
MOBILE MALWARE DETECTON USING RNN-LSTM THROUGH OPCODE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AHMAD RAZIN BIN AZMAN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 

  



MOBILE MALWARE DETECTION USING RNN-LSTM THROUGH OPCODE 

 

  

 

 

 

 

 

 

 

AHMAD RAZIN BIN AZMAN 

 

 

 

 

 

 

 

 

 

 

This report is submitted in partial fulfillment of the requirements for the  

Bachelor of Computer Science (Computer Security) with Honours. 

 

 

 

 

 

 

 

 

 

 

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY 

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 

2021 

 

 

 

 

 

 

 

 

 

 

 



i 
 

DECLARATION 

 

 

 

 

I hereby declare that this project report entitled   

MOBILE MALWARE DETECTION USING RNN-LSTM THROUGH OPCODE 

is written by me and is my own effort and that no part has been plagiarized  

without citations. 

 

STUDENT :                                                        Date : 08/09/2021 

(AHMAD RAZIN BIN AZMAN) 

 

 

 

 

 

 

 

 

 

I hereby declare that I have read this project report and found 

this project report is sufficient in term of the scope and quality for the award of 

 Bachelor of Computer Science (Computer Security) with Honours. 

 

 

 

 

SUPERVISOR  : ______________________________________   Date : 08/09/2021 

(TS. DR. MOHD ZAKI BIN MAS'UD) 

 

 

 

 

 



ii 
 

DEDICATION 

 

 

 

To My beloved parents, for always give me support and encourage me on everything. 

My helpful supervisors, for always give me those brilliant ideas and precious time to 

guide me throughout completing this final year project. My fellow friends, for always 

give me good advice and helping me. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



iii 
 

ACKNOWLEDGEMENT 

 

 

First and foremost, in the name of Allah, I would want to convey my heartfelt gratitude 

to numerous persons who have helped me during my degree studies. TS. DR. Mohd Zaki Bin 

Mas'ud, my supervisor, I want to express my heartfelt appreciation for all of your expertise and 

helpful suggestions in assisting me in finishing my final year project. Also, thank you for your 

compassion and for devoting so much of your time to me during this endeavour. I'd also want 

to thank my evaluator, PM TS. DR Siti Rahayu Bt Selamat, for taking the time to assess me 

and provide honest criticism on my research. 

I'd also like to thank my loving parents and family members, who have always loved 

and inspired me to accomplish my final year project. I shall never forget their belief in my 

ability to succeed in my studies. 

Last but not least, I want to express my gratitude to my friends who have always given 

up their valuable time to assist me and make suggestions for my final year project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ABSTRACT 

 

The popularity of Android and the development of third-party app stores have led to Android 

malware growing in recent years. Emerging Android malware families are progressively 

implementing advanced detection avoidance tactics, necessitating more effective Android 

malware detection methodologies. Hence, in this project analyse an opcode features-based 

framework to identifying and categorizing Android malware using RNN-LSTM.  This method 

allows for automatic feature discovery without the need for previous expert or subject 

knowledge for pre-defined features. Identify mobile malware using opcode is the aim of this 

paper. Not only that, in this research create and analyse RNN-LSTM models for mobile 

malware detection through opcode. In this research, synthesis all material that have related to 

the mobile malware detection from any journal. Summarizing the material, analyse, interpret 

and make implications for researcher in order to properly draw a conclusion to provide a 

solution. After that, in this project experimental setup is required, providing an isolation 

environment to prevent malware harmful PC host. The activities in the isolation environment 

for doing static analysis on malware samples using the jadx-gui tool involve Android package 

extraction and code disassembly. In this isolation environment, 1000 malware samples and 

1000 benign samples will use the most recent version of Python to extract opcode. Google 

Colaboratory RNN-LSTM design is the way to train all data sets (80% training 20% testing). 

This research aims to analyse and evaluate the output of a dataset to obtain the value of the 

True Positive rates (TPR) and False Positive Rates (FPR). 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ABSTRAK 

 

Populariti Android dan pengembangan kedai aplikasi pihak ketiga menyebabkan malware 

Android berkembang dalam beberapa tahun terakhir. Keluarga malware Android yang muncul 

secara progresif menerapkan taktik penghindaran pengesanan lanjutan, memerlukan 

metodologi pengesanan malware Android yang lebih berkesan. Oleh itu, dalam projek ini 

menganalisis kerangka kerja berasaskan opcode untuk mengenal pasti dan mengkategorikan 

perisian hasad Android menggunakan RNN-LSTM. Kaedah ini membolehkan penemuan ciri 

automatik tanpa memerlukan pengetahuan pakar atau subjek sebelumnya untuk ciri yang 

ditentukan sebelumnya. Mengenal pasti perisian hasad mudah alih menggunakan opcode 

adalah tujuan makalah ini. Penyelidikan ini bukan sahaja membuat dan menganalisis model 

RNN-LSTM untuk pengesanan malware mudah alih melalui opcode. Dalam penyelidikan ini, 

sintesis semua bahan yang berkaitan dengan pengesanan malware mudah alih dari jurnal mana 

pun. Meringkaskan bahan, menganalisis, mentafsir dan membuat implikasi kepada penyelidik 

agar dapat membuat kesimpulan dengan betul untuk memberikan penyelesaian. Setelah itu, 

dalam projek ini diperlukan penyediaan eksperimen, menyediakan persekitaran pengasingan 

untuk mengelakkan host PC berbahaya dari malware. Kegiatan dalam lingkungan pengasingan 

untuk melakukan analisis statik pada sampel malware menggunakan alat jadx-gui melibatkan 

pengekstrakan paket Android dan pembongkaran kod. Dalam persekitaran pengasingan ini, 

1000 sampel malware dan 1000 sampel jinak akan menggunakan versi terbaru Python untuk 

mengekstrak opcode. Model RNN-LSTM menggunakan Google Colaboratory adalah cara 

untuk melatih semua set data (latihan 80% ujian 20%). Penyelidikan ini bertujuan untuk 

menganalisis dan menilai hasil dari set data untuk mendapatkan nilai True Positive rates (TPR) 

dan False Positive Rates (FPR). 

 

 

 

 

 

 

 

 

 



vi 
 

1. Table of Contents 
DECLARATION ............................................................................................................................ i 

DEDICATION ............................................................................................................................... ii 

ACKNOWLEDGEMENT ........................................................................................................... iii 

ABSTRACT .................................................................................................................................. iv 

ABSTRAK ..................................................................................................................................... v 

LIST OF TABLES ..................................................................................................................... viii 

LIST OF FIGURES ..................................................................................................................... ix 

LIST OF ABBREVIATION ......................................................................................................... x 

1. CHAPTER 1: INTRODUCTION ................................................................................................ 1 

1.1Introduction .................................................................................................................................... 1 

1.2 Research Background ................................................................................................................... 1 

1.3 Problem Statement ........................................................................................................................ 2 

1.4 Project Question ............................................................................................................................ 2 

1.5 Project Objective ........................................................................................................................... 3 

1.6 Project Scope ................................................................................................................................ 3 

1.7 Project Contribution ...................................................................................................................... 3 

1.8 Report Organization ...................................................................................................................... 4 

1.9 Conclusion .................................................................................................................................... 5 

2. Chapter 2: LITERATURE REVIEW ......................................................................................... 6 

2.1 Introduction ................................................................................................................................... 6 

2.2 Keyword ........................................................................................................................................ 6 

2.2.1 Deep Learning ........................................................................................................................ 6 

2.2.2 Mobile Malware ..................................................................................................................... 6 

2.2.3 Neural Network ...................................................................................................................... 7 

2.2.4 Operation Code (OPCODE) ................................................................................................... 7 

2.2.5 RNN-LSTM ........................................................................................................................... 7 

2.3 Related Work ................................................................................................................................ 7 

2.3.1 Introduction to mobile malware ............................................................................................. 8 

2.3.2 Mobile malware detection base-method signature and anomaly ........................................... 9 

2.3.3 Machine Learning in mobile malware ................................................................................. 10 

2.3.4 Deep Learning method in mobile malware .......................................................................... 10 

2.4 Propose solutions ........................................................................................................................ 13 

2.5 Conclusion .................................................................................................................................. 13 

3. Chapter 3 : METHODOLOGY ................................................................................................. 15 

3.1 Introduction ................................................................................................................................. 15 



vii 
 

3.2 Research Methodology ............................................................................................................... 15 

3.3 Experimental Setup ..................................................................................................................... 16 

3.4 Project Milestone ........................................................................................................................ 18 

3.5 Conclusion .................................................................................................................................. 20 

4. Chapter 4: ANALYSIS ............................................................................................................... 21 

4.1 Introduction ................................................................................................................................. 21 

4.2 Dataset......................................................................................................................................... 22 

4.3 Static Analysis ............................................................................................................................ 23 

4.4 Application code review: Opcode ............................................................................................... 34 

4.4.1 Process of application code review through opcode ................................................................ 34 

4.4.2 Opcode Analysis ...................................................................................................................... 36 

4.5Conclusion ................................................................................................................................... 39 

5. Chapter 5: DESIGN RNN-LSTM MODEL ............................................................................. 40 

5.1 Introduction ................................................................................................................................. 40 

5.2 Flowchart .................................................................................................................................... 40 

5.3 Pseudocode ................................................................................................................................. 40 

5.4 Modelling RNN-LSTM .............................................................................................................. 42 

5.4.1 Input Dataset of Malware and Benign ................................................................................. 42 

5.4.2 Drop columns ....................................................................................................................... 43 

5.4.3 Split Dataset ......................................................................................................................... 43 

5.4.4 RNN-LSTM Model .............................................................................................................. 45 

5.5 Results of data training and testing ............................................................................................. 46 

5.6 Conclusion .................................................................................................................................. 51 

6. Chapter 6: CONCLUSION ........................................................................................................ 52 

6.1 Introduction ................................................................................................................................. 52 

6.2 Research Contribution ................................................................................................................ 52 

6.3 Research Limitation .................................................................................................................... 53 

6.4 Future Research .......................................................................................................................... 53 

6.5 Conclusion .................................................................................................................................. 55 

7. REFERENCES ............................................................................................................................ 56 

8. APPENDIX I ............................................................................................................................... 57 

9. APPENDIX II .............................................................................................................................. 58 

10. APPENDIX III ........................................................................................................................ 58 

11. APPENDIX IV ........................................................................................................................ 59 

12. APPENDIX V .......................................................................................................................... 60 

 



viii 
 

 

LIST OF TABLES 

Table 1.1 Problem Statement .................................................................................................................. 2 

Table 1.2 Project Question ...................................................................................................................... 3 

Table 1.3 Project Objective ..................................................................................................................... 3 

Table 2.1 Type of Malware ..................................................................................................................... 8 

Table 2.2 Related Works ....................................................................................................................... 11 

Table 3.1 Project Milestone .................................................................................................................. 18 

Table 4.1 Dataset Used in Previous Research ....................................................................................... 22 

Table 4.2 Similarity Online Analysis and Static Analysis .................................................................... 32 

Table 4.3 Basic opcode grammar .......................................................................................................... 37 

Table 5.1 Summarise of Experiment ..................................................................................................... 51 

Table 6.1  Recommended Specification ............................................................................................... 54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF FIGURES 

 

 

Figure 3.1 Research Methodology ........................................................................................................ 15 

Figure 3.2 Experimental Phase ............................................................................................................. 16 

Figure 3.3 Process Opcode Extraction .................................................................................................. 17 

Figure 3.4 Gantt Chart .......................................................................................................................... 19 

Figure 4.1 Analysis phase ..................................................................................................................... 21 

Figure 4.2 jadx-gui ................................................................................................................................ 23 

Figure 4.3 Opcode ................................................................................................................................. 24 

Figure 4.4 VirusTotal Results ............................................................................................................... 24 

Figure 4.5 Applications Permissions VirusTotal .................................................................................. 25 

Figure 4.6 Risk Assessment Hybrid Analysis ....................................................................................... 25 

Figure 4.7 Applications Permission at AndroidManifext.xml .............................................................. 26 

Figure 4.8 Function code to monitors all incoming SMS messages ..................................................... 26 

Figure 4.9 function code to install any package .................................................................................... 27 

Figure 4.10 function code to upload file zjms.txt and zjphonecall.txt into their server ........................ 27 

Figure 4.11 function code to get device info ........................................................................................ 27 

Figure 4.12 function code to call using victim devices ......................................................................... 28 

Figure 4.13 function code to send message using victim devices ......................................................... 28 

Figure 4.14 function to open internet connection ................................................................................. 28 

Figure 4.15 function to execute the code after reboot ........................................................................... 29 

Figure 4.16 function code to get incoming call and save it .................................................................. 29 

Figure 4.17 function code to delete package ......................................................................................... 29 

Figure 4.18 android.location.LocationListener library ......................................................................... 30 

Figure 4.19 function code Location g ................................................................................................... 31 

Figure 4.20 Geo-location API ............................................................................................................... 31 

Figure 4.21 Function of Malicious code ............................................................................................... 34 

Figure 4.22 Function of code in smali .................................................................................................. 34 

Figure 4.23 extracting opcode in notepad ............................................................................................. 35 

Figure 4.24 Function of code to install package ................................................................................... 36 

Figure 4.25 Function of code to install package in smali ..................................................................... 36 

Figure 4.26 line of code in smali to install package .............................................................................. 37 

Figure 4.27 dataset in csv file ............................................................................................................... 38 

Figure 5.1 RNN-LSTM Flowchart ........................................................................................................ 40 

Figure 5.2 Dataset of sample................................................................................................................. 42 

Figure 5.3 Number of malware and benign .......................................................................................... 42 

Figure 5.4 data_in and labels shape ...................................................................................................... 43 

Figure 5.5 pad_sequence output............................................................................................................ 44 

Figure 5.6 Final shape of data ............................................................................................................... 44 

Figure 5.7 Model RNN-LSTM summary ............................................................................................. 46 

Figure 5.8 Graph of accuracy ................................................................................................................ 47 

Figure 5.9 Graph of loss ........................................................................................................................ 48 

Figure 5.10 Graph of accuracy .............................................................................................................. 49 

Figure 5.11 Graph of loss ...................................................................................................................... 49 

Figure 5.12 Graph of Accuracy............................................................................................................. 50 

Figure 5.13 Graph of loss ...................................................................................................................... 51 



x 
 

 

LIST OF ABBREVIATION 

 

RNN  - Recurrent Neural Network 

LSTM  - Long Short Term Memory 

DEX  -Dalvik Executable   

OPCODE -Operation Code 

API  - Application Programming Interface 

TPR  -True Positive Rate  

FPR  - False Positive Rate 

TCP  - Transmission Control Protocol 

HTTP  - Hypertext Transfer Protocol 

DBN  -Deep Belief Network 

DNN  - Deep Neural Networks 

CNN  -Convolutional Neural Network 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

1. CHAPTER 1: INTRODUCTION 

 

 

 

1.1 Introduction 

 

The research history, issue statement, research topic, research priorities, research scope, 

research technique, and analytic walkthrough for the full research are all included in this 

chapter. 

 

1.2 Research Background 

 

In this project each mobile malware sample will be statically analysed to detect their 

behaviour. The static analysis decompiles the chosen .apk files and extracts and examines the 

associated functions. This research is used extensively for checking licenses, API calls and 

determining the code structures and components of a given .apk file. When the files of.apk are 

decompiled, there are some files, such as META-INF, lib, res, properties, 

AndroidManifest.xml, classes.dex, and resources.arsc, that are stored there. In static analysis, 

the AndroidManifest.xml and classes.dex are popular as they show any suspicious application's 

true purpose.  

In structured research, AndroidManifest.xml and classes.dex are typically used so they 

display the true intent of any questionable programs. In the first step, a managed environment 

is developed by VMware to evaluate mobile malware without the possibility of infection on 

the host PC.  

Secondly, in order to receive classes and manifest data, the .apk files are deleted. 

Manifest file holds configuration files, operation and permissions, while the class file contains 

all the Java codes used. Next, you can decompile the classes.dex file into a Java class file called 

.jar. Analysis of codes and methods in Java class will display malicious requests. Some typical 

malicious activities include root authorisation, the stealing of confidential data, such as IMEI 

and country numbers, the dispatch and reception of C&C server orders. The findings obtained 

in static analysis are last but not least used in the fifth stage to represent the chain of malevolent 

practices. The final step is important because it allows the researcher to track the patterns of 

the malware during an attack. 



2 
 

In this research, in order to increase the accuracy of the mobile malware detection using 

method in deep learning call Recurrent Neural Network (RNN) and Long Short Term Memory 

(LSTM) through Operation Code(opcode). This study plan to establish some advancement 

focused on the methods that have been suggested previously. 

1.3 Problem Statement 
 

 Due to the rising use of complex detection avoidance methods and the need to update 

signature databases on a regular basis, previous research has shown that traditional signature-

based approaches, which are employed by most antivirus scanners, are unsuccessful in 

detecting new infections. Various techniques based on analysing dynamic application activity, 

requested permissions, API calls, and other aspects have been presented. However, expert 

analysis or domain expertise are still frequently used to design or select the discriminative 

aspects that are provided to the machine learning system that makes the final classification 

decision. To train on, machine learning requires huge data sets that are complete, unbiased, and 

of high quality. At times, they may have to wait for fresh data to be created. Machine Learning 

is also self-contained, yet it is susceptible to errors. Assume you're trying to train an algorithm 

with data sets that aren't big enough to be useful. You get biased predictions as a result of a 

biased training set. As a result, customers are bombarded with irrelevant advertisements. Such 

errors may initiate a cascade of errors that go unnoticed for a long period in the setting of 

machine learning. It takes a long time to figure out what's causing the problem, and even longer 

to solve it, once they're discovered. Table 1.1 summarises the problem statement for the project. 

 

Table 1.1 Problem Statement 
No Problem Statement 

1 The capability traditional signature base approaches in detecting mobile malware 

2 The massive data sets to train on in the machine learning. 

3 The high error-susceptibility of machine learning in classification of mobile malware 
 

 

 

 

1.4 Project Question 

 



3 
 

In reality, there are a great deal of to detect mobile malware and each of them have a 

different behaviour through opcode. Hence, it is important to study the mobile malware 

behaviours during static analysis and the best way to detect it. Next, we can start to identify 

the suitable method and algorithm in RNN-LSTM that uses a higher accuracy in detecting 

mobile malware. 

 

 

Table 1.2 Project Question 

No Project Question 

1 What is the accuracy of a non-mobile malware and mobile malware? 

2 How far RNN-LSTM contribute in mobile malware detection? 

 

 

1.5 Project Objective  

 

There are three objectives of this project. Table 1.2 below shows the summary of the project 

objectives for this project. 

Table 1.3 Project Objective 

No Project Objective  

1 To detect mobile malware through opcode 

2 To develop RNN-LSTM model for mobile malware detection through opcode 

3 To evaluate the RNN-LSTM mobile malware detection 

 

1.6 Project Scope 

 

This project is developed in order to detect malware at executable by calculating it’s 

accuracy. The dataset of the sample mobile malware will be collect and decompiled, there are 

some files, such as META-INF, lib, res, properties, AndroidManifest.xml, classes.dex, and 

resources.arsc, that are stored there.. The programming language will be use is python and the 

operating system is Ubuntu for better isolated environment to make this project successful. 

 

1.7 Project Contribution 

 



4 
 

This project is important as it can be used by any researcher to conduct more research 

or to established best method in detection of the mobile malware using deep learning through 

RNN-LSTM for enabling them to compare which form of method can produce a better 

accuracy.  

 

1.8 Report Organization 

 

This section is provided for the description of the report organization. Overall, the report 

contains six (6) chapters: 

Chapter 1: Introduction 

This chapter consists of the research background, problem statement, project question, project 

objective, project scope, and project contribution. 

Chapter 2: Literature Review 

Reviews on the terminologies related to the project topic on the basis of related works, 

critical review of the current problems and proposed solutions have been included in this 

chapter. 

Chapter 3: Project Methodology 

This chapter describes the flow or methodology used in the process of completing this project 

as well as how it develops its analysis. 

Chapter 4: Analysis  

This chapter provide project design and process step by step must be state in this chapter. 

Chapter 5: Design RNN-LSTM 

This chapter provides the details of the implementation of the project including the 

description on how the project is carried out and how the result is produced. 

 

Chapter 6: Conclusion 

The last chapter addresses the conclusion and discussion of the project. Summary of the 

conclusion will also be stated in this chapter 



5 
 

 

1.9 Conclusion  
 

In conclusion, this chapter has given an explanation and a better understanding on the 

objectives of the project, regarding how it would benefit in the cyber security field in the future. 

Next, this research will be focusing on finding the best method in deep learning and producing 

method of detection mobile malware with higher accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

2. Chapter 2: LITERATURE REVIEW 

 

2.1 Introduction 

 

A literature review is a thorough overview of prior studies on a particular topic. The 

literature review examines scientific journals, books, and other references that are applicable 

to a specific research subject. This previous study should be enumerated, defined, summarized, 

critically evaluated, and clarified in the analysis. It should provide a theoretical foundation for 

the study and assist you (the author) in determining the scope of the study. The literature review 

respects the findings of prior scholars, assuring the reader that your work is well-thought-out. 

By referencing a prior work in the field of research, it is believed that the author has 

read, analysed, and assimilated the work into the current work. A literature review provides the 

reader with a "landscape," allowing them to fully comprehend the field's innovations. The 

reader will see from this landscape that the author has incorporated all (or the overwhelming 

majority) of recent, important works in the field into her or his research. 

2.2 Keyword 

 

2.2.1 Deep Learning 

 

Deep learning is a branch of machine learning in which vast volumes of data are learned 

using multi-layered neural networks modelled after the human brain. Deep learning algorithms 

conduct calculations and make predictions consistently within each layer of the neural network, 

increasingly 'learning' and improving the precision of the result over time. 

2.2.2 Mobile Malware 

 

Mobile malware, as the name implies, is malicious software designed to attack mobile 

phone operating systems. There are several common kinds of smartphone malware variants, as 

well as different delivery and infection processes. 

It was only a matter of time before hackers shifted strategies as more people moved 

away from desktop operating systems in favour of handheld devices. At the moment, 

smartphone attacks are a tiny fraction of those that threaten desktop computers. Mobile security 

risks are quickly becoming a growing problem as more critical and potentially high-value 

activities are carried out on mobile devices. 



7 
 

2.2.3 Neural Network 

 

Artificial neural networks (ANNs) and synthetic neural networks (SNNs) are a branch 

of machine learning that are at the core of deep learning algorithms. Their name and form are 

derived from the human brain, and they resemble the way biological neurons communicate 

with one another. 

2.2.4 Operation Code (OPCODE) 

 

An opcode (abbreviated from operation code) is the part of a computer language 

instruction that determines the operation to be executed. It is also known as instruction machine 

code, instruction code, instruction syllable, instruction parcel, or opstring. Many instructions, 

in addition to the opcode itself, also specify the data they would process in the form of 

operands. Opcodes can be used in abstract computer machines as part of their byte code 

requirements, in addition to being used in the instruction set architectures of different CPUs, 

which are hardware computers. 

2.2.5 RNN-LSTM 

 

Long Short Term Memory (LSTM) is a supervised Deep Neural Network type that 

excels at time-series prediction. It's a kind of RNN (Recurrent Neural Network). An LSTM 

model examines data from the previous "n" days (timestep) (also known as lag) and forecasts 

how the sequence will proceed in the future. 

RNN is a kind of artificial neural network (ANN) that has a recurring relation to itself. 

RNN learns the influence of previous input x(t-1) as well as current input x(t) when 

estimating the output at time “t” y using this repeated relation (t). This provides RNN with a 

sense of time. At time “t,” the secret layer activations measured at time “t-1” are used as an 

input. 

 

 

 

 

2.3 Related Work 

 



8 
 

2.3.1 Introduction to mobile malware 

 

With the proliferation of mobile devices, we have entered the mobile era, witnessing a rapidly 

growing popularity of smartphones. The mobile device is no longer confined to the 

communication services in traditional sense(Wang et al., 2019). Malicious software intended 

to target cell phone operating systems is known as mobile malware. There are several various 

types of mobile malware, as well as different distribution and intrusion methods (Kumar et 

al., 2019). Table 1.3 below are several class of malware (Jul, 2019) 

Table 2.1 Type of Malware 

Type of malware Explanations 

Virus Viruses are known to penetrate mobile computers and 

smartphones without the user's permission. After successfully 

infiltrating the device, the viruses bind to some program files and 

begin executing malicious functions that have been coded. 

Worm Worms are typically designed to replicate themselves inside a 

computer system. It then goes on destroying data and files on the 

server or mobile devices. 

Trojan  Trojans are programmed to steal banking information or 

passwords while also causing a denial of service (DoS) assault on 

the server. 

Backdoor Backdoors are created by programmers to make it easier for them 

to administer programs remotely. When it is used for malicious 

purposes, however, attackers may send ransomware, viruses, and 

even gain access to a computer device in order to carry out 

malicious activities. 

Spyware Spyware is software that monitors a computer's operations and 

can also be used to steal a victim's login credentials. 

Adware Adware poses no risk to computers or handheld devices because it 

is only used to deliver advertisements, which can be malicious at 

times. 

Ransomware Ransomware is a form of malicious software that encrypts the 

data and files of its victims. Victims will be asked to pay a large 



9 
 

amount of money to the perpetrators in order to open or decrypt 

the files and documents. 

Rootkit Rootkit, on the other hand, is a malicious application that is 

installed in a computer system to allow uncertified staff access. 

The attackers will then remotely execute files or change device 

settings. 

Botnets Botnets were frequently used by attackers to carry out large-scale 

network attacks, such as DoS attacks, that flooded resources. 

Keylogger The keylogger works by recording all of the keystrokes. After 

that, the registered values are used to retrieve login credentials 

and other financial data. Previous research has shown that mobile 

malware takes on those characteristics after infecting a mobile 

computer. 

 

2.3.2 Mobile malware detection base-method signature and anomaly 

 

The two major methods of detecting and alerting on risks are signature-based and 

anomaly-based detections. Anomaly-based detection is used for variations in behaviour, 

while signature-based detection is used for known attacks. Signature-based identification is 

based on a list of established signs of compromise that has been pre-programmed (IOCs). 

Malicious network attack actions, email subject line text, file hashes, identified byte 

sequences, and malicious domains are all examples of IOCs. Signatures can also provide 

network traffic warnings, such as identified malicious IP addresses trying to gain access to a 

device.  

In comparison to signature-based detection, anomaly-based detection may identify 

unexpected irregular behaviour. Anomaly-based detection involves first creating a 

normalized context for the system and then matching behaviour to the baseline. An warning 

is activated when an incident seems to be out of the ordinary. Anything that deviates from the 

normalized baseline will set off an alert, such as a user signing in during non-business hours, 

an influx of new IP addresses trying to link to the network, or the addition of new devices to a 

network without authorization. Based on other research that analyses HTTP requests and 

TCP Flows to determine whether the apps is malicious.  



10 
 

The network behaviours of malware can still present non-trivial anomalies that can be 

identified by advanced detectors  which provides us with a keen insight in malware detection 

(Wang et al., 2019). That research is using anomaly base-detection on malicious network 

traffic. Some of previous research are using same base-method detection that using network 

traffic for mobile detection (Feng et al., 2020). Most of the research using signature base-

method detection. The researcher using extraction API method calls by using Maldozer frame 

work(Karbab et al., 2017). In other method are using opcode features API(Kumar et al., 

2019) functions are derived from smali files, which are dex files that have been disassembled. 

The smali file is divided into process blocks, and the Dalvik opcode frequency of each 

method is determined by scanning Dalvik bytecodes. Furthermore, during bytecode scanning, 

the presence of dangerous API invocations in the system is tested, and the frequency of 

dangerous API invocation for each method is determined. 

2.3.3 Machine Learning in mobile malware 

 

There are a lot of method to detect mobile malware such as machine learning. Machine 

learning is a branch of computer science that is distinct from conventional computing methods. 

Algorithms are collections of directly coded instructions used by computers to quantify or solve 

problems in conventional computing. Machine learning algorithms, on the other hand, enable 

computers to train on data inputs and then use statistical analysis to produce values that are 

within a certain range. As a result, machine learning makes it easier for machines to build 

models from sample data and simplify decision-making processes based on data inputs.  

There is a research that analysed malicious network traffic using machine learning by 

decision tree model (Wang et al., 2019) . But a lot of research like to use deep learning as a 

mobile malware detection for better accuracy and less false alarm. 

 

 

 

 

2.3.4 Deep Learning method in mobile malware 

 



11 
 

Deep learning is a form of machine learning in which large amounts of data are learned 

using multi-layered neural networks that are inspired by the human brain. Inside each layer of 

the neural network, deep learning algorithms perform calculations and make predictions 

continuously, 'learning' and refining the accuracy of the result over time. 

A lot of research using deep learning to detect mobile malware. Network traffic dataset 

will input into CACNN layer. There were two components of the CACNN layer. One is a 

conditional classification model for determining whether or not an application is 

malicious.(Feng et al., 2020). There are a lot of method in deep learning that are using by 

previous research. Multimodal neural network is one of the method that uses five features 

vectors and is inputted separately to the initial networks which consist of five DNNs (Deep 

Neural Network). The initial networks are not linked to each other, and the merger layer, which 

is the first layer of the final network, is connected to the last layers of the initial networks. The 

classification results are generated by the final network, which is a DNN. Each of the initial 

networks' DNNs has an input layer and two hidden layers, with each receiving connections 

only from the previous layer.(Kumar et al., 2019). 

On the other hand, previous are also using Maldozer framework that based on an 

artificial neural network. In this framework to allow malware detection and family attribution, 

the raw sequences of API method calls, as they appear in the DEX file, are used as input. Using 

only the sequences of raw method calls in the assembly language, MalDozer can automatically 

identify malicious patterns during testing. MalDozer detects malware with high precision 

through various datasets.(Karbab et al., 2018) 

One of the common approach are using different deep architectures model such as Deep 

Belief Networks (DBN) and convolutional neural networks.(Yuan et al., 2016) Table 1.4 below 

shows the summary of the related work below: 

 

 

 

 

 

Table 2.2 Related Works 



12 
 

Article Name And 

Author 

Method 

used 

Type of analysis Signature Anomaly 

A mobile malware 

detection method 

using behavior 

features in network 

traffic. (Wang et 

al., 2019) 

Machine 

Learning 

Analyzes HTTP 

requests and TCP 

Flows to determine 

whether the apps is 

malicious and further 

clearly indicates that 

this app belongs to 

which malware family. 

   

A Multimodal 

Deep Learning 

Method for 

Android Malware 

Detection Using 

Various Features. 

(Kumar et al., 

2019) 

Deep 

Learning 

Multimodal deep 

neural network model 

to fit the features with 

different properties. 

   

A Two-Layer Deep 

Learning Method 

for Android(Feng 

et al., 2020) 

Deep 

Learning 

Two-layer detection 

model. The first layer, 

applying a fully 

connected neural 

network to analyze 

static features, and 

input the results to the 

next detection layer. 

Second layer, network 

traffic features 

detection analyzed the 

final results to prove 

that CACNN model 

   

Android Malware 

Detection using 

Deep Learning on 

API Method 

Sequences(Karbab 

et al., 2017) 

Deep 

Learning 

Using MalDozer, a 

simple,yet effective 

and efficient 

framework for Android 

malware detection 

based on sequences 

mining using neural 

networks. 

   

Droiddetector: 

Android malware 

characterization 

and detection using 

deep 

Deep 

Learning 

Android malware 

would achieve a better 

accuracy in their 

detection. DroidRanger 

and RiskRanker, two 

typical signature-based 

   



13 
 

learning(Yuan et 

al., 2016) 

methods, try to 

characterize malware 

using specific patterns 

in the bytecode and 

Application Program 

Interfaces (API) calls. 

 

2.4 Propose solutions 

 

RNN-LSTM in deep learning algorithms through opcode is the solutions to get high 

precision and minimum false positive and negative rates, which can be used for mobile 

malware identification that need a low percentage of false alarm. This research looks at 

detecting mobile malware using opcode or bytecode analysis. An opcode, which stands for 

operation code, is a series of computer language instructions. In a computerized system, these 

instructions are used to start such operations.  

Aside from that, it has been decided that each opcode is exclusive to each data form 

and is available in byte codes form. A series of malware codes will be broken up into their 

binary types during the initial state. The binaries will then be evaluated, and any hidden codes 

that have been embedded in them will be removed. The binaries would then be decompiled to 

retrieve the set of opcodes. The researchers used static processing and deep learning to detect 

malware. The malware goes through an unpacking procedure in which the opcode is retrieved 

and then translated to a binary image. A prediction on the binary image is done by Recurrent 

Neural Network (RNN) using the Long Short Term Memory(LSTM) architecture can be 

implemented using Keras. Usually, this deep learning technology recently use in to predict 

word will come out if someone searching something in web browser, shopping website base 

on the big data with high accuracy. Same goes to the in this research will predict mobile 

malware using RNN-LSTM through opcode to reduce false alarm. 

 

 

 

 

2.5 Conclusion 

 



14 
 

As a conclusion, analysed the behaviour of mobile malware through opcode analysis 

are the best method by using RNN-LSTM to get high accuracy malware detection and less false 

alarm percentage. Assumption in this research, it would be shown that the level of occurrence 

of opcode in mobile malware and benign applications is vastly different. Aside from that, 

malicious program behaviour is detected, and the opcodes extracted are mapped to suspicious 

activities. 

  



15 
 

3. Chapter 3: METHODOLOGY 

 

3.1 Introduction 

 

 In this research, each sample of mobile malware will be subjected to a static analysis in 

order to disclose its activity. Static analysis involves decompiling selected.apk files and 

extracting and examining associated characteristics. This analysis is commonly used to 

investigate permissions, API calls, and the code structures and components included in a 

particular .apk file. The META-INF directory, lib, res, assets, AndroidManifest.xml, 

classes.dex, and resources.arsc are among the archives found when the.apk file is decompiled. 

In static analysis, the AndroidManifest.xml and classes.dex are frequently employed since they 

can show the true intent of any suspicious applications. 

3.2 Research Methodology 

 

 

Figure 3.1 Research Methodology 

In regarding research method, the first way is to synthesize. Looking for articles about 

mobile malware and detection methods in journals. Secondly, on the virtual machine 

Windows 7 Professional operating system, create a workspace for doing static analysis on the 

Android package to prevent malware from infecting the host machine. Then, using Google 

Colaboratory, create an RNN-LSTM algorithm to train the dataset of sample malware and 

Synthesize
•Doing a literature review that draws on 

multiple resources about mobile malware 
detection

Experimental 
Setup

•Doing a Isolation of the environment setup, 
extraction of the Android package, code 
disassembly, opcode and class reviews, and 
reconstruction and correlation analysis

Design RNN-
LSTM

•Using Google Colaboratory to design RNN-
LSTM through Python IDE

Analysis and 
Testing

•The process to get True Positive Rate(TPR) 
and False Positive Rate(FPR)



16 
 

benign. Finally, the goal of this research is to analyse and test the TRUE Positive Rate (TPR) 

and False Positive Rate (FPR). 

 

 

3.3 Experimental Setup 

 

The framework is divided into five distinct phases in static analysis. Isolation of the 

environment setup, extraction of the Android package, code disassembly, opcode and class 

reviews, and reconstruction and correlation analysis are among the processes. Figure 2 shows 

the phases of this experiment graphically. 

 

Figure 3.2 Experimental Phase 

In the first phase, a controlled environment is created using VMware Workstation so 

that mobile malware can be analysed without putting the host PC at risk of infection. The 

classes and manifest file are extracted from the.apk files using jadx-gui tool in the second step. 

The manifest file contains information about the application's configuration, activity, and 

permissions, whereas the classes file contains all of the Java code. After that, the classes.dex 

file is decompiled into a Java class file (.jar). Analysing the codes and methods contained in 

the Java class can reveal any fraudulent request. Requesting root permission, stealing sensitive 

information such as the IMEI number and country code, and transmitting and receiving orders 

Phase 1

•Isolation environment 
setup

Phase 2

•Package Extraction & Code 
Disassembling

Phase 3

•Opcode extraction

Phase 4

Deep learning classifier



17 
 

from a C&C server are all frequent harmful operations. After that, disassembling applications 

and obtaining opcode sequences is what opcode extraction involves in phase 3. A compressed 

file, an Android application package (apk) file, including a manifest file, resource files, and 

Dalvik executable (dex) files, may be used to deliver an Android application. The application 

bytecode is included in the dex files, which may be disassembled using Androgard and Apk 

tool. Next, run python script to extract opcode sequence from malicious dataset and Benign.The 

output process will save as .opsec file. The next step is to extracting N-gram opcode sequence 

using python script but must fulfil the requirement such as installing Pandas and Ntlk library 

also python version to 3.8.3. The process will be save as .csv for every dataset malware and 

benign. Last process in this phase are to combining N-gram Features in a one .csv file using 

python script version 3.8.3 or latest and Pandas library. In that file will be separate by row and 

column that have application id , opcode sequence frequency and class id (0 for benign and 1 

for malware), figure 3.3 are the overview  Opcode Extraction process.  Last but not least, in 

the fourth phase real analysis to classify malware and benign. In this phase also give a result 

True Positive Rate (TPR) and False Positive Rate(FPR) value. The platform use in this phase 

are Google Colaboratory that use Python IDE. 

 

 

Figure 3.3 Process Opcode Extraction 

 

.apk malware 
and benign

Androguard 
and Apk Tool

.smali

Opcode 
Extraction

.opsec
N-gram 
opcode 

extraction

.csv
Combining N-

gram 
extraction

.csv



18 
 

3.4 Project Milestone 

 

A project milestone is a scheduling method for identifying a specific stage in a project's 

timeline. It's a useful tool for determining schedule goals and ensuring the research’s success. 

Table 3.1 Project Milestone 
Process/Phase Activities Completion Date 

Synthesize  Finding at least 10 journals about 

mobile malware detection 

  Doing a critical review every journal 

 Comparing all method of mobile 

malware detection 

5 April 2021 

Experimental Setup  Installing window 7 professional in a 

virtual machine 

 Installing jadx-gui tool to reviewing 

APK file  

 Installing latest version Python 

Programming Language and library 

needed in opcode extraction 

 Androguard and Apk tool need to install 

  

3 May 2021 

Static Analysis  Analysis sample malware and upload it 

at VirusTotal and Hybrid Analysis 

 Reviewing all Java code that intent to 

harm victim 

 Comparing with the online analysis 

1 June 2021 

Application Code 

Review: Opcode 

 Analysis opcode that are malicious 

 

18 June 2021 

Opcode Extraction  To extract opcode from dataset  

 Extract N-gram Opcode  

 Combining N-gram Opcode 

19 July 2021 

Design RNN-LSTM  Design RNN-LSTM at Google 

Colabolatory  

5 August 2021 



19 
 

Analysis and Testing  To get True Positive Rate (TPR) 

 To get False Positive Rate(FPR) 

25 August 2021 

 

 

 

 

 

 

Figure 3.4 Gantt Chart 

 

 

 

 

 

 

 

 

 

 

 



20 
 

3.5 Conclusion 

 

This chapter justifies and specifies the research approach utilized in this study. In this 

research choose the qualitative technique because of its benefits and dependability. 

Experimentation through textual analysis and observation were crucial study strategies. This 

chapter also included a timetable for the project. The analysis and design of this project will be 

discussed in the next chapter. 

  



21 
 

4. Chapter 4: ANALYSIS  

4.1 Introduction 

 

This chapter explain details of analysis and design in this research that will cover the 

collecting dataset of malware and non-malware. Doing a static analysis for malware APK file 

after that doing application code review and collecting opcode. Figure 4.1 will show the 

graphical representations of the analysis in this research. 

 

Figure 4.1 Analysis phase 

 

 

 

 

 

 

 

 

 

 

 

Dataset

Static Analysis

Application code review:

Opcode



22 
 

4.2 Dataset 

 

All datasets utilized by previous researchers will be listed and examined in this section. Table 

4.1 contains the datasets acquired in prior study Based on the table provided, it can be seen that 

most researchers are using the Drebin Project dataset. With over 5,560 malware samples, most 

researchers are using Drebin that offers a significant amount of malware samples and as a mean 

in using a standardized dataset. However, for this study used 1000 Android Malware Dataset 

offered by Argus Lab is used since it contains a higher number of the most recent mobile 

malware and 1000 Benign from Google PlayStore. 

Table 4.1 Dataset Used in Previous Research 

Malicious Software Benign Software Used in 

Collected 

From 

Amount Collected From Amount 

Drebin Project 5560 Downloaded from 

multiple app 

market by app 

crawler 

8321 Wang et al., 2019 

Drebin Project 5000 AndroZoo 5000 Razak et al., 2019 

Apk files 720 Apk files 720 Yen & Sun, 2019 

Dataset 1: 

Drebin Project 

Dataset 2: 

Koodous, user 

agencies and 

collection of 

ransomwares 

2520 

 

Not mentioned 

Dataset 1: Google 

Playstore, Chines 

market, Koodous, 

and third-party 

Android market 

Dataset 2: Similar 

with the first 

dataset 

3130 

 

 

 

3130 

P. et al., 2019 

Genome 

Project 

Drebin Project 

In-the-wild 

928 

5560 

33259 

In-the-wild 37224 L. Zhang et al., 

2019 

Argus Lab 

 

24,553 Google PlayStore 2999 (Anuar et al., 

2020) 

 

 

 



23 
 

 

4.3 Static Analysis 

 

Static analysis depend on an application's source code to categorize it without the 

program running (Jul, 2019) . Mobile application in APK file will be doing a reverse 

engineering using jadx-gui .This process will be doing at isolation environment using Window 

7 Professional to avoid any consequences that will harm host machine. Before using the tool 

that have already mention there are some installation must be add in the isolation machine 

(Window 7) are Java Runtime Error (JRE) and 7zip software to make process analysis 

successful without any technical problem. 

Process static analysis will start by extracting APK file that contain assets, lib, META-

INF, res , AndroidManifest.xml , class.dex and resources.arsc file. Figure 4.2 is a example of 

jadx-gui . 

 

Figure 4.2 jadx-gui  

 

 

 

 

 

 

 



24 
 

 

 

 

 

For the smali code or opcode are already in jadx-gui shown at figure 4.3 

 

Figure 4.3 Opcode 

 

Before doing a static analysis, malicious APK  will be upload at VirusTotal and Hybrid 

Analysis website. As shown at figure 4.4 below 

 

 

Figure 4.4 VirusTotal Results 

 

 



25 
 

 

 

 

 

In VirusTotal show the malicious permissions in the APK file as a figure 4.5 below 

 

 

Figure 4.5 Applications Permissions VirusTotal 

 

Risk assessment in this .apk file such as spyware, fingerprint, evasive and spreading shown 

using Hybrid Analysis as a figure 4.6 below 

 

Figure 4.6 Risk Assessment Hybrid Analysis 

 

 



26 
 

 

 

 

 

Check applications permission at AndroidManifext.xml file as shown figure 4.7 below and 

compare it to online analysis. 

 

 

Figure 4.7 Applications Permission at AndroidManifext.xml 

 

The following snapshot around the red rectangle shows in a figure 4.8 how the file monitors 

all incoming SMS messages. Collect all data and information related to SMS messages. 

 

 

Figure 4.8 Function code to monitors all incoming SMS messages 

 

 

 

 

 



27 
 

 

 

 

 

 

 

void function installApk and calling the function getPackageManager() function at the red 

rectangle to install any app on the victim’ device shown in figure 4.9 

 

Figure 4.9 function code to install any package 

 

Upload the zjms.txt and zjphonecall.txt at void function uploadAllFiles() into their server at the 

line of code around the red rectangle shown in figure 4.10 

 

Figure 4.10 function code to upload file zjms.txt and zjphonecall.txt into their server 

Collect the victim's device’s ID number, subscriber ID and SIM card’s serial number by calling 

the necessary function around the red rectangle show in a figure 4.11 

 

Figure 4.11 function code to get device info 



28 
 

 

 

 

 

This function intends to call using the victim devices android.intend.action.CALL class will  

show in red rectangle for the coding at figure 4.12 

 

Figure 4.12 function code to call using victim devices 

 

This function String bg_sendSms intends to send a message at the line of the code have been 

highlight at red rectangle using victim devices shown in figure 4.13 

 

Figure 4.13 function code to send message using victim devices 

 

This function String getValueFromServer will intends to open the internet connection at line 

of code in red rectangle show in figure 4.14 

 

Figure 4.14 function to open internet connection 

This function intends to execute the code after reboot the devices show in figure 4.15 



29 
 

 

Figure 4.15 function to execute the code after reboot 

 

 

 

 

 

 

 

 

 

 

The line of code in red rectangle intend to get incoming call information and save in 

zjphonecall.txt shown in figure 4.16 

 

Figure 4.16 function code to get incoming call and save it 

 

The line of code highlighted in red rectangle line intends to delete package by using 

android.intent.action.DELETE class shown in figure 4.17 

 

Figure 4.17 function code to delete package 

 

 



30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This application using android.location.LocationListener class highlighted that are seems 

suspicious at figure 4.18 and function for Location g(Context paramContext) at figure 4.19 

 

 

Figure 4.18 android.location.LocationListener library 

 



31 
 

 

Figure 4.19 function code Location g 

 

 

 

 

 

As an additional evident, this application using Geo-location API have been highlighted as 

figure 4.20 

 

Figure 4.20 Geo-location API 

 

 



32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are a lot of similarity in online analysis and static analysis in Table 4.2: 

 

Table 4.2 Similarity Online Analysis and Static Analysis 

Behaviour Online 
Analysis(True/False) 

Group 
Analysis(True/False) 

Monitor all incoming SMS messages. True True 

Collect all data and information related 
to SMS messages. 

True True 

Collected information will be saved in 
a text file called ‘zjsms.txt’ 

True True 

Monitor all incoming and outgoing 
calls of the users. 

True True 

Collect all calls logs and data 
information. 

True True 



33 
 

Collected information will be saved in 
a text file called ‘zjphonecall.txt 

True True 

Collect users’ Device ID, Subscriber 
ID, Sim Serial Number and Line 
Number 

True True 

 
All the data collected and files created 
will be uploaded in a remote server 
without the user’s knowledge and 
awareness. 
 

True True 

Ability to update itself. True True 

Install or uninstall any packages or 
apps in the users’ device. 

True True 

Able to send SMS messages and 
make phone calls. 

True True 

Able to execute the instructions that 
have been given from the remote 
server. 

True True 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

4.4 Application code review: Opcode 

 

Application code review through opcode will be analysed after doing a static analysis. The 

malicious code in jadx-gui will be review as a smali code or opcode to be extract and put in 

DalvikOpcode_SM1.txt. Every sample APK from malicious dataset and Benign dataset will be 

doing the opcode review to be extracted to the different DalvikOpcode_SM1.txt and 

DalvikOpcode_SB1.txt . 

4.4.1 Process of application code review through opcode 

 

Step 1: Go to the malicious code and check the line number of code 33-46 

 

Figure 4.21 Function of Malicious code 

Step 2: Go to smali code in jadx-gui and  line of code same to Java code  

 

Figure 4.22 Function of code in smali 

 

 

 

 

 



35 
 

 

 

 

 

Step 3: Copy line of smali code and paste it at .txt file and after the smali code numbering it in 

hexadecimal sequence. 

 

Figure 4.23 extracting opcode in notepad 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

4.4.2 Opcode Analysis 

 

In this process are elaborate more detail why the opcode is malicious. Before that function 

value in opcode must to know first: 

V –void B –byte S –short C- char I – int J- long F- float D- double 

In figure show the void function in Java language that have malicious intend to install APK 

package. 

 

Figure 4.24 Function of code to install package 

 

 

 

 

In opcode the blue circle in figure with capital ‘V’ are void function. So this is the most basic 

to read opcode 

 

Figure 4.25 Function of code to install package in smali 

Let’s jump to the important line of code at installApk function that are seem malicious shown 

a figure 



37 
 

 

Figure 4.26 line of code in smali to install package 

Understand line of code that look malicious in text box below: 

 

The line of code in a smali intend to install another package in one line of code. That how to 

review opcode applications to know which is malicious. Table 4.2 shown the basic grammar 

in opcode or smali code.  

Table 4.3 Basic opcode grammar 

Opcode Definition 

.method method of the function  

.parameter method parameters  

.prologue The starting of method 

.line 12 The method is on line 12 

Invoke-super This call a parent function 

const/high16 v0, 0x7fo3 This assign 0x7fo3 to v0 

invoke-direct This to call functions 

return-void The function returns void 

.end method End of function 

new-instance To create instance 

iput-object To call  object assignment 

iget-object To call object 

invoke-static To call static function 

 

 

 

 

 

Invoke-virtual {p0}, LLcom/GoldDream/zj/zjService;->getPackageName()Ljava/lang/String; 

#call object getPackageName() on zjService 

move-result-object v4 # to store previous result in v4 

 

 



38 
 

All function opcode will be compile by the frequency of the opcode for every application and save in 

csv file shown in figure 4.27.  

 

Figure 4.27 dataset in csv file 

  



39 
 

4.5 Conclusion 

 

The analytical design structure is depicted in this chapter, along with the specifics of each 

step. This is followed by a simulation of the project, how it is carried out, and the predicted 

consequences. The next chapter will go over the project's implementation. 

  



40 
 

5. Chapter 5: DESIGN RNN-LSTM MODEL 

 

5.1 Introduction 

 

This chapter will design RNN-LSTM model using python programming language. Flowchart 

and pseudocode will be design for references for write the real coding in Google Colabotary. 

Coding will be consisting important library and training data will be using Keras. 

5.2 Flowchart 

Start

Input
dataset

Classify data and 
class from dataset

Split data training 
and data testing 

using KERAS

Add embedded 
layer, LSTM layer 
and output layer 

Training and 
testing data

Calculate 
Accuracy, TPR and 

FPR

 

Figure 5.1 RNN-LSTM Flowchart 

Figure 5.1 is the RNN-LSTM flowchart. In the initial phase, a csv dataset will be entered into 

the system to be read. The dataset will then be divided into two categories: data labels and data 

in, with the columns in the dataset being dropped. The data will then be divided into two 



41 
 

categories: data test and data training. The most crucial step is to add the Embedded layer, 

LSTM layer, and output layer to the model's layers. Following that, settings of hyperparameters 

such as epochs, test size, batch size, and LSTM neurons will be used to train and test the data. 

Finally, the results of the testing include accuracy, TPR, and FPR. 

5.3 Pseudocode 

 

Start 

Input the dataset 

Classify Data and Class from dataset by drop column app_id and class for the Data and Class 

only take column Class 

Set Split Test base on test size, batch size and epochs 

Add Embedded layer, LSTM layer and output layer 

Train and testing data base on hyperparameter  

Calculate accuracy, TPR and FPR 

End 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 
 

 

5.4 Modelling RNN-LSTM 

 

5.4.1 Input Dataset of Malware and Benign  

 

Dataset of the malware sample and benign will be input in the script for RNN-LSTM model 

pre-processing data before train and testing. Importing necessary library such as numpy,  

matplotlib.pylot and seaborn at pre-processing data to neglect any error occur.  

 

Figure 5.2 Dataset of sample 

Figure 5.2 is the dataset sample of malware and benign after run the program for input the 

dataset in the system. Calculating number of malware and benign are important for researcher 

know how many malware and benign. Figure 5.3 is the output after calculate number of 

malware and benign. Number of 0 refer as benign and 1 refer as malware. The code of the 

process will be referring at Appendix I. 

 

Figure 5.3 Number of malware and benign 

 

 

 

 

 

 



43 
 

5.4.2 Drop columns 

 

Dropping Columns in dataset like a class and app_id. Split and declare data as data_in for 

sample APK and labels for the class column only. Figure 5.4` is the shape of data_in and labels. 

The output of the shown 2082 is the rows and 217 is columns of data_in. Lastly, labels only 

have rows for referring class of malware and benign. Code for dropping columns will refer at 

Appendix II. 

 

Figure 5.4 data_in and labels shape 

 

5.4.3 Split Dataset  

 

Before splitting dataset into data test and data test. Importing necessary library of python are 

compulsory to neglect any error occur during debugging. After that, dataset will process in 

pad_sequences function. To ensure that the length of all sequences in a list is the same. By 

default, this is done by padding 0 at the start of each sequence until it is the same length as the 

longest. Figure 5.5 is output after process of pad_sequence of dataset. 



44 
 

 

Figure 5.5 pad_sequence output 

Then, declare as X_final for the data after pad_sequence and y_final is labels after splitting data 

and labels in previous step. Figure 5.6 is the final shape of the data before split in test and 

training. 

 

Figure 5.6 Final shape of data 

 

 

 

 

 

 

 



45 
 

Lastly, splitting dataset into subsets using train test split() from the scikit-learn data science 

package to reduce the risk of bias in your assessment and validation process. In most 

circumstances, splitting dataset into three sections at random is sufficient: 

1. The training set is used to prepare model for modelling. For linear regression, logistic 

regression, or neural networks, for example, utilise the training set to discover the best 

weights, or coefficients. 

2. During hyperparameter tuning, the validation set is employed for impartial model 

evaluation. Experiment with different values to determine the optimal number of 

neurons in a neural network or the best kernel for a support vector machine, for 

example. Fit the model with the training set and evaluate its performance with the 

validation set for each considered setting of hyperparameters. 

3. The test set is required for a fair assessment of the final model. It should not be used 

for fitting or validation purposes. 

It's fine to work with only the training and test sets in less difficult scenarios when you don't 

need to tune hyperparameters. All coding in this process are at Appendix III. 

 

5.4.4 RNN-LSTM Model 

 

The most important process in this experiment are modelling RNN-LSTM because train and 

test of data will follow the model that have created. There are several layer in RNN-LSTM 

model such embedding layer, LSTM layer and output layer. At the embedding must set 

parameter such as input_dim, output_dim and input_length. In this experiment, dropout is 

needed at each layer to keep a model from being overfit. At each update of the training phase, 

Dropout works by setting the outgoing edges of hidden units (neurons that make up hidden 

layers) to 0. After that, second layer in this experiment will be split for the 2 layers of LSTM 

and each LSTM layer will be set as 64 neurons. Output layer will be set the activation function 

as sigmoid. Lastly, model will be compile and summary of the model will refer in figure 5.7. 



46 
 

 

Figure 5.7 Model RNN-LSTM summary 

Coding for the RNN-LSTM model will refer at Appendix IV. 

5.5 Results of data training and testing 

 

In this process data testing and data training will be run to get the highest accuracy, TPR and 

less value of TPR by tuning the hyperparameter such number of epochs, batch size, number of 

LSTM neurons and test size to get high optimum value in this experiment. Four parameter will 

be change and have an important function as: 

Epochs: The number of epochs is a hyperparameter that controls how many times the learning 

algorithm runs over the whole training dataset. 

Batch size: The batch size is a hyperparameter that specifies how many samples must be 

processed before the internal model parameters are updated. 

LSTM neurons: Number of neurons for each layer of LSTM, high number of neuron need 

more powerful computing power 

Test size: Number of data test after training. As example, test size 0.25 mean from 25% of data 

will be taken for testing and other left 75% will be train. 

 



47 
 

This experiment set number of LSTM neurons for each layer= 100, test size 0.35, 

epochs=200 and batch size=200. In this process, analysing graph of accuracy and graph of 

loss refer in figure 5.8 and 5.9. 

 

Figure 5.8 Graph of accuracy 

Graph at figure 5.8 show the number of accuracy increase when number of epoch increase and 

data of train will refer in blue colour and data testing refer as orange. In this graph, overfitting 

occur at epochs 25 until 200.  

 



48 
 

 

Figure 5.9 Graph of loss 

Same goes to graph in figure 5.9 loss of training and testing model if number of epochs increase 

but after that overfitting occur, the loss of train and test suddenly increase and drop and result 

of accuracy is 80.52%, TPR=80.53% and FPR=19.49%. Second experiment will continue in 

different value of hyperparameter. Number of LSTM neurons=50, test size = 0.25. 

epochs=64, batch size=64 and the result will refer graph at figure 5.9 and 5.10. 

 



49 
 

 

Figure 5.10 Graph of accuracy 

In this second experiment by analysing figure 5.10, number of accuracy increase as well of 

number epoch from 0 to 10. But have sudden drop at epoch 20 to 30 and continue consistence. 

Same goes to graph of loss in figure 5.11, number of loss decrease following number of epoch 

increase. In conclusion, overfitting still occurred in this second experiment. 

 

Figure 5.11 Graph of loss 

 



50 
 

After observe two experiment, last experiment with new hyperparameter to get optimum result. 

Set up Number of LSTM neurons=64, test size=0.25, epoch=10, batch size=64. Result of 

the experiment will refer graph at figure 5.11 and 5.12. 

 

Figure 5.12 Graph of Accuracy 

Result of the graph accuracy in figure 5.11 show the accuracy increase directly with number of 

epoch and still consistence above 0.9 until the last epoch. Same goes to the graph of loss 

number of loss train and test decrease following the number of epoch increase. The coding of 

the process will be refer at Appendix V. 

 



51 
 

 

Figure 5.13 Graph of loss 

The table 5.1 below are summarisation from this analysis and testing. 

Table 5.1 Summarise of Experiment 

Train & 

Test 

Number 

of 

neurons 

for each 

layer of 

LSTM 

Test 

size 

Number 

of 

epochs 

Batch 

size 

Accuracy(%) True Positive 

Rate(TPR%) 

False 

Positive 

Rate(FPR%) 

1 100 0.35 200 200 80.52 80.53 19.49 

2 50 0.25 64 64 90.59 95.94 15.2 

3 64 0.25 10 64 91.55 97.048 14.4 

 

5.6 Conclusion 

 

In conclusion, in this chapter elaborate flow of the modelling RNN-LSTM by design the 

flowchart and pseudocode. After that, show every process in RNN-LSTM model until get value 

of accuracy, TPR and FPR. 

  



52 
 

6. Chapter 6: CONCLUSION 

 

 

6.1 Introduction 

 

The goal of this study is to identify mobile malware via opcode using the RNN-LSTM 

model and to assess the RNN-LSTM. Then, choose a few research papers that have a 

connection to mobile malware detection using deep learning algorithms and compare them one 

by one to conduct a critical evaluation. According to the project milestone, the experiment 

process must have followed the methodology of this experiment. This experiment involved 

analysing a malware sample dataset and reviewing an application. This process entails 

modelling RNN-LSTM using the Python programming language, as well as data training and 

testing. 

6.2 Research Contribution 

 

The objective of this study was to identify mobile malware detection using opcode, and 

it was accomplished successfully by obtaining accuracy, TPR, and FPR statistics. As a result 

of this finding, every researcher who wants to identify mobile malware will try another way 

involving opcode. 

Following that, the RNN-LSTM model was created using python opcode and ran well 

without any errors. If this model isn't correctly developed during the coding process, it will 

have an impact on the dataset's correctness. Every layer of the model is connected and has an 

impact on the experiment's outcome. 

Finally, the RNN-LSTM model was evaluated in mobile malware detection and showed 

the maximum accuracy of 91.55 percent. The evaluation approach for the RNN-LSTM model 

was designed in an optimal way to achieve better outcomes. 

This project is significant because it can be used by any researcher to conduct further 

research or to develop the best approach for detecting mobile malware using deep learning via 

RNN-LSTM, allowing them to compare which method has the highest accuracy. The 

researcher will examine the project's flaws and propose a fresh solution to improve the quality 

of mobile virus detection. 

 



53 
 

 

6.3 Research Limitation 

 

This research study has some limitations and they are listed as follows: 

1. This research cannot be run smoothly and sometime crash when run using GPU because 

of specifications of machine when data training and testing. 

2. Using Google Colaboratory have a limitation of using GPU. 

3. Dataset is to small compare to other research using more than 10,000 datasets. 

6.4 Future Research 

 

From the limitation mentioned above, the future work can be conduct as follows: 

 

1. Next study, recommended specification for this study as follows: 

 

RAM: A minimum of 16 GB is necessary, but recommend 32 GB if possible because 

training any algorithm requires a lot of heavy lifting. Multitasking can be difficult if 

your memory is less than 16 GB. 

 

CPU: Processors higher than Intel Corei7 7th Generation are recommended because 

they are more powerful and give high performance. 

 

GPU: This is the most significant factor since Deep Learning, a sub-field of Machine 

Learning, relies on neural networks to function, which are computationally expensive. 

Working with images or videos necessitates a large number of matrix calculations. 

GPUs make it possible to process these matrices in parallel. Without a GPU, the 

operation could take days or months to complete. Your Best Laptop for Machine 

Learning, on the other hand, can complete the same task in hours. 

 

NVIDIA has begun producing the GeForce 10 line of laptop graphics cards. These are 

some of the best GPUs to work with, so pick one that fits your budget. Although they 

have the RTX 20 Series, it is far too expensive. AMD Radeon is another option. 

 



54 
 

Storage: A least of 1TB HDD is necessary, as datasets are growing in size every day. 

If you have an SSD, a minimum of 256 GB is recommended. If you have limited 

capacity, however, Cloud Storage Options are an option. You can even acquire 

machines with powerful GPUs there. 

 

 

Operating System: The most popular operating system is Linux, although Windows 

and MacOS can both run Virtual Linux Environments and you can work on them as 

well. 

 

Table 6.1 is a summarisation of specification needed of the machine for the future 

references: 

Table 6.1  Recommended Specification 

Feature Specification 

Graphics(GPU) NVIDIA 2070/2080 (8GB) 

Processing(CPU) Intel i7-8750H (6 cores, 16x PCI-e lanes) 

RAM Up to 32GB (2666 MHz) 

Storage Up to 1TB NVME SSD (4-5x faster than normal SSD) 

 

 

 
2. Using Jupiter Notebook rather than using Google Colaboratory because no limitation 

when using a GPU. 

3. Using large dataset for the better results in this research but must be follow the 

specification of machine that have be explain before 

 

 

 

 

 

 

 

 



55 
 

6.5 Conclusion 

 

Finally, the research is progressing as planned based on the milestones. This study offers 

advice on how to detect mobile malware using deep learning in the future and how to do so 

correctly. In this study, the accuracy success rate was 91.55 percent, the TPR was 97.048 

percent, and the FPR was 14.4 percent. Finally, this study might be used as a reference for 

future researchers who are skilled in deep learning to evaluate alternative methods for 

identifying mobile malware.  



56 
 

7. REFERENCES 

 

Anuar, N. A., Mas’ud, M. Z., Bahaman, N., & Mat Ariff, N. A. (2020). Mobile Malware Behavior 
through Opcode Analysis. International Journal of Communication Networks and Information 
Security, 12(3), 345–354. 

Feng, J., Shen, L., Chen, Z., Wang, Y., & Li, H. (2020). A Two-Layer Deep Learning Method for Android 
Malware Detection Using Network Traffic. IEEE Access, 8(July 2013), 125786–125796. 
https://doi.org/10.1109/ACCESS.2020.3008081 

Jul, C. R. (2019). D Etection : T He M Alware D Etection and P Rediction. 7(4), 1–30. 

Karbab, E. M. B., Debbabi, M., Derhab, A., & Mouheb, D. (2017). Android Malware Detection using 
Deep Learning on API Method Sequences. ArXiv. 

Karbab, E. M. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018). MalDozer: Automatic framework for 
android malware detection using deep learning. DFRWS 2018 EU - Proceedings of the 5th 
Annual DFRWS Europe, 24, S48–S59. https://doi.org/10.1016/j.diin.2018.01.007 

Kumar, R., Zhang, X., Wang, W., Khan, R. U., Kumar, J., & Sharif, A. (2019). A Multimodal Malware 
Detection Technique for Android IoT Devices Using Various Features. IEEE Access, 7(3), 64411–
64430. https://doi.org/10.1109/ACCESS.2019.2916886 

Wang, S., Chen, Z., Yan, Q., Yang, B., Peng, L., & Jia, Z. (2019). A mobile malware detection method 
using behavior features in network traffic. Journal of Network and Computer Applications, 
133(April 2018), 15–25. https://doi.org/10.1016/j.jnca.2018.12.014 

Yuan, Z., Lu, Y., & Xue, Y. (2016). Droiddetector: Android malware characterization and detection 
using deep learning. Tsinghua Science and Technology, 21(1), 114–123. 
https://doi.org/10.1109/TST.2016.7399288 

R. Vinayakumar, K. P. Soman and P. Poornachandran, "Deep android malware detection and 
classification," 2017 International Conference on Advances in Computing, Communications and 
Informatics (ICACCI), 2017, pp. 1677-1683, doi: 10.1109/ICACCI.2017.8126084. 

Mathew, J., & Kumara, M. A. (2018, December). API call based malware detection approach using 
recurrent neural network—LSTM. In International Conference on Intelligent Systems Design and 
Applications (pp. 87-99). Springer, Cham. 

 

 

  



57 
 

8. APPENDIX I 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

#importing libraries 

import re 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

import seaborn as sns 

from google.colab import drive 

 

drive.mount('/content/drive') 

 

malData= pd.read_csv('/content/drive/MyDrive/Dataset/sample.csv') 

 

malData.head() 

 

malData.info() 

 

malData.groupby(['class']).size() 

 

 



58 
 

9. APPENDIX II 

 

 

10. APPENDIX III 

 

 

 

 

 

 

data_in.shape 

 

labels.shape 

 

import tensorflow as tf 

from tensorflow.keras.layers import Embedding 

from tensorflow.keras.preprocessing.sequence import pad_sequences 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import LSTM 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.layers import Dropout 

 

 

sent_length=None 

embedded_docs=pad_sequences(data_in,padding='pre',maxlen=sent_length) 

print(embedded_docs) 

 

len(embedded_docs),labels.shape 

 

X_final=np.array(embedded_docs) 

y_final=np.array(labels) 

X_final.shape,y_final.shape 

 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split(X_final, y_final,

 test_size=0.25, random_state=42) 

 

 



59 
 

11. APPENDIX IV 

 

 

 

  

## Creating model 

output_size=50 

input_size=5000000 

model=Sequential() 

 

#taking number features as 50 

model.add(Embedding(input_size,output_size,input_length=sent_length)) 

model.add(Dropout(0.8)) 

 

#adding LSTM  2 layers with 64 neurons each 

model.add(LSTM(64,return_sequences=True)) 

model.add(LSTM(64)) 

model.add(Dropout(0.8)) 

 

#adding output layer  

model.add(Dense(1,activation='sigmoid')) 

 

#compiling the model 

model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['a

ccuracy']) 

print(model.summary()) 

 



60 
 

12. APPENDIX V 

### Finally Training 

history=model.fit(X_train,y_train,validation_data=(X_test,y_test), epochs=10,bat

ch_size=64) 

 

plt.plot(history.history['accuracy']) 

plt.plot(history.history['val_accuracy']) 

plt.title('model accuracy') 

plt.ylabel('accuracy') 

plt.xlabel('epoch') 

plt.legend(['train', 'test'], loc='upper left') 

plt.show() 

 

plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 

plt.title('model loss') 

plt.ylabel('loss') 

plt.xlabel('epoch') 

plt.legend(['train', 'test'], loc='upper left') 

plt.show() 

#predicting and getting accuracy 

y_pred = model.predict(X_test) 

y_pred = (y_pred > 0.5) 

from sklearn.metrics import accuracy_score 

accuracy_score(y_test,y_pred)*100 

#getting confusion matrix 

from sklearn.metrics import confusion_matrix 

confusion_matrix(y_test,y_pred) 

CM = confusion_matrix(y_test, y_pred) 

TN = CM[0][0] 

FN = CM[1][0] 

TP = CM[1][1] 

FP = CM[0][1] 

# Sensitivity, hit rate, recall, or true positive rate 

TPR = TP/(TP+FN)*100 

print("True Positive Rate(%):", TPR) 

 

# Fall out or false positive rate 

FPR = FP/(FP+TN)*100 

print("False Positive Rate(%):", FPR) 

 


	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT
	ABSTRACT
	ABSTRAK
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATION
	1. CHAPTER 1: INTRODUCTION
	1.1 Introduction
	1.2 Research Background
	1.3 Problem Statement
	1.4 Project Question
	1.5 Project Objective
	1.6 Project Scope
	1.7 Project Contribution
	1.8 Report Organization
	1.9 Conclusion

	2. Chapter 2: LITERATURE REVIEW
	2.1 Introduction
	2.2 Keyword
	2.2.1 Deep Learning
	2.2.2 Mobile Malware
	2.2.3 Neural Network
	2.2.4 Operation Code (OPCODE)
	2.2.5 RNN-LSTM

	2.3 Related Work
	2.3.1 Introduction to mobile malware
	2.3.2 Mobile malware detection base-method signature and anomaly
	2.3.3 Machine Learning in mobile malware
	2.3.4 Deep Learning method in mobile malware

	2.4 Propose solutions
	2.5 Conclusion

	3. Chapter 3: METHODOLOGY
	3.1 Introduction
	3.2 Research Methodology
	3.3 Experimental Setup
	3.4 Project Milestone
	3.5 Conclusion

	4. Chapter 4: ANALYSIS
	4.1 Introduction
	4.2 Dataset
	4.3 Static Analysis
	4.4 Application code review: Opcode
	4.4.1 Process of application code review through opcode
	4.4.2 Opcode Analysis
	4.5 Conclusion

	5. Chapter 5: DESIGN RNN-LSTM MODEL
	5.1 Introduction
	5.2 Flowchart
	5.3 Pseudocode
	5.4 Modelling RNN-LSTM
	5.4.1 Input Dataset of Malware and Benign
	5.4.2 Drop columns
	5.4.3 Split Dataset
	5.4.4 RNN-LSTM Model

	5.5 Results of data training and testing
	5.6 Conclusion

	6. Chapter 6: CONCLUSION
	6.1 Introduction
	6.2 Research Contribution
	6.3 Research Limitation
	6.4 Future Research
	6.5 Conclusion

	7. REFERENCES
	8. APPENDIX I
	9. APPENDIX II
	10. APPENDIX III
	11. APPENDIX IV
	12. APPENDIX V



