05B-T

 0.100,// for ACS712ELCTR-20A-T

 0.066// for ACS712ELCTR-30A-T

 };

float voltage,current,power;// internal variable for voltage

61

void setup() {

 pinMode(trigPin, OUTPUT); // Sets the trigPin as an OUTPUT

 pinMode(echoPin, INPUT); // Sets the echoPin as an INPUT

 Serial.begin(115200);

 dht.begin();

 while (!Serial);

 Serial.println("LoRa Sender");

 if (!LoRa.begin(433E6)) { // or 915E6, the MHz speed of yout module

 Serial.println("Starting LoRa failed!");

 while (1);

 }

 scale.set_scale();

 scale.tare(); //Reset the scale to 0

 if (! rtc.begin()) {

 Serial.println("Couldn't find RTC");

 Serial.flush();

 abort();

 }

 if (rtc.lostPower()) {

 Serial.println("RTC lost power, let's set the time!");

 // When time needs to be set on a new device, or after a power loss, the

 // following line sets the RTC to the date & time this sketch was compiled

 rtc.adjust(DateTime(F(__DATE__), F(__TIME__)));

 // This line sets the RTC with an explicit date & time, for example to set

 // January 21, 2014 at 3am you would call:

 // rtc.adjust(DateTime(2014, 1, 21, 3, 0, 0));

 }

 trackTime();

 starting_dateData=dateData;

 starting_timeData=timeData;

 startingSeconds=currentSeconds;

}

void loop() {

 current_sensor();

 temperature_read();

 weighting();

 trackTime();

 detectFuel();

 Serial.print("Total Working Time(seconds): ");

 Serial.println(calculateTime(startingSeconds,currentSeconds));

 //delay(2000);

 Serial.println();

 LoRa.beginPacket();LoRa.println();

62

 LoRa.print("Current :<");LoRa.print(current);LoRa.print("> A\t\t");

 LoRa.print("Power :(");LoRa.print(power);LoRa.print(") W\t\n");

 LoRa.print("temperature:[");LoRa.print(temp);LoRa.println("] *C\t");

 LoRa.print("weight:+");LoRa.print(units);LoRa.print("- grams\n");

 LoRa.print("Fuel left:@");LoRa.print(distance);LoRa.print("# percent\n");//distance

need adjust with range to get percent, now only distance

 LoRa.print("Current Date :あ");LoRa.print(yearData);LoRa.print("い");

 LoRa.print(monthData);LoRa.print("う");

 LoRa.print(dayData);LoRa.print("え \t\n");

 LoRa.print("Current Time :お");LoRa.print(hourData);LoRa.print("か");

 LoRa.print(minuteData);LoRa.print("き");

 LoRa.print(secondData);LoRa.print("く \t\n");

 LoRa.print("Working Time

:~");LoRa.print(calculateTime(startingSeconds,currentSeconds));LoRa.print("`

seconds\t\n");//new add

 LoRa.endPacket();

}

void temperature_read(){

 temp = dht.readTemperature();

 Serial.print(temp); Serial.println(" *C\t");

 }

void weighting(){

 scale.set_scale(calibration_factor); //Adjust to this calibration factor

 Serial.print("Reading: ");

 units = scale.get_units(), 10;

 if (units < 0)

 {

 units = 0.00;

 }

 //ounces = units * 0.035274;

 Serial.print(units);

 Serial.print(" grams");

 Serial.println();

}

void current_sensor(){

 for(int i=0;i<1000;i++){

 float voltage_raw = (5.0 / 1023.0)* analogRead(VIN);// Read the voltage from sensor

 voltage = voltage+ voltage_raw ;// 0.006 is a value to make voltage zero when there is

no current

 delay(1);

 }

 voltage=voltage/1000-QOV-0.007;

63

 current = voltage / sensitivity[model];

 power = current*5;

 if(abs(current) > cutOffLimit){

 Serial.print("Current: ");

 Serial.print(current,3); // print the current with 2 decimal places

 Serial.println("A");

 Serial.print("POWER: ");

 Serial.print(power,3);

 Serial.println("W");

 }else{

 Serial.println("No Current");

 }

 delay(1);

}

void trackTime(){

 DateTime now = rtc.now();

 yearData =now.year() ; monthData =now.month() ;

 dayData =now.day() ; hourData =now.hour() ;

 minuteData=now.minute(); secondData=now.second();

 dateData=monthData+'.'+dayData;

 timeData=minuteData+'.'+secondData;

 currentSeconds=now.unixtime();

 Serial.println("Starting Date: "+starting_dateData);

 Serial.println("Starting Time: "+starting_timeData);

 Serial.println("Current Date: "+yearData+'.'+dateData);

 Serial.println("Current Time: "+hourData+'.'+timeData);

 delay(1);

}

long calculateTime(long startAt, long endAt){

 long duration=endAt-startAt;

 return duration;

}

void detectFuel(){

 digitalWrite(trigPin, LOW);

 delayMicroseconds(2);

 // Sets the trigPin HIGH (ACTIVE) for 10 microseconds

 digitalWrite(trigPin, HIGH);

 delayMicroseconds(10);

 digitalWrite(trigPin, LOW);

 // Reads the echoPin, returns the sound wave travel time in microseconds

 duration = pulseIn(echoPin, HIGH);

 // Calculating the distance

 distance = duration * 0.034 / 2; // Speed of sound wave divided by 2 (go and back)

64

 // Displays the distance on the Serial Monitor

 Serial.print("Distance: ");

 Serial.print(distance);

 Serial.println(" cm");

 //delay(1000);

}

65

Appendix B Receiver Side Arduino IDE(NodeMCU) coding

#include <ESP8266WiFi.h>

#include <FirebaseArduino.h>

#include <LoRa.h>

// Set these to run example.

#define FIREBASE_HOST "awesome-lora-default-rtdb.firebaseio.com"

#define FIREBASE_AUTH "V2oU7wmf09bit8eCYm4hlIfYtfuuuL2MbgHzKBrR"

#define WIFI_SSID "no pay no gain"

#define WIFI_PASSWORD "huhu545225??"

#define ss 15//ss pin

#define rst 16

#define dio0 9

unsigned long lastMillis = 0;

unsigned long millisSend = 0;

uint32_t timer_1seconds = 0;

bool done;

char receivedChars[32]; // an array to store the received data

String msg,mergeTime;

float current,watt,temp,gram,fuel;

long duration,i=0;

int n = 0;

void setup() {

 Serial.begin(115200);

 // connect to wifi.

 WiFi.begin(WIFI_SSID, WIFI_PASSWORD);

 Serial.print("connecting");

 while (WiFi.status() != WL_CONNECTED) {

 Serial.print(".");

 delay(500);

 }

 Serial.println();

 Serial.print("connected: ");

 Serial.println(WiFi.localIP());

 Firebase.begin(FIREBASE_HOST, FIREBASE_AUTH);

 Serial.println("LoRa Receiver");

 LoRa.setPins(ss, rst, dio0);

 if (!LoRa.begin(433E6))

 {

 Serial.println("Starting LoRa failed!");

66

 delay(100);

 while (1);

 }

 Serial.println("LoRa Started");

}

void loop() {

 onReceive(LoRa.parsePacket());

 current=catchData('<','>');

 watt=catchData('(',')');

 temp=catchData('[',']');

 gram=catchData('+','-');

 duration=catchData('~','`');

 fuel=catchData('@','#');

 if(current<0)//if negative show 0

 current=0;

 if(watt<0)

 watt=0;

 if(gram<0)

 gram=0;

 Firebase.setFloat("Current", current);

 Firebase.setFloat("Power", watt);

 Firebase.setFloat("Temperature", temp);

 Firebase.setFloat("Weight", gram);

 Firebase.setFloat("Working_duration", duration);

 Firebase.setFloat("Fuel", fuel);

 updateDATA();

 yield();

 updateDATA_hour();

}

void onReceive(int packetSize) {

 if (packetSize == 0) return;// if there's no packet, return

 // read packet header bytes:

 String incoming = "";

 while (LoRa.available()) {

 incoming += (char)LoRa.read();

 }

 msg=incoming;

 Serial.println("Message: " + incoming);

67

 Serial.println("RSSI: " + String(LoRa.packetRssi()));

 Serial.println("Snr: " + String(LoRa.packetSnr()));

 Serial.println();

}

float catchData(char opening, char closing){

 static byte ndx = 0;

 int starting,ending;

 String value;

 for(int i=0;i<msg.length();i++){

 if(msg.charAt(i)==opening){

 starting=i+1;

 }

 if(msg.charAt(i)==closing){

 ending=i-1;

 }

 }

 for(int i=0;i<=ending-starting;i++){

 receivedChars[i]=msg.charAt(starting+i);

 }

 value=String((char*)receivedChars);

 memset(receivedChars,0,sizeof(receivedChars));

 yield();

 return value.toFloat();

}

void readTime(char opening,char middle1,char middle2, char closing){//data process

 int a,b,c;

 String x,y,z;

 a=(int)catchData(opening,middle1);

 b=(int)catchData(middle1,middle2);

 c=(int)catchData(middle2,closing);

 if(a<10)//if data only 1 digit, make it 2digit,like 1 become 01

 x="0"+String(a);

 else

 x=String(a);

 if(b<10)

 y="0"+String(b);

 else

 y=String(b);

 if(c<10)

 z="0"+String(c);

 else

68

 z=String(c);

 mergeTime=x+"_"+y+"_"+z;

}

void updateDATA(){

 String a,b,c,d,e,f,g,h,i,j,temp1,temp2,temp3,temp4,temp5;

 readTime('あ','い','う','え');//catch data between these symbol

 String date=mergeTime;

 readTime('お','か','き','く');

 String timeNOW='/'+mergeTime;

 //seperate time here with _

 temp1=("record/r_current/");//database reference

 temp2=("record/r_power/");

 temp3=("record/r_temperature/");

 temp4=("record/r_weight/");

 temp5=("record/r_fuel/");

 a=temp1+date+timeNOW;

 b=temp2+date+timeNOW;

 c=temp3+date+timeNOW;

 d=temp4+date+timeNOW;

 e=temp5+date+timeNOW;

 Firebase.setFloat(a, current);

 Firebase.setFloat(b, watt);

 Firebase.setFloat(c, temp);

 Firebase.setFloat(d, gram);

 Firebase.setFloat(e, fuel);

}

void updateDATA_hour(){

 //read from database worktime =x

 //

 if(millis()-lastMillis>3600000){

 lastMillis=millis();

69

 String a,b,c,d,e,f,g,h,i,j,temp1,temp2,temp3,temp4,temp5;

 readTime('あ','い','う','え');

 String date=mergeTime;

 readTime('お','か','き','く');

 String timeNOW='/'+mergeTime;

 temp1=("record_per_hour/hour_current/");

 temp2=("record_per_hour/hour_power/");

 temp3=("record_per_hour/hour_temperature/");

 temp4=("record_per_hour/hour_weight/");

 temp5=("record_per_hour/hour_fuel/");

 a=temp1+date+timeNOW;

 b=temp2+date+timeNOW;

 c=temp3+date+timeNOW;

 d=temp4+date+timeNOW;

 e=temp5+date+timeNOW;

 Firebase.setFloat(a, current);

 Firebase.setFloat(b, watt);

 Firebase.setFloat(c, temp);

 Firebase.setFloat(d, gram);

 Firebase.setFloat(e, fuel);

 }

}

70

Appendix C Android Application Code (MainActivity.java)

package com.example.fyplora;

import androidx.annotation.NonNull;
import androidx.appcompat.app.AppCompatActivity;
import androidx.fragment.app.FragmentManager;

import android.content.Intent;
import android.os.Bundle;
import android.view.View;
import android.widget.TextView;
import android.widget.Toast;

import com.google.firebase.database.DataSnapshot;
import com.google.firebase.database.DatabaseError;
import com.google.firebase.database.DatabaseReference;
import com.google.firebase.database.FirebaseDatabase;
import com.google.firebase.database.ValueEventListener;

public class MainActivity extends AppCompatActivity {
 private FirebaseDatabase database;
 private DatabaseReference fuelValue, powerValue, temperatureValue,
weightValue, workingTime;

 TextView fuel, power, temperature, weight, workTime;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 fuel = findViewById(R.id.valueONE);
 power = findViewById(R.id.valueTWO);
 temperature = findViewById(R.id.valueThree);
 weight = findViewById(R.id.valueFour);
 workTime = findViewById(R.id.valueFive);

 database = FirebaseDatabase.getInstance();
 fuelValue = database.getReference("Fuel");//database reference
 powerValue = database.getReference("Power");
 temperatureValue = database.getReference("Temperature");
 weightValue = database.getReference("Weight");
 workingTime = database.getReference("Working_duration");

 fuelValue.addValueEventListener(new ValueEventListener() {//function
to get data from database
 @Override
 public void onDataChange(@NonNull DataSnapshot snapshot) {
 String data = snapshot.getValue().toString();
 fuel.setText("fuel : " + data + " %");//set text to show
database data

 }

71

 @Override
 public void onCancelled(@NonNull DatabaseError error) {
 Toast.makeText(MainActivity.this, "The reading action failed:
" + error.getCode(), Toast.LENGTH_LONG);
 }
 });

 powerValue.addValueEventListener(new ValueEventListener() {
 @Override
 public void onDataChange(@NonNull DataSnapshot snapshot) {
 String data = snapshot.getValue().toString();
 power.setText("power : " + data + " watt");
 }

 @Override
 public void onCancelled(@NonNull DatabaseError error) {
 Toast.makeText(MainActivity.this, "The reading action
failed: " + error.getCode(), Toast.LENGTH_LONG);
 }
 });

 temperatureValue.addValueEventListener(new ValueEventListener() {
 @Override
 public void onDataChange(@NonNull DataSnapshot snapshot) {
 String data = snapshot.getValue().toString();
 temperature.setText("temperature : " + data + " celsius");
 }

 @Override
 public void onCancelled(@NonNull DatabaseError error) {
 Toast.makeText(MainActivity.this, "The reading action
failed: " + error.getCode(), Toast.LENGTH_LONG);
 }
 });

 weightValue.addValueEventListener(new ValueEventListener() {
 @Override
 public void onDataChange(@NonNull DataSnapshot snapshot) {
 String data = snapshot.getValue().toString();
 weight.setText("weight : " + data + " grams");
 }

 @Override
 public void onCancelled(@NonNull DatabaseError error) {
 Toast.makeText(MainActivity.this, "The reading action
failed: " + error.getCode(), Toast.LENGTH_LONG);
 }
 });

 workingTime.addValueEventListener(new ValueEventListener() {
 @Override
 public void onDataChange(@NonNull DataSnapshot snapshot) {
 String data = snapshot.getValue().toString();
 workTime.setText("total working time: " + data + " second");
 }

72

 @Override
 public void onCancelled(@NonNull DatabaseError error) {
 Toast.makeText(MainActivity.this, "The reading action
failed: " + error.getCode(), Toast.LENGTH_LONG);
 }
 });

 }

 public void goGraphMenu(View view) {
 Intent intent = new Intent(MainActivity.this, GraphMenu.class);//if
clicked button start this intent
 startActivity(intent);
 }

 public void showValue(View view) {
 if (findViewById(R.id.dataBOX).getVisibility() == View.VISIBLE)
{//show or hide real time data when clicked this button
 findViewById(R.id.dataBOX).setVisibility(View.INVISIBLE);
 } else if (findViewById(R.id.dataBOX).getVisibility() ==
View.INVISIBLE) {
 findViewById(R.id.dataBOX).setVisibility(View.VISIBLE);
 }
 }
}

73

Appendix D Android Application Code (GraphMenu.java)

package com.example.fyplora;

import androidx.annotation.NonNull;
import androidx.appcompat.app.AppCompatActivity;

import android.graphics.Color;
import android.os.Bundle;
import android.view.View;
import android.widget.AdapterView;
import android.widget.ArrayAdapter;
import android.widget.Button;
import android.widget.EditText;
import android.widget.Spinner;
import android.widget.TextView;

import com.github.mikephil.charting.charts.LineChart;
import com.github.mikephil.charting.components.XAxis;
import com.github.mikephil.charting.components.YAxis;
import com.github.mikephil.charting.data.Entry;
import com.github.mikephil.charting.data.LineData;
import com.github.mikephil.charting.data.LineDataSet;
import com.github.mikephil.charting.highlight.Highlight;
import com.github.mikephil.charting.interfaces.datasets.ILineDataSet;

import com.github.mikephil.charting.listener.OnChartValueSelectedListener;
import com.google.firebase.database.DataSnapshot;
import com.google.firebase.database.DatabaseError;
import com.google.firebase.database.DatabaseReference;
import com.google.firebase.database.FirebaseDatabase;
import com.google.firebase.database.ValueEventListener;

import java.util.ArrayList;

public class GraphMenu extends AppCompatActivity implements
AdapterView.OnItemSelectedListener {

 private static final String TAG = "GraphMenu";

 String userInput = "000";
 FirebaseDatabase recordDatabase;
 DatabaseReference current, fuel, power, temperature, weight,
currentPerHour, fuelPerHour, powerPerHour, temperaturePerHour, weightPerHour;
 ArrayList<String> list = new ArrayList<>();
 ArrayList<String> keyList = new ArrayList<>();
 ArrayList<Entry> yValues = new ArrayList<>();
 private LineChart lineChart;
 private TextView time;
 private EditText textEdit;
 private Spinner spinner;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

74

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_graph_menu2);
 recordDatabase = FirebaseDatabase.getInstance();
 current = recordDatabase.getReference("record/r_current");
 fuel = recordDatabase.getReference("record/r_fuel");
 power = recordDatabase.getReference("record/r_power");
 temperature = recordDatabase.getReference("record/r_temperature");
 weight = recordDatabase.getReference("record/r_weight");

 time = findViewById(R.id.textViewshowtime);
 textEdit = findViewById(R.id.editTextInsertDate);
 lineChart = findViewById(R.id.linechartdemo);

 spinner = findViewById(R.id.spinner);
 ArrayAdapter<CharSequence> adapter =
ArrayAdapter.createFromResource(this, R.array.spinner_options,
android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item
);
 spinner.setAdapter(adapter);
 spinner.setOnItemSelectedListener(this);

 lineChart.setDragEnabled(true);
 lineChart.setScaleEnabled(true);

 YAxis leftAxis = lineChart.getAxisLeft();
 leftAxis.removeAllLimitLines();

 leftAxis.enableGridDashedLine(10f, 10f, 0);
 leftAxis.setDrawLimitLinesBehindData(true);

 lineChart.getAxisRight().setEnabled(false);

 }

 public void searchFirebaseRecord(View view) {
 list.clear();
 keyList.clear();
 yValues.clear();
 String text = spinner.getSelectedItem().toString();
 userInput = textEdit.getText().toString();

 if (text.equalsIgnoreCase("Current")) {
 createGraph(current);
 } else if (text.equalsIgnoreCase("temperature")) {
 createGraph(temperature);
 } else if (text.equalsIgnoreCase("fuel")) {
 createGraph(fuel);
 } else if (text.equalsIgnoreCase("power")) {
 createGraph(power);
 } else if (text.equalsIgnoreCase("weight")) {
 createGraph(weight);
 }

75

 }

 @Override
 public void onItemSelected(AdapterView<?> adapterView, View view, int i,
long l) {//spinner
 String text = adapterView.getItemAtPosition(i).toString();
 if (text.equalsIgnoreCase("Current")) {
 createGraph(current);
 } else if (text.equalsIgnoreCase("temperature")) {
 createGraph(temperature);
 } else if (text.equalsIgnoreCase("fuel")) {
 createGraph(fuel);
 } else if (text.equalsIgnoreCase("power")) {
 createGraph(power);
 } else if (text.equalsIgnoreCase("weight")) {
 createGraph(weight);
 }
 Button swap24 = findViewById(R.id.button24);
 Button swapSeconds = findViewById(R.id.buttonSeconds);
 swap24.setEnabled(true);
 swap24.setVisibility(View.VISIBLE);
 swapSeconds.setEnabled(false);
 swapSeconds.setVisibility(View.INVISIBLE);
 }

 @Override
 public void onNothingSelected(AdapterView<?> adapterView) {
 }

 public void createGraph(DatabaseReference nodeName) {//function to create
graph
 list.clear();
 keyList.clear();
 yValues.clear();
 userInput = textEdit.getText().toString();//store user input
 try {
 nodeName.child(userInput).addListenerForSingleValueEvent(new
ValueEventListener() {//get data by searching user input in database
 @Override
 public void onDataChange(@NonNull DataSnapshot dataSnapshot)
{//retrieve data from database
 for (DataSnapshot snapshot : dataSnapshot.getChildren())
{
 list.add(snapshot.getValue().toString());
 keyList.add(snapshot.getKey());
 }

 try {
 for (int i = 0; i < list.size(); i++) {//set node for
all data getting from database
 float f = Float.parseFloat(list.get(i));//string
to float
 yValues.add(new Entry(i + 1, f));
 LineDataSet set1 = new LineDataSet(yValues,
spinner.getSelectedItem().toString() + " Record");//show variable label in
bottom left

76

 XAxis xAxis = lineChart.getXAxis();
 xAxis.setGranularity(1);

xAxis.setPosition(XAxis.XAxisPosition.BOTH_SIDED);

 set1.setFillAlpha(110);
 set1.setColor(Color.RED);
 set1.setLineWidth(3f);
 set1.setValueTextColor(Color.CYAN);
 set1.setValueTextSize(10f);
 set1.setDrawValues(false);

 ArrayList<ILineDataSet> dataSets = new
ArrayList<>();
 dataSets.add(set1);

 LineData data = new LineData(dataSets);

 lineChart.setDescription(null);
 lineChart.setData(data);
 lineChart.invalidate();//refresh the page for
chart
 lineChart.setTouchEnabled(true);
 lineChart.setOnChartValueSelectedListener(new
OnChartValueSelectedListener() {
 @Override
 public void onValueSelected(Entry e,
Highlight h) {
 try {
 Float split = e.getX();//get database
key
 int splitInt =
Math.round(split);//convert float to int
 time.setText("Time
is(hour_minute_second): " + keyList.get(splitInt));//show record time in the
apps
 } catch (Exception exception) {
 }
 }

 @Override
 public void onNothingSelected() {
 }
 });
 }
 } catch (Exception e) {

 }
 }

 @Override
 public void onCancelled(@NonNull DatabaseError error) {

 }
 });

77

 } catch (Exception e) {
 }
 }

 public void swap24hour(View view) {//button for switch mode to seconds
 Button swap24 = findViewById(R.id.button24);
 Button swapSeconds = findViewById(R.id.buttonSeconds);
 swap24.setEnabled(false);
 swap24.setVisibility(View.INVISIBLE);
 swapSeconds.setEnabled(true);
 swapSeconds.setVisibility(View.VISIBLE);
 Spinner mySpinner = findViewById(R.id.spinner);
 String text = mySpinner.getSelectedItem().toString();

 currentPerHour =
recordDatabase.getReference("record_per_hour/hour_current");//database
reference for hours data
 fuelPerHour =
recordDatabase.getReference("record_per_hour/hour_fuel");
 powerPerHour =
recordDatabase.getReference("record_per_hour/hour_power");
 temperaturePerHour =
recordDatabase.getReference("record_per_hour/hour_temperature");
 weightPerHour =
recordDatabase.getReference("record_per_hour/hour_weight");

 if (text.equalsIgnoreCase("current"))
 createGraph(currentPerHour);
 else if (text.equalsIgnoreCase("fuel"))
 createGraph(fuelPerHour);
 else if (text.equalsIgnoreCase("power"))
 createGraph(powerPerHour);
 else if (text.equalsIgnoreCase("temperature"))
 createGraph(temperaturePerHour);
 else if (text.equalsIgnoreCase("weight"))
 createGraph(weightPerHour);
 }

 public void swapSeconds(View view) {//button for switch mode to hours
 Button swap24 = findViewById(R.id.button24);
 Button swapSeconds = findViewById(R.id.buttonSeconds);
 swap24.setEnabled(true);
 swap24.setVisibility(View.VISIBLE);
 swapSeconds.setEnabled(false);
 swapSeconds.setVisibility(View.INVISIBLE);

 Spinner mySpinner = findViewById(R.id.spinner);
 String text = mySpinner.getSelectedItem().toString();
 if (text.equalsIgnoreCase("Current")) {
 createGraph(current);
 } else if (text.equalsIgnoreCase("temperature")) {
 createGraph(temperature);
 } else if (text.equalsIgnoreCase("fuel")) {
 createGraph(fuel);

78

 } else if (text.equalsIgnoreCase("power")) {
 createGraph(power);
 } else if (text.equalsIgnoreCase("weight")) {
 createGraph(weight);
 }
 }
}

