A STUDY ON IMPACT RESPONSE OF ADVANCED LAMINATE COMPOSITE

MOHD FAEZ BIN SAHARUDIN

This report is submitted as partial fulfillment of the requirements for the award of Bachelor of Mechanical Engineering (Thermal Fluid)

> Faculty of Mechanical Engineering University Technical Malaysia Melaka

> > APRIL 2009

"I admit that had read this dissertation and in my opinion this dissertation is satisfactory in the aspect of scope and quality for the bestowal of Bachelor of Mechanical Engineering (Thermal Fluid)"

Signature	:
Supervisor I Name	: Pn Siti Hajar Binti Sheikh Md Fadzullah
Date	:
Signature	:
Supervisor II Name	: Pn Nortazi Binti Sanusi
Date	:

"I verify that this report is my own word except citation and quotation that the source has been clarify for each one of them"

Signature	:	
Writer Name	:	Mohd Faez bin Saharudin
Date	:	

For my beloved parent and siblings

ACKNOWLEDGEMENT

I would like to thank my supervisor, Pn Siti Hajar Binti Sheikh Md Fadzullah for her support, guidance and encouragement during completion of this Projek Sarjana Muda.

I also would like to thank all the lecturers, technician and laboratory assistant for assisting me in this project from the start. I would like to tell that their help are very much appreciated especially to En Azhar from FKP (UTeM) and En Wan Shahril from FKM (UTeM).

My thanks also go to my parents, friends and everyone that helped me in finishing my project. I hope this report would be beneficial for future student as a reference.

ABSTRACT

This research is focus on the study of impact response of advanced laminate composite. This research investigates the effect of different velocity on impact behavior of different types of advanced composite materials. Impact may be defined as the relatively sudden application of an impulsive force, to a limited volume of material or part of a structure. The effect of impacts are widely known and yet analyzing the phenomenon and relating effects to the forces acting and the materials properties. The specimen used in this project are uni-directional carbon fibre, woven carbon fibre and woven glass fibre. Three type of testing were carried out including Quasi-static compression test based on ASTM D695, surface analysis using scanning electron micrograph (SEM) and Finite Element Analysis using Cosmos Xpress. In this study, Quasi-static compression test were carried out at different loading rate ranging from 0.2mm/min to 0.6mm/min for each type of material. From the results, it is found that the mean load of woven type of carbon fibre and glass fibre process the highest load compared to uni-directional carbon fibre. During impact test, the highest velocities used have an effect on the structure of material. This is because load and energy are directly proportional. As the load increase, therefore the energy increased. Fractographic is use to study the fracture surface. This has proved to be extremely useful for failures in fibre reinforced plastic composites. The orientations of material have an effect on failure surface analysis of material. Several types of damages were observed under impact test and this includes upper failure, fractured failure, fragmentation failure and kind band failure.

ABSTRAK

Fokus penyelidikan ini adalah tentang reaksi impak bahan komposit berlapis. Penyelidikan ini adalah mengkaji kesan daripada perbezaan halaju pada kelakuan impak bahan komposit berlapis pelbagai jenis. Secara asasnya, impak membawa maksud satu perihal yang mengejut dari satu daya yang cenderung pada isipadu bahan yang terbatas atau pada bahagian strukturnya. Kesan impak adalah secara menyeluruh, namun demikian kesudahan atau keakhiran sesuatu perwujudan daya yang menyeluruh amat sukar diramalkan. Bahan contoh yang digunakan dalam projek ini adalah gentian karbon jenis searah, gentian karbon jenis fabrik tenun dan gentian kaca jenis fabrik tenun. Tedapat tiga jenis ujian dijalankan termasuk proses ujian kaedah mampatan kuasi-statik yang merujuk pada ASTM D695, analisis permukaan bahan menggunakan Mikroskop Imbasan Elektron (SEM) dan analisis unsur terhingga menggunakan perisian 'Cosmos Xpress'. Dalam kajian ini, ujian mampatan kuasi-statik bahan dijalankan pada halaju berbeza meliputi halaju mapatan pada 0.2mm/min sehingga 0.6mm/min. Berdasarkan hasil daripada kajian, didapati bahawa beban purata pada gentian karbon dan gantian kaca jenis fabrik tenun mempunyai nilai daya yang besar berdanding gantian karbon jenis searah. Melalui ujian hentaman, ketinggian nilai halaju yang dikenakan mempengaruhi kesan permukaan bahan. Ini semua berlaku kerana daya berkadar langsung dengan tenaga. Lebih banyak daya dikenakan maka nilai tenaga turut bertambah. Kajian pada kesan permukan bahan yang patah dibuktikan bagi kegunaan kajian terhadap kegagalan bahan komposit plastik bertetulang gentian. Arah hala bahan komposit turut mempengaruhi analisis kegagalan pada permukaan bahan. Terdapat beberapa jenis kerosakan bahan yang berlaku akibat dari ujian impak mampatan, antaranya patah atas bahan, patah penyerpihan, patah retakan dan patah jalur punding.

TABLE OF CONTENT

CHAPTER	TOP	IC	PAGE
	CON	FESSION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	ТАВ	LE OF CONTENT	vii
	LIST	COF TABLE	xi
	LIST	FOF FIGURE	xiii
	LIST	FOF SYMBOL	xviii
	LIST	COF APPENDIX	xix
CHAPTER I	INT	RODUCTION	1
	1.0	Introduction	1
	1.1	Objective of this research	2
	1.2	Problem Statement	2
	1.3	Scope of the research	2
	1.4	Planning and execution – PSM 1 and PSM 2	3
CHAPTER II	LIT	ERATURE REVIEW	5
	2.1	Introduction	5
		2.1.1 Failure of Composites	6

CHAPTER	TOPIO		PAGE
	2.2	Compression Fatigue Failure of CFRP	
		Laminates with Impact Damage	
		2.2.1 Experimental of Compression	
		Fatigue Failure of CFRP Laminates.	7
		2.2.2 Result and Discussion of Experimental	
		For Compression Fatigue Failure of	
		CFRP Laminates Test.	8
	2.3	Impact Response of Advance Laminate	
		Composite	12
		2.3.1 Experimental tests	13
	2.4	An experimental study on the Charpy	
		impact response of cracked aluminum	
		plates repaired with GFRP or CFRP	
		composite patches	17
		2.4.1 Investigation of Charpy impact response	
		of cracked with GFRP or CFRP	
		composite patches	18
	2.5	Impact Behavior of Laminated Composite Plates	21
CHAPTER III	METI	HODOLOGY	26
	3.1	Overview	26
	3.2	Material and Specimen Preparation	28
		3.2.1 Material	28
		3.2.1.1 Carbon Fiber	29
		3.2.1.2 Glass Fiber Reinforced Plastic (GFRP)	31
		3.2.2 Specimen Preparation	32
		3.2.3 Fabrication Specimen Compression Test	33

viii

3.3	Exper	imental Condition	35
	3.3.1	Quasi – Static Compression Test.	35
3.4	Quasi	Static Compression Test	36
	3.4.1	Compression Test	37
3.5	Fracto	grahic Analysis Using SEM	38
	3.5.1	Procedure for failure analysis component	39
	3.5.2	Surface Analysis via Scanning Electron	
		Microscope (SEM)	40
	3.5.3	Impact Damage	41
		3.5.3.1 SEM Examination	41
3.6	Finite	Element Analysis (FEA).	42
	3.6.1	Finite Element Analysis via Solid	
		Work COSMOS Xpress.	42
	3.6.2	Simulation Analysis vis Cosmos	
		Xpress under Finite Element Analysis.	44

CHAPTER IV RESULT AND DISCUSSION 45

4.1	Result of Mechanical Testing of Quasi -	
	Static Compression Test.	45
	4.1.1 Compression Test of Uni-direction	nal
	Carbon Fibre Reinforced Plastic	
	(CFRP) of Laminate Composite.	45
	4.1.1 Compression Test of Woven Carb	on
	Fibre Reinforced Plastic (CFRP)	
	of Laminate Composite.	52
	4.1.3 Compression Test of Woven Glass	S
	Fibre Reinforced Plastic (GFRP)	
	of Laminate Composite.	58
4.2	Comparison of Compression Properties	
	for Different Material and Orientation.	65

CHAPTER	TOPI	C PA	GE
	4.3	Scanning Electron Micrograph, (SEM)	
		Analysis	72
		4.3.1 Comparison of Uni-Directional Carbon	
		Fibre	72
		4.3.2 Comparison of Woven Carbon Fibre	74
		4.3.3 Comparison of Woven Glass Fibre(GFRP)	76
	4.4	Finite Element Analysis (FEA) under	
		Cosmos Express	78
		4.4.1 FEA Analysis for Uni-Directional	
		Carbon Fibre at Maximum and	
		Minimum Velocity under Compression	
		Test.	79
		4.4.1.1 FEA Simulation Analysis and Result for	
		Uni-Directional Carbon Fibre.	81
		4.4.2 FEA Analysis for Woven Carbon Fibre	
		at Maximum and Minimum Velocity	
		under Compression Test.	86
		4.4.2.1 FEA Simulation Analysis and Result for	
		Woven Carbon Fibre.	87
		4.4.3 FEA Analysis for Woven Glass Fibre	
		at Maximum and Minimum Velocity	
		under Compression Test.	92
		4.4.2.1 FEA Simulation Analysis and Result for	
		Woven Carbon Fibre.	93
CHAPTER V	CON	CLUSION	98
CHAPTER VI	RECO	OMMENDATION FOR FUTURE WORK	99
	REFF	CRENCES	100
	BIBL	IOGRAPHY	103
	APPE	NDIX	104

LIST OF TABLE

NO	TITLE	PAGE
1.1	Gantt Chart of The Research for PSM I-2008	3
1.2	Gantt Chart of The Research for PSM II -2009	4
3.1	Carbon Fiber Properties.	30
3.2	The Fibre Orientation, Compression Modulus and Strength Data.	31
3.3	Compression Modulus and Strength Data for Different	32
	Lay-Ups of GFRP	
3.6	Dimensions for compression test follow ASTM D695.	33
3.10	Uni-Directional (UD) Carbon Fibre Reinforced Plastic. (CFRP)	35
3.11	Woven Carbon Fibre Reinforced Plastic. (CFRP)	36
3.12	Woven Glass Fibre Reinforced Plastic. (GFRP)	36
4.1	Data of Experiment for Compressive Test for Uni-directional	
	Carbon Fiber Reinforce. (CFRP)	47
4.2	Data of Maximum and Minimum Energy at Different	
	Velocity for Uni-directional Carbon Fibre.	49
4.3	Data of Maximum and Minimum Load (kN) at Different	
	Velocity for Uni-directional Carbon Fibre.	51
4.4	Mean Load, kN at Different Loading Rate.	52
4.5	Experiment Data for Woven Carbon Fiber Reinforce	54
	(CFRP) Under Quasi-Static Compression Test.	
4.6	Maximum Energy and Minimum Energy at Maximum	55
	Compression Load.	
4.7	Maximum Load and Minimum Load For Woven Carbon Fibre.	57
4.8	Mean Load, kN at Different Loading Rate For Woven Carbon Fib	ore 58

4.9	Experiment Data for Woven Glass Fiber Reinforce (CFRP)	60
	Under Quasi-Static Compression Test.	
4.10	Data of Maximum and Minimum Energy at Different Velocity	62
	for Woven Glass Fibre.	
4.11	Data of Maximum and Minimum Load (kN) at Different	64
	Velocity for Woven Glass Fibre.	
4.12	Mean Load, kN at Different Loading Rate.	65
4.13	Comparison Different Material and Orientation Laminate	67
	Composite under Compression Test.	
4.14	Visual Observation for Uni-directional Carbon Fibre	70
	under Compression Test.	
4.15	Visual Observation for Woven Carbon Fibre under	71
	Compression Test.	
4.16	Visual Observation for Woven Glass Fibre under	72
	Compression Test.	
4.17	Data Analysis of Uni-Directional Carbon Fibre at	81
	maximum velocity.	
4.18	Data Analysis of Uni-directional Carbon Fibre at	82
	minimum velocity.	
4.19	Result of Stress Analysis of Specimen at 0.2mm/min.	84
4.20	Data Analysis at Loading Rate 0.6mm/min for Woven	87
	Carbon Fibre via Cosmos Xpress.	
4.21	Data Analysis at Loading Rate 0.6mm/min for Woven	88
	Carbon Fibre via Cosmos Xpress.	
4.22	Result of Stress Analysis of Specimen at 0.6mm/min.	90
4.23	Result of Stress Analysis of Specimen at 0.2mm/min.	90
4.24	Data Analysis of Woven Glass Fibre via Cosmos Xpress.	93
4.25	Data Analysis of Woven Glass Fibre via Cosmos Xpress.	94
4.26	Analysis of Von Mises stress at Maximum Velocity.	96
4.27	Analysis of Von Mises stress at Minimum Velocity.	96

LIST OF FIGURE

NO

TITLE

2.1	Properties of patch materials and adhesive	8
2.2	Specimen codes and patches types	9
2.3	Photographs of an unimpacted AS4/PEEK specimen in fatigue	10
2.4	Photographs of an impacted UT500/Epoxy specimen with	
	De /b =0.55	10
2.5	Photographs of an impacted AS4/PEEK specimen	11
2.6	SEM photographs showing kink band occurred	12
2.7	Size and stitching pattern of unstitched and stitched samples	14
2.8	Typical force versus time curves of impacted	15
2.9	Typical force versus displacement curves of impacted	15
2.10	X-radiographs of unstitched [03/903]s laminates impacted	16
2.11	X-radiographs of stitched [03/903] s laminates impacted	16
2.12	Specimen with different crack lengths	18
2.13	Specimen with patch before impact test	20
2.14	Specimen 10 after impact test	20
2.15	Specimen 12 after impact test.	21
2.16	Compression after impact (CAI) test fixture.	22
2.17	(a) Horizontal and (b) Vertical damage according to	
	loading directions.	23
2.18	CAI Damage propagations	23
2.19	Direction of CAI damage propagation	23
2.20	Effect of impact damages on CAI damage propagation	24
2.21	CAI damage propagations	24
3.1	Process Flow Chart of Research	27

3.2	Flow of Material Preparation for Different Type of	
	Composite Material	28
3.3	Uni-directional Carbon Fiber Reinforced Plastic (CFRP)	29
3.4	Woven Carbon Fiber Reinforced Plastic (CFRP)	29
3.5	Uni-Directional Glass Fiber Reinforced Plastic (GFRP)	32
3.9	A schematic diagram shows dimensions for 0° plies.	34
3.10	Process fabrication of compression test specimen	34
	for woven carbon.	
3.11	Specimen of carbon and glass fiber reinforced plastic	34
	after cutting process.	
3.12	Universal Testing Machine (UTM).	37
3.13	The position of Specimen Stating Compression Test.	38
3.14	Specimen Condition during Compression Testing Running	38
3.15	Procedure for failure analysis of composites	40
3.16	SEM Machine	41
3.17	Impact Damage Growth Prior of compression failure in	
	a Composite.	42
3.18	Diagram of specimen before analysis via cosmos Xpress.	44
3.19	Position of load applies to specimen under simulation analysis.	44
3.20	Cosmos Xpress process via the finite element analysis.	45
4.1	Load extension relationship for specimen under	
	quasi static compression test for uni-directional carbon fibre.	48
4.2	Graph of maximum energy versus different loading rate.	49
4.3	Graph of minimum energy versus different loading rate.	50
4.4	Graph of maximum loads versus difference loading	51
	rate for uni-directional carbon fibre.	
4.5	Graph of minimum loads versus difference loading rate	52
	for uni-directional carbon fibre.	
4.6	Graph of mean load (kN) versus different loading rate	53
	for uni-directional carbon fibre.	

NO TITLE

4.7	Load extension relationship for specimen under quasi static	54
	compression test for uni-directional carbon fibre.	
4.8	Maximum energy versus different loading rate	
	for woven carbon fibre.	55
4.9	Graph of minimum energy versus different loading rate	56
	for woven carbon fibre	
4.10	Graph of maximum load, kN versus loading rate (mm/min)	57
	for woven carbon fibre	
4.11	Graph of minimum load, kN versus loading rate (mm/min)	58
	for woven carbon fibre	
4.12	Graph of mean load versus different loading rate	59
	for woven carbon fibre	
4.13	Compressive load versus extension for woven glass fibre.	61
4.14	Maximum energy versus different loading rate of	62
	woven glass fibre.	
4.15	Minimum energy versus different loading rate of	63
	woven glass fibre	
4.16	Maximum loads versus different loading rate of	64
	woven glass fibre.	
4.17	Minimum loads versus different loading rate of	65
	woven glass fibre	
4.18	Mean load versus different loading rate for	66
	woven glass fibre.	
4.19	Mean energy, J versus loading rate, mm/min	
	for every laminate composite under compression test.	68
4.20	Mean load, kN versus loading rate, mm/min for	69
	every laminate composite under compression test	
4.21	SEM Micrograph of UD carbon fibre at loading rate	74
	0.2mm/min	
4.22	SEM Micrograph of UD carbon fibre at loading rate	74
	0.6mm/min	

NO	TITLE	PAGE
4.23	SEM Micrograph of UD carbon fibre at	75
4.0.4	loading rate 0.4mm/min	74
4.24	SEM Micrograph of Woven carbon fibre at	76
1.05	loading rate 0.2mm/min	74
4.25	SEM Micrograph of Woven carbon fibre at	76
	loading rate 0.4mm/min	
4.26	SEM Micrograph of Woven carbon fibre at	77
	loading rate 0.6mm/min	-0
4.27	SEM Micrograph of Woven Glass fibre at	78
4.00	loading rate 0.2mm/min	-
4.28	SEM Micrograph of Woven Glass fibre at	78
	loading rate 0.4mm/min	-0
4.29	SEM Micrograph of Woven Glass fibre at	79
	loading rate 0.6mm/min	
4.30	Analysis of uni-directional carbon fibre at	
	maximum velocity data	83
4.31	Analysis of uni- directional carbon fibre at	
	minimum velocity data	83
4.32	Check analysis simulation process for UD	85
	carbon fibre under	
4.33	Result of simulation for UD carbon fibre under	85
	maximum loading rate.	
4.34	Check analysis simulation process for UD carbon fibre	86
	under 0.2mm/min	
4.35	Result of simulation for UD carbon fibre under	86
	minimum loading rate.	
4.36	Analysis of woven carbon fibre at	89
	maximum velocity (0.6mm/min)	
4.37	Analysis of woven carbon fibre at minimum velocity (0.2mm/min)	89
	under compression test.	
4.38	Check analysis simulation process for woven carbon fibre at	91
	loading rate 0.6mm/min	

NO TITLE

4.39	Simulation result of woven carbon fibre using loading rate	91
	of 0.6mm/min under compression test.	
4.40	Check analysis simulation process for woven carbon	92
	fibre at loading rate 0.2mm/min	
4.41	Simulation result of woven carbon fibre using loading rate	92
	of 0.6mm/min under compression test.	
4.42	Analysis of woven glass fibre at maximum velocity data	95
	under compression test.	
4.43	Analysis of woven glass fibre at minimum velocity data	95
	under compression test.	
4.44	Check analysis simulation process for woven glass	97
	fibre at loading rate 0.6mm/min	
4.45	Simulation result of woven g;ass fibre using loading rate	97
	of 0.6mm/min under compression test.	
4.46	Check analysis simulation process for woven glass fibre	98
	at loading rate 0.2mm/min	
4.47	Simulation result of woven glass fibre using loading rate	98
	of 0.2mm/min under compression test.	

LIST OF SYMBOL

- σ = Engineering stress
- Δl = Elongation
- ε . = Engineering strain
- *l*o = initial length
- Ao = cross section area
- F = uniaxial tensile force
- °C = Degree celcius

APPENDIX LIST

BIL	TITLE	PAGE
1	ASTM D695- compression test	104
2	Compression Test Data – mechanical testing	105

CHAPTER I

INTRODUCTION

1.0 Introduction

Impact may be defined as the relatively sudden application of an impulsive force, to a limited volume of material or part of a structure. The effect of impacts are widely known and yet analyzing the phenomenon and relating effects to the forces acting and the materials properties, in order to predict the outcome of a particular event, can be very difficult. The impact responses of the laminate specimens with different geometry were very different in fine details in terms of the magnitude of maximum impact force, impact duration and energy absorption, some features were common throughout.

Impact test can be applied by using advanced composites material. They are composite materials which traditionally used in the aerospace industries. These composites have high performance reinforcements of a thin diameter in a matrix material such as epoxy and aluminum. The most common advanced composites are polymer matrix composites (PMC).

1.1 Objectives

The objectives of this research are to study and discuss the effects of different velocity on impact behavior of different types of advanced composite materials.

1.2 Problem Statement

This research has been carried out due to impact problem. Impact damage is the type of damage, which most significantly affects the structural strength. Therefore, primarily the level of impact damage that is significant to be tolerated and that has to be reliable detected needs to be specified.

1.3 Scope of the research

This research comprises of the following scope:-

- a) To do literature study on composite material particularly related to impact.
- b) To carry out mechanical testing for different type of composite materials at different velocity.
- c) To carry out surface analysis after testing via 'SEM'.
- d) To compare the data using 'Finite Element.

1.4 Planning and execution

The research activity that is carried out in this project is tabulated in the Table 1.1 and Table 1.2 for PSM I and PSM II respectively.

	JULY				AUG	UST	0		SEP	гемве	OCTOBER			
RESEARCH ACTIVITY/TIME	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14
1) Proposal														
2) Literature Review														
a) Impact Response														
b) Advanced laminate														
composites														
3) Research Methodology														
a) Research of experiment/ Design Experiment														
b) Mechanical testing -Quasi-static test - Drop weight impact - Fractograhic analysis using SEM - FEA analysis														
4) Report writing for PSM 1														
5) Preparation for Seminar 1														
6) Submission of report and log book														

Table 1.1: GANTT CHART OF THE RESEARCH FOR PSM I-2008

	JANUARY					RUARY			MAR	CH	APRIL			
RESEARCH ACTIVITY/TIME	W1	W2	W3	W4	W5	W6	W 7	W8	W9	W10	W11	W12	W13	W14
1) Literature review														
a) Impact Response														
b) Advance Laminate composite														
2) Research Methodology														
a) Experiment Activities														
i.Quasi Static test														
b) Mechanical Testing														
i.Compression test														
c) Fractographic Analysis using SEM														
d) Compare data using Finite Element														
analysis														
3) Result and Analysis														
4) Report writing for PSM II														
5) Preparation for PSM Seminar II														
6) Submission of report & log book														

Table 1.2: GANTT CHART OF THE RESEARCH FOR PSM II -2008