INTEGRATING GAME REPLAY VALUE TO
ROLE-PLAYING FANTASY GAME :
DUNGEON REVIVE

MUHAMMAD AMZAR RAIF BIN AMIR RASID

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INTEGRATING GAME REPLAY VALUE TO
ROLE-PLAYING FANTASY GAME :
DUNGEON REVIVE

MUHAMMAD AMZAR RAIF BIN AMIR RASID

This report is submitted in partial fulfillment of the requirements for the Bachelor of
Information Technology (Game Technology) with Honours

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY
UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2020/2021

DECLARATION

I hereby declare that this project report entitled

INTEGRATING GAME REPLAY VALUE TO
ROLE-PLAYING FANTASY GAME :
DUNGEON REVIVE

is written by me and is my own effort and that no part has been
plagiarized without citations.

)/
Student : /%@:% Date : 9.9.2021
y

(MUHAMMAD AMZAR RAIF BIN AMIR RASID)

I hereby declare that I have read this project report and found this report is sufficient
in term of the scope and quality for the award of Bachelor of Information Technology

(Game Technology) With Honours.

PROF, DR."SAZILAH BINTI SALAM
Supervisor : bt e kil Date : 11 September 2021

Takultl Teknologi Maklumat dan Komunikas!
tvassiti Teknikal Malaysia Molaka {UTeM)

(PROF. DR. SAZILAH BINTI SALAM)

google1569496973
 9.9.2021

PSTP-MacBook-11.16.01
11 September 2021

DEDICATION

To all those who have supported, encouraged, challenged and inspire me and specially
to my beloved parents, honourable lecturers and friends for all their guidance, love

and attention which has make it possible for me to make it up this point

ACKNOWLEDGEMENTS

I would like to thank Prof. Dr. Sazilah Binti Salam for giving assistant to complete
this project successfully. I heatedly thankful my lecturers and fellows who help me a

lot during my project development process.

I am also thankful from the core of my heart to my beloved parents who always

support and love me.

Thanks to all concerns.

ABSTRACT

This project focus on developing a game that integrated with game replay
values. This game was developed to keep the player entertained and keep coming
back to play the game after the first completion. The genre is rogue-like which is a
sub-genre to role playing game(RPG) genre, where the levels are randomly generated
and progress of player character after death is lost. Due to the fact that many other
games in the same genre having the same issues with the game replay value, most of
the game is fun to play but not many that people always play the game again for more
experiences. This project is developed to design systems or mechanics to keep player
playing the game without feel bored. Thus, the outcome for this project is to design
systems and mechanics to integrate it with the game to enhance the game replay

values.

ABSTRAK

Projek ini memberi tumpuan untuk mengembangkan permainan video yang
disatukan dengan nilai permainan semula. Permainan video ini dikembangkan untuk
menghiburkan pemain dan terus kembali bermain untuk setelah selesai pertama kali
selesai bermainan. Genre rogue-like merupakan sub-genre kepada genre role playing
game (RPG) , di mana tahap permainannya dihasilkan secara rawak dan kemajuan
watak pemain setelah kematian akan hilang. Oleh kerana banyak permainan video
lain dalam genre yang sama mempunyai masalah yang sama dengan nilai permainan
semula, kebanyakan permainan video ini menyeronokkan untuk dimainkan tetapi
tidak banyak yang membuat orang rasa untuk bermain semula untuk lebih
pengalaman. Projek ini dibangunkan untuk merancang sistem atau mekanik agar
pemain terus bermain tanpa merasa bosan. Oleh itu, hasil untuk projek ini adalah
merancang sistem dan mekanik untuk mengintegrasikannya dengan permainan video

untuk meningkatkan tahap nilai permainan semula.

TABLE OF CONTENT

DECLARATION
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT

ABSTRAK

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

CHAPTER 1 : INTRODUCTION

1.1. Project Background
1.2. Problem Statements
1.3. Objective

1.4. Goals and Genre
1.5. Game Features

1.6. Conclusion

CHAPTER 2 : LITERATURE REVIEW AND PROJECT
METHODOLOGY

2.1. Introduction

2.2. Genre

2.3. Existing Games

2.4. Comparison of Existing Games
2.5. Project Methodology

2.6. Conclusion

CHAPTER 3 : ANALYSIS
3.1. Requirement Analysis

3.2. Project Schedule And Milestone
3.3. Conclusion

ii
iii
iv

N NN e

0 W W W

—
[]

11
15
16

CHAPTER 4 : DESIGN ANALYSIS

4.1. Introduction

4.2. Game Architecture
4.3. Game Design

4.4, Game Art

4.5. Conclusion

CHAPTER 5 : IMPLEMENTATION

5.1. Introduction

5.2. Creation of Game Art

5.3. Integration of Game Components
5.4. Game Configuration Management.
5.5. Implementation Status

5.6. Conclusion

CHAPTER 6 : TESTING

6.1. Introduction

6.2. Test Plan

6.3. Test Implementation
6.4. Test Result and Analysis
6.5. Conclusion

CHAPTER 7 : PROJECT CONCLUSION

7.1. Introduction

7.2. Observation of Strength and Weakness
7.3. Proposition for Improvement

7.4. Contribution

7.5. Conclusion

REFERENCES

APPENDIX

APPENDIX A: Questionnaires
APPENDIX B: Coding Scripts
APPENDIX C: Functionality test data

17
18
18
28
37

38
39
43
48
48
48

51
51
53
53
64

65
65
66
66
66

67

LIST OF TABLES

Table 2.1 Comparison of existing games
Table 3.1 Existing Game Analysis

Table 3.2 Project Gantt Chart

Table 5.1 Audios in game

Table 5.2 Testing Phases

Table 5.3 Implementation status

Table 6.1 Test Organization

Table 6.2 Count of games played

LIST OF FIGURES

Figure 2.1 Hades logo

Figure 2.2 Mirror upgrades

Figure 2.3 Choosing equipment

Figure 2.4 Weapon upgrades

Figure 2.5 Achievement list

Figure 2.7 Enter the Gungeon logo

Figure 2.8 Character selection

Figure 2.9 Different ability

Figure 2.10 Health point and economy
Figure 2.11 Level generation

Figure 2.12 Game Development Life Cycle (GDLC)
Figure 4.1 Rogue-like Game Architecture
Figure 4.2 Game flowboard

Figure 4.3 Level Design

Figure 4.4 Ul Sketch

Figure 4.5 Menu Ul

Figure 4.6 Player Ul

Figure 4.7 Player controls setting and abilities
Figure 4.8 Pause menu Ul

Figure 4.9 Shop Ul

Figure 4.10 Achievement Ul

Figure 4.11 Player Die Panel

Figure 4.12 Player Escape Panel

Figure 4.13 Sketch of starting scene
Figure 4.14 Project starting scene

Figure 4.15 Sketch of level 1 environments
Figure 4.16 Project level 1 environments
Figure 4.17 Sketch of level 2 environments
Figure 4.18 Project level 2 environments
Figure 4.19 Sketch of level 3 environments
Figure 4.20 project level 3 environments
Figure 4.21 Final boss environment
Figure 4.22 Main character asset

Figure 4.23 Slime

Figure 4.24 Rock golem

Figure 4.25 Crystal golem

Figure 4.26 Burning Skull

Figure 4.27 Prime Slime

vi

Figure 4.28 Crystal King
Figure 4.29Volcanic Demon
Figure 4.30 The Void

Figure 4.31 Orthographic camera view
Figure 6.1 Gender data pie chart

Figure 6.2 Age data pie chart

Figure 6.3 Gamer data pie chart

Figure 6.4 easy learn to play data
Figure 6.5 Instruction clear data

Figure 6.6 Game menus user friendly data
Figure 6.7 Easy to play data

Figure 6.8 Challenging data

Figure 6.9 What liked about the game data
Figure 6.10 Character progression data
Figure 6.11 level progression data
Figure 6.12 Shop/currency system data
Figure 6.13 Play again data

Figure 6.14 Experience second time data
Figure 6.15 rogue-like game data

Figure 6.16 other game data

Figure 6.17 reason data

Figure 6.18 player behaviour data
Figure 6.19 Reasons data

Figure 6.20 Reasons data 2

vii

1.1.

1.2

1.3.

CHAPTER 1

INTRODUCTION
Project Background

This project is to develop a game that integrated with game replay values. The
game main focus is to develop systems that enhance game replay values. The
game developed is focused on Rogue-lite genre. Rouge-lite is a sub-genre of
Role Playing game (RPG) genre but the levels is procedurally generated,
having permanent death of player’s character and progression mechanics.
Gameplay, player controls character to escape from the dungeon. Played on
orthographic view. Player can upgrades abilities that suit their play to survive
through the dungeon.

Problem Statements

The problem with other video games in the same genre is most of them are
lacking of the game replay values depends on how the game is designed. After
the first completion the game, it lost all of it value and not interesting to play
anymore because the players already knew what will happen. So how the
game can be designed to have the game replay value attraction is very
important.

Replay value is a term used to assess a video game's potential for continued
play value after its first completion. Factors that influence replay value are the
game's extra characters, secrets, ability system, alternate endings or
achievements. The replay value of a game may also be based entirely on the
individual's tastes.

Objective

This project embarks on the following objectives:

1.
ii.
iii.

To investigate how existing games integrate game replay values.
To develop a Role-Playing fantasy game that has game replay value attraction.

To evaluate the video game potential for continued to be played after the first

completion based on player experience.

1.4.

1.5.

1.6.

Goals and Genre

The game about an adventurer named Atlas who died in a dungeon but
somehow, he was brought back to life. Soon he knows that he is trapped inside
the dungeon and start to muster his skills to escape from the dungeon. The
main goal of the game is to escape from the dungeon. This project is a rouge-
like video game set in a fantasy world.

Rouge-lite is a sub-genre of Role-Playing games (RPG) genre where player
must go through all the procedural generated levels and player’s character
having permanent death each run. Each time players play the game; they will
face new challenges as the layout of the levels are randomly generated.

Game Features

The target groups for the game is for player who like challenges and able to
improve their skill as longer they play the game.

Player have to survive and find the way out of the dungeon. Find the boss of
each level to advance to the next level. Player can upgrade their skills to
increase the chance of surviving longer through the dungeon.

Conclusion

The expected outcome from the development of the game is to produce a
game that able to attract people to keep playing the game and being addictive.
Thus, the study can investigate the problems on the game replay value system
for future recommendation on video game development.

CHAPTER 2

LITERATURE REVIEW AND PROJECT
METHODOLOGY

2.1. Introduction

This chapter will discuss on the genre of the game, the list of existing games
that are related to the project, comparison of the existing games and the project
methodology.

2.2. Genre

Rouge-lite is a sub-genre of Role-Playing games (RPG) genre where player
must go through all the procedural generated levels and player’s character
having permanent death each run. Each time players play the game; they will
face new challenges as the layout of the levels are randomly generated. Most
rogue-lites are based in fantasy world, mostly influenced from tabletop role
playing games such as Dungeons & Dragons (DND) .

Meanwhile rogue-lite is slightly different, it focus on reaching the end and not
on the run itself and also has carryover between the runs to further improve the
player’s character.

Every game has and an endpoint, where player defeat the final boss or survive
through difficulties, but for rouge-likes is not focus on reaching the end but
seeing what happens on the next run, as the next run might be better or worst
depend on player’s luck.

2.3. Existing Games
1) Hades

Hades is a rogue-lite action dungeon crawler video game developed and published by
Supergiant Games. In this game, player play as the Underworld Prince, Zagreus in
attempt to escape from underworld which is governed by his father, Hades. Player
must survive through all three regions of underworld with the blessings of other gods
of Greek mythology before defeating Hades. After defeating Hades, Zagreus find out
that he can not survive long on the surface of the earth, so keep on escaping the
underworld.

Figure 2.1 Hades logo
e Play as Zagreus to escape from the underworld by surviving through all the
regions and bosses.

Figure 2.2 Mirror upgrades
e Use a unique currency to permanently upgrade to help player get stronger and add
more chances that benefit the player.

©3/3

Figure 2.3 Choosing equipment
e Player can choose any weapon and keepsake that they want before starting the
run.

SETEY NG

ASPECT OF ZAGREUS

\'Jl B At
N

AsPECT OF NEMESIS
Special
Chance

/:‘_ AsPECT OF POSEIDOI
L/ o Special s
\ 4y’

v

A Darage
S
@ ASPECT OFARTHUR
\ P + AuraDamage Reduxtion
N7

Figure 2.4 Weapon upgrades

VITALSTATS

Ec)

5

3312.00

)

can be upgraded.

7

i 451 i3 FATED

THEQUEEN'S PLAN
PowEer WiTHoUT EQUAL

GODDESS OF LOVE 0 med.
Olympiar

AFRIENDLY WAGER

POWERWITHOUT EQUAL
DIVINEPAIRINGS
THEHEART-SEEKING Bow
THEETERNAL SPEAR
THEFATED SAINT OF WAR
THETWIN FIsTS
THEADAMANT RAIL
HarsH CONDITIONS

SLASHEDBENEFITS

Figure 2.5 Achievement list
)

and get reward from.

OF PUNISHMEN']
CONDITIONS

GETOUT USING THE STYGIAN BLADE
» HeatG ons

BOUNTIES
WEAPON: BLADE

v §~/
s s

ELysium sTVX

Figure 2.6 Achievement list
[]

more rare rewards.

Pact of punishment, where player can increase the difficulty of the game to

Critical

SPECIAL
ess | @ fory

¢ BLOODSTONE

As player play the game, the weapon will unlock new abilities and each abilities

—
v
L 1S T

The Fated List, in other word is a list of achievement of what player can achieve

Vg,

Z

#19
+1¢
SRR
#1e
=|ei3 ¢
¢ Fhe
29
+29
¥29
+39
18

DAMAGE CONTROL

get

2) Enter The Gungeon

Enter the Gungeon are developed by Dodge Roll and published by Devolver Digital
in 2016. Enter the Gungeon is a dungeon crawler with a challenging battle and
evolving series of floors filled with dangerous bosses. The game follow a band of
misfits that descend into the dungeon to find a time machine that have power to travel
through time. This game focus on player skill to shoot and dodge bullet.

 TRENREEM
- . . . 2N

7 JM 5 BT, " o
] S

~ -

Figure 2.7 Enter the Gungeon logo

The Conwvict

& = g

Figure 2.9 Different ability

e Player can select one from four characters which is named Marine, Convict, Pilot
and Hunter. All the characters each having different special abilities that player
can use during the run.

Figure 2.10 Health point and economy

e Health point is can not be healed while in the run, can only be upgraded by
progressing through the dungeon and buying heal point from a merchant. To buy
item from the merchant, player can only use the currency that player accumulates
by killing enemies. The upgrades and the economy is not permanent and lost after
player exit the dungeon.

Chamber 1 Keep of the Lead Lord

Fiure 2.11 Level generation

e The levels are procedurally generated, player need to clear each room to proceed
to the next room. Some cleared room enable teleportation to other room. Player
can choose to fight the boss early if the boss room founded earlier or just grind
for more currency to buy from the shop.

2.4. Comparison of Existing Games

Table 2.1 Comparison of existing games

Hades

Enter the Gungeon

Gameplay

Play as Zagreus as player battles
and survives through three
underworld regions and to vanquish
Hades with the help of Olympian
gods' blessings. Every time player
clears an encounter gain a new
strength or reward.

Battle and survive through the
dungeon. The dungeon is
procedurally generated. Discover
and gather precious loot that can
help player to gain advantages
over enemies.

Game
Mechanics

Choose different weapons and
keepsakes, each weapon and
keepsakes can be upgraded to be
more powerful. Use combination of
weapon and blessing from the gods
to battle and survive through the
levels. Have currency that lost after
the player death and unique
currency that carried over to be
used for upgrades.

Choose different characters, each
character have different abilities
such as calling support and
lockpicking chests. Shoot and
dodge bullet efficiently. Find
precious weapon and loots or buy
from the merchant. All the
economy gain and loots is lost
after player death but not for some
unique items like a potion to
increase player’s total health
point.

Game
Replay
Values

Player growth, player start with the
default ability and as player
complete each run, player can use
unique currency which is carried
over by the player to upgrades
weapons or abilities. Further
increasing the chance of player
surviving throughout the
underworld regions. Upgrades that
have increase in statistic is
permanent while blessing from the
gods is lost after death.

Story progression, happen in certain
numbers of ways,the most easy is
each time player died it unlocks
new story progression or depending
on how far player can survive it can
unlock new story progression or
unlock new weapon aspect which is
a new way player can use the
weapons.

Each time player play the game
the dungeon rooms, the spawned
enemies, the loots and bosses is
completely procedurally
generated. So each times is a new
experience and not the same from
the previous run.

Enter the Gungeon is a game
focused on player skill instead of
growth of the characters. Player
can even win the game by facing
with enemies or bosses using the
basic gun. But each enemies and

bosses have different attack
pattern so player have to train
their skill to adapt to each
enemies.

Pact of punishment, after player | Player can experience over 300
first completion of the game, it | different guns and item that can be
unlock a new system called “Heat | combined to achieve more
system” where player can manually | powerful effects called
increase the difficulty of the game. | "Synergies”.

At each level of difficulty player
can get rare rewards that only | As player progress through
dropped after defeating the bosses. | multiple runs, player unlock new
So player can get new experience | characters and rewards from the
by player the game while increasing | bosses can be used for some
the difficulty. permanent upgrades.

Achievement list where player can
see any challenges that player can
set what to aim during a run to get
more rewards.

Cosmetics or decoration, with
abundant amount of resources
player can use buy house decoration
or even modify how the game user
interface looks.

For the proposed project Dungeon Revive, player play as a wizard who is trapped
inside the dungeon. Player must survive through the entire dungeon, defeat the
bosses and escape from the dungeon.

The first time playing the player is very weak. As player keep playing the game,
player can gain more coins that drop from the enemies that to be used to upgrade
health, speed and magic travel time so that player can get stronger if player has
enough coins.

Player also have achievement system where the list of available challenges that
player have to complete to gain more rewards for upgrades. Also after the first
completion of the game, the game will gain more difficulty and player have to
spend more time defeating enemies and bosses.

2.5. Project Methodology

Concept Design> Prototyping > Implementation>L Testing > Deployment>

Pre-Production Production Post-Production

Figure 2.12 Game Development Life Cycle (GDLC)

Concept Design
Brainstorming process on the game replay value and creating the design for
mechanic. Planning concept design for the level environments, enemies,
character and user interface.

Prototyping
Creating the software prototype for the game, blocking the world environment
design and preview on the game replay value mechanics. Creation of the game
assets.

Implementation
The process on programming the source codes for game mechanics, game
replay value systems, player actions, enemy Artificial Intelligent (AI),
currency system, progression mechanics and winning conditions.

Testing
Playable alpha and beta version of the game is tested for improvement. The
game is tested by small group of testers. Feedback and information is collected
from the response of the testers.

Deployment
Where full complete version of the game which also known as master version
is ready to be released to the market to sell to the public or endorse publicly as
downloadable free game.

2.6. Conclusion

In the nutshell, this chapter explain why I choose certain type of genre for my game
and why it is suitable for the development. I also provide the comparison of my game
between the same type of game genre that available in the market. I also provide the
methodology use in development of the project which is GDLC .

10

CHAPTER 3

ANALYSIS

3.1. Requirement Analysis

3.1. 1. Project Requirement

TABLE 3.1 Existing Game Analysis

Game Hades

Enter the Gungeon

Player roles Battle and survive each
encounters with enemies to
reach the end. Player can
choose to master 6 type of
weapons, each aspects of
the weapons and upgrade
it. Player have to use
temporary power-ups that
gained from clearing each
encounter to help gain
advantages fighting
against enemies.

Shoot and dodge bullet.
Player required to improve
their skill to dodge enemy
bullets as the game
required player to
constantly dodge bullet.
Player has to practice their
timing evading things.
Player choose to play up to
4 characters each having
different special abilities.

Gameplay Player required to focus on
player skill on using 6
different kind of weapon
(sword, spear, shield, bow,
gauntlet and gun) and
combinations of power
ups. Player can also focus
on collecting resources for
upgrades that increase the
chances of player
surviving through or
increase the chances to get
better rewards or power-
ups. Use combination of
power-ups and weapon to
battle and upgrade it
through the run. Choosing
the option that benefits and
suit the kind of player play

Player require to dodge
bullets. Player have to find
defeat the boss to progress.
Defeating a boss unlock
new things that player can
use for permanent
upgrades. Player also
focused on finding good
weapons and collection
resources, then the
resources can be used to
buy heal or power-ups.
Player involve in
exploration of the dungeon
and using surrounding to
block and evade enemy
attacks.

11

style. Player progressing
through each regions, the
enemies also will get
harder. Each boss and
enemies having different
attack pattern and may
vary on level of the “Heat”
from the pact of
punishment.

Victory condition

Clearing the enemies in a
encounter then player can
proceed through. Player
defeating the three bosses
of different regions and
defeating Hades at the
surface of the underworld.

Player defeating the last
Boss. The last boss can be
different each time player
advance to the final boss
fight location.

Core Mechanic

Slashing, dashing,
thrusting, backstabbing,
aiming, maneuver, buying
boost, trading, selling

power-ups, convert
resource, difficulty
modifier, power upgrades,
weapon and item

upgrades, NPC interaction.

Shooting, dodging, aiming,
maneuvering, upgrading,
shop purchasing.

Progression

Player progress through
regions of the underworlds
like Tartarus, Asphodel,
Elysium and Temple of
Styx. Kill bosses of every

region give player
resources for permanent
upgrades and some
resources accumulated

through the run also be
used for upgrades. Every
time player dies the game
unlock a new story
progression and player
advance to certain
encounter with certain
requirement may unlock
new story progression or
weapon aspect.

Player killing boss unlock
new room and get reward
for permanent upgrades.

12

User Interface Feature

Health UI, resources UI,
weapon, item and status
upgrade UI, shop UI

Health UI, resources UI,
equipment Ul,
teleportation UI

Camera Models

Orthographic camera

Orthographic camera

Storyline

Player play as Zagreus in
his attempt to escape from
the depth of the
underworld with help from
Olympian gods.

Player unlock new story
progression every time
player dies. Player can
interact with every NPC in
the game. The main story
progress through player
completing the game ten
times. Side story

Aan enormous bullet fell
from space and crashed
into Gunymede's surface,
and destroyed a fortress in
the process. Its resulting
magic subsequently
created a time machine of
immeasurable power; a
gun that can kill the
past.The fortress was
rebuilt with the highest of
security measures to guard
the gun, and adventurers
known as '"gungeoneers"
hailed from places over the
galaxy to claim their
chance at changing their
past. The player can play
as eight gungeoneers, each
with their own stories and
regrets, as they decide to
enter the fortress and
descend into the Gungeon
to find the gun in order to
correct their wrongs.

13

3.1.2.

3.1.3.

3.1. 4.

Technical Requirement
Mouse and Keyboard
Mouse and keyboard are the traditional input devices for pc gaming that are
available since the earlier time of the industry. Mouse and keyboard provide
more dexterity and precision in the gameplay. Keyboard allows more hotkeys

management to be implement that ease the player by modify suitable input that
fit their preferences

Software Requirement

Unity Engine
For the game development, creating prototype and final product.

Adobe Photoshop

Designing and creating concept art and level design also creating of game
assets.

Visual Studio

Tool to programming all the mechanics.

Hardware Requirement

Laptop

Mouse

Monitor

Wacom drawing tablet

14

3.2. Project Schedule And Milestone

Self-initiated Time Schedule

Week 6 | Week 7 Week 8 Week 10 Week 12

Research m Level Creation
Concept work Finishing Touches
Block-out/mock-up work

Asset modelling

Table 3.2 Project Gantt Chart

o Research

Research on similar games and article on research topics.

e Concept Work

Creating concept art, level design and characters design

e Block-out

Process of blocking out the environment

15

e Asset Creation

Creating assets and sprites for the games

o Level Creation

Program the level progression, level transition and mechanics.

e Finishing Touches

Code all the intended mechanics.

3.3. Conclusion

e This chapter was focus on analyzing the differences of the similar game that are
related to the propose project and identifying technical requirement, software
requirement, hardware requirement and other requirement. Project schedules and
milestones also explained in this chapter.

16

CHAPTER 4

DESIGN ANALYSIS

4. 1. Introduction

Game design is one of the most important process in video game development and the
crucial phase in Dungeon Revive development phase. It involved game architecture
and game design that can be divided into many parts such as gameplay, core
mechanics, flowboard, level progression, storyline, user interface or interaction model,
game art, game world, character design, camera design, audio and sound effect.

17

4. 2.

Game Architecture

Level generations

A

Game engine

y

4

Dungeon Rooms

Al system

Progression
system

Gameplay
Mechanics

Figure 4.1 Rogue-like Game Architecture

4. 3.

4. 3.

Game Design

1. Gameplay

Player Roles

Improving character growth and player skills, player focus on playing the
game efficiently and improving player skill to maneuvering player’s character
to dodging enemy attacks and upgrading the character growth.

Rules

Player have to advance through each room to proceed to next level.
Player need to have enough resources for upgrading the character’s status.

or new mechanics.

18

Player need to complete challenges or certain requirement to unlock rewards

Player lost progression if player die, but the resources is remained.

4. 3. 2.

Victory Conditions

Player have to defeat the boss of each region to progress to next region.
Defeating the last boss to achieve main goal.

Termination Conditions

When player health point hit zero, player dies and have to restart again from
the start at the beginning of the dungeon.

Level Of Difficulty
The difficulty of the game get improved everytime player complete the game.

The game difficulty is upgraded, the enemies is harder to kill and the bosses
have new attack patterns.

Core mechanics

Health system

Player have limited amount of health that can be upgraded to increase the
amount.

Shooting mechanics

Player can shoot magic bullet that disappear after short amount of time. Player
can shoot enemies bullet to deflect it.

Economy system

Every time player kills an enemy gain a random amount of coins that can be
used in the shop to buy permanent upgrades.

Maneuvering

Player can move freely and teleport ahead to dodge bullets. With perfect
timing player can teleport through walls.

19

Defence mechanics

Player can cast temporary magic shield or use the surrounding environment to
block enemies attacks.

Enemy Al
There is two types of enemies, ranged and melee .Each region have different

kind of enemies according to the environment. The more progress player made
the stronger the enemies.

Progression mechanics
The more player play the game the more resources that player have and can

upgrade to get stronger. As player complete the game player unlock new
mechanics where player can manually change the difficulty.

Collectibles
The enemies that player kill can randomly drop heal point that player can

collect.

Score

The numbers of enemies killed is counted to complete certain challenges.

20

4, 3. 3. Flowboard

Main menu

[Developer note J [Quit application]

Y

Economy

Level
Generation

Y

| Boss Fight [

Figure 4.2 Game flowboard

21

A 4
|
I
| |

4. 3. 4. Level progression

Level Design

Start Level 1 —> Level 2 —> Level 3 final Boss
| I !
Room1 Room1 Room1
Room1 Room1 Room1
Room1 Room1 Room1
Miniboss — Miniboss — Miniboss

Figure 4.3 Level Design

Early Stage(When starting new game)
® Condition

Low health, slow speed, bullet can only travel for a short time and
initial amount of coins is low.

® Result

Have a hard time fighting enemy.

Late Stage(After couple of times playing)
® Condition
Lot of health, faster movement speed, bullet can travel for a long time
ilniount of coins is a lot and can be use to buy upgrades.

Better understanding of the enemy weakness and game mechanics

® Result

22

Can easily kill enemies.

4. 3.5. Storyline

The game about a wizard named Atlas who died in a dungeon but somehow, he was
brought back to life. Soon he knows that he is trapped inside the dungeon and start to
muster his skills to escape from the dungeon. The main goal of the game is to escape
from the dungeon. After defeating the final boss of the game, he escaped...but later he

find out that the dungeon is revived and the difficulty is more harder than what he first
experienced.

4.3.6. User interface / Interaction Model

e [Earlier sketch of UI and GUI before implementation

‘ e y&; m—
. N e = Q & a
A
G il b
j—
L PAusE Sho 0
QMUM/ HG;MV T co¥:
Sprkui — ot
Wujj]‘% p\a&o —
Quit |
_ M[d\mum@’\\—
You DIED —
Aot R“‘Ww A —3
— =
~

Figure 4.4 UI Sketch
Sketching for the user interface is made in Adobe Photoshop.

23

e Menu

Integrating game replay value to

role-playing fantasy game:

DINCEON REVIVE

PLAY
ABOLT
QUIT

Figure 4.5 Menu Ul

Simple menu design with a picture of tree in the background

e Player Ul

Enemies killed :0
Coins : 100

Figure 4.6 Player Ul

Player user interface is displayed on the left side

e Player controls

24

Figure 4.7 Player controls setting and abilities

Player can see the controls of the character and what key to use.

e Pause Menu Ul

T IS E——
RESNIMIE
OPTION
G

@10()(*

Reloading...

Figure 4.8 Pause menu Ul

Everytime player press escape (ESC) it will activate the pause menu. The scene in the
background is stopped for moment.

25

e Shop Ul

IHEaith) R

JOIE

(2 [ﬁ
(@OBIIFIO
Speed URGRADE

CEEMIE®

(YIoGichITavel Miime N

(EOH[FIo0]

Figure 4.9 Shop Ul

The shop where player can use resources to upgrade player status.

o Achievement UI

RONenemiesikilled
[4ONchemieskilled!
enemiesikilled

enemiesikilled
enemiesikilled|

Figure 4.10 Achievement Ul

The list where player can see challenges and achievement.

e Player Win/Lose condition

26

Menu Rebirth

Press ‘M’ to go Press "R " to

to menu respawn

Speed : 2
Headith :0

Figure 4.11 Player Die Panel

When player die the game will activate the panel to tell what player what to press to
continue playing.

Vou bavé ’SLiccféé&ilv_defeat the
monster that controlled the dungeon.
Now vou can escape... ” i

INIVERSITI TEKNIKAL MAI

Figure 4.12 Player Escape Panel

When player successfully defeat the final boss, player can escape from the dungeon.

27

4.4, Game Art
e Game world

The game world is set in a fantasy-based dungeon. Player have to travel
through three regions of the dungeon and defeat the final boss.

Figure 4.13 Sketch of starting scene

Enemies killed :0
Coins : 100

Figure 4.14 Project starting scene

28

Figure 4.15 Sketch of level 1 environments

The first level is in ruin-like or old dungeon. The building and wall is man-made from
abandoned ancient civilization. Now the place is in darkness, occupied by monsters.

Enemies killed :3

Coins : 35 o

Figure 4.16 Project level 1 environments

29

Figure 4.17 Sketch of level 2 environments

The second level is a crystal cave. Located right below the dungeon. This place used
to be a crystal mining location in ancient civilization.

Enemies killed 14
Coins : 82

Reloading...
Figure 4.18 Project level 2 environments

30

Figure 4.19 Sketch of level 3 environments

The third level is lava cave. The level is formed in volcanic rock which is naturally
formed by volcanic process from ancient ages. The lava is hot and very dangerous
place to wander around.

nemies killed :30
Coins : 122

Reloading...
Figure 4.20 project level 3 environments

31

@

Reloading...
Figure 4.21 Final boss environment

The unknown place called “The End”. The surrounding is from special material from
ancient civilization and the room seems like it sealing something dangerous.

o Character design

a. Main character

Figure 4.22 Main character asset

32

b. Enemies

Figure 4.23 Slime

Figure 4.24 Rock golem

33

Figure 4.25 Crystal golem

Figure 4.26 Burning Skull

34

Figure 4.27 Prime Slime

Figure 4.28 Crystal King

35

Figure 4.29Volcanic Demon

Figure 4.30 The Void

e Camera model

36

Figure 4.31 Orthographic camera view

o Audio/Sound effect
1. Environment Sound
11i. Combat sound effects

1ii. Menu Ul sound effects

4.5. Conclusion

In conclusion, game design are really important in game development since it
was the early phase of development that will convey concept before the
implementations. In the next chapter, we will talk about the implementation of
the design in the game.

37

CHAPTER 5

IMPLEMENTATION

5. 1. Introduction

In this chapter we will highlight one of the important phase in game

development which are the implementation. This chapter will provide information
from the technical view of the implementation from programmer perspective during
production of graphics, production of audio, production of video and production of
animation. It also touch a little bit on the integration for the feature core mechanics
in the game, configuration management and status

38

9. 2. Creation of Game Art
5.2. 1. Production of Graphics
The production of game assets is created in Adobe Photoshop. Starts with sketches of

characters and environments, continued with outlining and colouring of the assets.
Then with Adobe Photoshop, it can generate a sprite sheets for assets animations.

Normal

char main.psd @ 25% (side, RGB/8) * *

Engish: USA 4 Smooth

1:05 AM

@\’ i B

Figure 5.1 Character sprite creation

File Edit Image Layer Type Select Filter 3D View Window Help
f® 2o Mode: | Normal vl . Opsciy: |100% |v | @ | Smedthing: 0% v %% [AunEmse (@

slimesheet.psd @ 50% (Group 6, RGB/8) * *

&

A2 opt ol
TUTTT Tr T T, T T

SNEOND D

English: USA % Smooth

EoeTHnR®

1
¥
2,
2.
S
2.
i
k.
@,
W
Q

Figure 5.2 Environment sprite creation

39

File Edit Image Layer Type Select Filter 3D View Window Help
A o O Mode: | Normal Opaci: 100% v (@ Smoothing: | 0%
-

slimesheet.psd @ 50% (Group 3, RGB/8) * *

GE

Opacity: | 100%

Co A8 Ak 0%

PPEOFHDBIFGANPINENRAEND

[
&

8 !

) Doc: 2.86M/101.6M

Figure 5.3 Enemy sprite creation

5.2.2. Production of Audio

Sound Description

Ambient sound Ambient sound that fit for environments
like in a cave or ruins.

User Interface sound Sound effect for menu and Ul navigation.
Hovering and clicking buttons.

Combat sound Sound of player and enemies shooting
projectiles.

Upgrade sound effects Sound of player buy upgrades from
shops.

Table 5.1 Audios in game

5.2.3. Production of Video

There is no video implementation inside the game.

40

5. 2.4, Production of Animation

Figure 5.4 Player idle facing right sprite sheet

Figure 5.5 Player idle facing front sprite sheet

& Collab~ I & I Account ~ I Layers ~ I Layout ~ I

© Inspector | at]
@ v bossi_sprite Static ¥
" Tag Untagged + Layer Default ~

% W Gizmos v

Shaded v w| e lw
< scenes | @BOSS

> A Transform e 3

v eé";mm v [¢] ~ Sprite Renderer]
0 firepoint (1) Sprite [slsheetboss_0
) firepoint (2) Color
D firepoint
i o Fiip W
€ firepoint (5) Draw Mode Simple -
D firepoint (6) Mask Interaction None -
& firepoint (7) Sprite Sort Point Center v
Material Q Sprites-Default ©
¥ Additional Settings
SortingLayer Default il
OrderinLayer 1
¥ >+ < Animator o 3 i
Controller % bossTANIM [}
Avatar None (Avatar) 0]
Apply Root Motion
Update Mode Normal -
Culling Mode Always Animate v
Clip Count

Curves Pos: 0 Quat: 0 Euler: 0 Scale: O

| | Muscles: O Generic: 0 PPtr: 1

* | Curves Count: 1 Constant: 0 (0.0%) Dense:
0(0.0%) Stream: 1 (100.0%)

» [#boss1_sprite : Sprite °

Add Property

Sprites-Default e

Shader Sprites/Default

Add Component

41

Figure 5.7 Enemy sprite animator

Bl DUNGEON REVIVE

File Edit Assets GameObject Component Win

9.3.12f1 Personal <DX11> = a X

|| static~

vQ Lobby - 4 -
0 Main Camera 7 Tag umagged ~ Layer Default ~

~ Mouse Horizontal

») Transform o & i
-~ Mouse Vercal ':n; snm.nm.:nmesuse: 1 - <;\
= g | ot el S PN -
= walk Hor 00 ; Color =
= walk Ver 00 Fiip X
= moving 0.0 Draw Mode simple -
None v
Sprite SortPoint Center -
Material |Qlightsetting © |
¥ Additional Settings
Sorting Layer Default -

Controller % playerAnim @|
Avatar None (Avatar) o

© Animation =
Preview (@ [e | 0 | » Nomal ~

Always Animate

W columnWall (4)
- @ columnWall (5)

vvvvvy
C‘

=3
%

Clip Count: 9
o~ Clnies Box: 8 Quat 0 Eulr 3 Scale: 0
(1) Muscles: 0 Generc 0P
,*_{ Curves Count: 67 cmmnnu(uzz)

» [#l playerSprite : Sprite.
— Dense: 0 (0.0%) Stream: 8 (15.8%)

. lightsetting CEE
Shader Sprites/Diffuse |

Add Component

EIEIAE) -
:l

|- Name

= Mouse Horizontal

= Mouse Vertical

= walk Hor i

= walk Ver

UNIVERSITI TH

ANIMATION/playerANIM/playerAnim.controller

© Animation
Flgure 5.9 Animation transition

Some of the sprites is animated using sprite sheets and some which has separate parts
is animated using Unity animator which using keyframes, nodes and blend trees.

42

5. 3. Integration of Game Components

e Player movement
Source code for player movement and player dashing. For movement there is variable
called animator for controlling player animations.

speed = er.MoveSpeed;

movement GetAxis(" o i

movement.y t.GetAxis(k%)

moveDir = ne r2(movement.x, movement.y).normalized;
mousePos = cam.ScreenToWorldPoint(I t.mousePosition);

posDif = mousePos - .position;
animator.SetFloat tal", posDif.x);
animator.SetFloat(\ al”, posDif.y);
animator.SetFloat ', movement.x);
animator.SetFloat ', movement.y);
animator.SetFloat(, moveDir.magnitude);

ut.GetKey(KeyCode .Space) && canDash == true)

rb.MovePosition(transform.position + (transform.forward * (speed * Time.deltaTime)));
rb.AddForce(movement.normalized * 6000);

canDash H
dash{D = -

Figure 5.10 player movement script

e Player combat mechanics
Script for player combat mechanic. Buy uprade from the shop to improve the combat
mechanics.

if (Input.GetButtonDown(
{

Shoot();
shootCount = shootcount + 1;

if (shootCount == 5)
canshoot = false;
shoot(D = 58;
StartCoroutine(shootCountReset());

3

if (unlimitedshot==t
{

unlimitedshoot =
1
J

if (unlimitedshoot==true)

f

1
if (Input.GetButton("Firel®))
'3
1

Shoot();

Figure 5.11 player shooting mechanics

43

if (Input.GetkKey(KeyCode.E))
P

L

StartCoroutine(shootCountReset());

if (Input.GetKey(KeyCode.Q))

if (alreadySpawned==f
I
1
spawnShield();
f
i

Figure 5.12 player defence and reloading mechanics

e Game controller script
All the datas and conditions is controlled by game controller, player health data,
resources data, movement speed data , player win and lose condition and etc.

late()

healthText.text = "Healt + health;
cointext.text = “"Coins : + coin;

speedText.text = "Speed : + movesSpeed;

enemykillText.text Enemies killed :" + enemyKilledCount;

if (isPlayerDead--
{

Time.timeScale

Time.timeScale

1
J

if (Health <= @)

{
isDead = =3
PlayerDieScreenSpawn();
player.SetActive(false);

Figure 5.13 game controller script

44

e Shop upgrades
Player buy health, speed, bullet travel time and shoot mechanics upgrades from the
shop.

Healthupgrade()

f (healthupCounter==0)
er.Coin >= 100)
Playsound(
.currencyMinus(10e);
.plusMaxHealth(1e);
coinHealthup += 1©0;
healthupCounter += 1;

l1ler.Coin == @)

0 money™);

1ler.plusMaxHealth(o);

¥

—1

rollier.Coin >= ZE‘{'.)

pt.Playsound(“upgrade”);
By CEnCVYMIn H

‘0

e Achievements
Variable is passed from game controller script to detect how many or what challenges that player
have completed.

| achievelComplete()
troller.EnemyKilledCount >= 20 && bidisable-=false
troller.currencyAdd
notcompletel.SetActive(false);

completel.SetActive(true);
bidisable = true;

achieve2Complete()

ller.eEnemyKilledCount >= 48 &% b2disable == f:

e troller.currencyAdd(300);
notcomplete2.Setactive(fa ;
complete2.Setactive(true);
b2disable = BS

Figure 5.15 achievements script

45

e Enemy Al
All the functionality and how the enemy acting is coded in the script.

i Attack()

if (lcdattack)
{
ch (enemyType)

.Playsound(“en

bullet = Instantiate(bulletPrefab, firePoint.position, Qu
bullet.GetComponent<e “>().GetPlayer(player.transform);
bullet.GetComponent: d >() grav1tchale = of;
bullet.GetComponent<e er>(). 1sEnemvBullet =

Startcoroutlne(cooldown\)),
break;

Figure 5.16 enemy Al script

o Boss Al

Boss attack pattern and animator is called using the script.
oid Attack()

if (!cdAttack)

f
L

Ssoundscript.Playsound(“enemyfire™);

cameObject bullet = Instantiate(bulletPrefab, firePoint.position, firePoint.rotation);
igidbody2D rb = bullet.GetComponent<Rigidbod'20>(),

rb.AddForce(firePo up" bulletForce, Ccrceﬂodelv.lmpulse),

Destroy(bullet, 2f);

bullet2 = Instantlate(bulletPrefab flreP01nt2 position, firePoint2.rotation);
D rb2 = bullet2.GetComponent< D>();
bullet2.GetComponent<e b 1ler>().isEnemyBullet =
rb2 Addrorce(firePoint2. up bulletrorce, ForceMode2D. Impulse);
estroy(bullet2, 2f);

bullet3 = Instantiate(bulletPrefab, firePoint3.position, firePoint3.rotation);
D rb2 = bullet3 D>();
buhetD GetComponent<e 1le r >() 15Enemy8u11et
er AddrForce(firePoint3.up * bulletForce, ForcemMode2D.Impulse);
estroy(bullet3, 2f);

, firePoint4.rotation);

bullet4 GetComponent<~'
bullets. GetComponent<~ it
rb4.AddrForce(firePoint4.up * bulletForce, ForceMode2D. Impulse);

Figure 5.17 Boss Al script

46

e Bullet Controller
Code to check what projectile hit

G ject explodefx = Instantiate(hitfx, transform.position, Quaternion.identity);
Destroy(explodefx, ©.1f);

D(Collider2D col)

if (col.tag == "Enemy” && !isEnemyBullet)
{

col.gameObject.GetComponent<enemyController>().Death();

Destroy(gameObject);

G ject explodefx = Instantiate(hitfx, transform.position, Quaternion.identity);
Destroy(explodefx, ©.1f);

¥

if (col.tag == "Player" && isEnemyBullet)
1
GameController.DamagePlayer(10);
Destroy(gameObject);

Figure 5.18 bullet controller script

e Prefabs
Prefab or a blueprint that spawned. Each have different animations or functionality.

Assets > prefabs
&# bigdiamond
¥ BOSS
& Bullet
&¥ CoinAddUl
&# columnWall

&# diamndExplode

&# diamonds

§# diamonenemy

&# EndBullet

&# EndBulletGroup

&% Enemy

4 FnamuRiillat 1

Figure 5.19 prefabs

47

9. 4. Game Configuration Management

The game can be play by two options which are through installation or click and play
that require player to transfer the whole game file instead just small installation file.
The game only need input devices like mouse and keyboard to play.

5.4. 1.

Configuration Setup

This project were published using Unity 2019.3.12f1 for Windows 64-bit. Its require
few configuration inside project settings for example we need to setup the scene that
supposed to be the first interaction to the player when interacting with the application,
building lighting depending on the quality and settings up other crucial information
for the game like the project title, logo and etc.

5.4.2.

Version Control Procedure

Table 5.2 Testing Phases

Testing Description Detail
phase
The game be tested to find out what | In form of early prototype and must be at
Alpha work and don’t work including | least playable. Mostly will be focusing on
major bugs that affect the game in | mechanics and localize content. This will
the major aspects In form of early | be implement during Final Year Project 1.
prototype and must be at least
playable. Mostly will be focusing on
mechanics and = localize content.
This will be implement during Final
Year Project 1
Beta The game will be tested by target | After the evaluation from the evaluator
focus group where the feedback and | and supervisor during Final
questionaire will be collected from | Year Project 1 presentation. The game
their perspectives for further | will enter semi Beta phase where the
improvement to polish the game. game will be improve in term of the
crucial aspects such as the objective for
the game itself. Then it will be enter
the remaining phase during Final Year
Project 2 where the feedback will
be acquired from the target focus group.
Golden The final version where the game is | After evaluation in Final
Version ready to publish to the market. Year Project 2

48

9. 5. Implementation Status

Table 5.3 Implementation status

Component Description Duration To Completed Status
Complete Duration

Game prototype | Basic mechanics | 2 Weeks 2 Weeks On time
creation of the game
Game assets | Game assets such | 1 Week 1 Week On time
creation as 2D sprites and

User Interface

were created in

CS Photoshop.
Game World Creation of the | 1 Week 1 Week On time
Creation game levels
Interface Element | Designing 2 Weeks 10 days In time
and game user
Implementation interfaces and

user interfaces

in the game

engine using

2D elements
Game Implement all 6 Weeks 6 Weeks In time
Mechanic the functions
Implementation and mechanics

inside the

game from the

gameplay

element until

interface

functionality
Animation The animation for | 2 Weeks 2 Weeks In time
Implementation the characters

and game objects

were

implemented

using Unity

animator.
Polishing the | Fixing the bugs | 2 Weeks 2 Weeks In time
game and make few

adjustment
before exporting
the game.

49

5. 6. Conclusion

Implementation phase are very important for the game mechanics to work and
playable. Its include the creations of the game art which involves production of
graphics, audio, video and animation. In term of game integration and C# language
were use for this project by using Unity Engine to build the game. In the next chapter,
testing for the target group user will be conduct for further feedback through
questionaires.

50

CHAPTER 6

TESTING

6. 1. Introduction

The next important phase after the implementation process is testing, which will be
covered in this chapter. The goal of this project is to determine whether the game's
replay values are effective based on the players' experience with the game.

The purpose of testing is not to find errors and bugs, but to ensure that the game met
the project's objectives.A few number of tests is involved to meet the project
functionality and usability.

6. 2. Test Plan

After the Dungeon: Revive game has been developed, a test must be conducted to
determine the system's functionality and usability. To ensure that tests run smoothly
and produce the best results, preparation is required prior to conducting them.
Identifying the test users, the test environment, the test schedule, the test strategy, the
test design, and the test result and analysis are all part of the preparation.

51

6. 2. 1. Test Organization

The personnel involved in this chapter are game developer, the one who

develop the game to do unit testing and while functionality testing with developers
who have the experiences in game development. The next person is the end users to
test the usability of the system.The end users are open to the public.

There are three types of test carried out, unit test, functionality test and usability
test. Each tester has roles and responsibilities. The test organization are summarized
in Table 6.1.

Table 6.1 Test Organization

Type of Test Personnel Involved Roles and
Responsibilities
Unit Game Developer To test each software
(one person) design component shows

and works correctly.

Functionality Game Developers To test each question
(two persons) whether it gets correct
answer and functions
well.
Usability End Users To test the how players
(45 candidates) feel about playing the
game.

6. 2. 2. Test Environment

The game will be tested in front of the general public from the perspectives of casual
and hardcore gamers. However, due to a Movement Control Order (MCO) for Covid-
19, testers will be given the option of either downloading the game or watching a
developer-led video game demo to better understand the game's core concept. The
testers were then asked to complete a series of questionnaires prepared by the
developer.

I. Hardware Requirement
The testers must have a personal computer(PC) or a laptop to play the
game. Depends on the testers availability to either play the game or
just watch the video game demo to have better understanding of the
game.

52

II. Software Requirement
The tester need to have a web browser to download the game files
from Google Drive to test the game. As for the video game demo can
be watched at Youtube page or Youtube application for mobile devices.

6. 2. 3. Test Schedule

Test schedule is made to ensure the tests run as planned within the period
given. After that, the results will be analyzed to do improvements. Therefore,
tests must hold in schedules so that the results can be presented on time.

6. 3. Test Implementation

There are several methods in conducting the usability testing. Only one

method will be used during the usability testing which is by giving the game file
download link, the video game demo link and the link for the online questionnaire
that prepared by the developer of the project.

6.4. Test Result and Analysis

An online survey by using Google Forms has been distributed to game testers. Google Forms is an
online platform provided by Google to make online custom questionnaire with responses graphs.
Total of 45 respondents has been giving feedbacks.

Gender
45 responses

® Male
@® Female

Figure 6.1 Gender data pie chart

Figure 6.1 shows that out of 45 respondents there are 34 males (75.6%) and 11
(24.4%) females that participated as end users test.

53

Age

45 responses

@ 18-20 years old
@ 21-24 years old
@ 25-30 years old
@ 30 years old and above

Figure 6.2 Age data pie chart

Figure 6.2 shows that out of 45 respondents there are 26 respondents (57.8%) from
age 21 to 24 years old, 13 respondents(28.9%)from the age of 18 to 20 years old, 4
respondents (8.9%) from the age of 25 to 30 years old and 2 respondents (4.4%) from
the age of 30 years old and above.

Do you play a lot of video game? If so how do you rate yourself?
45 responses

@ Casual
@ Hardcore
Not a gamer

Figure 6.3 Gamer data pie chart
Figure 6.3 shows that out of 45 respondents there are 33 respondents (73.3%) that is a

casual gamer, 7 respondents (15.6%) that is hardcore gamer and 5 respondents (11.1%)
consider themself as not a gamer.

54

| find it is easy to learn how to play this game
45 responses

40

30 33 (73.3%)
20
10 11 (24.4%)
0(0%) 0 (0%) 1(2.2%)
0 | | 1
1 2 3

Figure 6.4 easy learn to play data

Figure 6.4 shows that out of 45 respondents how much they agree that the game is
easy to learn how to play the game, there are 33 respondents (73.3%) that strongly
agree , 11 respondents (24.4%) that is quite agree and 1 respondent (2.2%) that is
neutral.

| find the instruction provided in the game is clear
45 responses

30

25 (55.6%)

20

10 11 (24.4%)

2 (4.4%) 7 (15.6%)
0 (fl)%)

1 2 3 - 5

Figure 6.5 Instruction clear data

Figure 6.5 shows that out of 45 respondents how much they agree that the instruction
in the game is clear, there are 25 respondents (55.6%) that strongly agree , 11
respondents (24.4%) that is quite agree, 7 respondent (15.6%) that is neutral and 2
respondents (4.4%) that is quite disagree.

55

| find the game’s menus are user friendly
45 responses

30

20 22 (48.9%)

14 (31.1%)

10

8 (17.8%)

0% 1(2.2%)

1 2 3 4 5

Figure 6.6 Game menus user friendly data

Figure 6.6 shows that out of 45 respondents how much they agree that the game’s
menus in the game are user friendly, there are 22 respondents (48.9%) that strongly
agree , 14 respondents (31.1%) that is quite agree, 8respondent (17.8%) that is neutral
and 1 respondents (2.2%) that is quite disagree.

| find the game is easy to play
45 responses

30

26 (57.8%)

20

10 12 (26.7%)

0 (0%) 1(2.2%) 6 (13.3%)
|

1 2 3 - 5

Figure 6.7 Easy to play data

Figure 6.7 shows that out of 45 respondents how much they agree that the game is
easy to play, there are 26 respondents (57.8%) that strongly agree , 12 respondents
(26.7%) that is quite agree, 6 respondent (13.3%) that is neutral and 1 respondents
(2.2%) that is quite disagree.

56

| find the game is very challenging
45 responses

30
20 21 (46.7%)
18 (40%)
10
XCERLD)
0 (0%) 0 (0%)
0 | |
1 2 3 4 5

Figure 6.8 Challenging data

Figure 6.8 shows that out of 45 respondents how much they agree that the game is
very challenging, there are 21 respondents (46.7%) that strongly agree , 18
respondents (40.0%) that 1s quite agree and 6 respondent (13.3%) that is neutral.

What did you like about the game?

45 responses

gameplay mechanics

level design —30 (66.7%)

art style 35 (77.8%)
currency system
level progression 24 (53.3%)
character progression 20 (44.4%)
sound and music 6 (13.3%)
combat mechanics 4 (8.9%)

0 10 20 30 40

Figure 6.9 What liked about the game data

57

Data analysis from figure 6.13

Figure 6.9 shows that out of 45 respondents what did they like about the game, there
are 25 respondents (55.6%) like the game mechanics, 30 respondents (66.7%) like the
level design, 35 respondents (77.8%) like the art style, 18 respondents (40.0%) like
the currency system, 24 respondents (53.3%) like the level progression, 20
respondents (44.4%) like the character progression, 6 respondents (13.3%) like the
sound and music and 4 respondents (8.9%) like the combat mechanics.

58

How much did you like the character progression system?
45 responses

30

20 21 (46.7%)
17 (37.8%)

10

7 (15.6%)
0 (CI)%) 0 (?%)

1 2 3 4 5

Figure 6.10 Character progression data

Figure 6.10 shows that out of 45 respondents how much they like the character
progression system, there are 21 respondents (46.7%) that strongly agree , 17
respondents (37.8%) that is quite agree and 7 respondent (15.6%) that is neutral.

How much did you like the level progression system?

45 responses

20

18 (40%)

i 15 (33.3%)

10
10 (22.2%)

2 (4.4%)

0 (c|>%)

1

Figure 6.11 level progression data

Figure 6.11 shows that out of 45 respondents how much they like the level
progression system, there are 18 respondents (40.0%) that strongly agree , 15
respondents (33.3%) that is quite agree, 10 respondent (22.2%) that is neutral and 2
respondents (4.4%) that is quite disagree.

59

How much did you like the shop/currency system?
45 responses

30

23 (51.1%)

20

16 (35.6%)
10

0 (cl>%) 1(2.2%) 5 (11.1%)

1 2 3 4 5

Figure 6.12 Shop/currency system data

Figure 6.12 shows that out of 45 respondents how much they like the shop/currency
system, there are 23 respondents (51.1%) that strongly agree , 16 respondents (35.6%)
that is quite agree, 5 respondent (11.1%) that is neutral and 1 respondents (2.2%) that
is quite disagree.

If you have beaten the last boss, did you feel like wanted to play again?
45 responses

@® YES
® NO

Figure 6.13 Play again data

60

30

20

10

YES NO
Data analysis from figure 6.13

Figure 6.13 shows that out of 45 respondents if they play the game again after
finishing the game for the first time, 38 respondents (84.4%) says Yes because they
feel like wanted to explore the rest of the game and to get better result while 7
respondents(15.5%) says No because the mechanics feels clunky and the game overall
is too hard .

Tell your experience after second time playing the game? (Does the game feel different or feel the

same)
45 responses

@ Same
@ Different

Figure 6.14 Experience second time data

30

20

10

0

. SAME DIFFERENT

Data analysis frem figure 6.14

Figure 6.14 shows what 45 respondents the experience after the second time playing
the game, 17 respondents (37.7%) say that the game feel the same but the enemies is
stronger, 28 respondents (62.2%) say that the game feel different because their
character is a lot stronger compared to when the started playing.

have you play any rogue-like game genre?
45 responses
NIV ERS IEANIRAL MALAY SlA

hades

enter the gungeon 13 (28.9%)

dead cells 10 (22.2%)

the binding of isaac 7 (15.6%)

No 20 (44.4%)

Risk of rain

Figure 6.15 rogue-like game data

62

20

wn

Risk of rain The Binding of Iscac Hades Dead cells Enter The Gungeon No

Data analysis from figure 6.15

Figure 6.15 shows that out of 45 respondents if they have ever play any rogue-like
game genre, there are 10 respondents (22.2%) that have play Hades and Dead Cells ,
13 respondents (28.9%) have play Enter the Gungeon , 7 respondent (15.6%) have
play The Binding of Isaac, 1 respondent (2.2%) have play Risk of Rain and the
majority of the respondents 20(44.4%) have never played any rogue-like game genre.

What other games did you play?

45 responses

: [
3 (6¥7%)

2 (4.4%) 2 (4.4%) 2 (4.4%) 2 (4.4%)

1 2.21(ALALALALAL2:205(A(ALAL22M(A LA LA LA (2:205(A (ALALALALA(ALALALALALALA(2:20(A (A LA4(2=2
1

0
Among Us Csgo Genshin impact PUBG Mobile Stardew Valley
Call of Duty series First-Person Shooter... Mobile Legend Returnal eFootball PES

Figure 6.16 other game data

63

Genre Number of respondents

Shooter Game 14

Indie games 12
Multiplayer games 7
MOBA games 6

(multiplayer online battle arena)

RPG games 4

Sport games 2

Table 6.2 Count of other games played by respondents according to
genre

Figure 6.16 shows that out of 45 respondents what other games that the respondents
have played, this show the variety of games that the 45 respondents have played. The
majority of games played is Valorant, Player Unknown Battleground and Minecraft
for most played Indie game.

What makes you "addicted” to the game?
45 responses

gameplay mechanics 35 (77.8%)
level design

art style

currency system

level progression

character progression

story progression

sound and music

competitive gameplay

Online play

Combat, art and Lore
Character progression and |...
The gameplay must feel bal...
Challenges

The game mechanics, game...
Mechanics, storyline and frie...

17 (37.8%)
17 (37.8%)
6 (13.3%)

16 (35.6%)
15 (33.3%)

14 (31.1%)
13 (28.9%)

23 (51.1%)
25 (55.6%)

1 (2.2%)
1(2.2%)

Figure 6.17 reason data

Figure 6.17 shows what makes the respondents keep playing the game the played,
majority of the respondents play the game because of gameplay mechanics, online
play and competitive gameplay. Level, character and story progression is the average
for what makes people play the game.

64

If you encounter a part of a game that is very difficult for you, which best describes how you

behave?
39 responses

| look for a different game to play 9 (23.1%)

| lower the difficulty of the game

Whether | keep trying depends

on how much | have spenton t... Ajelane
| keep tryi‘ng until | feel like I'm 19 (48.7%)
not making enough progress
| look for walkthroughs or cheats
0 5 10 15 20

Figure 6.18 player behaviour data

Data analysis from figure 6.18

Figure 6.18 shows how respondents behave when the game is too difficult, 9
respondents (23.1%) look for a different game to play , 7 respondents (17.9%)lower
the difficulty of the game , 20 respondent (51.3%) keep trying depends on how much
I have spent on the game (time, money and effort) ,19 respondents (48.7%) keep
trying until I feel like I'm not making enough progress and 9 respondents (23.1%)

look for walkthrough or cheats.

65

From 1to 4, how much does each of the following reasons make you feel like playing a game again? *

0 I 1 (Notatall) M 2 (Slightly) W 3 (Quite) [l 4 (A lot)

BEFREET

To see how the game ends To see something you like again (Could be anything) To challenge yourself To master the game

Figure 6.19 Reasons data

To complete all the official achievements To do something creative in the game To try out different game modes To play with your friends again

Figure 6.20 Reasons data 2

66

30

20

Not at all Slightly Quite A lot

Data analysis 1 until 5 from reason data

30

20

—

0 G

Not at all Slightly Quite A lot

Data analysis 6-10 from reason data

67

Not at al Slightly Quite A lot

Data analysis 11-16 from reason data

Figure 6.19 and Figure 6.20 shows the reasons that make the respondents keep
playing a game again. The highest of “a lot” is the respondents want to see how game
ends, re-experience emotions the game made you feel and to master the game. The
highest reasons of “quite” is to satisfy nostalgia, to play with friends and to find bugs
or ways to break the game. The highest of “not at all” is to explore
DLC(downloadable content) and to explore different ways to affect a story endings.

68

6. 5. Conclusion

The conclusion is the chapter explain about the how the testing is done and results
from the questionnaire after the testing the game.

As the conclusion, this chapter briefly explain about the testing and results from the
respondents after engaging through the game itself or by watching the walktrough
video before answering questionnaires. There is a total of 19 questions and 30
respondents participated. The results shown that majority of the respondents strongly
agree that the game are positive in every aspects. Based on the respondents
recommendation, the game can be improve through presentation and aesthetics
aspects such as realistic graphics and audio element in the game that involve ambient
sound and voiceover. In the next chapter, the observation of strength and weaknesses,
proposition for improvement and contribution will be discussed.

69

CHAPTER 7

PROJECT CONCLUSION

7. 1. Introduction

In this final chapter, discussion will be made to summarize this project. The
important points discussed including project summarization, project contribution,
project limitation, future works and conclusion.

7. 2. Observation of Strength and Weakness

The character progression mechanics in my projects are one of their strongest features,
as they allow players to improve their characters' abilities. For example, players can
buy upgrades from the shop to improve any abilities they want. This mechanic is
important because it emphasis the game's replay value, as the player can play the
game again to improve their skills and fight more difficult enemies.

The project's flaw is that the gameplay is too simple, and as a result, the player may
become bored quickly. The game lacks complexity in terms of what the player can do,
and after a few plays, the game becomes quite predictable.

7. 3. Proposition for Improvement

Based on player feedback, the game requires more things that players can discover
later on. Adding more items for the player to use will increase the game's replayability.
Having a different boss or a special boss can increase the player's excitement by
making the level design more complex and changing the layout of the levels every
time they play the game.

70

7.4. Contribution

This project contributes to further the studies on integrating game replay values in
video games. This contribute to the innovation on how video games is developed to
have game replay value attraction. This project also serve as a model for any future
video game development so that developers can evaluate the video game potential and
quality to be played after the first completion.

7.5. Conclusion

As a result, this project met its goals of researching, developing, and evaluating how
game replay values are integrated into video games so that the game has the potential
or value to be played again after the first completion. This project also provides
benefits to game developers for any future game development.

71

REFERENCES

Analysis: The Roguelike Chronicles - Chocobo's Dungeon for Wii. (n.d.). Retrieved
from
https://www.gamecareerguide.com/news/119680/analysis _the roguelike chronicle

s_.php

BEEP BOOP ROBOTS DETECTED. (n.d.). Retrieved from
https://www.greenmangaming.com/blog/what-is-a-roguelike/

Bycer, J. (2021, August 25). The Roguelike Debate -- Roguelikes vs Roguelites.
Retrieved from
https://www.gamasutra.com/blogs/JoshBycer/20191125/354673/The_Roguelike
Debate Roguelikes vs Roguelites.php

Cataclysm Dark Days Ahead: Static Analysis and Roguelike Games. (n.d.). Retrieved
from https://medium.com/pvs-studio/cataclysm-dark-days-ahead-static-analysis-
and-roguelike-games-7¢9d885b0741

Enter the Gungeon Wiki. (n.d.). Retrieved from
https://enterthegungeon.fandom.com/wiki/Enter the Gungeon Wiki

John HarrisContributorFebruary 02, 2. (n.d.). Analysis: The Eight Rules Of Roguelike
Design. Retrieved from
https://www.gamasutra.com/view/news/123031/Analysis The Eight Rules Of R
oguelike Design.php

King, A. (2021, March 18). The Key Design Elements of Roguelikes. Retrieved from
https://gamedevelopment.tutsplus.com/articles/the-key-design-elements-of-
roguelikes--cms-23510

Kudgel. (2007, October 30). Replay value : How to add to the experience? Retrieved
from https://gamedev.net/forums/topic/470300-replay-value-how-to-add-to-the-
experience/470300/

Like, T. R., & Bycer, J. (2019, November 22). Breaking the RogueLike Wall -
Roguelikes Vs Rogue-lites. Retrieved from https://game-
wisdom.com/critical/roguelikes-vs-rogue-lites

On Mars: An Analysis of Replay Value: On Mars. (n.d.). Retrieved from
https://boardgamegeek.com/thread/2342018/mars-analysis-replay-value

Replayability: Game Mechanics As Periodic Dilemma Generators. (n.d.). Retrieved
from
https://www.gamecareerguide.com/features/1981/replayability game mechanics
as_.php

72

Slash. (2007, July 02). Failure rates of Roguelike Games. Retrieved from
https://blog.roguetemple.com/2007/07/01/failure-rates-of-roguelike-games/

SnapShot. (2020, February 23). About "Replay Value" in Video Games. Retrieved
from https://neogaf.com/threads/about-replay-value-in-video-games. 1527450/

What Gives a Game "Replay" Value? (n.d.). Retrieved from
https://www.stardock.com/blog/505723/what-gives-a-game-replay-value

Roth, Christian & Vermeulen, Ivar & Vorderer, Peter & Klimmt, Christoph. (2012).
Exploring Replay Value: Shifts and Continuities in User Experiences Between
First and Second Exposure to an Interactive Story. Cyberpsychology, behavior and
social networking. 15. 378-81. 10.1089/cyber.2011.0437. Retrieved from
https://www.researchgate.net/publication/229063702 Exploring Replay Value S
hifts and Continuities_in User Experiences Between First and Second Expos
ure to an Interactive Story

73

https://www.researchgate.net/publication/229063702_Exploring_Replay_Value_Shifts_and_Continuities_in_User_Experiences_Between_First_and_Second_Exposure_to_an_Interactive_Story
https://www.researchgate.net/publication/229063702_Exploring_Replay_Value_Shifts_and_Continuities_in_User_Experiences_Between_First_and_Second_Exposure_to_an_Interactive_Story
https://www.researchgate.net/publication/229063702_Exploring_Replay_Value_Shifts_and_Continuities_in_User_Experiences_Between_First_and_Second_Exposure_to_an_Interactive_Story

APPENDIX

Appendix A
Questionnaires
8/30/2021 Analyzing Game Replay Values in Video Games

Analyzing Game Replay Values in Video
Games

Hi ! Thank you for your participation and feedback.

This project focus on developing a game that integrated with game replay values. This game
was developed to keep the player entertained and keep coming back to play the game after
the first completion. The genre is rogue-like which is a sub-genre to role playing game(RPG)
genre. This project is developed to design systems or mechanics to keep player playing the
game without feel bored. Thus, the outcome for this project is to design systems and
mechanics to integrate it with the game to enhance the game replay values.

*Required

1. Gender*

Mark only one oval.

) Male
() Female

2. Age*
Mark only one oval.

()18-20 years old
) 21-24 years old
") 2530 years old

() 30 years old and above

https://docs.google.com/forms/d/1qWKMQIWGpifrJz49aaTSLAIANCIJ5vVVSIJGWELsrnOc/edit

74

18

8/30/2021 Analyzing Game Replay Values in Video Games

3. Do you play a lot of video game? If so how do you rate yourself? *
Mark only one oval.

() cCasual

-

(") Hardcore

(

() Nota gamer

. Rate your experience playing the game Dungeon Revive
Rate Your Experience

4. |find it is easy to learn how to play this game *

Mark only one oval.

Strongly disagree Strongly agree

5. | find the instruction provided in the game is clear *

Mark only one oval.

Strongly disagree ¢)))) () Strongly agree

6. | find the game’s menus are user friendly *

Mark only one oval.

Strongly disagree Strongly agree

https://docs.google.com/forms/d/1qWKMQIWGpifrJz49aaTSLAIANCIJ5vVVSJGWELsrnOc/edit

75

8/30/2021 Analyzing Game Replay Values in Video Games

7. 1find the game is easy to play *

Mark only one oval.

Strongly disagree Strongly agree

8. |find the game is very challenging *

Mark only one oval.

Strongly disagree Strongly agree

9. What did you like about the game? *

Tick all that apply.

‘_-_“ gameplay mechanics
|] level design
| |artstyle
| currency system
level progression
character progression
| sound and music
Other: [~ .

https://docs.google.com/forms/d/1qWKMQIWGpifrJz49aaTSLAIANCIJ5vVVSJGWELsrnOc/edit

76

3/8

8/30/2021 Analyzing Game Replay Values in Video Games

10. How much did you like the character progression system? *

Mark only one oval.

Extremely Low Extremely High

11. How much did you like the level progression system? *

Mark only one oval.

Extremely Low Extremely High

12. How much did you like the shop/currency system? *

Mark only one oval.

Extremely Low [) () Extremely High

13. If you have beaten the last boss, did you feel like wanted to play again? *

14. Tell your experience after second time playing the game? (Does the game feel
different or feel the same) *

https://docs.google.com/forms/d/1qWKMQIWGpifrJz49aaTSLAIANCIJ5vVVSJGWELsrnOc/edit

77

8/30/2021 Analyzing Game Replay Values in Video Games

15. have you play any rogue-like game genre? *

Tick all that apply.

| enter the gungeon

TP

| | dead cells g‘[the binding of isaac
her:]

No

16. What other games did you play? *

https://docs.google.com/forms/d/1qWKMQIWGpifrJz49aaTSLAIANCIJ5vVVSJGWELsrnOc/edit

78

5/8

8/30/2021

17.

18.

Analyzing Game Replay Values in Video Games

What makes you "addicted" to the game? *
Tick all that apply.

D gameplay mechanics
[] level design

[]artstyle

[] currency system

[] level progression

| | character progression
[] story progression

|] sound and music

D competitive gameplay
[| Online play

Other:]

If you encounter a part of a game that is very difficult for you, which best

describes how you behave? *

Tick all that apply:

[I'1'1ook for a different game to play
[11 lower the difficulty of the game

[:J Whether | keep trying depends on how much | have spent on the game (time, money and

effort)

D | keep trying until | feel like I'm not making enough progress
| L ook for walkthroughs or cheats

Other: [T

https://docs.google.com/forms/d/1qWKMQIWGpifrJz49aaTSLAIANCIJ5vVVSJGWELsrnOc/edit

79

6/8

8/30/2021

19.

Analyzing Game Replay Values in Video Games

From 1to 4, how much does each of the following reasons make you feel like

playing a game again? * *

Mark only one oval per row.

1 (Not at
all)

2
(Slightly)

3
(Quite)

To see how the game ends

0

O

To re-experience emotions the game made
you feel

To see something you like again (Could be
anything)

To explore everything you can do in the
game

To explore different ways you can affect
the story's ending or outcome

To challenge yourself

To master the game

01001010100

0|00 10|00

To explore different ways you can achieve
the same outcome (play strategies)

U

\
/.

To complete all the official achievements

=

To satisfy nostalgia

"

To do something creative in the game

(Y ON G

To find bugs and ways to "break" the game (2
To try out different game modes @)
To explore new DLC ()

To play with your friends again

To interact again with new strangers
online

0 100

0 10 |@& 040 |0

https://docs.google.com/forms/d/1qWKMQIWGpifrJz49aaTSLAIANCIJ5vVVSJGWELsrnOc/edit

80

718

Suggestion for improvement:

32 responses

Great Work!

more characters

more levels

The gameplay stil need to be fixed

Make level design more complex , player can teleport back to base at any level
More upgrade variations

everything is perfect

Great, Good, Wonderful

Adding more item for the player can increase the replayability of the game. Having different boss or special
boss also can make the excitement last lonaer for plaver.

Suggestion for improvement:

32 responses

make more things to explore

The controls is ok, but need to be improve

The player control feels clunky

This is gameis for hardcore but not made for casual players

The mechanic can still be better

The player control is weird and the Ul need to be where player can see easily
The Ul need to be fixed

Ul position need to be fixed

make the combat more smooth

81

Suggestion for improvement:
32 responses

more fun

great!

The best

need more levels

Nice

nice

nice work!

More Levels

not enough things to discover

]

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

82

Appendix B: Coding Script
Game controller script

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.Ul;

using UnityEngine.SceneManagement;

public class GameController : MonoBehaviour
{
public GameObject player;
public GameObject playerDieScreen;
public GameObject playerHurtFX;
public GameObject pauseMenuUl, SettingUl,storyUl;

private static float health = 50;

private static int maxHealth = 50;
private static int coin = 100;

private static int enemyKilledCount = 0;
private static float moveSpeed = 2f;
private static float fireRate = 0.5f;
private static float bulletSize = 1f;

int escapedCount = 0;
bool playerescaped =false;

public static bool isHurted = false;

public bool isDead = false;
public bool isPaused = false;
public bool isHealthMaxxed = false;

public static float Health { get => health; set => health = value; }

public static int MaxHealth { get => maxHealth; set => maxHealth = value; }

public static int Coin { get => coin; set => coin = value; }

public static float MoveSpeed { get => moveSpeed; set => moveSpeed = value; }

public static float FireRate { get => fireRate; set => fireRate = value; }

public static int EnemyKilledCount { get => enemyKilledCount; set => enemyKilledCount = value; }
public static float BulletSize { get => bulletSize; set => bulletSize = value; }

public Text healthText;

public Text coinText;

public Text speedText;

public Text enemykillText;

public static bool isPlayerDead=false;
//public GameObject deathPanel;

// Start is called before the first frame update

void Start()

{
pauseMenuUl.SetActive(false);
playerHurtFX.SetActive(false);
playerDieScreen.SetActive(false);

}

// Update is called once per frame

83

void Update()

{

healthText.text = "Health :" + health;

coinText.text = "Coins : " + coin;

speedText.text = "Speed : " + moveSpeed;
enemykillText.text = "Enemies killed :" + enemyKilledCount;

if (isPlayerDead==true)

{
//deathPanel.SetActive(true);
Time.timeScale = 0Of;

}

else

{
//deathPanel.SetActive(false);
Time.timeScale = 1f;

}

if (Health <=0)

{
isDead = true;
PlayerDieScreenSpawn();
player.SetActive(false);

}

if (isPlayerDead == true)
{

if (Input.GetKey(KeyCode.R))

{
SceneManager.LoadScene("Lobby");
//SceneManager.LoadScene(SceneManager.GetActiveScene().buildindex + 1);
isPlayerDead = false;
health = maxHealth;
StartCoroutine(afterspawn());
BossHealthController.playerRespawned(true);
BossHealthController2.playerRespawned(true);
BossHealthController3.playerRespawned(true);
BossHealthController4.playerRespawned(true);

if (Input.GetKey(KeyCode.M))

{
SceneManager.LoadScene("MENU");

}

//if (Input.GetKey(KeyCode.Escape))

/I
// Application.Quit();
/1t

if (isHurted == true)
{
StartCoroutine(playerHurted());

}

if (Input.GetKey(KeyCode.Escape))
{

pauseMenuUl.SetActive(true);

84

isPaused = true;

}
if (isPaused==true)
{
Time.timeScale = 0Of;
}

if (escapedCount==1)

{
enemyController.speedUpgrade(true);
enemyController.hitCountUp(1);
bossController.canSpawnenemy(true);
bossController2.canSpawnenemy(true);
bosscontroller3.canSpawnenemy(true);
bosscontroller4.canSpawnenemy(true);

if (escapedCount == 2)

{
enemyController.speedUpgrade(true);
enemyController.hitCountUp(1);
bossController.canSpawnenemy(true);
bossController2.canSpawnenemy(true);
bosscontroller3.canSpawnenemy(true);
bosscontroller4.canSpawnenemy(true);

/[-------- cheatcode----------
if (Input.GetKeyDown(KeyCode.L))
{
coin += 100;
}
if (Input.GetKeyDown(KeyCode.0Q))
{
enemyKilledCount += 10;
}

if (Input.GetKeyDown(KeyCode.Alphal))
{
SceneManager.LoadScene("levell_bossRoom");
}
if (Input.GetKeyDown(KeyCode.Alpha2))
{
SceneManager.LoadScene("level2_bossRoom");
}
if (Input.GetKeyDown(KeyCode.Alpha3))
{
SceneManager.LoadScene("level3_bossRoom");
}
if (Input.GetKeyDown(KeyCode.Alpha4))
{
SceneManager.LoadScene("lastroom");
}
if (Input.GetKeyDown(KeyCode.Alpha5))
{
Escaped();
}
/!

85

}
public static void DamagePlayer(int damage)
{

health -= damage;

if (Health <= 0)

{
KillPlayer();
isPlayerDead = true;
}
}
public static void KillPlayer()
{
}

IEnumerator afterspawn()

{
yield return new WaitForSeconds(2f);
Time.timeScale = 1f;
isPlayerDead = false;

}

public static void HealPlayer(float healAmount)

{
health = Mathf.Min(maxHealth, health + healAmount);

}

public static void MoveSpeedChange(float speed)
{

moveSpeed += speed;

}

public static void FireRateChange(float rate)

{

fireRate -= rate;

}

public static void BulletSizeChange(float size)

{

bulletSize += size;

}

public static void currencyAdd(int money)

{

coin += money;

}

public static void currencyMinus(int money)

{
coin -= money;
// coinCost.text = "Coins : " + coin;

}

public static void addenemykillCount(int EnemyNum)

{

enemyKilledCount += EnemyNum;

86

}

IEnumerator playerHurted()

{
playerHurtFX.SetActive(true);
yield return new WaitForSeconds(0.5f);
playerHurtFX.SetActive(false);
isHurted = false;

void PlayerDieScreenSpawn()

{
playerDieScreen.SetActive(true);
//Time.timeScale = 0Of;
isPaused = true;

}

public static void plusMaxHealth(int maxHealthPlus)
{

maxHealth += maxHealthPlus;
health += maxHealthPlus;

}

public static void plusmoveSpeed(float MoveSpeed)

{

moveSpeed += MoveSpeed;

}

public void Setting()

{
SettingUl.SetActive(true);

}
public void BACKSetting()

{
SettingUl.SetActive(false);

}

public void offstory()

{
storyUl.SetActive(false);

}

public void Resume()

{
pauseMenuUl.SetActive(false);
isPaused = false;

}
public void LoadMenu()

{
//Time.timeScale = 1f;
pauseMenuUl.SetActive(false);
SceneManager.LoadScene("MENU");

}

public void Escaped()

{
//Time.timeScale = 1f;

pauseMenuUl.SetActive(false);
SceneManager.LoadScene("MENU");
playerescaped = true;

escapedCount += 1;
BossHealthController.playerRespawned(true);
BossHealthController2.playerRespawned(true);
BossHealthController3.playerRespawned(true);
BossHealthController4.playerRespawned(true);

}
public void QuitGame()

{
Application.Quit();

}

88

Player Controller

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.UI;

public class playerController : MonoBehaviour

{

public float speed;

//public float dashSpeed;

Rigidbody2D rb;

public Text collectedText;

public static int collectedAmount = O;
public GameObject firepointer;

public Animator animator;

bool canDash = false;
public int dashCD = 80;

public Camera cam;
Vector2 movement;
Vector2 mousePos;
Vector2 posDif;
Vector2 moveDir;

private static playerController instance;

public static playerController PlayerInstance

{
get
{
if (instance == null)
{
instance = FindObjectOfType<playerController>();
}
return instance;
}
}

// Start is called before the first frame update
void Start()

{
rb = GetComponent<Rigidbody2D>();
}
void Update()
{

speed = GameController.MoveSpeed;

movement.x = Input.GetAxis("Horizontal");

movement.y = Input.GetAxis("Vertical");

moveDir = new Vector2(movement.x, movement.y).normalized;
mousePos = cam.ScreenToWorldPoint(Input.mousePosition);

posDif = mousePos - rb.position;

animator.SetFloat("Mouse Horizontal", posDif.x);
animator.SetFloat("Mouse Vertical", posDif.y);

89

animator.SetFloat("walk Hor", movement.x);
animator.SetFloat("walk Ver", movement.y);
animator.SetFloat("moving", moveDir.magnitude);

//animator.SetBool("isWalk", true);
if (Input.GetKey(KeyCode.Space) && canDash == true)

{

rb.MovePosition(transform.position + (transform.forward * (speed

Time.deltaTime)));

}

rb.AddForce(movement.normalized * 6000);
canDash = false;
dashCD = 80;

void FixedUpdate()

{

}

rb.MovePosition(rb.position + movement * speed * Time.fixedDeltaTime);
Vector2 lookDir = mousePos - rb.position;

float angle = Mathf.Atan2(lookDir.y, lookDir.x) * Mathf.Rad2Deg - 90f;
//rb.rotation = angle;

if (dashCD == 9)

{
canDash = true;
}
else
{
dashCD--;
}

private void OnTriggerEnter2D(Collider2D collision)

{

if (collision.tag == "Enemy")

{
}

GameController.DamagePlayer(10);

90

Shop script

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.Ul;

public class shopPanel : MonoBehaviour

{

public GameObject panel;

public Text coinCost;

private static int coinHealthUp =100;
public int healthUpCounter=0;
public Text coinCostSpeed;

private static int coinSpeedUp = 100;
public int speedUpCounter = 0;
public Text coinCosttravel;

private static int cointravelUp = 100;
public int travelUpCounter = 0;

public Text upgradel, upgrade2, upgrade3;

// Start is called before the first frame update
void Start()

panel.SetActive(false);

}

// Update is called once per frame
void Update()

coinCost.text = "COST :" + coinHealthUp;
coinCostSpeed.text = "COST :" + coinSpeedUp;
coinCosttravel.text = "COST :" + cointravelUp;

}

void OnTriggerEnter2D(Collider2D collision)
{

if (collision.tag=="Player")

{

panel.SetActive(true);

}
}

void OnTriggerExit2D(Collider2D collision)
{

if (collision.tag == "Player")

panel.SetActive(false);

}
}

//health upgrades

public void HealthUpgrade()
{

if (healthUpCounter==0)

if (GameController.Coin >= 100)
{

91

SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
GameController.plusMaxHealth(10);
coinHealthUp += 100;
healthUpCounter += 1;

else if (GameController.Coin == 0)

{

Debug.Log("no money");
GameController.plusMaxHealth(0);

}
}
if (healthUpCounter == 1)

if (GameController.Coin >= 200)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
GameController.plusMaxHealth(10);
coinHealthUp += 100;
healthUpCounter += 1;

else if (GameController.Coin == 0)

{
Debug.Log("no money");
GameController.plusMaxHealth(0);

}
}
if (healthUpCounter == 2)

if (GameController.Coin >= 300)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
GameController.plusMaxHealth(10);
coinHealthUp += 100;
healthUpCounter += 1;

else if (GameController.Coin == 0)

{
Debug.Log("no money");
GameController.plusMaxHealth(0);

}
}
if (healthUpCounter == 3)

if (GameController.Coin >= 400)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
GameController.plusMaxHealth(10);
coinHealthUp += 100;
healthUpCounter += 1;

else if (GameController.Coin == 0)

{
Debug.Log("no money");

GameController.plusMaxHealth(0);
b
}
if (healthUpCounter == 4)
{
if (GameController.Coin >= 500)

SoundScript.Playsound("upgrade");

92

GameController.currencyMinus(100);
GameController.plusMaxHealth(10);
coinHealthUp += 100;
healthUpCounter += 1;

}

else if (GameController.Coin == 0)

{
Debug.Log("no money");
GameController.plusMaxHealth(0);

}

}

if (healthUpCounter == 5)

{
upgradel.text="MAX";
Debug.Log("Health upgrade is max");
SoundScript.Playsound("nomoney");

}

}

//SPEED UPGRADES

public void speedUpgrade()

{
if (speedUpCounter == 0)

if (GameController.Coin >= 100)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
GameController.plusmoveSpeed(1);
coinSpeedUp += 100;
speedUpCounter += 1;

else if (GameController.Coin == 0)

Debug.Log("no money");
GameController.plusmoveSpeed(0);

H
!
if (speedUpCounter == 1)

if (GameController.Coin >=200)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
GameController.plusmoveSpeed(1);
coinSpeedUp += 100;
speedUpCounter += 1;

else if (GameController.Coin == 0)

Debug.Log("no money");
GameController.plusmoveSpeed(0);

}
i
if (speedUpCounter == 2)

if (GameController.Coin >= 300)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
GameController.plusmoveSpeed(1);
coinSpeedUp += 100;
speedUpCounter += 1;

else if (GameController.Coin == 0)

{

93

Debug.Log("no money");
GameController.plusmoveSpeed(0);

H
}
if (speedUpCounter == 3)

if (GameController.Coin >= 400)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
GameController.plusmoveSpeed(1);
coinSpeedUp += 100;
speedUpCounter += 1;

else if (GameController.Coin == 0)

Debug.Log("no money");
GameController.plusmoveSpeed(0);

}
}
if (speedUpCounter == 4)

if (GameController.Coin >= 500)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
GameController.plusmoveSpeed(1);
coinSpeedUp += 100;
speedUpCounter += 1;

else if (GameController.Coin == 0)

Debug.Log("no money");
GameController.plusmoveSpeed(0);

}

}

if (speedUpCounter == 5)

{
upgrade2.text="MAX";
Debug.Log("Speed upgrade is max");
SoundScript.Playsound("nomoney");

}

}

/ Bullet upgrades Bullet

Bullet upgrades ====

public void BulletTravelUp()
if (travelUpCounter == 0)
if (GameController.Coin >= 100)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
bulletController.lifetimechange(0.1f);
cointravelUp += 100;
travelUpCounter += 1;

else if (GameController.Coin == 0)

{
Debug.Log("no money");

bulletController.lifetimechange(0);

}

!
if (travelUpCounter == 1)
{

94

upgrades

if (GameController.Coin >= 200)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
bulletController.lifetimechange(0.11);
cointravelUp += 100;
travelUpCounter += 1;

else if (GameController.Coin == 0)

{
Debug.Log("no money");
bulletController.lifetimechange(0);

H
if (travelUpCounter == 2)

if (GameController.Coin >= 300)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
bulletController.lifetimechange(0.11);
cointravelUp += 100;
travelUpCounter += 1;

else if (GameController.Coin == 0)

{
Debug.Log("no money");
bulletController.lifetimechange(0);

}
if (travelUpCounter == 3)

if (GameController.Coin >= 400)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
bulletController.lifetimechange(0.11);
cointravelUp += 100;
travelUpCounter += 1;

else if (GameController.Coin == 0)

{
Debug.Log("no money");
bulletController.lifetimechange(0);

}
if (travelUpCounter == 4)

if (GameController.Coin >= 500)

{
SoundScript.Playsound("upgrade");
GameController.currencyMinus(100);
bulletController.lifetimechange(0.11);
cointravelUp += 100;
travelUpCounter += 1;

else if (GameController.Coin == 0)

{
Debug.Log("no money");
bulletController.lifetimechange(0);

}

if (travelUpCounter == 5)

{
upgrade3.text =" MAX ";
Debug.Log("travel time upgrade is max");
SoundScript.Playsound("nomoney");

}

public void UnlimitedMagic()

{

if (GameController.Coin >= 1000)

{

SoundScript.Playsound("upgrade");
GameController.currencyMinus(1000);
playershooting.setUnlimited(true);

}
3

Achievement panel script

using System.Collections;
using System.Collections.Generic;

using Un
using Un

ityEngine;
ityEngine.UI;

public class achievementPanel : MonoBehaviour

{
publ

publ
publ
publ
publ
publ

bool
bool
bool
bool
bool

void

{

void

ic GameObject

ic GameObject
ic GameObject
ic GameObject
ic GameObject
ic GameObject

bldisable =
b2disable =
b3disable =
b4disable =
b5disable =
Start()

AchievementPa

notcompletel.
completel.Set

notcomplete2.

AchievementPanelMenu;

completel, notcompletel;
complete2, notcomplete2;
complete3, notcomplete3;
complete4, notcomplete4;
complete5, notcomplete5;

false;
false;
false;
false;
false;

nelMenu.SetActive(false);

SetActive(true);
Active(false);

SetActive(true);

complete2.SetActive(false);

notcomplete3.SetActive(true);
complete3.SetActive(false);

notcomplete4.SetActive(true);
completed.SetActive(false);

notcomplete5.

SetActive(true);

complete5.SetActive(false);

Update()

96

void OnTriggerEnter2D(Collider2D collision)

if (collision.tag == "Player")
{

}

AchievementPanelMenu.SetActive(true);

}

void OnTriggerExit2D(Collider2D collision)

if (collision.tag == "Player")
{
AchievementPanelMenu.SetActive(false);
}
}
public void achievelComplete()
{
if (GameController.EnemyKilledCount >= 20 && bldisable==false)
{
GameController.currencyAdd(200);
notcompletel.SetActive(false);
completel.SetActive(true);
bldisable = true;
1}
public void achieve2Complete()
{
if (GameController.EnemyKilledCount >= 4@ && b2disable == false)
{
GameController.currencyAdd(3609);
notcomplete2.SetActive(false);
complete2.SetActive(true);
b2disable = true;
1}
public void achieve3Complete()
{
if (GameController.EnemyKilledCount >= 6@ && b3disable == false)
{
GameController.currencyAdd(400);
notcomplete3.SetActive(false);
complete3.SetActive(true);
b3disable = true;
1}
public void achieve4Complete()
{
if (GameController.EnemyKilledCount >= 80 && b4disable == false)
{
GameController.currencyAdd(500);
notcomplete4.SetActive(false);
complete4.SetActive(true);
b4disable = true;
}
}

public void achieveS5Complete()

{
if (GameController.EnemyKilledCount >= 100 && b5disable == false)

{
GameController.currencyAdd(600);

notcomplete5.SetActive(false);

97

complete5.SetActive(true);
b5disable = true;

Boss controller script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class bossController : MonoBehaviour

{

public bool bossEnemy;

public GameObject bosshealthBar, entergate,mobspawner;

public Transform firePoint, firePoint2, firePoint3, firePoint4;
public Transform firePoint5, firePoint6, firePoint7, firePoint8;
public GameObject bulletPrefab;

public GameObject HealPrefab;
public GameObject coinUIprefab;
public GameObject slimeexplodeprefab;

public float bulletForce = 15f;
public float cd=2f;

private bool cdAttack = false;
public float cd2 = 1f;

private bool cdAttack2 = false;
int rewardCounter = 0;

private static bool isattacked = false;
private static bool islLow = false;
private static bool isBossdead = false;

public static bool ISattacked { get => isattacked; set => isattacked = value; }

public static bool ISLow { get => islLow ; set => isLow = value; }

public static bool ISBossdead { get => isBossdead; set => isBossdead

private static bool canSpawnMob = false;

public static bool CanSpawnMob { get => canSpawnMob; set => canSpawnMob =
value; }

value; }

void Start()

//bosshealthBar.SetActive(false);
mobspawner.SetActive(false);

private void OnTriggerEnter2D(Collider2D col)

{
if (col.tag == "playerBullet")
{
BossHealthController.BossDamaged(5);
//bosshealthBar.SetActive(true);
}
}

98

void Update()

{
if (bossEnemy == true)
{
enemybulletController.lifetimechange(3f);
}
if (ISattacked==true)
{
Attack();
entergate.SetActive(false);
}
if (ISLow==true)
{
Attack2();
if (canSpawnMob==true)
{
mobspawner.SetActive(true);
}
}
if (isBossdead==true)
{
rewardCounter += 1;
}
else
{
rewardCounter =0;
}
if (rewardCounter==1)
{
//int coindrop = Random.Range(1l, 100);
//GameController.currencyAdd(coindrop);
//GameObject coinprefab = Instantiate(coinUIprefab, transform.position,
Quaternion.identity) as GameObject;
//GameObject slimeexplode = Instantiate(slimeexplodeprefab,

transform.position, Quaternion.identity) as GameObject;
//coinUIplus.addcoinvalue(coindrop);
//Destroy(slimeexplode, 0.2f);
//Destroy(coinprefab, 1f);
//GameObject heal = Instantiate(HealPrefab, transform.position,
Quaternion.identity) as GameObject;

}

public static void IsbossAttacked(bool attacked)

{ ISattacked = attacked;

}

public static void IsHealthLow(bool healthcondition)
¢ ISLow = healthcondition;

}

public static void IsbossDead(bool bossDead)

99

{
}

isBossdead = bossDead;

public void Attack()

{

if (!cdAttack)

SoundScript.Playsound("enemyfire");
GameObject bullet = Instantiate(bulletPrefab, firePoint.position,

firePoint.rotation);

Rigidbody2D rb = bullet.GetComponent<Rigidbody2D>();
bullet.GetComponent<enemybulletController>().isEnemyBullet = true;
rb.AddForce(firePoint.up * bulletForce, ForceMode2D.Impulse);
Destroy(bullet, 2f);

GameObject bullet2 = 1Instantiate(bulletPrefab, firePoint2.position,

firePoint2.rotation);

Rigidbody2D rb2 = bullet2.GetComponent<Rigidbody2D>();
bullet2.GetComponent<enemybulletController>().isEnemyBullet = true;
rb2.AddForce(firePoint2.up * bulletForce, ForceMode2D.Impulse);
Destroy(bullet2, 2f);

GameObject bullet3 = 1Instantiate(bulletPrefab, firePoint3.position,

firePoint3.rotation);

Rigidbody2D rb3 = bullet3.GetComponent<Rigidbody2D>();
bullet3.GetComponent<enemybulletController>().isEnemyBullet = true;
rb3.AddForce(firePoint3.up * bulletForce, ForceMode2D.Impulse);
Destroy(bullet3, 2f);

GameObject bullet4 = Instantiate(bulletPrefab, firePoint4.position,

firePoint4.rotation);

}

Rigidbody2D rb4 = bullet4.GetComponent<Rigidbody2D>();
bullet4.GetComponent<enemybulletController>().isEnemyBullet = true;
rb4.AddForce(firePoint4.up * bulletForce, ForceMode2D.Impulse);
Destroy(bullet4, 2f);

StartCoroutine(Cooldown());

public void Attack2()

{

if (!cdAttack2)

GameObject bullet5 = Instantiate(bulletPrefab, firePoint5.position,

firePoint5.rotation);

Rigidbody2D rb5 = bullet5.GetComponent<Rigidbody2D>();
bullet5.GetComponent<enemybulletController>().isEnemyBullet = true;
rb5.AddForce(firePoint5.up * bulletForce, ForceMode2D.Impulse);
Destroy(bullet5, 2f);

GameObject bulleté = 1Instantiate(bulletPrefab, firePoint6.position,

firePoint6.rotation);

Rigidbody2D rbé = bullet6.GetComponent<Rigidbody2D>();
bullet6.GetComponent<enemybulletController>().isEnemyBullet = true;
rb6.AddForce(firePoint6.up * bulletForce, ForceMode2D.Impulse);
Destroy(bullet6, 2f);

GameObject bullet7? = 1Instantiate(bulletPrefab, firePoint7.position,

firePoint7.rotation);

Rigidbody2D rb7 = bullet7.GetComponent<Rigidbody2D>();
bullet7.GetComponent<enemybulletController>().isEnemyBullet = true;
rb7.AddForce(firePoint7.up * bulletForce, ForceMode2D.Impulse);
Destroy(bullet7, 2f);

100

GameObject bullet8 = 1Instantiate(bulletPrefab, firePoint8.position,
firePoint8.rotation);

Rigidbody2D rb8 = bullet8.GetComponent<Rigidbody2D>();

bullet8.GetComponent<enemybulletController>().isEnemyBullet = true;

rb8.AddForce(firePoint8.up * bulletForce, ForceMode2D.Impulse);

Destroy(bullet8, 2f);

StartCoroutine(Cooldown2());

private IEnumerator Cooldown()

{
cdAttack = true;
yield return new WaitForSeconds(cd);
cdAttack = false;
}
private IEnumerator Cooldown2()
{
cdAttack2 = true;
yield return new WaitForSeconds(cd2);
cdAttack2 = false;
}
private IEnumerator reward()
{
yield return new WaitForSeconds(1f);
}

public static void canSpawnenemy(bool value)

{
}

CanSpawnMob = value;

101

Boss health controller

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.UI;

public class BossHealthController : MonoBehaviour

{
public GameObject stair;
public GameObject boss;

int spawnCounter = 0;

public GameObject bosshealthBar;
private float fillValue;

static bool isTriggered = false;

bool startAttack=false;
bool isDead = false;

private static float enemyBossHealth = 500;
private static int enemyBossMaxHealth = 500;
private static bool isPlayerRespawned = false;

public static float EnemyBossHealth { get => enemyBossHealth; set
enemyBossHealth = value; }

public static int EnemyBossMaxHealth { get => enemyBossMaxHealth; set
enemyBossMaxHealth = value; }

public static bool TISPlayerRespawned { get => 1isPlayerRespawned; set
isPlayerRespawned = value; }

void Start()
{

}

stair.SetActive(false);

void Update()
{

fillValue = enemyBossHealth;
fillValue = fillValue / enemyBossMaxHealth;
bosshealthBar.GetComponent<Image>().fillAmount = fillValue;

if (Input.GetKeyDown(KeyCode.P))

{
enemyBossHealth -= 50;
}
if (Input.GetKeyDown(KeyCode.K))
{
stair.SetActive(true);
}

if (enemyBossHealth <= 0)

{
isDead = true;
boss.SetActive(false);
bossController.IsbossDead(true);
//stair.SetActive(true);

102

}

if (enemyBossHealth >=0)

{
isDead = false;
}
//if (isDead==true)
/74
// stair.SetActive(true);
//}
//else
/74
// stair.SetActive(false);
/1%
if (ISPlayerRespawned == true)
{
isDead = false;
spawnCounter += 1;
}

if (spawnCounter==1)

{

// stair.SetActive(false);
boss.SetActive(true);
isTriggered = false;
bossController.IsbossDead(false);
notlowHealth();
spawnCounter =0;

}
if (enemyBossHealth<=250)
{ lowHealth();
}
if (enemyBossHealth < 500)
{

isTriggered = true;

if (isTriggered==true)

startAttack = true;
bossController.IsbossAttacked(true);

}
else
{
startAttack = false;
bossController.IsbossAttacked(false);
}

}

public static void BossDamaged(float damage)

103

enemyBossHealth -= damage;

public void lowHealth()

{

bossController.IsHealthLow(true);
}
public void notlowHealth()
{

bossController.IsHealthLow(false);
}

public static void playerRespawned(bool Playerrespawned)
{

ISPlayerRespawned = Playerrespawned;

EnemyBossHealth = EnemyBossMaxHealth;

}
IEnumerator spawned()
{
yield return new WaitForSeconds(1f);
}

104

Coin drop script

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

public class coinUIplus : MonoBehaviour

{
public Text coinplus;
private static int coindrop;
public static int Coindrop { get => coindrop; set => coindrop = value; }
// Start is called before the first frame update
void Start()
{
}
// Update is called once per frame
void Update()
coinplus.text = "+" + Coindrop;
}
public static void addcoinvalue(int coinvalue)
{
Coindrop = coinvalue;
}
}

Bullet controller

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class bulletController : MonoBehaviour

{
private static float lifetime = 0.2f;
public GameObject hitfx,pufffx;
public bool isEnemyBullet = false;

public static float Bulletlifetime { get => lifetime; set => lifetime = value; }

void Start()
{
StartCoroutine(DeathDelay());
if (!isEnemyBullet)
{
transform.localScale = new Vector2(GameController.BulletSize,
GameController.BulletSize);

}
¥

IEnumerator DeathDelay()
{
yield return new WaitForSeconds(lifetime);
Destroy(gameObject);
GameObject poofx = Instantiate(pufffx, transform.position,
Quaternion.identity);

105

Destroy(poofx, 0.5f);
}

public void OnCollisionEnter2D(Collision2D collision)
{
GameObject explodefx = Instantiate(hitfx,
Quaternion.identity);
Destroy(explodefx, 0.1f);
// Destroy(gameObject);

transform.position,

}
void OnTriggerEnter2D(Collider2D col)
{
if (col.tag == "Enemy" && !isEnemyBullet)
{
col.gameObject.GetComponent<enemyController>().Death();
Destroy(gameObject);
GameObject explodefx = Instantiate(hitfx,

Quaternion.identity);
Destroy(explodefx, 0.1f);
//enemyController.DamageEnemy(5);

}

if (col.tag == "Player" && isEnemyBullet)

{
GameController.DamagePlayer(10);
Destroy(gameObject);

}

//if (col.tag == "BossEnemyl" && !isEnemyBullet)

/74

transform.position,

// col.gameObject.GetComponent<bossController>().bossDeath();

// Destroy(gameObject);

// GameObject explodefx = Instantiate(hitfx,

Quaternion.identity);
// Destroy(explodefx, 0.1f);
// //enemyController.DamageEnemy(5);
/1%

public static void lifetimechange(float Lifetime)

{
}

lifetime += Lifetime;

106

transform.position,

Enemy controller script

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.UI;

public enum EnemyState

{
Idle,
Wander,
Follow,
Die,
Attack
s
public enum EnemyType
{
Melee,
Ranged
s

public class enemyController : MonoBehaviour
{
GameObject player;
public EnemyState currState = EnemyState.Idle;
public EnemyType enemyType;
public float range;
public float speed;

public float attackRange;
public float cd;

private bool chooseDir = false;
private bool dead = false;
private bool cdAttack = false;
public bool notInRoom = false;
public bool diamondEnemy = false;
public bool skullEnemy = false;
private Vector3 randomDir;
public GameObject bulletPrefab;
public GameObject HealPrefab;
public Transform firePoint;

public GameObject coinUIprefab;
public GameObject slimeexplodeprefab;
public Animator enemyanim;

private int hitCounter = 0;

private static int hittoDead = 6;

public static int HittoDead { get => hittoDead; set => hittoDead = value; }

private static bool speedupdate = false;
public static bool speedUPDATE { get => speedupdate; set
value; }

void Start()

{
player = GameObject.FindGameObjectWithTag("Player");

//coinplusUI.SetActive(false);

107

speedupdate

}
void Update()

switch (currState)

{
//case (EnemyState.Idle):
// Idle();
// break;
case (EnemyState.Wander):
Wander();
break;
case (EnemyState.Follow):
Follow();
break;
case (EnemyState.Die):
break;
case (EnemyState.Attack):
Attack();
break;
}
if (!notInRoom)
{
if (isPlayerInRange(range) && currState != EnemyState.Die)
{
currState = EnemyState.Follow;
b
else if (!isPlayerInRange(range) && currState != EnemyState.Die)
{
currState = EnemyState.Idle;
}

if (Vector3.Distance(transform.position, player.transform.position) <=
attackRange)

L
currState = EnemyState.Attack;
¥
}
else
{
currState = EnemyState.Idle;
}

if (diamondEnemy==true)

{

enemybulletController.lifetimechange(2f);
}
if (skullEnemy == true)
{

enemybulletController.lifetimechange(3f);
}

if (speedUPDATE == true)
{

//speed += 0.1f;

108

private bool isPlayerInRange(float range)

{
return Vector3.Distance(transform.position, player.transform.position) <=
range;
}
private IEnumerator ChooseDirection()
{

chooseDir = true;

yield return new WaitForSeconds(Random.Range(2f, 8f));

randomDir = new Vector3(@, @, Random.Range(-1, 1));

Quaternion nextRotation = Quaternion.Euler(randomDir);

transform.rotation = Quaternion.Lerp(transform.rotation, nextRotation,
Random.Range(0.5f, 2.5f));

chooseDir = false;

}

void Wander()

if (!chooseDir)

{
¥

transform.position += transform.right * speed * Time.deltaTime;
if (isPlayerInRange(range))

StartCoroutine(ChooseDirection());

{
currState = EnemyState.Follow;
}
void Follow()
{
transform.position = Vector2.MoveTowards(transform.position,

player.transform.position, speed * Time.deltaTime);

public void Death()
{
hitCounter = hitCounter + 1;
if (hitCounter >= hittoDead)
{
dead = true;
Destroy(gameObject);
int coindrop = Random.Range(l, 50);
GameController.currencyAdd(coindrop);
GameObject coinprefab = Instantiate(coinUIprefab, transform.position,
Quaternion.identity) as GameObject;
GameObject slimeexplode = Instantiate(slimeexplodeprefab,
transform.position, Quaternion.identity) as GameObject;
coinUIplus.addcoinvalue(coindrop);
Destroy(slimeexplode, 0.2f);
Destroy(coinprefab, 1f);

GameController.addenemykillCount(1);
int index = Random.Range(1l, 5);
if (index==3)

{
GameObject heal = Instantiate(HealPrefab, transform.position,
Quaternion.identity) as GameObject;
¥
}

}
public void Attack()
{

if (!cdAttack)
{

109

switch (enemyType)
{
case (EnemyType.Melee):
GameController.DamagePlayer(10);
StartCoroutine(Cooldown());
break;
case (EnemyType.Ranged):
SoundScript.Playsound("enemyfire");
GameObject bullet = Instantiate(bulletPrefab,
firePoint.position, Quaternion.identity) as GameObject;

bullet.GetComponent<enemybulletController>().GetPlayer(player.transform);
bullet.GetComponent<Rigidbody2D>().gravityScale = of;
bullet.GetComponent<enemybulletController>().isEnemyBullet =
true;
//bullet.GetComponent<bulletController>().speed =
your_desired_speedf;
StartCoroutine(Cooldown());

break;
}

}
}
private IEnumerator Cooldown()
{

cdAttack = true;

yield return new WaitForSeconds(cd);

cdAttack = false;
}
private void OnTriggerEnter2D(Collider2D collision)
{

if (collision.tag == "wall")

{

currState = EnemyState.Wander;

}
}
public static void speedUpgrade(bool value)
{

//speed +=1;

speedUPDATE = value;
}
public static void hitCountUp(int value)
{

//speed += 1;

hittoDead += value;
}

110

Player shooting script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class playershooting : MonoBehaviour
{

public Transform firePoint;

public GameObject bulletPrefab;

public GameObject shield;

bool alreadySpawned = false;

public float bulletForce = 20f;

public int shootCount = 0;

public int shootCD = 50;

bool canShoot = false;

public GameObject Reloading;

public bool unlimitedshoot = false;

private static bool unlimited = false;
public static bool UnlimitedShot { get => unlimited; set => unlimited = value; }

void Start()

{
Reloading.SetActive(false);

shield.SetActive(false);

}
// Update is called once per frame
void Update()

if (Input.GetButtonDown("Firel") && canShoot == true)

{
Shoot();
shootCount = shootCount + 1;
if (shootCount == 5)
{
canShoot = false;
shootCD = 50;
StartCoroutine(shootCountReset());
}
}
if (UnlimitedShot==true)
{
unlimitedshoot = true;
}

if (unlimitedshoot==true)

{
if (Input.GetButton("Firel"))

{

111

Shoot();

if (Input.GetKey(KeyCode.E))
{

}

if (Input.GetKey(KeyCode.Q))

StartCoroutine(shootCountReset());

if (alreadySpawned==false)

{
spawnShield();
}
}
}
void FixedUpdate()
{
if (shootCD == 0)
{
canShoot = true;
}
else
{
shootCD--;
}
}
IEnumerator shootCountReset()
{
Reloading.SetActive(true);
yield return new WaitForSeconds(2f);
shootCount = 0;
Reloading.SetActive(false);
}
void Shoot()
{

SoundScript.Playsound("fire");

GameObject bullet = Instantiate(bulletPrefab, firePoint.position,
firePoint.rotation);

Rigidbody2D rb = bullet.GetComponent<Rigidbody2D>();

rb.AddForce(firePoint.up * bulletForce, ForceMode2D.Impulse);

Destroy(bullet, 2f);

public void spawnShield()
{

}

StartCoroutine(shieldspawned());

IEnumerator shieldspawned()

{

112

//GameObject shield = Instantiate(shieldPrefab,
firePoint.rotation);

shield.SetActive(true);

alreadySpawned = true;

yield return new WaitForSeconds(3f);

//Destroy(shield);

shield.SetActive(false);

alreadySpawned = false;

¥
public static void setUnlimited(bool value)
{
UnlimitedShot = value;
}

Lava damage script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class lavaDamager : MonoBehaviour

{
bool playerEntered;

bool steppedIN;

// Update is called once per frame
void Update()
{

private void OnTriggerEnter2D(Collider2D collision)
{

if (collision.tag=="Player")

{
playerEntered = true;
Debug.Log("player step on lava");
steppedIN = true;
InvokeRepeating("dmgOvertime", of, 2f);
}

}

private void OnTriggerExit2D(Collider2D collision)
{
if (collision.tag == "Player")
{
playerEntered = false;
Debug.Log("player step out ");
steppedIN = false;

113

firePoint.position,

void dmgOvertime()

{
if (steppedIN==true)
GameController.DamagePlayer(1);
GameController.isHurted = true;
}
else
{
CancelInvoke();
}
}
}
Heal player script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Heal : MonoBehaviour

{
public GameObject healpoint;

void OnTriggerEnter2D(Collider2D col)

{
if (col.tag=="Player")

{
GameController.HealPlayer(10);

Destroy(healpoint);

114

Player shooting script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class playershooting : MonoBehaviour
{

public Transform firePoint;

public GameObject bulletPrefab;

public GameObject shield;

bool alreadySpawned = false;

public float bulletForce = 20f;

public int shootCount = 0;

public int shootCD = 50;

bool canShoot = false;

public GameObject Reloading;

public bool unlimitedshoot = false;

private static bool unlimited = false;
public static bool UnlimitedShot { get => unlimited; set => unlimited = value; }

void Start()

{
Reloading.SetActive(false);

shield.SetActive(false);

}

// Update is called once per frame
void Update()

if (Input.GetButtonDown("Firel") && canShoot == true)

{
Shoot();
shootCount = shootCount + 1;
if (shootCount == 5)
{
canShoot = false;
shootCD = 50;
StartCoroutine(shootCountReset());
}
}
if (UnlimitedShot==true)
{
unlimitedshoot = true;
}

if (unlimitedshoot==true)

{
if (Input.GetButton("Firel"))

115

Shoot();

if (Input.GetKey(KeyCode.E))
{

}

if (Input.GetKey(KeyCode.Q))

StartCoroutine(shootCountReset());

if (alreadySpawned==false)

{
spawnShield();
¥
}
}
void FixedUpdate()
{
if (shootCD == 0)
{
canShoot = true;
}
else
{
shootCD--;
}
}
IEnumerator shootCountReset()
{
Reloading.SetActive(true);
yield return new WaitForSeconds(2f);
shootCount = 0;
Reloading.SetActive(false);
}
void Shoot()
{

SoundScript.Playsound("fire");

GameObject bullet = Instantiate(bulletPrefab, firePoint.position,
firePoint.rotation);

Rigidbody2D rb = bullet.GetComponent<Rigidbody2D>();

rb.AddForce(firePoint.up * bulletForce, ForceMode2D.Impulse);

Destroy(bullet, 2f);

public void spawnShield()
{

}

StartCoroutine(shieldspawned());

IEnumerator shieldspawned()

{

116

//GameObject shield = Instantiate(shieldPrefab,
firePoint.rotation);

shield.SetActive(true);

alreadySpawned = true;

yield return new WaitForSeconds(3f);

//Destroy(shield);

shield.SetActive(false);

alreadySpawned = false;

¥
public static void setUnlimited(bool value)
{
UnlimitedShot = value;
}

Next level collider script

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.SceneManagement;

public class NextRoom : MonoBehaviour
{
public GameObject entertxt,escapetxt;
public int roomCount=0;
bool gateCollide = false;
public bool escapeStair;
public bool 1v11,1v12,1v13;
bool enteredr2, enteredr3 , enteredr4;

public List<int> availableScenes;
public List<int> playedScenes;

// Start 'is called before the first frame update
void Start()

{
entertxt.SetActive(false);

escapetxt.SetActive(false);

}

// Update is called once per frame
void Update()

if (gateCollide==true)

¢ if (escapeStair == true)
{
if (Input.GetKey(KeyCode.E))
¢ entertxt.SetActive(false);
escapetxt.SetActive(true);
}

117

firePoint.position,

if (escapeStair == false)

{
if (Input.GetKey(KeyCode.E))
{
entertxt.SetActive(false);
SceneManager.LoadScene(SceneManager.GetActiveScene().buildIndex
+1);
}

void OnTriggerEnter2D(Collider2D collision)

{
entertxt.SetActive(true);
gateCollide = true;
}
void OnTriggerExit2D(Collider2D collision)
{
entertxt.SetActive(false);
gateCollide = false;
}

118

APPENDIX C: Functionality test data

Functionality test

Dungeon Revive developer: MUHAMMAD AMZAR RAIF BIN AMIR RASID

Date: 26/8/2021

Expected Output Output
No. 1D Input (Question) (Answer) (OK/Error/
Failed)
1
Menu.play button Is the button functioning? Move to next scene OK
2
Menu.about button | Is the button functioning? Text about the game OK
3
Menu.quit button Is the button functioning? Application quit OK
4
Player controls Can player move or shoot? Player can move, shoot, | OK
reload dash and shield
5
Escape button Can player pause the game? | Pause Ul appear OK
6
Interact.panels Is a panel appear on the | A panel showing controls, | OK
collider screen? shop and achievement
7
Shop.upgrade Can player upgrade a skill? Skill upgraded and coin is | OK
button reduced
8
Interact.door Player can interact with the | Player press button and | OK
door? move to next scene
9
Shoot enemy Can player kill enemy? Player shoot enemy | OK
multiple time until the
enemy dead
10
HealthUl.take Health bar reduced? Player health is reduced OK

damage

119

Functionality test

Tester developer: NUR RIEZMAN NAIM BIN ZAMRI

Date: 27/8/2021

Expected Output Output
No. ID Input (Question) (Answer) (OK/Error/
Failed)
1
Menu.play button Is the button functioning? Move to next scene OK
2
Menu.about button | Is the button functioning? Text about the game OK
3
Menu.quit button Is the button functioning? Application quit OK
4
Player controls Can player move or shoot? Player can move, shoot, | OK
reload dash and shield
5
Escape button Can player pause the game? | Pause Ul appear OK
6
Interact.panels Is a panel appear on the | A panel showing controls, | OK
collider screen? shop and achievement
7
Shop.upgrade Can player upgrade a skill? Skill upgraded and coin is | OK
button reduced
8
Interact.door Player can interact with the | Player press button and | OK
door? move to next scene
9
Shoot enemy Can player kill enemy? Player shoot enemy | OK
multiple time until the
enemy dead
10
HealthUl.take Health bar reduced? Player health is reduced OK
damage

120

	Table 6.2 Count of games played
	1.1.Project Background
	1.2.Problem Statements
	1.3.Objective
	1.4.Goals and Genre
	1.5.Game Features
	1.6.Conclusion
	2.1.Introduction
	2.2.Genre
	2.3.Existing Games
	1)Hades
	2)Enter The Gungeon

	2.4.Comparison of Existing Games
	2.5.Project Methodology
	2.6.Conclusion
	3.1.Requirement Analysis
	3.1.1.Project Requirement
	3.1.2.Technical Requirement
	3.1.3.Software Requirement
	3.1.4.Hardware Requirement

	3.2.Project Schedule And Milestone
	3.3.Conclusion
	4.1.Introduction
	4.2.Game Architecture
	4.3.Game Design
	4.3.1.Gameplay
	4.3.2.Core mechanics
	4.3.3.Flowboard
	4.3.4.Level progression
	Condition
	Result
	Condition
	Result

	4.3.5.Storyline

	4.4.Game Art
	4.5.Conclusion
	5.1.Introduction
	5.2.Creation of Game Art
	5.2.1.Production of Graphics
	5.2.2.Production of Audio
	5.2.3.Production of Video
	5.2.4.Production of Animation

	5.3.Integration of Game Components
	5.4.Game Configuration Management
	5.4.1.Configuration Setup
	5.4.2.Version Control Procedure

	5.5.Implementation Status
	5.6.Conclusion
	6.1.Introduction
	6.2.Test Plan
	6.3.Test Implementation
	6.4.Test Result and Analysis
	Figure 6.1 Gender data pie chart
	Figure 6.1 shows that out of 45 respondents there
	Figure 6.2 Age data pie chart
	Figure 6.2 shows that out of 45 respondents there
	Figure 6.3 Gamer data pie chart
	Figure 6.3 shows that out of 45 respondents there
	Figure 6.4 easy learn to play data
	Figure 6.4 shows that out of 45 respondents how mu
	Figure 6.5 Instruction clear data
	Figure 6.5 shows that out of 45 respondents how mu
	Figure 6.6 Game menus user friendly data
	Figure 6.6 shows that out of 45 respondents how mu
	Figure 6.7 Easy to play data
	Figure 6.7 shows that out of 45 respondents how mu
	Figure 6.8 Challenging data
	Figure 6.8 shows that out of 45 respondents how mu
	Figure 6.9 What liked about the game data
	Data analysis from figure 6.13
	Figure 6.9 shows that out of 45 respondents what d
	Figure 6.10 Character progression data
	Figure 6.10 shows that out of 45 respondents how m
	Figure 6.11 level progression data
	Figure 6.11 shows that out of 45 respondents how m
	Figure 6.12 Shop/currency system data
	Figure 6.12 shows that out of 45 respondents how m
	Figure 6.13 Play again data
	Data analysis from figure 6.13
	Figure 6.13 shows that out of 45 respondents if th
	Figure 6.14 Experience second time data
	Data analysis from figure 6.14
	Figure 6.14 shows what 45 respondents the experie
	Figure 6.15 rogue-like game data
	Data analysis from figure 6.15
	Figure 6.15 shows that out of 45 respondents if th
	Figure 6.16 other game data
	Genre
	Number of respondents
	Shooter Game
	14
	Indie games
	12
	Multiplayer games
	7
	MOBA games
	(multiplayer online battle arena)
	6
	RPG games
	4
	Sport games
	2
	Table 6.2 Count of other games played by responden
	Figure 6.16 shows that out of 45 respondents what
	Figure 6.17 reason data
	Figure 6.17 shows what makes the respondents keep
	Figure 6.18 player behaviour data
	Data analysis from figure 6.18
	Figure 6.18 shows how respondents behave when the
	Figure 6.19 Reasons data
	Figure 6.20 Reasons data 2
	Data analysis 1 until 5 from reason data
	Data analysis 6-10 from reason data
	Data analysis 11-16 from reason data
	Figure 6.19 and Figure 6.20 shows the reasons that
	6.5.Conclusion

