

Faculty of Electrical and Electronic Engineering Technology

DEVELOPMENT OF G-CODE TO ROBOTSTUDIO RAPID TARGET

WITH QUATERNION ORIENTATION FORMAT

EZRASIEFRITZ JANTIN ANAK JAMES

Bachelor of Electrical Engineering Technology (Industrial Automation & Robotics)

with Honours

2021

DEVELOPMENT OF G-CODE TO ROBOTSTUDIO RAPID TARGET WITH

QUATERNION ORIENTATION FORMAT

EZRASIEFRITZ JANTIN ANAK JAMES

A project report submitted

in partial fulfillment of the requirements for the degree of

Bachelor of Electronics Engineering Technology with Honours

Faculty of Electrical and Electronic Engineering Technology

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I declare that this project report entitled “Development of G-Code to RobotStudio RAPID

Target with Quaternion Orientation Format” is the result of my own research except as cited

in the references. The project report has not been accepted for any degree and is not

concurrently submitted in candidature of any other degree.

Signature :

Student Name :

EZRASIEFRITZ JANTIN ANAK JAMES

Date :
11 JANUARY 2022

APPROVAL

I hereby declare that I have checked this project report and in my opinion, this project report

is adequate in terms of scope and quality for the award of the degree of Bachelor of Electrical

Engineering Technology (Industrial Automation & Robotics) with Honours.

Signature :

Supervisor Name :

Date :

azmis
azmi_official

azmis
Typewritten Text
11 JAN 2022

i

ABSTRACT

Every robot manufacturer has developed their own proprietary language since there are

no standardizations for G-Code. Furthermore, to execute a complex milling required a

competency of the operator in reading the instructions command and controlling the levers

as it consists of thousand lines of command code. Hence, by develop an effective

application for IRB 120 to be able to conduct milling process by using of Quaternion

Orientation Format as it encodes information about an axis-angle rotation about an

arbitrary axis. Based on previous version, the translation angle of Z-axis coordinates was

fixed. Thus, by apply the Quaternion Orientation Format shall replacing the fixed Euler

Orientation. Result show that by stimulate the Rapid Target with Quaternion Orientation

Format provides a convenient mathematical notation for representing spatial orientations

and rotations of elements in three-dimensional space in ABB RobotStudio.

ii

ABSTRAK

Setiap pengeluar robot telah membangunkan bahasa proprietari mereka sendiri kerana

tiada penyeragaman untuk G-Code. Tambahan pula, untuk melaksanakan pengilangan

kompleks memerlukan kecekapan pengendali dalam membaca arahan arahan dan

mengawal tuas kerana ia terdiri daripada ribuan baris kod arahan. Oleh itu, dengan

membangunkan aplikasi yang berkesan untuk IRB 120 untuk dapat menjalankan proses

pengilangan dengan menggunakan Format Orientasi Kuaternion kerana ia mengekod

maklumat tentang putaran sudut paksi tentang paksi sewenang-wenangnya. Berdasarkan

versi sebelumnya, sudut terjemahan koordinat paksi-Z telah ditetapkan. Oleh itu, dengan

mengaplikasikan Format Orientasi Kuaternion bagi menggantikan Orientasi Euler tetap.

Keputusan menunjukkan bahawa dengan merangsang Sasaran Pantas dengan Format

Orientasi Kuaternion menyediakan tatatanda matematik yang mudah untuk mewakili

orientasi spatial dan putaran unsur dalam ruang tiga dimensi dalam ABB RobotStudio.

i

TABLE OF CONTENTS

PAGE

DECLARATION

APPROVAL

DEDICATIONS

ABSTRACT i

ABSTRAK ii

TABLE OF CONTENTS i

LIST OF TABLES iii

LIST OF FIGURES iv

LIST OF ABBREVIATIONS v

LIST OF APPENDICES vi

 INTRODUCTION 1

1.1 Background 1
1.2 Problem Statement 1

1.3 Project Objective 2
1.4 Scope of Project 3

 LITERATURE REVIEW 4
2.1 Introduction 4
2.2 Type of Programming Languages 5

2.2.1 G-Code Programming Language 6
2.2.2 RobotStudio Rapid Target 6
2.2.3 C# Programming Language 7

2.3 Grasshopper 8
2.4 HAL 8
2.5 ABB Machining Pac 9
2.6 Boot the Bot 9

2.7 RISE from RoboMaster 10
2.8 Types of Software 10

2.8.1 RobotStudio 6.05 10
2.9 Quaternion Orientation Format 11

 METHODOLOGY 13
3.1 Introduction 13
3.2 Project Flowchart 13

3.2.1 Experimental setup 15
3.3 Stage 1: Development of Project’s structure 15

ii

3.4 Stage 2: Development of Project System 16
3.5 Stage 3: Determination of Project method 17

3.6 Stage 4: Development of Software 18
3.7 Stage 5: Complete Project Integration 19
3.8 Robot’s path and RAPID Target Code for data collecting analysis 20
3.9 Conclusion 20

 RESULTS AND DISCUSSIONS 21
4.1 Introduction 21
4.2 Project’s functional 21

4.2.1 Section 1 22

4.2.2 Section 2 23

4.2.3 Section 3 25
4.3 Euler Rotation Angle into Quaternion Orientation Format. 26
4.4 Results and Analysis 28

4.4.1 Analysis of RAP-CODE with Matlab of Quaternion Orientation

Format. 28

4.4.2 Analysis of G-Code with RAPID Target code syntax along with the

value of Quaternion Orientation Format. 29

4.4.3 RAP-CODE’s application full process flow 32
4.5 Discussion 35

4.6 Summary 35

 CONCLUSION AND RECOMMENDATIONS 36

5.1 Conclusion 36

5.2 Future Works 37

REFERENCES 38

APPENDICES 40

iii

LIST OF TABLES

TABLE TITLE PAGE

Table 4.1 Comparision of Quaternion Value between RAP-CODE application

with Matlab’s software 28

Table 4.2 Comparison of coordinations between RAPID Target code with G-

Code syntax 29

iv

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 3.1 Flowchart of project’s progress 14

Figure 3.2 Project Methodology’s Flowchart 15

Figure 3.3 Function Block Diagram 16

Figure 3.4 RAP-CODE GUI Design 17

Figure 4.1 Required Information to be fullfill 22

Figure 4.2 Open File been press 22

Figure 4.3 G-Code Display in gcode.txt.box 23

Figure 4.4 Generated RAPID Code with Quaternion Orientation Format 24

Figure 4.5 Exported .txt.file for Rapid Target Code 26

Figure 4.6 Text Box of Rz, Ry, and Rx 27

Figure 4.7 Generated Quaternion Value 27

Figure 4.8 Tool setting for RAPID Target Code in Blue Reactangle Area 32

Figure 4.9 Quaternion Value in Dark Yellow Rectangle Area 32

Figure 4.10 Design Object at SolidWorks then generate G-Code by using

CARTIA 33

Figure 4.11 Save generated G-Code in notepad file format 33

Figure 4.12 G-Code to RAPID Code conversion by using RAP-CODE

application 34

Figure 4.13 IRB 120 perform milling’s process 34

v

LIST OF ABBREVIATIONS

𝐀𝐁𝐁 - Robot Company

CAD - Computer Aided Design

CAM - Computer Aided Manufacturing

CIL - Common Intermediate Language

CLR - Common Language Runtime

CNC - Computer Numerical Control

C++ - Programming Language

C# - Programming Language

DLL - Dynamic Link Library

FTP - File Transfer Protocol

G-Code - Geometric Code

GUI - Graphic User Interface

IRB - Industrial Robot Arm

JIT - Just-In-Time

KRL - KUKA Robot Language

MoveC - Move Circular

MoveJ - Move Joint

MoveL - Move Link

TCP - Tool Center Point

vi

LIST OF APPENDICES

APPENDIX TITLE PAGE

Appendix A Generated G-Code 40

Appendix B Generated RAPID Target Code 41

Appendix C C# Programming Coding for RAP-CODE 44

Appendix D C# Programming Coding for G-Code & M-Code 48

Appendix E C# Programming Coding for Quaternion Formula 53

1

INTRODUCTION

1.1 Background

Due to a lack of uniformity in converting G-Code to other robot programming

languages, each industrial robot has developed its own programming language. As a result,

a G-Code to ABB RobotStudio Rapid Target conversion tool is necessary to correctly

execute the robot program.

The IRB 120 will be able to mill any work object in ABB RobotStudio using CAD

G-Code generated by graphical design software, which will then be converted to Rapid

Target code. The conversion application will solely serve as a third-party utility. To convert

G-Code to Rapid Target Code, the user must first build a work object in SolidWorks

software, which then generates a G-Code by using CARTIA software that can be imported

into this application.

Furthermore, due to the constraints of contemporary CNC machines compared to

milling robots, despite the fact that both have similar processes, milling robots have more

flexibility and diversity of operations. As a result, adopting an industrial robot for the milling

process would provide a lot more benefits in terms of producing higher-quality final

products.

1.2 Problem Statement

CNC machines are commonly used in the milling process in the manufacturing

business. In terms of prototype size, axis movement, and drill bit size, each CNC machine

2

has its unique set of limitations. For a certain CNC machine to execute a specific sort of

work product, it requires a different size and type of CNC machine. The specific CNC was

less appealing due to the necessity to complete a complicated operation involving several

axes of orientation and a substantially greater cost. Furthermore, the more specialized the

CNC Machine, the more difficult it is to set up.

An industrial robot arm can now replace a CNC machine in the production sector

since industrial mechanical robots can perform numerous tasks such as picking and

positioning things, painting, assembly work objects, welding, machining, and other industry

needs. A machining industrial robot serves the same goal as a specialized CNC machine in

that it can perform any dimension and sophisticated machining involving multiple axes of

rotation.

1.3 Project Objective

The main aim of this project is to propose a systematic and effective third-party

application to convert G-code to RobotStudio Rapid Target Code with multiple axis of

orientation. Specifically, the objectives are as follows:

 Develop an effective application for IRB 120 to perform a milling process by

using mathematical algebra of Quaternion Orientation Format.

 Apply the use of compact, efficient, and numerically stable rotation matrices of

Quaternion Orientation Format by replacing fixed rotation of Euler Orientation

Format for industrial robot milling's conversion software.

 Test the application through RobotStudio Emulation by using Rapid Target Code

along with Quaternion Orientation Format to perform multiple axis of orientation

for milling's process.

3

1.4 Scope of Project

The scope of this project are as follows:

 Graphical User Interface (GUI) of third-party conversion application will be

developed by using Microsoft Visual Studio’s software of Window Forms

App (.NET Framework).

 SolidWorks software will be used to design the work object and CARTIA

will be used to generate the G-Code.

 Only the milling procedure will be performed after converting generated G-

Code to RobotStudio Rapid Target with Quaternion Orientation Format.

 The user will manually enter the values for yaw (Rz), pitch (Ry), and roll

(Rx), as well as the velocity, zone, work object, and tool, to determine the

appropriate rotation angle and speed for the ABB IRB 120 to perform milling

operation.

4

LITERATURE REVIEW

2.1 Introduction

An industrial robot arm is the most common robot in the manufacturing industry

since it improves not only the speed but also the accuracy and precision of the manufacturing

process. An industrial robot arm is a technical marvel since it is a combination of controller

and software that resembles a human arm. Aside from that, milling is one of the most

common uses for an industrial robot arm. Robotic milling's ability to manufacture high-

quality complicated and unusual shapes was the cause for its replacement of CNC machines,

as robot milling can do manufacturing and sculpting on a massive scale. Robot milling

systems are designed with tooling and cutting system adaptability at a high level, allowing

them to accommodate to various material removal processes.

Because there are no standardizations for G-Code, each robot maker has developed

their own proprietary language. Furthermore, because a complicated milling comprises of

thousands of lines of command code, the operator must be capable of deciphering the

instructions and controlling the levers. As a result, third-party application software to

translate G-Code to robot language is offered by every major robot manufacturer. As a result,

creating a conversion from G-Code to RobotStudio Rapid Target Code with Quaternion

Orientation Format ensures that robot milling operations and G-Code programming are as

simple as possible.

This chapter will go over the existing G-Code converter solutions. As a result, the

ABB RobotStudio, Microsoft Visual Studio, G-Code, Rapid Target Code, and C#

programming languages used in development will be thoroughly described. Moreover, by

5

completing the development will aid in achieving the goal and resolving the problem that

has plagued industrial manufacturing.

Aside from that, the objective of authoring this chapter is to serve as a reference or

guide, as it will be based on research, articles, user manuals, theses, journals, and other types

of published knowledge relevant to the project's theme.

2.2 Type of Programming Languages

A standardized programming language is still not used by robots today. Currently,

each vendor is reliant on their own control system. The structure of the code between ABB

and KUKA differs significantly. The user can specify a starting block in the KRL language

for KUKA robots that determines several settings, such as the tool.

Furthermore, the tool is defined for each movement command in the Rapid Target

code, thus this isn't necessary to define in the movement commands. Another distinction

between these companies is that the KUKA robotics control system uses x, y, and z

coordinates for translation and Roll, Pitch, and Yaw for defining rotational angles in degrees.

According to Bolmsjö, the roll, pitch, and yaw ways of representing rotation are the

same movements that an airplane makes, where roll denotes a rotation along the hand’s

longitudinal axis, the pitch is a horizontal axis rotation that causes the end effector to rotate

up and down while the yaw denotes a rotation along a vertical axis in relation to the hand

longitudinal axis, causing the end effector to rotate from side to side.

Moreover, ABB robotics uses x, y, and z coordinates to determine translation and

quaternions to define rotational angles[1].

6

2.2.1 G-Code Programming Language

G-Code is an operational language for CNC machining which tells numerically

controlled lathes and machining centers on how to move tools in order to perform various

cutting operations. It is a language that can be quite complex at times and would vary from

machine to machine.

Moreover, G-Code come in group with each group can be replaced by another code

in the same group. Hence, programmer be able to establish mode of operation. G-Code fits

somewhere between conversational control, where an operator describes the part and how it

should be machined, and CAM programs, where software develops the necessary toolpaths,

feed rates that been needed for CNC machine to cut the material into end products[2].

Furthermore, G-Code is best to illustrate as a combination of geometric code and

variation of the alpha numeric pattern such as, N (Line number), G(Motion), X (Horizontal

position), Y (Vertical position), Z(Depth), F (Feed rate), S (Spindle speed), T (Tool

selection, Miscellaneous function), I and J (Incremental center of an arc), R (Radius of an

arc). While the alpha numeric codes are used for defining motion and function (G##),

Declare a position (X## Y## Z##), Set a value (F## or S##), Select a tool (T##), Switching

coolant on and off (M##)[3].

2.2.2 RobotStudio Rapid Target

Rapid Target is a robot programming language that been used to program ABB’s

industrial robots in RobotStudio that rely on three different types of motions[1]. First is,

MoveL is a linear motion which forces the robot to move in a straight line between two

points that been defined by the programmer.

 Second type of motion is, MoveJ is a point-to-point motion that lets the robot move

to the second point in the easiest way. Moreover, the benefit of letting the robot decide the

7

easiest way as it also capable to avoid collusion whenever the robot wanted to move to

opposite side of the layout as it will create a circular motion around the base since it travel

along a non-linear path[4]. Thus, MoveJ is often required in the beginning of the robot path

in order to let the robot to configure itself without the constraint of following a specific path.

Third type of motion is MoveC where it is used to move the TCP circularly to a

given destination. Furthermore, it will create an arc motion that doesn’t need to be circular

as the orientation normally remains unchanged relative to the circle[4].

2.2.3 C# Programming Language

C# is a modern object-oriented, general-purpose programming language, created

and developed by Microsoft together with the .NET platform. It is simple yet powerful

language primarily aimed at developer for creating various types of applications, for example

web, windows, console applications, or other types of applications using Microsoft Visual

Studio at a large scale[5].

Furthermore, C# is syntactically similar to Java and C++ as it’s also a high-level

language which consists of a set of definitions in classes that contain methods while the

methods contain program logic (instructions that will be executed by computer)[6].

Moreover, C# programming language was not considered as a standalone product as is a part

of Microsoft .NET framework which consists of an environment for development and

execution of programs.

Microsoft .NET Framework is a software development framework for building and

running an application such as website, providing a service, desktop apps on Windows. Other

than that, two main components of .NET Framework are Class Library which acts as a

provider to provide a set of APIs and types for common functionality such as strings, dates,

8

number, and Common Language Runtime (CLR) which acts as an execution engine for

handling running applications[7].

In a nutshell, Microsoft .NET Framework applications are written in C#

programming language code. The code been compiled into Common Intermediate Language

(CIL) which then stored in assemblies file (.dll or exe file extension). When a user runs an

application, Common Language Runtime CLR shall analyze the assembly’s file and uses a

JIT to turn into machine code to be executed on the specific architecture of the computer.

2.3 Grasshopper

Grasshopper is a software for Rhinoceros CAD system. Rhinoceros is a CAD

software for surface modeling. Grasshopper is an add-in that enables the user to create

parametric structures without the need of knowing how to write scripts. Instead, Grasshopper

uses a visual scripting tool where the user can drag lines between different 8 blocks with

different functions where the coding is embedded in the block so that the user doesn’t need

to write the code. The principle of the usage is the same as for many other visual scripting

tools such as the, to engineers more commonly known software LabVIEW, and Simulink

for Matlab[8].

2.4 HAL

HAL robot programming tool is an add-on framework for Grasshopper. HAL could

be used to create robot paths with visualization directly in the CAD software. The software

supports ABB IRC5 controllers which make it possible to simulate the robot motions. The

premium version also has the possibility to directly create robot code in the HAL software

that is executable on the robot controller. The software is also capable of importing G-code

9

and translate the code into paths. The software is mainly focusing on architectural

applications[9].

2.5 ABB Machining Pac

The ABB machining PowerPac is ABB’s own add-in software for ABB Robot

Studio. The software makes it possible for the user to create machining paths by importing

CAD geometries directly into Robot Studio. The software does support path generation from

G-Code. It also features to act as a CAM software and calculate the tool path in the off-line

programming software. The benefits of using ABB’s own software are that the user is

guaranteed that if the path is executable in the simulation, it will also be executable on the

robot. A feature that other software’s does not have. A drawback with the software is that it

is closed source and it is therefore not possible for the user to customize the software for

their specific needs[10].

2.6 Boot the Bot

This is a Java-based software that enables the user to import points and additional

data and export valid RAPID code from Boot the Bot. Since the software is built in Java it

is designed to have cross-platform support. The software is able to automatically calculate

the best-suited configuration for the robot. It also allows for FTP (file transfer protocol)

connection to the robot, which allows for remote upload of robot programs and remote robot

control[11]. The software also gives the user a full simulation of the workflow in the

program. It is designed to enable a more creative freedom for the designer and is primarily

targeting users working as architectures and artists.

10

2.7 RISE from RoboMaster

A full offline programming software that is also able to import CAD geometries and

create robot paths for multiple vendors of robots. The software has an in-built CAD engine

that makes it possible to create and edit CAD models within the software. It has the capability

to import CAM data from 2-5 axis machines and translate it into robot code. And it is able

to handle configuration problems and singularities[12].

2.8 Types of Software

In the development for this project several software were considered to be used, due

to it is a software development project. Microsoft Visual Studio serve as a major role in C#

programming language for the conversion application to be achieved. Moreover, the design

of the work object along with robot tool will be done in SolidWorks. Thus, the generated G-

Code will be generated by using CARTIA. Furthermore, simulation will be done in ABB 10

RobotStudio along with the execution of Rapid Target code that been converted from

generated G-Code.

2.8.1 RobotStudio 6.05

RobotStudio is an offline programming tool for the setup of ABB Robots which

allow robot programmer to generate more accurate robot programs. It also capable to help

the designers to visualize and determine the layouts before the robot been install.

Furthermore, designers be able to perform a simulation based on a real time simulation and

optimization without disturbing the production as it uses ABB Virtual Robot Technology.

Thus, the offline programming approached by ABB RobotStudio also display the

best way to maximize return on investment on robot systems[1]. There are several benefits

11

of RobotStudio which are, Auto Reach feature that will automatically analyze reachability

for user to verify and optimize the overall layout.

Next, Path Optimization which will automatically detect and warn about programs

that targets can be improved to make the robot move in the most efficient way. Furthermore,

the most valuable benefit using ABB RobotStudio is Virtual Flex Pendant feature which is

a graphical representation of the real Flex Pendant which indicate that everything that could

be done in Virtual Flex Pendant will be able to perform in real Flex Pendant[13].

2.9 Quaternion Orientation Format

Versors, or unit quaternions, are a useful mathematical notation for representing

spatial orientations and rotations of items in three dimensions[14]. They encode information

about an axis-angle rotation along an arbitrary axis in particular. Computer graphics,

computer vision, robotics, navigation, molecular dynamics, flight dynamics, satellite orbital

mechanics, and crystallographic texture analysis all use rotation and orientation

quaternions[15].

Unit quaternions are also known as rotation quaternions because they represent the

3D rotation group when used to express rotation. They are called orientation quaternions or

attitude quaternions when they are used to describe an orientation (rotation relative to a

reference coordinate system). The quaternion (C,XS,YS,ZS) signifies a spatial rotation about

a fixed point of theta radians along a unit axis (X,Y,Z) that denotes the Euler axis, where

C=cos(θ /2) and S=sin(θ /2)[16].

Quaternions are more compact, economical, and numerically stable than rotation

matrices. They are easier to construct than Euler angles and avoid the problem of gimbal

lock. They are not, however, as obvious, or as simple to comprehend as Euler angles.

Furthermore, due to the periodic nature of sine and cosine, rotation angles that differ

12

precisely by the natural period will be encoded into identical quaternions, limiting the

recoverable angles in radians to [0,2∏].

13

METHODOLOGY

3.1 Introduction

In order to achieve the project’s objectives, flowchart method been used to illustrate

the whole project’s development as it also serves a purpose to monitor the project’s

development where it consists of three (3) stages which involved pre-development,

development stage and post-development stage. These three (3) stages are essential for

obtaining the desire outcome as it helps to guide the development progress. The detail of the

project’s process will also been cover in this chapter such as the process of generated G-

Code from CARTIA, process of converting G-Code to RobotStudio Rapid Target, simulated

robot’s path in RobotStudio based on converted Rapid Target that been obtained from

generated G-code and the development of C# in this project by using Microsoft Visual

Studio.

3.2 Project Flowchart

The selected approach to best illustrated the execution project’s development is

flowchart as it is to ensure the project is well planned while act accordingly to proposed

methodology. Furthermore, it also serves a purpose for a better reference for monitoring the

progress of the project. Thus, the development process will be shown in detail where it

consists of experimental setup for development of project structure and design, parameter

for development of method, and equipment for development of the selected software.

14

Figure 3.1 Flowchart of project’s progress

15

3.2.1 Experimental setup

The structure and design of the project are critical because it is based on research,

articles, and case studies, which need gathering material for a literature review as well as

defining the problem and solution. Furthermore, brainstorming is essential to come up with

the best answer to the problem and the project's functionality. As a result, creating a

functional block diagram will make it easier to come up with a better solution to the problem.

Figure 3.2 Project Methodology’s Flowchart

3.3 Stage 1: Development of Project’s structure

The creation of a project structure is a crucial aspect of the project. The framework

of the project is based on research and data collection through a literature review, as well as

16

identifying the problem statement and solution. At this point, the solution on how to fix the

problem with this project shall be identify. Designation of a functional block diagram for the

project, as shown in Figure 3.3.

Figure 3.3 Function Block Diagram

3.4 Stage 2: Development of Project System

The development of the project system is a step in which brainstorming is required

to address the problem statement and the project's function. Figure 3.3.1 depicts the software

user interface design, which includes labelling and step numbers. The design, button

function, labelling, and text box display are all part of the GUI user interface. A software

user interface design is crucial in software development because it focuses on the appearance

and style. The major goal of a software user interface design is to make it easy for users to

use and pleasurable, and most importantly, it is user friendly.

17

Figure 3.4 RAP-CODE GUI Design

3.5 Stage 3: Determination of Project method

The stage of determining the project method is to decide on the method that will be

used to build this project. This stage will clarify what software and method will be used, as

well as why it was chosen in the first place. SolidWorks and CARTIA, as well as Microsoft

Visual Studio, were chosen for this project's development.

There are a few qualities to look for when picking CAD software for this project,

such as efficient 3D design, user compatibility, and built-in application. SolidWorks and

CARTIA have been chosen. Because it is user-friendly and has a parametric design modular

function that allows users to alter and design with ease. Furthermore, CARTIA software be

able to generate G-Code from CAD designs.

18

Work with SolidWorks to create a simple work object as the work item designed in

SolidWorks while as for selecting Programming Language, the programming language

utilized in this project is C# Programming Language because C# Programming requires only

a rudimentary understanding of the C programming language.

With addition, C# Programming in Visual Studio supports Window Forms

Applications (.NET Framework). The development for G-Code to RAPID Target Code’s

application is best suited as it requires only users with basic programming skills who want

to create software.

Before beginning to write the programming coding, first, design the software

flowchart. A software flowchart is used to reduce the number of bugs during the coding

process. It's also known as a programming blueprint, and it's used to help programmers make

their coding more efficient and operate as planned.

3.6 Stage 4: Development of Software

Microsoft Visual Studio 2021 is used to create G-code translation software, which

is written in C# Programming Language by using the Window Form Application (.NET

Framework). The RAP-CODE conversion software's first phase can only convert G-Code to

RAPID Target Code without including Quaternion Orientation Format. As a result, at the

conclusion of the development phase, it will be converted into the project's second phase,

which will involve converting G-code to RAPID Target Code with Quaternion Orientation

Format.

Thus, by designing the user interface in Microsoft Visual Studio's Window Form

Application (.NET Framework) is the initial stage in developing the RAP-CODE conversion

application. The first process that need to be fulfill first before converting G-Code to RAPID

Target Code which is the process of inserting the desire information such as Rz, Ry, Rz,

19

Velocity, Zone, Work Object, and Tool text box. After all the required information been

fulfill, then by clicking on Open file to open any file to browse G-Code in .txt. file format.

Furthermore, after the desire G-Code file been chosen, the GUI shall then read the G-code

and display on the first text box.

 For the second text box, once the user clicks on convert button below the Open File

button of the GUI, it will show the complete RAPID Target Code with Quaternion

Orientation Format. Additionally, on the left side of the RapidTxtBox, there is a clear all

button that acts as a reset or clear all the box, allowing the user to clear and start again with

only one click.

Furthermore, the programming in C# is the second step in the development of G-

code Translator software. The G-code will be converted in the future by referring to dll

(Dynamic Link Library), which is a library that a program can utilize while running a

function. In addition, the application makes use of the namespace "using

System.Text.RegularExpressions."

Hence, the function allows the program to use the System and the.NET Framework

regular expression engine of System.Text.RegularExpressions.dll. The method is called

using "Regex gcode = new Regex ("[ngxyzftms] ngxyzftms ngxyzftm [+-]? [0-9] *.? [0-9]*

[+-]?[0-9]* "RegexOptions.IgnoreCase, RegexOptions.IgnoreCase)".

3.7 Stage 5: Complete Project Integration

After the software development is complete, it will be released to a select group of

beta testers. As a result, more users will be able to test this software and provide feedback

on future improvements or issue detection.

20

3.8 Robot’s path and RAPID Target Code for data collecting analysis

The Robot’s path and RAPID Target code coordinates are the outcomes that must

be analyzed. To make it easier for the developer to solve problems and predict consequences.

Aside from that, the data must be transformed into a usable solution or approach for solving

a problem. The major goal is to ensure that the outcome meets the goal and is capable of

resolving the problem

In addition, the Robot’s path will be analyzed depending on the robot's movement

and behavior. By running an emulation in RobotStudio to obtain the robot path, the robot's

coordinates could then be collected and compared to the coordinates in the SolidWorks

simulation.

Finally, the results of the data collection and analysis will be discussed in the

following chapter, Chapter 4: Results and Discussion.

3.9 Conclusion

The objective of methodology is to explain or expound on the methods used in the

development of this project. Furthermore, methodology ensures that this project stays on

track from start to finish.

The first step is the development of the project structure, the second stage is the

development of the project system, the third stage is the determination of the project method,

the fourth stage is the development of software, and the final stage is complete project

integration. All steps of this project's development are described in detail, step by step.

The Robot Path and the RAPID code are also included in the technique. To verify

that the outcome meets the goal and is capable of resolving the problem. The Robot Path and

the RAPID Target code coordinate are the results that need to be analyzed in this project.

21

RESULTS AND DISCUSSIONS

4.1 Introduction

The result of this project shall be shown in the result and discussion, which will go

into great depth regarding the result. The robot's path and coordinates are simulated in

RobotStudio with the RAPID Target Code that is converted using the conversion's

application, and the result is based on the application's functionality, output, and the robot's

path and coordinates that are converted using the conversion's application. The final version

of RAP-CODE can convert G-Code into RAPID Target code, which translates G-Code into

RobotStudio programming language, allowing the IRB 120 to perform milling operations.

The user simply needs to provide Rz, Ry, Rx, velocity, zone, work object, and tool

information’s. Thus, the application will generate the RAPID Target Code automatically.

4.2 Project’s functional

There are six (6) functional buttons, three (3) functional displays or text boxes, and

seven (7) RAPID setting options in the RAP-CODE conversion application. To demonstrate

the project's capabilities in greater depth, it will be divided into several sections. Before the

conversion process, section 1 will provide the essential information as well as the result of

the Open File button. Section 2 will demonstrate the results of the Convert to RAPID Target

Code function, as well as some Gcodelibv1 coding. The function of the export, clear all, and

exit buttons will be demonstrated, as in section 3.

22

4.2.1 Section 1

The Open File button acts as a file browser for.txt files containing G-Code from any

directory on the computer. The function "OpenFileDialog ofd = new OpenFileDialog();"

was used to create this button. The open file dialogue window appears once the Open File

button is pressed. When the file selection is complete and OK is hit, the "gcode_tbox.Text

= File.ReadAllText(ofd.FileName);" G-Code from the selected file will appear in the

gcode.txt.box.

Figure 4.1 Required Information to be fullfill

Figure 4.2 Open File been press

23

Figure 4.3 G-Code Display in gcode.txt.box

4.2.2 Section 2

Section 2 will display the outcome of the Convert button, as the application will

convert G-Code to RAPID Target Code, including the Quaternion Orientation Format and a

portion of the Gcodelibv1 coding. When the Convert button is clicked, the System

programme function “private void ConvertToRapid_Click(object sender, EventArgs

e)” is called “using System.Text.RegularExpressions;” will look for characters in every

line that are mentioned in the “string[] text_line =

Regex.Split(this.gcode_tbox.Text, "\n");". The programme will then read all of the text

24

and look for the value using “n” by referencing to the newly constructed GCodelibv1.dll,

“foreach (String n in text_line)” is called. If "private void Reset G Code is clicked, the

" private void ResetG_Code_Click(object sender, EventArgs e)" shall clear all of the

text in gcode.txt.box which then allowing the user to start over.

Figure 4.4 Generated RAPID Code with Quaternion Orientation

Format

During the conversion process, after the Convert button is clicked, the application

will read all lines of G-Code in the gcode.txt.box "string[] text2_line =

Regex.Split(this.gcode_tbox.Text, "\n");" and split the line of G-code into few parts,

for lines that contain G " if (i.Contains('G')){G_cmd = Regex.Match(i, @"[-+]?[0-

9]*\.?[0-9]+").Value;} ", line containing N "if (i.Contains('N')){N = Regex.Match(i,

@"[-+]?[0-9]*\.?[0-9]+").Value;}”, line containing X “if (i.Contains('X')){X =

Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;}”, line containing Y "if

(i.Contains('Y')){Y = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;}", and line

25

containing Z "if (i.Contains('Z')){Z = Regex.Match(i, @"[-+]?[0-9]*\.?[0-

9]+").Value;} ". The software will then store the obtained information of G-Code, N, X-

coordinate, Y-coordinate, and Z-coordinate into the local variable "N = Regex." [-+]

Match(i, @"? [0-9]*\.?[0-9]+"). Value;”.

4.2.3 Section 3

The operation and output of the Export Rapid, Clear All, and Reset Rapid buttons

will be shown in section 3. To save the files option of the Export Rapid button, the function

of "private void ExportRapid_Click(object sender, EventArgs e){SaveFileDialog

save = new SaveFileDialog(); save.Title = "Save File"; save.Filter = "Text Files

(*.txt) | *.txt";" shall be use to save once the user clicks OK. Hence, during the saving

process, the function of "if (save.ShowDialog() ==

System.Windows.Forms.DialogResult.OK){StreamWriter write =new

StreamWriter(File.Create(save.FileName));” to create a copy notepad format file " of

RAPID Target Code from Rapid_Code_TxtBox. As for when Clear all button is pressed, the

function that will be use “private void ClearAll_Click(object sender, EventArgs e)”

as it will clear all of the text in “{gcode_tbox.Clear();” and

“Rapid_Code_TxtBox.Clear();}”.

26

Figure 4.5 Exported .txt.file for Rapid Target Code

4.3 Euler Rotation Angle into Quaternion Orientation Format.

Whenever the user clicked the Convert Button, the application will perform a

mathematical calculation in order to produce the desire Quaternion Orientation value by the

user. First, by the user need to insert the desire orientation value into either Rz which

referring to Yaw, Ry which referring to Pitch, and Rx which referring to Roll. Once the user

had entered the desire rotation value, the application will then display the Quaternion Value

which then will be combine with RAPID Target Code so that the IRB 120 be able to perform

orientation based on the calculated value of Quaternion.

27

Figure 4.6 Text Box of Rz, Ry, and Rx

During the calculation process, the application will first convert all the Rz, Ry, and

Rx value into “Double” as it used to define numeric variables holding numbers with decimal

points by using the function of “Ry = Convert.ToDouble(RyTxtBox.Text);” for Ry (Pitch),

“Rz = Convert.ToDouble(RzTxtBox.Text);” for Rz (Yaw), and “Rx =

Convert.ToDouble(RxTxtBox.Text);” for Rx (Roll).

The next calculation process shall be by obtaining the value of Sine and Cosine time

with 0.5 of Rz, Ry, and Rx by using the function of “Cy = Math.Cos(Rz * 0.5);”, “Sy =

Math.Sin(Rz * 0.5);”, “Cp = Math.Cos(Ry * 0.5);”, “Sp = Math.Sin(Ry * 0.5);”,

“Cr = Math.Cos(Rx * 0.5);”, and “Sr = Math.Sin(Rx * 0.5);”.

The final calculation’s process involves the formula of converting Euler Rotation

Value into Quaternion Orientation Format by using “qw = Cr * Cp * Cy + Sr * Sp * Sy;”,

“qx = Sr * Cp * Cy - Cr * Sp * Sy;”, “qy = Cr * Sp * Cy + Sr * Cp * Sy;”, and

“qz = Cr * Cp * Sy - Sr * Sp * Cy;”.

Figure 4.7 Generated Quaternion Value

28

4.4 Results and Analysis

The data and information obtained from the output of this application will be

presented in table and figure form and shall be discuss in this result and analysis. The G-

Code description from the application output is collected by matching the G-Code with

RAPID code coordinate syntax in RobotStudio emulation.

4.4.1 Analysis of RAP-CODE with Matlab of Quaternion Orientation Format.

The output result for the quaternion value will be compared between Matlab's

software and the RAP-CODE’s application in this part. The RAP-CODE application uses a

formula to convert Euler Rotation to Quaternion, whereas Matlab's software uses the

angle2quat function. To accomplish the conversion, both RAP-CODE and Matlab require

the user to enter the values of Yaw, Pitch, and Roll. As for RAP-CODE, the Rz, Ry, and Rx

will act as Yaw, Pitch, and Roll.

Table 4.1 Comparision of Quaternion Value between RAP-CODE application with Matlab’s software

Value RAP-CODE Output Matlab Output

Yaw = 10

Pitch = 0

Roll = 0

Yaw = 0

Pitch = 35

Roll = -20

29

Yaw = -10

Pitch = 44

Roll = -32

4.4.2 Analysis of G-Code with RAPID Target code syntax along with the value of

Quaternion Orientation Format.

The outcome is based on the converted RAPID code including Quaternion

Orientation Format from the G-Code utilizing by using RAP-CODE’s application as it is in

this section. The G-Code coordinate value and the converted RAPID Target code coordinate

will be compared in the data analysis. The const programmed contains the RAPID code

coordinate. Furthermore, the N in G-Code which referring to line number will be compared

to the P in RAPID Code, as the P in RAPID code will be the number of paths and will be

written in the Proc Main ().

Table 4.2 Comparison of coordinations between RAPID Target code with G-Code syntax

No. Input (G-Code) Result

1. N4 G00 Z100. S70 M3

N5 G01 X210. F300.

N6 Z60.

N7 Z-1.

N8 X0 F1000.

N9 X210. Y10.

 Match

 Output (RAPID Target code)

MODULE Module1

CONST robtarget p4: = [[0,0,100], [0, -0.283703561,0.958912034,0], [0, -1,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p5: = [[210,0,100], [0, -0.283703561,0.958912034,0], [-1, -1,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p6: = [[210,0,60], [0, -0.283703561,0.958912034,0], [-1, -2,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

30

CONST robtarget p7: = [[210,0, -1], [0, -0.283703561,0.958912034,0], [-1, -2,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p8: = [[0,0, -1], [0, -0.283703561,0.958912034,0], [0, -1,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p9: = [[210,10, -1], [0, -0.283703561,0.958912034,0], [-1, -2,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

 PROC Main ()

 MoveJ p4, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p5, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p6, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p7, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p8, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p9, v100, fine, MyTool \Wobj: =wobj0.

 ENDPROC

ENDMODULE

2. Input (G-Code) Result

 N10 X0

N11 X210. Y20.

N12 X0

N13 X210. Y30.

N14 X0

N15 X210. Y40.

 Match

Output (RAPID Target code)

MODULE Module1

CONST robtarget p10: = [[0,10, -1], [0, -.283703561,0.958912034,0], [0, -1,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p11: = [[210,20, -1], [0, -.283703561,0.958912034,0], [-1, -2,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p12: = [[0,20, -1], [0, -.283703561,0.958912034,0], [0, -1,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p13: = [[210,30, -1], [0, -.283703561,0.958912034,0], [-1, -2,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p14: = [[0,30, -1], [0, -.283703561,0.958912034,0], [0, -1,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p15: = [[210,40, -1], [0, -.283703561,0.958912034,0], [-1, -2,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

 PROC Main ()

 MoveJ p10, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p11, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p12, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p13, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p14, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p15, v100, fine, MyTool \Wobj: =wobj0.

 ENDPROC

ENDMODULE

31

3. Input (G-Code) Result

 N16 X0

N17 X210. Y50.

N18 X0

N19 X210. Y60.

N20 X0

N21 X210. Y70.

 Match

Output (RAPID Target code)

MODULE Module1

CONST robtarget p16: = [[0,40, -1], [0, -0.283703561,0.958912034,0], [0, -1,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p17: = [[210,50, -1], [0, -0.283703561,0.958912034,0], [-1, -2,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p18: = [[0,50, -1], [0, -0.283703561,0.958912034,0], [0, -1,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p19: = [[210,60, -1], [0, -0.283703561,0.958912034,0], [-1, -2,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p20: = [[0,60, -1], [0, -0.283703561,0.958912034,0], [0, -1,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

CONST robtarget p21: = [[210,70, -1], [0, -0.283703561,0.958912034,0], [-1, -2,1,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]].

 PROC Main ()

 MoveJ p16, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p17, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p18, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p19, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p20, v100, fine, MyTool \Wobj: =wobj0.

 MoveJ p21, v100, fine, MyTool \Wobj: =wobj0.

 ENDPROC

ENDMODULE

32

Figure 4.8 Tool setting for RAPID Target Code in Blue Reactangle Area

Figure 4.9 Quaternion Value in Dark Yellow Rectangle Area

4.4.3 RAP-CODE’s application full process flow

The output in this section will show the entire process of converting G-Code to

RAPID Target Code, as well as the tool path and simulation in RobotStudio. To begin, create

a work object in SolidWorks and produce G-Code, then specify the Rz, Ry, Rx, velocity,

zone, work object, and tool in RAP-CODE’s application. Then convert the G-code to RAPID

Target Code and save the RAPID Target code as a notepad file format. Finally, in

RobotStudio, configure the robot station and tool, as well as the tool's coordinate system,

33

which is by default display inverted tool. After that, synchronize the station with RAPID,

then import the generated RAPID Target code into RobotStudio and begin emulating it.

Figure 4.10 Design Object at SolidWorks then generate G-Code by using CARTIA

Figure 4.11 Save generated G-Code in notepad file format

34

Figure 4.12 G-Code to RAPID Code conversion by using RAP-CODE application

Figure 4.13 IRB 120 perform milling’s process

35

4.5 Discussion

According to the output result, all of the buttons in the RAP-CODE conversion

application are working properly, and the coordination syntax between G-Code and RAPID

Target Code is checked by consulting the G-Code reference list and RAPID Target Code.

Furthermore, the RAPID code that is transformed from G-code produces successful results.

As shown in subtopic 4.3.1, the mathematical calculation for Quaternion value between

RAP-CODE conversion application and Matlab software is same.

4.6 Summary

This chapter shows the output of the RAP-CODE conversion application, which

includes button functionality and converted G-code. G-Code to RAPID Target Code with

Quaternion Orientation Format can be successfully converted using the RAP-CODE

conversion application. Also, based on a comparison of G-code and RAPID Target code

syntax from the converted code, the G-code and RAPID code coordinate syntax are found

to be identical. Following that, the mathematical calculation for Quaternion Value between

RAP-CODE conversion application and Matlab software was successfully completed.

Furthermore, the RAP-CODE conversion application functionality analysis demonstrates

the whole simulation in SolidWorks to RobotStudio.

36

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This project involves the creation of a G-code to RAPID Target code conversion

application, which has been renamed RAP-CODE. The RAPID code is abbreviated as

"RAP." The main goal of this application is to convert G-code to RAPID Target code to

make it easier for users to convert G-code from a CAD design into RAPID Target code for

usage in an ABB robot for milling because robots have several rotation axes and functions.

Multiple problems arise during software development due to a lack of C#

programming language knowledge; however, as an electrical and electronic engineering

student who has learned some basic C++ programming and has a background in mechatronic

engineering for G-Code understanding, all of the problems can be overcome, and the project

completed on time. Furthermore, the project necessitates the use of several resources as well

as time. Despite the fact that this project has several limitations.

Overall, the program's development was successful in accomplishing the project's

objectives, which were to design an effective application for IRB 120 to execute a milling

operation using Quaternion Orientation Format mathematical algebra. IRB 120 be able to

perform multiple rotation angles for milling process after using compact, efficient, and

numerically stable Quaternion Orientation Format rotation matrices instead of fixed rotation

of Euler Orientation Format for industrial robot milling's conversion software after testing

the application through RobotStudio Emulation by using RAPID Target Code along with

Quaternion Orientation Format.

37

5.2 Future Works

The development of this project application was successful, and it was able to meet

the project's objectives. This software was able to convert G-Code to RAPID TARGET code

successfully. Following that, more enhancements are required to improve the software's

functionality as follows:

 The MoveC should be used to convert the circular motion commands G02

and G03 to RAPID Target code.

 When converting is in progress, add a progress bar or indication to display

the progress.

 More types of processes should be added to the library so that industrial

robots can be used in a variety of operations.

The MoveC command, like the G-Code circular motion commands G02 and G03,

is used to move the tool center point circularly to a chosen destination while keeping the

orientation unchanged relative to the circle. To utilize the MoveC command in RAPID code,

two positions or points of coordinate are required, thus the values of I and J in G-Code,

which operate as the X and Y offset, will be transformed into the position or point for the

coordinate to use in MoveC.

Furthermore, by adding a progress bar or indication be able to allow the user to be

notified that the converting process is underway or if an error has occurred which resulting

in the converting process failing. Last but not least, 3D printing commands, CNC turning,

CNC engraving, and other CNC processes should all be added to the library so that industrial

robots aren't limited to only one process.

38

REFERENCES

[1] A. B. B. Robotics, “The world’s most used offline programming tool for robotics,”

p. 2021, 2021.

[2] S. G-co, “An I nt r o du ction to G-Co d e an d C N C P r og r amming g ab d C u tte

r r a d i us off s et acco u nt s fo r the geomet r y of the tool an d pe r mit s the p r og

r amming of pa r t d imen s ion s fo r w hich the p r og r am d ete r mine s,” pp. 1–5,

2021.

[3] MachMotion, “M Code and G Code,” Eng. Books Libr., pp. 66–80, 2017, [Online].

Available: https://engineeringbookslibrary.com/basic-g-and-m-codes/.

[4] ABB, “Technical reference manual, RAPID Instructions, Functions and Data types

OLD,” 2018.

[5] V. Studio, Fundamentals of Computer Programming with C# (The Bulgarian C#

Programming Book) by Svetlin Nakov & Co. http://www.introprogramming.info.

2013.

[6] H. Automation, “Programming workbook,” 2000.

[7] Microsoft, “What is .NET Framework?,” Microsoft, pp. 6–9, 2021, [Online].

Available: https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet-framework.

[8] “By Andrew Payne & Rajaa Issa.”

[9] “HAL_5_Brochure.pdf.” .

[10] “RobotStudio Machining PowerPac RobotStudio Machining PowerPac Introduction

Features Benefits Requirements.”

[11] R. Dank, “Boot The Bot: Java-based Simulation, Code Generator and Live

Controller for ABB Robots,” J. Autom. Control Eng., vol. 1, no. 1, pp. 25–30, 2013,

39

doi: 10.12720/joace.1.1.25-30.

[12] “Robotmaster Interactive Simulation Environment (RISE).”

[13] L. Eitel, “RobotStudio — Software from ABB optimizes robot setups,” pp. 1–13,

2017, [Online]. Available: https://www.therobotreport.com/abb-robotstudio-

software-optimizes-robot-setups-with-videos/.

[14] J. B. KUIPERS, “Quaternions and Rotation Sequences,” Quaternions and Rotation

Sequences. 2020, doi: 10.2307/j.ctvx5wc3k.

[15] “Vehicle dynamics: theory and application,” Choice Rev. Online, vol. 51, no. 11, pp.

51-6199-51–6199, 2014, doi: 10.5860/choice.51-6199.

[16] M. Ben-Ari, “A Tutorial on Euler Angles and Quaternions,” pp. 1–22, 2014,

[Online]. Available: http://www.weizmann.ac.il/sci-

tea/benari/%0Ahttps://www.weizmann.ac.il/sci-tea/benari/sites/sci-

tea.benari/files/uploads/softwareAndLearningMaterials/quaternion-tutorial-2-0-

1.pdf.

40

APPENDICES

Appendix A Generated G-Code

N1 G54 G64 G40 G90 G17

G94 G49 G80

N2 G53

N3 T2 M06

N4 G00 Z100. S70 M3

N5 G01 X210. F300.

N6 Z60.

N7 Z-1.

N8 X0 F1000.

N9 X210. Y10.

N10 X0

N11 X210. Y20.

N12 X0

N13 X210. Y30.

N14 X0

N15 X210. Y40.

N16 X0

N17 X210. Y50.

N18 X0

N19 X210. Y60.

N20 X0

N21 X210. Y70.

N22 X0

N23 X210. Y80.

N24 X0

N25 X210. Y90.

N26 X0

N27 X210. Y100.

N28 X0

N29 Z9. F1.

N30 G00 X210. Y0

N31 Z8.

N32 G01 Z-2. F300.

N33 X0 F1000.

N34 X210. Y10.

N35 X0

N36 X210. Y20.

N37 X0

N38 X210. Y30.

N39 X0

N40 X210. Y40.

N41 X0

N42 X210. Y50.

N43 X0

N44 X210. Y60.

N45 X0

N46 X210. Y70.

N47 X0

N48 X210. Y80.

N49 X0

N50 X210. Y90.

N51 X0

N52 X210. Y100.

N53 X0

N54 Z8. F1.

N55 G00 X210. Y0

N56 Z7.

N57 G01 Z-3. F300.

N58 X0 F1000.

N59 X210. Y10.

N60 X0

N61 X210. Y20.

N62 X0

N63 X210. Y30.

N64 X0

N65 X210. Y40.

N66 X0

N67 X210. Y50.

N68 X0

N69 X210. Y60.

N70 X0

N71 X210. Y70.

N72 X0

N73 X210. Y80.

N74 X0

N75 X210. Y90.

N76 X0

N77 X210. Y100.

N78 X0

N79 Z7. F1.

N80 G00 X210. Y0

N81 Z6.

N82 G1 Z-4. F300.

N83 X0 F1000.

N84 X210. Y10.

N85 X0

N86 X210. Y20.

N87 X0

N88 X210. Y30.

N89 X0

N90 X210. Y40.

N91 X0

N92 X210. Y50.

N93 X0

N94 X210. Y60.

N95 X0

N96 X210. Y70.

N97 X0

N98 X210. Y80.

N99 X0

N100 X210. Y90.

N101 X0

N102 X210. Y100.

N103 X0

N104 Z6. F1.

N105 G00 X210. Y0

N106 Z5.

N107 G01 Z-5. F300.

N108 X0 F1000.

N109 X210. Y10.

N110 X0

N111 X210. Y20.

N112 X0

N113 X210. Y30.

N114 X0

N115 X210. Y40.

N116 X0

N117 X210. Y50.

N118 X0

N119 X210. Y60.

N120 X0

N121 X210. Y70.

N122 X0

N123 X210. Y80.

N124 X0

N125 X210. Y90.

N126 X0

N127 X210. Y100.

N128 X0

N129 Z20. F1.

N130 Z100.

N131 Y0

N132 M30

41

Appendix B Generated RAPID Target Code

MODULE Module1

 CONST robtarget p4:=[[0,0,100],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p5:=[[210,0,100],[0,-0.283703561,0.958912034,0],[-1,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p6:=[[210,0,60],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p7:=[[210,0,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p8:=[[0,0,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p9:=[[210,10,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p10:=[[0,10,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p11:=[[210,20,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p12:=[[0,20,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p13:=[[210,30,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p14:=[[0,30,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p15:=[[210,40,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p16:=[[0,40,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p17:=[[210,50,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p18:=[[0,50,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p19:=[[210,60,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p20:=[[0,60,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p21:=[[210,70,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p22:=[[0,70,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p23:=[[210,80,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p24:=[[0,80,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p25:=[[210,90,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p26:=[[0,90,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p27:=[[210,100,-1],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p28:=[[0,100,-1],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p29:=[[0,100,9],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p30:=[[210,0,9],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p31:=[[210,0,8],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p32:=[[210,0,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p33:=[[0,0,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p34:=[[210,10,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p35:=[[0,10,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p36:=[[210,20,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p37:=[[0,20,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p38:=[[210,30,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p39:=[[0,30,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p40:=[[210,40,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p41:=[[0,40,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p42:=[[210,50,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p43:=[[0,50,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p44:=[[210,60,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p45:=[[0,60,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p46:=[[210,70,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p47:=[[0,70,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p48:=[[210,80,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p49:=[[0,80,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p50:=[[210,90,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p51:=[[0,90,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p52:=[[210,100,-2],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p53:=[[0,100,-2],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p54:=[[0,100,8],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p55:=[[210,0,8],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p56:=[[210,0,7],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p57:=[[210,0,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p58:=[[0,0,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p59:=[[210,10,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p60:=[[0,10,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p61:=[[210,20,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p62:=[[0,20,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p63:=[[210,30,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p64:=[[0,30,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p65:=[[210,40,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p66:=[[0,40,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p67:=[[210,50,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p68:=[[0,50,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p69:=[[210,60,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p70:=[[0,60,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p71:=[[210,70,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

42

 CONST robtarget p72:=[[0,70,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p73:=[[210,80,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p74:=[[0,80,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p75:=[[210,90,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p76:=[[0,90,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p77:=[[210,100,-3],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p78:=[[0,100,-3],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p79:=[[0,100,7],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p80:=[[210,0,7],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p81:=[[210,0,6],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p105:=[[210,0,6],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p106:=[[210,0,5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p107:=[[210,0,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p108:=[[0,0,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p109:=[[210,10,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p110:=[[0,10,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p111:=[[210,20,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p112:=[[0,20,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p113:=[[210,30,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p114:=[[0,30,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p115:=[[210,40,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p116:=[[0,40,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p117:=[[210,50,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p118:=[[0,50,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p119:=[[210,60,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p120:=[[0,60,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p121:=[[210,70,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p122:=[[0,70,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p123:=[[210,80,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p124:=[[0,80,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p125:=[[210,90,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p126:=[[0,90,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p127:=[[210,100,-5],[0,-0.283703561,0.958912034,0],[-1,-2,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
 CONST robtarget p128:=[[0,100,-5],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p129:=[[0,100,20],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p130:=[[0,100,100],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p131:=[[0,0,100],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 CONST robtarget p132:=[[0,0,100],[0,-0.283703561,0.958912034,0],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

 PROC Main()

 MoveJ p4, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p5, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p6, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p7, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p8, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p9, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p10, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p11, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p12, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p13, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p14, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p15, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p16, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p17, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p18, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p19, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p20, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p21, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p22, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p23, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p24, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p25, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p26, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p27, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p28, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p29, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p30, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p31, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p32, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p33, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p34, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p35, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p36, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p37, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p38, v100, fine, MyTool \Wobj:=wobj0;

43

 MoveJ p39, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p40, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p41, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p42, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p43, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p44, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p45, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p46, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p47, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p48, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p49, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p50, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p51, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p52, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p53, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p54, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p55, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p56, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p57, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p58, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p59, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p60, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p61, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p62, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p63, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p64, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p65, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p66, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p67, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p68, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p69, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p70, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p71, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p72, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p73, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p74, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p75, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p76, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p77, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p78, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p79, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p80, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p81, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p105, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p106, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p107, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p108, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p109, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p110, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p111, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p112, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p113, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p114, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p115, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p116, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p117, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p118, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p119, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p120, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p121, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p122, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p123, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p124, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p125, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p126, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p127, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p128, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p129, v100, fine, MyTool \Wobj:=wobj0;
 MoveJ p130, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p131, v100, fine, MyTool \Wobj:=wobj0;

 MoveJ p132, v100, fine, MyTool \Wobj:=wobj0;
 ENDPROC

ENDMODULE

44

Appendix C C# Programming Coding for RAP-CODE

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.Text.RegularExpressions;
using Gcodelibv1;
using Rcodelibv1;

namespace RAP_CODE
{
 public partial class RAP_CODE : Form
 {
 public RAP_CODE()
 {
 InitializeComponent();
 }

 OpenFileDialog ofd = new OpenFileDialog();
 private void OpenFile_Click(object sender, EventArgs e)
 {
 if (ofd.ShowDialog() == DialogResult.OK)
 {
 gcode_tbox.Text = File.ReadAllText(ofd.FileName);
 }
 }

 private void listView1_SelectedIndexChanged(object sender, EventArgs
e)
 {

 }

 private void Form1_Load(object sender, EventArgs e)
 {

 }

 private void ResetG_Code_Click(object sender, EventArgs e)
 {
 gcode_tbox.Clear();
 }

 private void vScrollBar1_Scroll(object sender, ScrollEventArgs e)
 {

 }

 private void label5_Click(object sender, EventArgs e)
 {

 }

45

 private void ConvertToRapid_Click(object sender, EventArgs e)
 {
 Rapid_Code_TxtBox.Clear();
 Rapid_Code_TxtBox.Text += " MODULE Module1 ";

 string velo = comboBox1.Text;
 string zone = comboBox2.Text;
 string tool = textBox3.Text;
 string wobj = textBox2.Text;

 string[] text_line = Regex.Split(this.gcode_tbox.Text, "\n");

 String G_cmd = "";
 String N = "";
 String X = "";
 String Y = "";
 String Z = "";

 double Rz, Ry, Rx, Cy, Sy, Cp, Sp, Cr, Sr, qw, qx, qy, qz;

 Ry = Convert.ToDouble(RyTxtBox.Text);
 Rz = Convert.ToDouble(RzTxtBox.Text);
 Rx = Convert.ToDouble(RxTxtBox.Text);

 Cy = Math.Cos(Rz * 0.5);
 Sy = Math.Sin(Rz * 0.5);
 Cp = Math.Cos(Ry * 0.5);
 Sp = Math.Sin(Ry * 0.5);
 Cr = Math.Cos(Rx * 0.5);
 Sr = Math.Sin(Rx * 0.5);

 qw = Cr * Cp * Cy + Sr * Sp * Sy;
 qx = Sr * Cp * Cy - Cr * Sp * Sy;
 qy = Cr * Sp * Cy + Sr * Cp * Sy;
 qz = Cr * Cp * Sy - Sr * Sp * Cy;

 QuaternionValueTxtBox.Text = qw.ToString("0.0000") + " " +
qz.ToString("0.0000") + " " + qy.ToString("0.0000") + " " +
qx.ToString("0.0000");

 foreach (String n in text_line)
 {
 N = "";

 string[] param = Regex.Split(n, " ");
 foreach (String i in param)
 {
 if (i.Contains('G'))
 {
 G_cmd = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;
 }

 if (i.Contains('N'))
 {
 N = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;
 }

 if (i.Contains('X'))
 {
 X = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;

46

 }
 if (i.Contains('Y'))
 {
 Y = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;
 }

 if (i.Contains('Z'))
 {
 Z = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;
 }
 }

 if ((G_cmd == "00" | G_cmd == "02" | G_cmd == "43" | G_cmd ==
"01" | G_cmd == "17" | G_cmd == "91" | G_cmd == "28" | G_cmd == "54") & N !=
"")
 {
 Rapid_Code_TxtBox.Text += rcode.NewLine() + " CONST
robtarget";
 Rapid_Code_TxtBox.Text += " p" + N + ":=";
 Rapid_Code_TxtBox.Text += "[[" + X + ", " + Y + ", " + Z +
"],[" + qw.ToString("0.0000") + ", " + qz.ToString("0.0000") + ", " +
qy.ToString("0.0000") + ", " + qx.ToString("0.0000") + "], [-1, 0, 1, 0],
[9E+9,9E+9, 9E9, 9E9, 9E9, 9E9]]; ";
 }
 }

 Rapid_Code_TxtBox.Text += rcode.NewLine() + " PROC Main() ";

 string[] text2_line = Regex.Split(this.gcode_tbox.Text, "\n");
 foreach (String n in text2_line)
 {
 N = "";

 string[] param = Regex.Split(n, " ");
 foreach (String i in param)
 {
 if (i.Contains('G'))
 {
 G_cmd = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;
 }

 if (i.Contains('N'))
 {
 N = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;
 }

 if (i.Contains('X'))
 {
 X = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;
 }
 if (i.Contains('Y'))
 {
 Y = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;
 }

 if (i.Contains('Z'))
 {
 Z = Regex.Match(i, @"[-+]?[0-9]*\.?[0-9]+").Value;
 }
 }

47

 if ((G_cmd == "00" | G_cmd == "02" | G_cmd == "43" | G_cmd ==
"01" | G_cmd == "17" | G_cmd == "91" | G_cmd == "28" | G_cmd == "54") & N !=
"")
 {
 Rapid_Code_TxtBox.Text += rcode.NewLine() + "
MoveJ p" + N + ", v" + velo + ", " + zone + ", " + tool + @" \Wobj:=" + wobj +
";";
 }
 }
 Rapid_Code_TxtBox.Text += rcode.NewLine() + " ENDPROC" +
rcode.NewLine();
 Rapid_Code_TxtBox.Text += "ENDMODULE " + rcode.NewLine();
 }

 private void ExportRapid_Click(object sender, EventArgs e)
 {
 SaveFileDialog save = new SaveFileDialog();
 save.Title = "Save File";
 save.Filter = "Text Files (*.txt) | *.txt";

 if (save.ShowDialog() == System.Windows.Forms.DialogResult.OK)
 {
 StreamWriter write = new
StreamWriter(File.Create(save.FileName));
 write.WriteLine(Rapid_Code_TxtBox.Text);
 write.Dispose();
 }
 }

 private void ClearAll_Click(object sender, EventArgs e)
 {
 gcode_tbox.Clear();
 Rapid_Code_TxtBox.Clear();
 }

 private void ResetRapid_Click(object sender, EventArgs e)
 {
 Rapid_Code_TxtBox.Clear();
 }

 private void Rapid_Code_TxtBox_Click(object sender, EventArgs e)
 {

 }

 private void gcode_tbox_TextChanged(object sender, EventArgs e)
 {

 }

 private void label7_Click(object sender, EventArgs e)
 {

 }
 }
}

48

Appendix D C# Programming Coding for G-Code & M-Code

using System;
using System.Collections.Generic;
using System.Dynamic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Gcodelibv1
{
 public class gcode
 {
 public static string dot2()
 {
 return ": ";
 }
 public static string NewLine()
 {
 return Environment.NewLine;
 }
 public static string N()
 {
 return Environment.NewLine + "Line";
 }

 public static string S()
 {
 return Environment.NewLine + "Set Spindle Speed: ";
 }
 public static string X()
 {
 return Environment.NewLine + "Move to Position: ";
 }
 public static string Y()
 {
 return Environment.NewLine + "Move to Position: ";
 }
 public static string Z()
 {
 return Environment.NewLine + "Move to Position: ";
 }
 public static string F()
 {
 return Environment.NewLine + "Set Feed Rate: ";
 }
 public static string T()
 {
 return Environment.NewLine + "Select Tool: ";
 }
 public static string G(String n)
 {
 switch (n)
 {
 case "G00":
 return "G00: Move in a straight line at rapids speed.";
 case "G01":
 return "G01: Move in a straight line with Feedrate
speed.";

49

 case "G02":
 return "G02: Clockwise circular arc at Feedrate speed.";
 case "G03":
 return "G03: Counter-Clockwise circular arc at Feedrate
speed.";
 case "G04":
 return "G04: Dwell: Stop for a specified time.";
 case "G05":
 return "G05: FADAL Non-Modal Rapids.";
 case "G09":
 return "G09: Exact stop check.";
 case "G10":
 return "G10: Programmable parameter input.";
 case "G15":
 return "G15: Turn Polar Coordinates OFF, return to
Cartesian Coordinates.";
 case "G16":
 return "G16: Turn Polar Coordinates ON.";
 case "G17":
 return "G17: Select x-y plane.";
 case "G18":
 return "G18: Select x-z plane.";
 case "G19":
 return "G19: Select y-z plane.";
 case "G20":
 return "G20: Program coordinates are inches.";
 case "G21":
 return "G21: Program coordinates are mm";
 case "G27":
 return "G27: Reference point return check";
 case "G28":
 return "G28: Return to home position";
 case "G29":
 return "G29: Return from the reference position";
 case "G30":
 return "G30: Return to the 2nd, 3rd, and 4th reference
point";
 case "G32":
 return "G32: Constant lead threading (like G01
synchronized with spindle)";
 case "G40":
 return "G40: Tool cutter compensation off (radius comp.)";
 case "G41":
 return "G41: Tool cutter compensation left (radius
comp.)";
 case "G42":
 return "G42: Tool cutter compensation right (radius
comp.)";
 case "G43":
 return "G43: Apply tool length compensation (plus)";
 case "G44":
 return "G44: Apply tool length compensation (minus)";
 case "G49":
 return "G49: Tool length compensation cancel";
 case "G50":
 return "G50: Reset all scale factors to 1.0";
 case "G51":
 return "G51: Turn on scale factors";
 case "G52":
 return "G52: Local workshift for all coordinate systems:
add xyz offsets";
 case "G53":

50

 return "G53: Machine coordinate system (cancel work
offsets)";
 case "G54":
 return "G54: Work coordinate system (1st Workpiece)";
 case "G55":
 return "G55: Work coordinate system (2nd Workpiece)";
 case "G56":
 return "G56: Work coordinate system (3rd Workpiece)";
 case "G57":
 return "G57: Work coordinate system (4th Workpiece)";
 case "G58":
 return "G58: Work coordinate system (5th Workpiece)";
 case "G59":
 return "G59: Work coordinate system (6th Workpiece)";
 case "G61":
 return "G61: Exact stop check mode";
 case "G62":
 return "G62: Automatic corner override";
 case "G63":
 return "G63: Tapping mode";
 case "G64":
 return "G64: Best speed path";
 case "G65":
 return "G65: Custom macro simple call";
 case "G68":
 return "G68: Coordinate System Rotation";
 case "G69":
 return "G69: Cancel Coordinate System Rotation";
 case "G73":
 return "G73: High speed drilling cycle (small retract)";
 case "G74":
 return "G74: Left hand tapping cycle";
 case "G76":
 return "G76: Fine boring cyle";
 case "G80":
 return "G80: Cancel canned cycle";
 case "G81":
 return "G81: Simple drilling cycle";
 case "G82":
 return "G82: Drilling cycle with dwell.";
 case "G83":
 return "G83: Peck drilling cycle (full retract)";
 case "G84":
 return "G84: Tapping cycle";
 case "G85":
 return "G85: Boring canned cycle, no dwell, feed out";
 case "G86":
 return "G86: Boring canned cycle, spindle stop, rapid
out";
 case "G87":
 return "G87: Back boring canned cycle";
 case "G88":
 return "G88: Boring canned cycle, spindle stop, manual
out";
 case "G89":
 return "G89: Boring canned cycle, dwell, feed out";
 case "G90":
 return "G90: Absolute programming of xyz.";
 case "G90.1":
 return "G90.1: Absolute programming IJK.";
 case "G91":
 return "G91: Incremental programming of xyz.";

51

 case "G91.1":
 return "G91.1: Incremental programming IJK.";
 case "G92":
 return "G92: Offset coordinate system and save
parameters";
 case "G92.1":
 return "G92.1: Cancel offset and zero parameters";
 case "G92.2":
 return "G92.2: Cancel offset and retain parameters";
 case "G92.3":
 return "G92.3: Offset coordinate system with saved
parameters";
 case "G94":
 return "G94: Units per minute feed mode. Units in inches
or mm.";
 case "G95":
 return "G95: Units per revolution feed mode. Units in
inches or mm.";
 case "G96":
 return "G96: Constant surface speed";
 case "G97":
 return "G97: Cancel constant surface speed";
 case "G98":
 return "G98: Return to initial Z plane after canned
cycle";
 case "G99":
 return "G99: Return to initial R plane after canned
cycle";

 }
 return "";
 }

 public static string M(String n)
 {
 switch (n)
 {
 case "M00":
 return "M00: Program Stop.";
 case "M01":
 return "M01: Optional Stop: Operator Selected to Enable.";
 case "M02":
 return "M02: End of Program.";
 case "M03":
 return "M03: Spindle ON Clock Wise Rotation.";
 case "M04":
 return "M04: Spindle ON Counter Clock Wise Rotation.";
 case "M05":
 return "M05: Spindle Stop.";
 case "M06":
 return "M06: Tool Change.";
 case "M07":
 return "M07: Mist Coolant ON.";
 case "M08":
 return "M08: Flood Coolant ON.";
 case "M09":
 return "M09: Coolant OFF.";
 case "M17":
 return "M17: FADAL Subroutine Return.";
 case "M29":
 return "M29: Rigid Tapping Mode On Fanuc Controls.";
 case "M30":

52

 return "M30: End of program, Rewind and Reset Modes.";
 case "M97":
 return "M97: Haas-Style Subprogram Call.";
 case "M98":
 return "M98: Subprogram Call.";
 case "M99":
 return "M99: Return from Subprogram.";
 }
 return "";
 }

 }
}

53

Appendix E C# Programming Coding for Quaternion Formula

 Ry = Convert.ToDouble(RyTxtBox.Text);
 Rz = Convert.ToDouble(RzTxtBox.Text);
 Rx = Convert.ToDouble(RxTxtBox.Text);

 Cy = Math.Cos(Rz * 0.5);
 Sy = Math.Sin(Rz * 0.5);
 Cp = Math.Cos(Ry * 0.5);
 Sp = Math.Sin(Ry * 0.5);
 Cr = Math.Cos(Rx * 0.5);
 Sr = Math.Sin(Rx * 0.5);

 qw = Cr * Cp * Cy + Sr * Sp * Sy;
 qx = Sr * Cp * Cy - Cr * Sp * Sy;
 qy = Cr * Sp * Cy + Sr * Cp * Sy;
 qz = Cr * Cp * Sy - Sr * Sp * Cy;

 QuaternionValueTxtBox.Text = qw.ToString("0.0000") + " " +
qz.ToString("0.0000") + " " + qy.ToString("0.0000") + " " +
qx.ToString("0.0000");

