
CAR SERVICE SYSTEM

TIANG KING JECK

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

i

CAR SERVICE SYSTEM

TIANG KING JECK

This report is submitted in partial fulfillment of the requirements for the

Bachelor of Computer Science (Software Development) with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

ii

DECLARATION

I hereby declare that this project report entitled

[CAR SERVICE SYSTEM]

is written by me and is my own effort and that no part has been plagiarized

without citations.

STUDENT : ______________________________________ Date : 08/09/2021

(TIANG KING JECK)

I hereby declare that I have read this project report and found

this project report is sufficient in term of the scope and quality for the award of

 Bachelor of Computer Science (Software Development) with Honours.

SUPERVISOR : ______________________________________ Date : ________

([PROFESOR MADYA TS. DR. MOHD SANUSI BIN AZMI])

DECLARATION

I hereby declare that this project report entitled

[CAR SERVICE SYSTEM]

is written by me and is my own effort and that no part has been plagiarized

without citations.

10 September 2021

iii

DEDICATION

I dedicated this project work to my beloved parents. A special feeling of gratitude to

my loving parents whose words of encouragement and push for tenacity ring in my

ears. I also dedicated the project work to my supervisor, Dr. Mohd Sanusi bin Azmi

who had supported me throughout the process. I will always appreciate all he done for

helping me develop my technology skills. Last but not least, I dedicated this work and

give special thanks to my friends whose had gave me many useful and helpful advises

when I get into a bottleneck.

iv

ACKNOWLEDGEMENTS

In this project, without the aid and guidance from many people and my supervisor, Dr.

Mohd Sanusi bin Azmi, this would not have been possible. I would like to express my

heartfelt appreciation to all these people.

I would like to thank Dr. Mohd Sanusi bin Azmi for giving assistant to complete this

project successfully. I am very obliged to Dr. Mohd Sanusi bin Azmi for his

encouragement, continuous supervision and knowledge about the project and support

for it in the completion of the project. His advice is very beneficial to the project

completion. I would also like to thank my beloved parents who have been giving me

support and motivation throughout my project.

I want to express my particular gratitude as well as thanks to Universiti Teknikal

Malaysia Melaka (UTeM), the Faculty of Information and Communications

technology (FTMK), for providing me with the opportunity to learn how to cooperate

and incorporate our expertise in the project.

I also thank our colleagues for their contributions and the individuals who have helped

me voluntarily with their expertise.

v

ABSTRACT

This project is aimed to developing a real-time car servicing system for the car owner

and the car service industry. The Car Service System (CaSS) consist of two

applications which are the desktop application and the mobile application. The system

had the own web service as the back-end to handle the data processing between the

front-end and database. This system is able to tracking the whole process of the car

servicing in real-time in order to help the staffs or technicians to control the servicing

process with their customers. In conclusion, CaSS is able to replace the current system

with more features and solved the problem of the traditional servicing shop.

vi

ABSTRAK

Projek ini bertujuan untuk membangunkan sistem servis kereta masa nyata untuk

pemilik kereta dan industri perkhidmatan kereta. Sistem Servis Kereta (CaSS) terdiri

daripada dua aplikasi iaitu aplikasi desktop dan aplikasi mudah alih. Sistem ini

mempunyai perkhidmatan web sendiri sebagai back-end untuk menangani

pemprosesan data antara front-end dan pangkalan data. Sistem ini dapat mengesan

keseluruhan proses servis kereta dalam masa nyata untuk membantu kakitangan atau

juruteknik mengawal proses servis dengan pelanggan mereka. Kesimpulannya, CaSS

dapat menggantikan sistem semasa dengan lebih banyak ciri dan menyelesaikan

masalah kedai servis tradisional.

vii

TABLE OF CONTENTS

PAGE

DECLARATION ... II

DEDICATION .. III

ACKNOWLEDGEMENTS ... IV

ABSTRACT ... V

ABSTRAK .. VI

TABLE OF CONTENTS ... VII

LSIT OF TABLES ... XII

LIST OF FIGURES .. XIV

LIST OF ABBREVIATIONS .. XVI

LIST OF ATTACHMENTS ... XVII

CHAPTER 1: INTRODUCTION ... 1

1.1 Introduction .. 1

1.2 Problem Statement ... 2

1.3 Objective .. 2

1.4 Scope .. 2

1.4.1 Target Users ... 2

1.4.2 Modules ... 3

1.4.2.1 Customer Mobile Application ... 3

1.4.2.2 Branch Desktop Application .. 3

viii

1.5 Project Significance ... 4

1.6 Expected Output... 4

1.7 Conclusion ... 5

CHAPTER 2: LITERATURA REVIEW AND PROJECT METHODOLOGY . 6

2.1 Introduction .. 6

2.2 Facts and Findings ... 6

2.2.1 Domain .. 6

2.2.2 Existing System ... 7

2.2.3 Technique .. 9

2.3 Project Methodology .. 9

2.4 Project Requirements ... 11

2.4.1 Software Requirement ... 11

2.4.2 Hardware Requirement .. 11

2.4.3 Other Requirement ... 11

2.5 Project Schedule and Milestones ... 12

2.6 Conclusion ... 14

CHAPTER 3: ANALYSIS ... 15

3.1 Introduction .. 15

3.2 Problem Analysis ... 15

3.3 Requirement Analysis .. 17

3.3.1 Data Requirement .. 17

3.3.2 Functional Requirement ... 22

3.3.3 Non-Functional Requirement .. 23

3.3.4 Others Requirement ... 24

ix

3.4 Conclusion ... 24

CHAPTER 4: DESIGN ... 25

4.1 Introduction .. 25

4.2 High-Level Design ... 25

4.2.1 System Architecture ... 26

4.2.2 User Interface Design .. 27

4.2.2.1 UI Design of CaSS Branch .. 27

4.2.2.2 UI Design of CaSS Customer .. 36

4.2.3 Database Design .. 44

4.2.3.1 Conceptual and Logical Database Design 44

4.3 Detail Design ... 45

4.3.1 Software Design ... 46

4.3.1.1 Class LoginPage .. 46

4.3.1.2 Class RegisterPage ... 46

4.3.1.3 Class CarPage .. 47

4.3.1.4 Class BookingPage .. 47

4.3.1.5 Class ServicePage .. 48

4.3.1.6 Class ProfilePage ... 49

4.3.2 Physical Database Design .. 50

4.4 Conclusion ... 50

CHAPTER 5: IMPLEMENTATION ... 51

5.1 Introduction .. 51

5.2 Software Development Environment Setup... 51

x

5.3 Software Configuration Management .. 52

5.3.1 Configuration Environment Setup ... 52

5.3.2 Version Control Procedure .. 53

5.4 Implementation Status ... 53

5.5 Conclusion ... 55

CHAPTER 6: TESTING ... 56

6.1 Introduction .. 56

6.2 Test Plan... 56

6.2.1 Test Organization ... 56

6.2.2 Test Environment ... 57

6.2.3 Test Schedule ... 58

6.3 Test Strategy .. 59

6.3.1 Classes of Tests .. 59

6.4 Test Design .. 60

6.4.1 Test Description ... 60

6.4.2 Test Data .. 67

6.5 Test Results and Analysis .. 70

6.6 Conclusion ... 72

CHAPTER 7: PROJECT CONCLUSION .. 73

7.1 Observation on Weaknesses and Strengths .. 73

7.2 Propositions for Improvement ... 74

7.3 Project Contribution ... 75

7.4 Conclusion ... 75

REFERENCES ... 76

xi

APPENDICES .. 77

Appendix A – Sample Source Code 1.. 77

Appendix B – Sample Source Code 2 .. 83

Appendix C – Sample Source Code 3 .. 92

xii

LSIT OF TABLES

 PAGE

Table 2.1: Comparison Between Existing System and Proposed System 8

Table 2.2: Project Milestone of CaSS ... 13

Table 3.1: Data Dictionary of Customer .. 18

Table 3.2: Data Dictionary of Car .. 18

Table 3.3: Data Dictionary of Model .. 18

Table 3.4: Data Dictionary of Brand .. 19

Table 3.5: Data Dictionary of Branch .. 19

Table 3.6: Data Dictionary of Branch_Service .. 19

Table 3.7: Data Dictionary of Service .. 20

Table 3.8: Data Dictionary of Task .. 20

Table 3.9: Data Dictionary of Action.. 20

Table 3.10: Data Dictionary of Reservation .. 21

Table 3.11: Data Dictionary of History .. 21

Table 3.12: Data Dictionary of Payment .. 21

Table 3.13: Data Dictionary of Implemented_Action ... 22

Table 3.14: Non-Functional Requirements of CaSS ... 23

Table 5.1: Development Status of CaSS Customer ... 53

Table 5.2: Development Status of CaSS Branch ... 54

Table 6.1: Testing Team Structure of CaSS .. 57

Table 6.2: Test Organization of CaSS .. 57

Table 6.3: Testing Environment Setup of CaSS .. 58

Table 6.4: Test Schedule of CaSS ... 59

Table 6.5: Test Cases of CaSS Customer ... 61

Table 6.6: Test Cases of CaSS Branch ... 63

xiii

Table 6.7: Test Data of CaSS Customer .. 67

Table 6.8: Test Cases of CaSS Branch ... 68

Table 6.9: Test Cases of CaSS Customer ... 70

Table 6.10: Test Cases of CaSS Branch ... 71

xiv

LIST OF FIGURES

 PAGE

Figure 2.1: Home Page of Minit-Tune Website ... 7

Figure 2.2: Home Page of Meineke Website .. 8

Figure 2.3: Steps in UML Development Process ... 10

Figure 3.1: Activity Diagram of Make Reservation for Current System............ 16

Figure 3.2: Activity Diagram of Service Car for Current System 17

Figure 3.3: Use Case Diagram of CaSS .. 22

Figure 4.1: Architecture View of CaSS .. 26

Figure 4.2: Login Screen of CaSS Branch ... 27

Figure 4.3: Dashboard Screen 1 of CaSS Branch ... 28

Figure 4.4: Dashboard Screen 2 of CaSS Branch ... 28

Figure 4.5:Booking Screen in Month View of CaSS Branch 29

Figure 4.6:Booking Screen in Week View of CaSS Branch 29

Figure 4.7:Booking Screen in Schedule View of CaSS Branch 30

Figure 4.8: Add New Booking Dialog of CaSS Branch .. 30

Figure 4.9: Service Screen No Selected of CaSS Branch 31

Figure 4.10: Service Screen Upcoming of CaSS Branch 32

Figure 4.11: Service Screen Completed of CaSS Branch 32

Figure 4.12: Service Screen Servicing 1 of CaSS Branch 33

Figure 4.13: Service Screen Servicing 2 of CaSS Branch 33

Figure 4.14: Service Screen Servicing 3 of CaSS Branch 34

Figure 4.15: Service Screen Servicing 4 of CaSS Branch 34

Figure 4.16: Customer Screen of CaSS Branch .. 35

Figure 4.17: Customer Detail Screen of CaSS Branch ... 35

Figure 4.18: Authentication Screen of CaSS Customer 36

xv

Figure 4.19: Car Screen of CaSS Customer .. 37

Figure 4.20: Booking Screen of CaSS Customer ... 38

Figure 4.21: Service Screen No Servicing of CaSS Customer 39

Figure 4.22: Service Screen Progress 1 of CaSS Customer 40

Figure 4.23: Service Screen Progress 2 of CaSS Customer 41

Figure 4.24: Service Screen Progress 3 of CaSS Customer 42

Figure 4.25: Service Screen Progress 4 of CaSS Customer 43

Figure 4.26: Conceptual Database Design of CaSS .. 44

Figure 4.27: Logical Database Design of CaSS ... 45

Figure 4.28: Physical Database Design of CaSS .. 50

Figure 5.1: Deployment Diagram of CaSS ... 52

Figure 5.2: Main Page of CaSS on GitHub .. 53

Figure 7.1: Result of Flutter Doctor ... 73

Figure 7.2: Performance of CaSS Branch.. 74

Figure 7.3: Supported Platforms by Flutter .. 74

xvi

LIST OF ABBREVIATIONS

CaSS - Car Service System

OOAD - Object-Oriented Analysis Design

SDLC - Software Development Life Cycle

REST - Representational State Transfer

JSON - JavaScript Object Notation

ORM - Object–Relational Mapping

npm - Node Package Manager

SQA - Software Quality Assurance

xvii

LIST OF ATTACHMENTS

 PAGE

Appendix A Sample Source Code 1 77

Appendix B Sample Source Code 2 83

Appendix C Sample Source Code 3 92

CHAPTER 1: INTRODUCTION

1.1 Introduction

In Malaysia, whether students or office workers, most people have a car to

travel. This also means that people often need to go to their respective car service

centers to regularly service their cars, especially for the newly bought cars. The process

of servicing a car is not only time-consuming and complicated, so it requires frequent

communication between the customer and the repairman, and sometimes even the

counter personnel need to communicate the opinions of both of them through the

phone call.

Not only that, booking in advance for car services is also a very troublesome

process. Car owners need to call the service center corresponding to their car to make

a repair appointment and since the car owner does not know which time has not been

reserved, the owner can only waste time inquiring one by one in order to find a time

when both of them are available to service the car.

Car owner needs to service the car when the car has travelled a certain distance

or time so the car owner needs to check the distance recorder in the car and also the

time past from the last service made. Besides, because most of the car owners are not

familiar with car-related knowledge, and if they are not lucky enough to encounter

more greedy maintenance or service personnel, the car owners will face the situation

of extremely high fees from the service center.

2

1.2 Problem Statement

• Lack of platform for processing the service of car that led to time-consuming

and complicated.

• Lack of visualization of reservation for servicing car that would cause disputes

due to duplication of reservation, conflict in scheduling and so on.

• Unable to track the service process and the result of service.

1.3 Objective

• To develop a mobile application which provide the automation features for

servicing the car such as the record of the service logbook, the confirmation of

service parts of the car after checking and so on.

• To provide a visualized schedule in the calendar for each of the car service

center that based on the location and distance of the car owner.

• To track all the process of the servicing and update to the developed platform

from time to time. The serviced parts and results would be generated in form

of e-receipt with the description and purpose.

1.4 Scope

The scope of the project contains the target users and the modules that will be

develop in the system. There are three target users and several modules which will be

developed in three different platforms.

1.4.1 Target Users

• Car owner: a person who own at least a car and act as customer to service the

car in the car service center by using the customer mobile application.

• Car servicer: a staff who service the car of the customer in the car service center

with the assistance of branch desktop application.

3

1.4.2 Modules

The following modules will be developed into three different platforms which

will be used by corresponding target users. The customer mobile application is used

by car owner and branch desktop application is used by car servicer.

1.4.2.1 Customer Mobile Application

• Authentication module: a module which handles the authentication of the

customer.

• Car Module: a module which displays and manages the cars of the customer

added.

• Reservation Module: a module which enables the customer to view and find

the car service centers and handles the reservation of car service such as make,

modify, and cancel the reservation.

• Service Module: a module which enables the customer to track and update the

current servicing status.

• Profile Module: a module which enables the customer to manage the profile of

the customer.

1.4.2.2 Branch Desktop Application

• Authentication module: a module which handles the authentication of the staff

of the branch.

• Dashboard Module: a module which displays the dashboard with the summary

and visualized information of the reservation.

• Customer Module: a module which manages the customer by adding,

modifying, and disabling customer.

• Reservation Module: a module which enables the staff handles the reservation

of car service such as make, modify, and cancel the reservation.

• Service Module: a module which enables the staff to start the servicing and

update the current servicing status.

4

1.5 Project Significance

Car Service System is a project which developed for automobile industry and

focus only for car. The proposed system is digitalized from the current system which

the proposed system will provides the platforms for each of the users to improve the

efficiency of the whole business process and also avoid the time consuming. The

reservation feature will be improved and become independent from both car owner

and car servicer. This offers the ultimate freedom to the car owner to make, modify

and cancel the reservation of the service and the car servicer also does not require to

confirm these operations one by one at the same time. The digitalized system also

achieved the data centralization which enable manager of the system can collect,

process, and store the data information effectively without data redundancy. In general,

this project benefits all of the current users in the current system.

1.6 Expected Output

The project is expected to develop a system that form by two subsystems which

run in different platforms and use by customer and branch. The subsystem of the

customer side will be developed in mobile application (only for Android) as the front-

end by using Dart programming language with Flutter framework. The subsystem of

the branch side will be developed in desktop application (only for Windows) as the

front-end by using Dart programming language with Flutter framework. Besides,

MySQL is chosen as the database of the system which host in the localhost with the

help of XAMPP. Therefore, a web service that also host in the localhost will be

developed as the back-end for communicating these subsystems with the database by

using JavaScript with Node.js.

5

1.7 Conclusion

In Malaysia, car service is a potential trade that can be improved and

digitalized. Most of the current car service systems are still using pure human resource

to handle all of the process which led to time-consuming, data redundancy, and unable

to keep records for a long time. Therefore, this project aims to develop the automation

features of car servicing, provide clear and visualized schedule to enhance the service

reservation, and also digitalize the data to enable the record to be stored and tracked.

This system is developed for car owner, car servicer, and manager who will use the

customer mobile app, branch desktop app, and manager web app respectively. The

project is expected to be developed a mobile app, a desktop app, a web app, and a web

service that will communicate these apps with the MySQL database in localhost.

CHAPTER 2: LITERATURA REVIEW AND PROJECT METHODOLOGY

2.1 Introduction

Planning is an important aspect of a software development cycle, and without

proper planning, problems may arise later in development. This chapter will describe

the methodology that was used to plan and develop the system, namely, the Object-

Oriented Analysis Design, and also the requirements, the relevant researches,

schedules, development technique, and previous works.

2.2 Facts and Findings

This part will list out the facts and findings related to the project that was done

before development was commenced.

2.2.1 Domain

The Car Service System is about the reservation of car service and the tracking

of the servicing process. The system provides a friendly and visualize reservation

interface to ease the car owner from scheduling a reservation of service. The system

will also enable the car owner to tracking the servicing process after the staff start the

service. The tracking process will be updated in real-time through the web service from

the database whenever there is a state change from the staff who servicing the car. The

car owner also will be able to interact with the servicing process which can selected

the actions that need to apply to the car such as replace specific parts. In general, car

owner can communicate with staff more efficiently through the system to save the

resources and avoid unnecessary misunderstandings.

7

2.2.2 Existing System

This section describes and states about the approach and related or past

research, references, case study and other finding that relate to Car Service System. In

Malaysia, the systems about the car servicing are mostly informational only which

only provide the information about the service provided. There are several existing

systems that can be the approach for this project are the web application from foreign

country. These systems are related about the online reservation for the car servicing.

Minit-Tune is one of the existing systems for this project. This system is a web

application which only can be access though the website. This website provided many

of services with the full descriptive tips about the car caring. This website enables car

owner to book the reservation after login to the system. Figure 2.1 shows the home

page of the website.

Figure 2.1: Home Page of Minit-Tune Website

Meineke is another existing system for this project. This system not only

provide the web application and also integrated into a mobile application. This system

also enables the car owner to book the reservation. The mobile application of this

system provides the bonus and reward to the user. Figure 2.2 shows the home page of

the Meineke website.

8

Figure 2.2: Home Page of Meineke Website

Both of these existing systems provided the basic features for booking the

reservation only. The proposed system is aimed to develop a platform based on these

systems with additional features. Table 2.1 shows the comparison between the existing

systems and the proposed system

Table 2.1: Comparison Between Existing System and Proposed System

Feature Existing System Proposed System

Authenticate user Yes Yes

Book reservation Yes Yes

Review reservation history Yes Yes

Manage car information No Yes

Tracking service process No Yes

Customize repairing options No Yes

9

2.2.3 Technique

This section discusses about the other techniques or approaches which are also

applicable and related. This system is able to apply the blockchain technology to

handle the tracking process of the car servicing. This is because blockchain is a specific

type of database which differs from the traditional database in the way to store the

data. Blockchain stores data in blocks that are then chained together in chronological

order with decentralized structured. Due to these characteristics, blockchains are

immutable which mean the car servicing process can be guarantee irreversible. In other

words, the authenticity of the servicing process will be ensured. Unfortunately,

because of the decentralized nature of blockchain, all transactions or processes can be

transparently viewed by every user that using the system and this will violate the

privacy of other users. Besides, the blockchain is complicated and applying blockchain

technology in this project is just make a big fuss over a minor issue which will cause

unnecessary waste of resources.

2.3 Project Methodology

This project is developed based on the Object-Oriented Analysis Design

(OOAD). Object-oriented life cycle model considers “objects” as the basis of the

software engineering process. The development team starts by observing and

analysing the system they intend to develop before defining the requirements. Once

the process is over, they focus on identifying the objects of the system. Now, an object

could be anything; it can have a physical existence like a customer, car, etc. An object

also constitutes intangible elements like a process or a project. The primary objectives

of the Object-Oriented Model are object-oriented analysis (OOA), object-oriented

design (OOD), and object-oriented implementation (OOI). (Nanda, 2021)

The object-oriented analysis consists of the process where a development team

evaluates the system and organizes the requirements as objects. Contrary to traditional

structural analysis, the OOA heavily depends on advanced data like Use Cases and

Object Models. The OOA starts with analysing the problem domain and produce a

conceptual model by thoroughly evaluating the information in the given area. Once

the analysis is complete, the development team prepares a conceptual model describing

the system's functionalities and requirements. (Nanda, 2021)

10

It is the next development stage of the object-oriented life cycle model where

the analysts design the desired system's overall architecture. The system is divided into

a set of interacting subsystems. The analyst considers the specifications from the

system analysis. It all about evaluating what the end-users expect from the new system.

As per the object-oriented design, the system is considered a collection of objects, with

each object handling a specific state data. (Nanda, 2021)

Object-oriented implementation phase, developers translate the class objects

and the interrelationships of classes and code them using a programming language.

This is the phase to create databases and establish functionalities for the system. The

object-oriented methodology focuses on identifying objects in the system. Developers

closely observe each object to identify characteristics and behavioural patterns. The

developers ensure that the object recognizes and responds perfectly to an event.

(Nanda, 2021)

Figure 2.3: Steps in UML Development Process

11

2.4 Project Requirements

Project requirements describe about the detail of the software and hardware

requirements of this project. There is no other requirement that to be used in the

project.

2.4.1 Software Requirement

• Visual Studio Code v1.55.2

• Microsoft Visual Studio Professional 2019 v16.9.4

• Android Studio v.4.1.3

• Google Chrome v90.0.4430.93

• Flutter v2.3.0-0.1.pre

• Node.js v14.15.4

• XAMPP Control Panel v3.2.4

• MySQL v15.1

• Apache v2.4.46

• phpMyAdmin v5.1.0

• Windows 10 Home Single Language v20H2

2.4.2 Hardware Requirement

• Laptop

• Android smart phone

2.4.3 Other Requirement

N/A

12

2.5 Project Schedule and Milestones

This section discusses about the schedule and milestones of the project. Table

2.2 shows the project milestone of this project which undergoes five main activities

according to the OOAD methodology.

At the start of the weeks, the requirements of the system will be identified in

problem identification phase. The requirements need to be transformed into a Use Case

Diagram with the use case scenarios. At week two, the system analysis phase should

be started. The use cases in Use Case Diagram need to derive into Activity Diagrams

and Sequence Diagrams. The Class Diagram also need to be created. Next will proceed

to design phase and the diagrams should be modified and also complete the

specification. After that, the system will be documented.

The implementation phase is started at week six. The modules are developed

in this phase. At the same time, the unit testing also perform during the development

of modules. Then the modules will be combines and integrated after completed.

Following by the implementation phase, the testing phase will be started. The test plan

will be created first. Then testers will start to execute the test cases and the results and

analysis will be recorded after the testing process is done.

During the implementation and testing phase, the schedule will be repeated if

the requirements need to be changed. The process is repeat and repeat according to the

development life cycle.

13

Table 2.2: Project Milestone of CaSS

Activity Period (Week)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Problem Identification

Phase

• Draw Use Case

Diagram

• Write Use Case

Scenarios

System Analysis Phase

• Derive Activity

Diagrams from

Use Cases

• Develop Sequence

Diagrams

• Create Class

Diagram

System Design Phase

• Modify Diagrams

and Complete

Specifications

• Develop and

Document the

System

Implementation Phase

• Develop Modules

• Perform Unit

Testing in Modules

• Combine Modules

to Subsystem

14

• Integrate and

Compile the

Subsystems

Testing Phase

• Create Test Plan

• Write and Run

Test Cases

• Document Test

Results and

Analysis

2.6 Conclusion

This chapter stated the facts and finding from different aspects such as domain,

existing system, and also technique. These findings will be used for analysis the

problem and the requirement of the proposed system. The project methodology is

decided and the project milestones are scheduled according to this methodology. Next

chapter will discuss about the analysis of the current system for identifying the

requirements.

CHAPTER 3: ANALYSIS

3.1 Introduction

This chapter details the analysis that was done on this system. Analysis was

done by analyzing the existing system, finding out the problems, and implementing

new ideas and innovation as solutions. This is done to define the goals and objectives.

3.2 Problem Analysis

The problem analysis discusses about the current system scenario and situation.

Figure 3.1 shows the activity diagram of the make reservation for the current system

and Figure 3.2 shows the activity diagram of the servicing process for the current

system.

To make a new reservation, customer needs to make a call to the service center

or the branch. Then the customer will choose the date and time of reservation with the

help and discussion of the staff to make sure the date time reserved is available and

not duplicated. The staff will ask for the customer to provide the personal information

such as name and phone number, and also the detail of car that will been serviced for

this reservation.

On the reserved date, the customer will drive the to the service center. After

confirm the information of reservation, the staff will let the technician to checking the

car and lists out the problems of the car with suggested solutions to fix the problems.

The staff will call the customer to talk about the result of checking car and ask the

customer to choose and agree the suggested solutions. After the customer selected the

solutions that want to apply to the car, the staff will let the technician to repairing the

16

car according to the solutions that customer selected. After finish repairing the car,

staff will call customer again to announce the customer to pick up the car.

The process of servicing car is complicated and involved a lot of

communication between customer and staff. The best way of the communication for

the current system is through the phone calling so that the customer needs to give out

the decision in a short time during the call. The progress and time of servicing process

is unpredictable, so the customer unable to prepare for the arrival of each stage of the

process.

Figure 3.1: Activity Diagram of Make Reservation for Current System

17

Figure 3.2: Activity Diagram of Service Car for Current System

3.3 Requirement Analysis

The requirement analysis discusses about some important requirements in this

project which are the data requirement, functional requirement and also non-functional

requirement.

3.3.1 Data Requirement

This section discusses about the system input and output, and also the data that

store internally in the system. The data requirement is represented by using data

dictionary and there are thirteen tables are involved.

18

Table 3.1: Data Dictionary of Customer

Name Type Null Constraint Description

customer_id integer no Primary

Key

Unique ID of customers

name varchar no - Name of customers

phone_no varchar no Unique Phone number of customers

email varchar yes Unique Email of customers

password varchar yes - Password of customers who are app

user only

type varchar no - Type of customers which have “app

user” and “normal user”

Table 3.2: Data Dictionary of Car

Name Type Null Constraint Description

car_id integer no Primary Key Unique ID of cars

plate_no varchar no Unique Plate number of cars

model_id integer no Foreign Key Unique ID of car models

customer_id integer no Foreign Key Unique ID of customers

Table 3.3: Data Dictionary of Model

Name Type Null Constraint Description

model_id integer no Primary Key Unique ID of car models

name varchar no Unique Name of car models

brand_id integer no Foreign Key Unique ID of car brands

19

Table 3.4: Data Dictionary of Brand

Name Type Null Constraint Description

brand_id integer no Primary Key Unique ID of car brands

name varchar no Unique Name of car brands

Table 3.5: Data Dictionary of Branch

Name Type Null Constraint Description

branch_id integer no Primary

Key

Unique ID of branches

name varchar no Unique Name of branches

location varchar no - Location of branches

email varchar no Unique Email of branches

password varchar no - Password of branches

datetime_register datetime no - Date time of registration of

branches

Table 3.6: Data Dictionary of Branch_Service

Name Type Null Constraint Description

bs_id integer no Primary

Key

Unique ID of service that had

provided by branch

branch_id integer no Foreign

Key

Unique ID of branches

service_id integer no Foreign

Key

Unique ID of service

bs_availability boolean no - True if the service of branch is

available, false otherwise

20

Table 3.7: Data Dictionary of Service

Name Type Null Constraint Description

service_id integer no Primary Key Unique ID of services

name varchar no Unique Name of services

description varchar no - Description of services

fee decimal no - Fee of services in RM

Table 3.8: Data Dictionary of Task

Name Type Null Constraint Description

task_id integer no Primary Key Unique ID of tasks

description varchar no - Description of tasks

service_id integer no Foreign Key Unique ID of services

Table 3.9: Data Dictionary of Action

Name Type Null Constraint Description

action_id integer no Primary Key Unique ID of actions

description varchar no - Description of actions

price decimal no - Price of actions

task_id integer no Foreign Key Unique ID of tasks

model_id integer no Foreign Key Unique ID of car models

21

Table 3.10: Data Dictionary of Reservation

Name Type Null Constraint Description

reservation_id integer no Primary

Key

Unique ID of reservations

datetime_reserved datetime no - Date time created of

reservations

datetime_to_service

datetime no - Date time to service of

reservations

status varchar no - Status of reservations which

have “reserved”, “servicing”,

“serviced”, “completed”, and

“cancelled”.

remark varchar yes - Remark of reservations

car_id integer no Foreign

Key

Unique ID of cars

branch_id integer no Foreign

Key

Unique ID of branches

Table 3.11: Data Dictionary of History

Name Type Null Constraint Description

history_id integer no Primary Key Unique ID of histories

reservation_id integer no Foreign Key Unique ID of reservations

payment_id integer no Foreign Key Unique ID of car payments

Table 3.12: Data Dictionary of Payment

Name Type Null Constraint Description

payment_id integer no Primary Key Unique ID of payments

datetime_paid datetime no - Date time of payments

total_paid decimal no - Total paid of payments in RM

22

Table 3.13: Data Dictionary of Implemented_Action

Name Type Null Constraint Description

i_action_id integer no Primary Key Unique ID of implemented actions

history_id integer no Foreign Key Unique ID of histories

action_id integer no Foreign Key Unique ID of actions

3.3.2 Functional Requirement

This section discusses about the functions of the system, how it records,

compute, trans- forms, and transmits data. The functional requirement is represented

by using Use Case Diagram with the specification.

Figure 3.3: Use Case Diagram of CaSS

23

Figure 3.3 shows the Use Case Diagram of the system. The customer should

be able to login and register to the system. The customer should be able to manage the

car by adding, updating, and removing the car from the system. The customer should

be able to make the reservation for the car that had been added to the system. The

customer also should be able to track the service process once the service had started.

The customer should be able to edit the profile such as change the email address or

phone number that registered in the system. Besides, the staff should be able to

authenticate by the branch account with the password. The staff should be able to

manage the reservations of the customers with their cars. The staff also should be able

to handle the service process which can update the service progress. The staff should

be able to manage the customers such as adding a new customer or update the customer

information.

3.3.3 Non-Functional Requirement

Non-functional requirement is the requirement that can specify how well the

system performs its intended function. Table 3.14 shows the non-functional

requirements that involved in this system.

Table 3.14: Non-Functional Requirements of CaSS

Category Description

Performance The system should be able to load the page within 10 seconds.

Security The system should be able to distinguish between authorized and

non-authorized users.

Availability The system should be available for 24 hours.

Integrity Whenever a change is made, the changes shall be updated in the

database.

24

3.3.4 Others Requirement

Other requirement is the software, hardware and requirements that will be used

in the system. The internet connection should be available all the time while using the

system. Only the smart phone with the Android OS can be use the customer mobile

application while only the computer with Windows OS can be use the branch desktop

application.

3.4 Conclusion

This chapter analyzed the problem and requirement for the project. There are

many requirements such as data requirement, functional requirement, non-functional

requirement and also other requirement are analyzed from the current system. Next

chapter will start to design the proposed system according to these requirements.

CHAPTER 4: DESIGN

4.1 Introduction

This chapter will discuss the system design and the activities involved. The

activities involved includes converting information, functional, and non-functional

requirements that was identified in the analysis phase into the design specification.

This chapter will also discuss about the detailed design which included the software

design and physical database design.

4.2 High-Level Design

This section discusses about the high-level view of the structure and interior of

the system. The high-level design contains the system architecture, user interface

design, and also the database design.

26

4.2.1 System Architecture

Figure 4.1 shows the architecture view of the system. There are three tiers

involved in the architecture design which are presentation tier, logic tier and data tier.

User access to the presentation tier with different devices according to the user type.

The presentation tier will communicate with logic tier, which is a RESTful API web

service through the HTTP request. Then, the web service will send the query to the

data tier asynchronously. After the query had been execute by database, the data will

be sent back to the web service and the web service will encapsulate the data into JSON

format. The JSON data is send back to the presentation tier through HTTP response

with the response status.

Customer

Staff

Users

Mobile App

Desktop App

Database

Presentation

Tier

HTTP Request

HTTP Response
Web Service

Logic Tier Data Tier

Query

Data

Figure 4.1: Architecture View of CaSS

27

4.2.2 User Interface Design

This section discusses about the user interface design of the system which

included the navigation design, input design and output design. The navigation design

defined the navigation flow and types of navigation control. Input design defined the

screen used to enter the information, as well as any forms on which users write or type

information with the validation rule for each input field. Output design defined the

types of outputs including detail reports, summary reports, turnaround documents and

graphs and the output is classified in term of periodically or ad-hoc basis.

4.2.2.1 UI Design of CaSS Branch

Figure 4.2 shows the login screen of CaSS Branch. The Staff need to enter the

branch email with the correct password to login to the system. The email and password

fields are required and the format of email will be validated.

Figure 4.2: Login Screen of CaSS Branch

28

Figure 4.3 and Figure 4.4 show the dashboard screen of CaSS Branch. There

are three panels in this screen which are the reservation overview panel, reservation

statistic panel and service ranking panel. Reservation overview panel shows the total

and today reservations that divided according to the status of reservation. Reservation

statistic panel shows the graph of reservations in a specific year. Service ranking panel

shows the ranking of the service which the customer chosen the most in the

reservation.

Figure 4.3: Dashboard Screen 1 of CaSS Branch

Figure 4.4: Dashboard Screen 2 of CaSS Branch

29

Figure 4.5, Figure 4.6 and Figure 4.7 show the booking screen of CaSS Branch

in different view. The staff is able to view the reservation detail by clicking the events

on the calendar. The staff is able to filter the reservation displayed by the status of the

reservation. The staff is also able to make a new reservation to the calendar. Figure 4.8

shows the add reservation dialog.

Figure 4.5:Booking Screen in Month View of CaSS Branch

Figure 4.6:Booking Screen in Week View of CaSS Branch

30

Figure 4.7:Booking Screen in Schedule View of CaSS Branch

Figure 4.8: Add New Booking Dialog of CaSS Branch

31

Figure 4.9, Figure 4.10, Figure 4.11, and Figure 4.12 show the service screen

of CaSS Branch with different status of reservation selected. The staff is able to click

and view the today reservation at the today reservation aside which arranged the

reservations according to the status (cancelled reservation will not be shown). The staff

can click the start servicing button for the upcoming reservation to start the servicing

process. The service screen is able to process multitask so the staff can start multiple

servicing at the same times.

Figure 4.12, Figure 4.13, Figure 4.14, and Figure 4.15 show the service screen

of CaSS Branch that the servicing reservation in the different progress step. In progress

1, the staff is able to select the actions according to the checking result of each task. In

progress 2, the staff need to wait the customer response by the customer mobile app.

If the customer does not response, the staff need to contact the customer manually and

help the customer to response by clicking the button response at the bottom right

corner. In progress 3, the staff need to update the repairing progress. In the progress 4,

the servicing process is completed and needed to waiting the customer to pick up the

car after payment is made. The status will be updated to “Completed” after customer

had made the payment.

Figure 4.9: Service Screen No Selected of CaSS Branch

32

Figure 4.10: Service Screen Upcoming of CaSS Branch

Figure 4.11: Service Screen Completed of CaSS Branch

33

Figure 4.12: Service Screen Servicing 1 of CaSS Branch

Figure 4.13: Service Screen Servicing 2 of CaSS Branch

34

Figure 4.14: Service Screen Servicing 3 of CaSS Branch

Figure 4.15: Service Screen Servicing 4 of CaSS Branch

35

Figure 4.16 shows the customer screen of CaSS Branch. This screen will show

all the customers in a pagination table The staff are able to search the customer by the

customer ID or name. The staff also able to add a new customer for those customers

who do not use the customer mobile app. The staff are able to see the detail of specific

customer by clicking the customer at the table. Figure 4.17 shows the detail customer

screen of CaSS Branch. The staff are able to view the reservations made by this

customer and also add a new car information for this customer.

Figure 4.16: Customer Screen of CaSS Branch

Figure 4.17: Customer Detail Screen of CaSS Branch

36

4.2.2.2 UI Design of CaSS Customer

Figure 4.18 shows the authentication screen of CaSS Customer. The customer

need to login to the system by using email and password. The customer also able to

register a new account by filling the required information.

Figure 4.18: Authentication Screen of CaSS Customer

37

Figure 4.19 shows the car screen of CaSS Customer. The customer is able to

view the added cars or add a new car to the system.

Figure 4.19: Car Screen of CaSS Customer

38

Figurer 4.20 shows the booking screen of CaSS Customer. The customer is

able to view all the made booking or add a new booking for the car.

Figure 4.20: Booking Screen of CaSS Customer

39

Figure 4.21, Figure 4.22, Figure 4.23, Figure 4.24, and Figure 4.25 shows the

service screen of CaSS Customer with different progress step. Figure 4.21 show the

service screen that does not have servicing car.

Figure 4.21: Service Screen No Servicing of CaSS Customer

40

Figure 4.22 shows the service screen in progress 1. The screen is update to

progress 1 after the service process is started by the branch. The screen will show the

progress that updated in real-time from the branch. The current task and the progress

percentage will be tracked and shown.

Figure 4.22: Service Screen Progress 1 of CaSS Customer

41

Figure 4.23 shows the service screen in progress 2. The screen is updated to

progress two after the progress 1 is done. The customer is able to select the action that

want to apply to the car. After clicking continue, the progress will update and proceed.

Figure 4.23: Service Screen Progress 2 of CaSS Customer

42

Figure 4.24 shows the service screen in progress 3. The screen will show the

percentage of the progress that the actions to be implemented to the car. The customer

is able to track the progress in real-time of the repairing process. The current

implemented action will be shown with the current progress.

Figure 4.24: Service Screen Progress 3 of CaSS Customer

43

Figure 4.25 shows the service screen in progress 4. The screen is updated to

progress 4 after all the repairing process had been done. This screen shows the message

that notifies the customer which the car had been done for servicing and prompt the

customer to go to the branch for picking up the car. After the payment had been made

by customer, this screen will be reset to the no servicing screen as shown in the Figure

4.21.

Figure 4.25: Service Screen Progress 4 of CaSS Customer

44

4.2.3 Database Design

This section discusses about the conceptual and logical database design. The

database design is represented by using Entity Relationship Diagram (ERD) which had

been normalized to avoid the data redundancy.

4.2.3.1 Conceptual and Logical Database Design

Figure 4.26 shows the conceptual database design by using ER diagram which

constructed according the business rules of the system. Figure 4.27 shows the logical

database design which enriched from conceptual database design by defining explicitly

the columns in each entity and introducing operational and transactional entities. The

business rules are listed at the below statements:

• Customers should own one or more cars.

• Customers can reserve the service for their cars.

• Branches should provide at least one service.

• The service should have at least one checking task.

• The task should able to implement the one or more actions such as replace

specific part to the car after the task had been perform.

Figure 4.26: Conceptual Database Design of CaSS

45

Figure 4.27: Logical Database Design of CaSS

4.3 Detail Design

This section discusses about the logic of the design and the approach to

satisfying the requirement. The software design will describe about how will the

system function in the classes of each method. The physical database design will

describe about the final design of the database based on the DBMS of the system.

46

4.3.1 Software Design

4.3.1.1 Class LoginPage

Responsibility Display the login page

Attributes -

i. onLogin

Responsibility Handle the login process

Input Parameter email, password

Output Parameter -

Pre-Condition email and password are validated

Post-Condition initialize customer static instance

ii. onRegister

Responsibility Navigate to register page

Input Parameter -

Output Parameter -

Pre-Condition -

Post-Condition -

4.3.1.2 Class RegisterPage

Responsibility Display the register page

Attributes -

i. onLogin

Responsibility Navigate to login page

Input Parameter -

Output Parameter -

Pre-Condition -

Post-Condition -

ii. onRegister

47

Responsibility Handle the register process

Input Parameter name, phone number, email, password

Output Parameter -

Pre-Condition input parameter had been validated

Post-Condition -

4.3.1.3 Class CarPage

Responsibility Display the car page

Attributes list of cars

i. fetchCars

Responsibility Get cars from API

Input Parameter customer id

Output Parameter list of cars

Pre-Condition call before page loaded

Post-Condition -

ii. onCarClick

Responsibility Navigate to car detail page

Input Parameter selected car

Output Parameter -

Pre-Condition -

Post-Condition -

4.3.1.4 Class BookingPage

Responsibility Display the booking page

Attributes list of bookings

i. fetchBookings

Responsibility Get bookings from API

48

Input Parameter customer id

Output Parameter list of bookings

Pre-Condition call before page loaded

Post-Condition -

ii. onBookingClick

Responsibility Navigate to booking detail page

Input Parameter selected booking

Output Parameter -

Pre-Condition -

Post-Condition -

4.3.1.5 Class ServicePage

Responsibility Display the service page

Attributes servicing booking

i. fetchBooking

Responsibility Get booking from API

Input Parameter booking status

Output Parameter booking

Pre-Condition status is set to “Servicing”

Post-Condition -

ii. onRefreshClick

Responsibility Reload the service page

Input Parameter -

Output Parameter -

Pre-Condition -

Post-Condition page refreshed

49

4.3.1.6 Class ProfilePage

Responsibility Display the profile page

Attributes

iii. onUpdate

Responsibility Update the field selected

Input Parameter field, value

Output Parameter -

Pre-Condition -

Post-Condition -

iv. onLogout

Responsibility Navigate to login page

Input Parameter -

Output Parameter -

Pre-Condition -

Post-Condition Clear customer static instance

50

4.3.2 Physical Database Design

This section discusses about the physical database design which translated

from logical to target DBMS (MySQL) – base tables. Figure 4.28 shows the physical

database design of the system.

Figure 4.28: Physical Database Design of CaSS

4.4 Conclusion

The application will need to be designed as discussed in this chapter to ensure

proper integration, as the system will interact with multiple environments which are a

mobile application, a desktop application, a web service, and the localhost database.

The user interfaces designed to be user-friendly.

CHAPTER 5: IMPLEMENTATION

5.1 Introduction

This chapter discusses about the implementation of this project. The

implementation includes setup of the software development environment and setup of

the software configuration environment. The version control of the project is

importance and the procedure will be discussed also in this chapter.

5.2 Software Development Environment Setup

Figure 5.1 shows the deployment diagram of the system. The development

environment is setup with four device nodes which are the mobile device, personal

computer (PC), web server and database server. The CaSS customer application will

be installed in the mobile device with the Android operating system. The CaSS branch

application will be installed in the branch PC with the Windows operating system.

These two device nodes are communicated with web server node by using JSON

through the REST architecture. The web server is always listening to the port after

executing app.js in the NodeJS environment. The web server act as a RESTful API

web service which handle the request and response from the clients. The web server

will retrieve the data from the database server by sequelization when received the

request from clients and the raw data will be encapsulated in to JSON format with the

response status then response to the clients. The implemented sample source codes of

CaSS Branch, CaSS Customer and CaSS API are attached in Appendix A, Appendix

B and Appendix C respectively.

52

Figure 5.1: Deployment Diagram of CaSS

5.3 Software Configuration Management

This section discusses about the software configuration management which

included the configuration environment setup and the version control procedure.

5.3.1 Configuration Environment Setup

To setup the configuration environment, Visual Studio Code is chosen as the

integrated development environment (IDE) to develop the artifacts that stated in

deployment diagram in Figure 5.

Flutter is installed as a framework to develop the front-end of the system. As

default, Flutter provided the environment to develop the mobile application so the

CaSS Customer can directly start to development without adding the additional

configuration. To enable the development of desktop application with Flutter, Flutter

had to update as a beta version and add the configuration to enable the desktop

development with specific platform.

Web server of the system is a RESTful API which developed by using

Express. To use the Express, NodeJS is needed to be installed first so the

package of Express can be installed through the npm command.

53

5.3.2 Version Control Procedure

Version control is an important process of tracking and managing different

versions of the project. The source code of the project is managing remotely by using

GitHub. Visual Studio Code provides the feature of source control by using Git and

also GitHub. After setup the configuration environments, the first commit is

committed on the main branch by Git locally and then push to the GitHub. Whenever

a module is completed, it will be committed to the Git and GitHub with a short

comment. Figure 5.2 shows the screenshot of the CaSS on GitHub with the committed

comments and date.

Figure 5.2: Main Page of CaSS on GitHub

5.4 Implementation Status

This section discusses about the progress of the development status for each

module. Table 5.1 shows the progress of the development status of the CaSS Customer

while Table 5.2 shows the progress of the development status of the CaSS Branch.

Table 5.1: Development Status of CaSS Customer

Module Name Description Duration to

Complete

54

Authentication

Module

A module which handles the authentication of

the customer.

3 days

Car Module A module which displays and manages the cars

of the customer added.

5 days

Reservation

Module

A module which enables the customer to view

and find the car service centers and handles the

reservation of car service such as make, modify,

and cancel the reservation.

10 days

Service Module A module which enables the customer to track

and update the current servicing status.

14 days

Profile Module A module which enables the customer to manage

the profile of the customer.

3 days

Table 5.2: Development Status of CaSS Branch

Module Name Description Duration to

Complete

Authentication

Module

A module which handles the authentication of

the staff of the branch.

3 days

Dashboard

Module

A module which displays the dashboard with

the summary and visualized information of the

reservation.

5 days

Customer

Module

A module which manages the customer by

adding, modifying, and disabling customer.

5 days

Reservation

Module

A module which enables the staff handles the

reservation of car service such as make,

modify, and cancel the reservation.

10 days

Service Module A module which enables the staff to start the

servicing and update the current servicing

status.

14 days

55

5.5 Conclusion

The implementation phase is the building phase of the system, something

which is crucial to be kept track of. This chapter presents the environment and the

configuration required to build the system to ensure smooth development.

CHAPTER 6: TESTING

6.1 Introduction

Software Testing is the processes used to ensure that we can complete our

project with minimized error and bugs in our functional and non-functional

requirements. Testing method and SDLC that we had chosen are closely related as

Software Testing is an integral part of any development methodology. This chapter

discusses the testing process which included the test plan, test strategy, test design, and

test results and analysis.

6.2 Test Plan

This section discusses about the test plan of the system. Test plan is a detailed

document to perform testing for a software product. Test plan is important to help the

client to understand the detail of testing. The test plan of this project is mainly focus

on describing the test organization, test environment, and test schedule of the system.

6.2.1 Test Organization

Test organization is a procedure of defining roles in the testing process. It

defines who is responsible for which activities in testing process. Table 6.1 shows the

testing team structure of the project. In this project, I will play all the following roles

and responsibilities throughout the whole testing process. However, some people are

invited as a tester to execute the test cases of the project. Table 6.2 shows the

information of testers in test organization.

57

Table 6.1: Testing Team Structure of CaSS

Role Responsibility

Test Manager Manage the testing process of whole project and define the

testing direction of the project.

Tester Create or execute the test cases and record the log results.

Developer in

Test

Create a test program or automation scripts to test the code.

Test

Administrator

Setup and ensure the test environment and support the team to

use the test environment for test execution.

SQA Members Check to confirm whether the testing process is meeting

specified requirements.

Table 6.2: Test Organization of CaSS

Tester ID Name Age Job

T001 Tiang King Jeck 24 Student

T002 Chon Yao Jun 23 Student

T003 Lee Jong Feng 23 Student

T004 Tan Zhi Zhong 23 Student

T005 Koh Kok Sheng 23 Student

6.2.2 Test Environment

A testing environment is a setup of software and hardware on which the testing

team is going to execute test cases. The test environment consists of real business and

user environment, as well as physical environments, such as server, front-end running

environment.

The location of the testing to be carried out is one of the important testing

environments. The testing location is depended on the type of the subsystems. Since

CaSS Branch is the system used only at the front desk of the car service centre, the test

location will only be set indoors. However, Cass Customer is the mobile application

58

that allows customers to use the system from time to time, so the testing location will

be set in anywhere, either indoor or outdoor, as long as able to access the internet.

In addition to the testing location, hardware, firmware configurations,

preparations and training prior to testing also involved in testing environment setup.

Table 6.3 shows the testing environment setup of the system.

Table 6.3: Testing Environment Setup of CaSS

Testing

Environment

Description

Hardware • Laptop or desktop with Windows operating system

• Smart Phone with Android operating system

• Router

Firmware

Configuration

Not applicable.

Preparation • Setup the internet connection to all devices

• Start the database server and MySQL service

• Run the web server with the CaSS API

• Launch CaSS Branch and CaSS Customer

Training Training of testing will not be conducted as the whole

testing process will be handle by me.

6.2.3 Test Schedule

A test schedule includes the testing tasks or steps with the duration and

responsibilities. The test schedule of this project will focus on the cycles and duration

of the test to be conducted. Table 6.4 shows the test schedule of CaSS Branch and

CaSS Customer with their modules. The test cycle is about the number of testing cycle

needed in the testing process. The number of test cycle for each module is depended

on significance and complexity of the module in the whole project.

59

Table 6.4: Test Schedule of CaSS

Subsystem Module Cycle Duration

CaSS Customer Authentication 1 5 minutes

Car 3 15 minutes

Reservation 3 15 minutes

Service 5 30 minutes

Profile 1 5 minutes

CaSS Branch Authentication 1 5 minutes

Dashboard 1 5 minutes

Customer 3 15 minutes

Reservation 3 15 minutes

Service 5 30 minutes

6.3 Test Strategy

Test Strategy in software testing is defined as a set of guiding principles that

determines the test design and regulates how the software testing process will be done.

The objective of the test strategy is to provide a systematic approach to the software

testing process in order to ensure the quality, traceability, reliability and better

planning. (Hamilton, 2021) This project will use the White Box Testing, Black Box

Testing and the Integration Testing with Bottom up approach to perform the testing

process.

6.3.1 Classes of Tests

There are many types of testing can be executed which depended on the

requirements of the system. In this project, unit testing, integration testing and system

testing are emphasized.

Unit testing is a White Box Testing technique that is usually performed by the

developer and it is done during the coding phase. Therefore, unit testing will be

executed during the implementation phase by using local unit test features provided

by Flutter with Visual Studio Code. By adding the dependencies from test package and

60

flutter_test package to the Flutter test file, we can test all the functions and methods in

each class without running on devices or emulators. For the unit testing that need the

complex interactions with the framework, Mockito package are using to configure

mock objects for return some specific value that invoked and needed in testing.

Integration testing is a testing that focuses to expose the defects and the data

communication in the interaction between the integrated modules. This project will

use the bottom-up approach on the integration testing where the lowest level modules

will be tested first. Integration testing will be started after the unit testing had been

done and the testing will be executed based on the modules of the systems. Since the

project are developing the distributed systems which consist of two subsystems

communicated by using the web service, hence the integration testing will be executed

with two testing processes for CaSS Customer and CaSS Branch. The test cases are

defined according functionality of each module.

System testing is a Black Box Testing technique that validates the completed

software application as per the requirements. There are more than fifty types of system

testing that could be perform during the testing process. Usability testing, also known

as user experience (UX) testing is one of the common types of system testing to

measures user-friendliness of a software application. This project will perform the

usability testing in the system testing phase during the testing process.

6.4 Test Design

This section discusses the design of testing which included test description and

test data. The test design is designed based on the test plan and test strategy that stated

in the previous subtopics. Unit testing, integration testing and system testing will be

involved in this test design.

6.4.1 Test Description

Test description describes the detail of the testing execution of the system. This

project uses the test cases to perform the test execution. Test case identification, test

scenario, test step and expected result for each module are designed and documented.

61

Table 6.5 shows the test cases of CaSS Customer while Table 6.6 shows the test cases

of CaSS Branch.

Table 6.5: Test Cases of CaSS Customer

Test

Case ID

Test Scenario Test Steps Expected Result

CC1001 Check customer

register with

valid data.

1. Open CaSS Customer App.

2. Click register account link.

3. Enter name, phone number,

email, password and

confirmed password.

4. Click create account button.

A dialog shows

that registration is

successful.

CC1002 Check customer

register with

invalid data.

1. Open CaSS Customer App.

2. Click register account link.

3. Left the fields empty.

4. Click create account button.

The fields show

the error text to

prompt user enter

data.

CC1003 Check customer

login with valid

data.

1. Open CaSS Customer App.

2. Enter email and password.

3. Click login button.

The application

directs from login

page to car page.

CC1004 Check customer

login with

invalid data.

1. Open CaSS Customer App.

2. Left the fields empty.

3. Click login button.

The fields show

the error text to

prompt user enter

data.

CC1005 Check customer

forgot password

with valid

email.

1. Open CaSS Customer App.

2. Click forgot password link.

3. Enter email.

4. Click send button.

A dialog shows

that reset

password link had

been send to the

given email.

CC1006 Check customer

forgot password

with invalid

email.

1. Open CaSS Customer App.

2. Click forgot password link.

3. left the field empty.

4. Click send button.

The field shows

the error text to

prompt user enter

data.

62

CC2001 Check customer

adds car with

valid data.

1. Login CaSS Customer App.

2. Click “+” icon.

3. Enter car plate number.

4. Select car brand and model.

5. Click add button.

A dialog shows

that car is added

successfully.

CC2002 Check customer

adds car with

invalid data.

1. Login CaSS Customer App.

2. Click “+” icon.

3. Left the fields empty.

4. Click add button.

The fields show

the error text to

prompt user enter

data.

CC2003 Check customer

removes car.

1. Login CaSS Customer App.

2. Select a car from list.

3. Click remove button.

4. Confirm the remove.

A dialog shows

that car is

removed

successfully.

CC3001 Check customer

makes

reservation with

valid data.

1. Login CaSS Customer App.

2. Navigate to booking page.

3. Click “+” icon.

4. Select car, branch, service,

date and time.

5. Click booking button.

A dialog shows

that reservation is

booked

successfully.

CC3002 Check customer

makes

reservation with

invalid data.

1. Login CaSS Customer App.

2. Navigate to booking page.

3. Click “+” icon.

4. Left the field empty.

5. Click booking button.

The fields show

the error text to

prompt user select

data.

CC3003 Check customer

cancels

reservation.

1. Login CaSS Customer App.

2. Navigate to booking page.

3. Select a reservation from list.

4. Click cancel button.

5. Confirm the cancel.

A dialog shows

that reservation is

cancelled.

CC4001 Check servicing

start on time.

1. Login CaSS Customer App.

2. Navigate to service page.

3. Wait until service start.

4. Click refresh icon.

A progress of

servicing progress

step is shown.

63

CC4002 Check customer

selects actions

after car had

been checked.

1. Login CaSS Customer App.

2. Navigate to service page.

3. Click refresh after service is

started.

4. Wait the car checking

process finished.

5. Select the actions.

6. Click continue button.

The servicing

progress step is

proceeded to

repair step.

CC5001 Check customer

edits profile

with valid data.

1. Login CaSS Customer App.

2. Navigate to profile page.

3. Click email or password.

4. Enter new email and new

password.

5. Click save button.

A dialog shows

that profile is

edited and saved

successfully.

CC5002 Check customer

edits profile

with invalid

data.

1. Login CaSS Customer App.

2. Navigate to profile page.

3. Click email or password.

4. Left the fields empty.

5. Click save button.

The fields show

the error text to

prompt user enter

data.

CC5003 Check customer

logout.

1. Login CaSS Customer App.

2. Navigate to profile page.

3. Click logout button.

4. Confirm the logout.

The application

directs to login

page.

Table 6.6: Test Cases of CaSS Branch

Test

Case ID

Test Scenario Test Steps Expected Result

CB1001 Check staff

login with valid

data.

1. Open CaSS Branch App.

2. Enter email and password.

3. Click login button.

The application

directs to

dashboard page.

64

CB1002 Check staff

login with

invalid data.

1. Open CaSS Branch App.

2. Left the fields empty.

3. Click login button.

The fields show

the error text to

prompt user enter

data.

CB2001 Check staff

select year to

filter statistic.

1. Login CaSS Branch App.

2. Scroll to graph panel.

3. Select year from dropdown.

The graph is

changed to the

statistic of

selected year.

CB3001 Check staff

makes

reservation with

valid data.

1. Login CaSS Branch App.

2. Navigate to booking panel.

3. Click calendar icon.

4. Select customer, car, service,

date and time.

5. Click add button.

A dialog shows

that reservation is

booked

successfully.

CB3002 Check staff

makes

reservation with

invalid data.

1. Login CaSS Branch App.

2. Navigate to booking panel.

3. Click calendar icon.

4. Left the field empty.

5. Click add button.

The fields show

the error text to

prompt user select

data.

CB3003 Check staff

cancels

reservation.

1. Login CaSS Branch App.

2. Navigate to booking panel.

3. Select a reservation from

calendar.

4. Click cancel button.

5. Confirm the cancel.

A dialog shows

that reservation is

cancelled.

CB3004 Check staff

filters

reservation by

status.

1. Login CaSS Branch App.

2. Navigate to booking panel.

3. Click filter icon.

4. Select statuses.

5. Click filter button.

The calendar is

refreshed and

shown only the

reservations with

filtered status.

CB4001 Check staff

starts service on

timed.

1. Login CaSS Branch App.

2. Navigate to service panel.

The service is

started and the

65

3. Select a reservation from

today services list.

4. Wait the time match on time.

5. Click start service button.

servicing progress

is updated.

CB4002 Check staff

selects actions

during the car

checking

process.

1. Login CaSS Branch App.

2. Navigate to service panel.

3. Select a reservation from

today services list.

4. Wait the time match on time.

5. Click start service button.

6. Select the tasks and click

next button.

7. Repeat step 6 until progress

1 is done.

The servicing

progress step is

proceeded and

updated.

CB4003 Check staff

updates

progress after

done an action.

1. Login CaSS Branch App.

2. Navigate to service panel.

3. Select a reservation from

today services list.

4. Wait the time match on time.

5. Click start service button.

6. Proceed to repairing step.

7. Click next after the repair

action done.

8. Repeat step 7 until progress

3 is done.

The servicing

progress step is

proceeded and

updated.

CB5001 Check staff

adds a customer

with valid data

1. Login CaSS Branch App.

2. Navigate to customer panel.

3. Click “+” icon.

4. Enter name, phone number

and email.

5. Click add button.

A dialog shows

that customer is

added

successfully.

CB5002 Check staff

adds a customer

1. Login CaSS Branch App.

2. Navigate to customer panel.

The fields show

the error text to

66

with invalid

data.

3. Click “+” icon.

4. Left the fields empty.

5. Click add button.

prompt user enter

data.

CB5003 Check staff

searches

customer.

1. Login CaSS Branch App.

2. Navigate to customer panel.

3. Enter search key in search

bar and click search.

The list of

customers

updated with

search results.

CB5004 Check staff

adds a car for

the customer

with valid data.

1. Login CaSS Branch App.

2. Navigate to customer panel.

3. Select a customer from list.

4. Click “+” icon.

5. Enter car plate number.

6. Select car brand and model.

7. Click add button.

A dialog shows

that car is added

successfully.

CB5005 Check staff

adds a car for

the customer

with invalid

data.

1. Login CaSS Branch App.

2. Navigate to customer panel.

3. Select a customer from list.

4. Click “+” icon.

5. Left the fields empty.

6. Click add button.

The fields show

the error text to

prompt user enter

data.

CB5006 Check staff

filter the

reservations of

customer by car.

1. Login CaSS Branch App.

2. Navigate to customer panel.

3. Select a customer from list.

4. Select a car from dropdown.

The list of

reservations

filtered with the

car selected.

CB6001 Check staff

logout.

1. Login CaSS Branch App.

2. Click logout button.

3. Confirm the logout.

The application

directs to login

page.

67

6.4.2 Test Data

The test data had been prepared for the tester to input during the execution of

the test cases according to the test case ID. Table 6.7 shows the test data for the test

cases of CaSS Customer while Table 6.8 shows the test data for the test cases of CaSS

Branch.

Table 6.7: Test Data of CaSS Customer

Test Case ID Test Field Input Method Test Data

CC1001 Name Key in Tiang King Jeck

Email Key in jeck9797@gmail.com

Phone Number Key in 0138042421

Password Key in P@ssw0rd

Confirmed Password Key in P@ssw0rd

CC1002 Name Key in (Left empty)

Email Key in (Left empty)

Phone Number Key in (Left empty)

Password Key in (Left empty)

Confirmed Password Key in (Left empty)

CC1003 Email Key in jeck9797@gmail.com

Password Key in P@ssw0rd

CC1004 Email Key in (Left empty)

Password Key in (Left empty)

CC1005 Email Key in jeck9797@gmail.com

CC1006 Email Key in (Left empty)

CC2001 Plate Number Key in PKK1884

Car Brand Select Perodua

Car Model Select Myvi

CC2002 Plate Number Key in (Left empty)

Car Brand Select (Not select)

Car Model Select (Not select)

CC2003 (No field needed) Click (No data needed)

CC3001 Car Select PKK1884

mailto:jeck9797@gmail.com
mailto:jeck9797@gmail.com
mailto:jeck9797@gmail.com

68

Branch Select CaSS Jelutong

Service Select Oil Change Service

Date Select 22 August 2021

Time Select 14:00

CC3002 Car Select (Not select)

Branch Select (Not select)

Service Select (Not select)

Date Select (Not select)

Time Select (Not select)

CC3003 (No field needed) Click (No data needed)

CC4001 (No field needed) Click (No data needed)

CC4002 Actions Select Refill and replace oil

CC5001 Email Key in tiangkingjeck@gmail.com

Password Key in n3w_P@ssword

CC5002 Email Key in (Left empty)

Password Key in (Left empty)

CC5003 (No field needed) Click (No data needed)

Table 6.8: Test Cases of CaSS Branch

Test Case ID Test Field Input Method Test Data

CB1001 Email Key in cassb001@mail.com

Password Key in P@ssw0rd

CB1002 Email Key in (Left empty)

Password Key in (Left empty)

CB2001 Year Select 2020

CB3001 Customer Select Tiang King Jeck

Car Select PKK1884

Service Select Scheduled Maintenance Service

Date Select 23 August 2021

Time Select 16:00

CB3002 Customer Select (Not select)

mailto:cassb001@mail.com

69

Car Select (Not select)

Service Select (Not select)

Date Select (Not select)

Time Select (Not select)

CB3003 (No field needed) Click (No data needed)

CB3004 Status Select Cancelled

CB4001 (No field needed) Click (No data needed)

CB4002 Task 1 Select Action 2, Action 3

Task 2 Select (Not Select)

Task 3 Select Action 1, Action 4

Task 4 Select Action 5

Task 5 Select (Not select)

Task 6 Select Action 1, Action 2, Action 3

CB4003 (No field needed) Click (No data needed)

CB5001 Name Key in Koh Kok Sheng

Phone Number Key in 012457812

Email Key in koksheng@gmail.com

CB5002 Name Key in (Left empty)

Phone Number Key in (Left empty)

Email Key in (Left empty)

CB5003 Search key Key in sheng

CB5004 Plate Number Key in QAA2142

Car Brand Select Toyota

Car Model Select Vios

CB5005 Plate Number Key in (Left empty)

Car Brand Select (Not select)

Car Model Select (Not select)

CB5006 Car Select QAA2142

CB6001 (No field needed) Click (No data needed)

mailto:koksheng@gmail.com

70

6.5 Test Results and Analysis

Test results and analysis describes the results of testing after executing the test

cases defined in test description. The test is analyzed with test case identification, tester

identification, test case results (Success/Fail) and detailed documentation on the failed

test case. Table 6.9 shows the test results of CaSS Customer while Table 6.10 shows

the test results of CaSS Branch.

Each of the test cases are tested according to their test cycle and the test results

is simplified if the test case is succeeded. From the test results, the percentage of

success for Test Cases of CaSS Customer is 89.47% and the percentage of success for

Test Cases of CaSS Branch is 94.44%. The failures are due to unexpected error that

not from the function of the system because all the functions in the system is passed

after tested through Unit Testing.

Table 6.9: Test Cases of CaSS Customer

Test Case

ID

Tester

ID

Test Case

Result

Reason of Failed

CC1001 T001 Fail Web service is not started.

Success -

CC1002 T001 Success -

CC1003 T001 Success -

CC1004 T001 Success -

CC1005 T001 Success -

CC1006 T001 Success -

CC2001 T002 Success -

CC2002 T002 Success -

CC2003 T002 Success -

CC3001 T003 Success -

CC3002 T003 Success -

CC3003 T003 Success -

CC4001 T004 Fail Time zone of database not match with

time zone of system.

71

Success -

CC4002 T004 Success -

CC5001 T005 Success -

CC5002 T005 Success -

CC5003 T005 Success -

Table 6.10: Test Cases of CaSS Branch

Test Case

ID

Tester

ID

Test Case

Result

Reason of Failed

CB1001 T001 Success -

CB1002 T001 Success -

CB2001 T002 Success -

CB3001 T003 Success -

CB3002 T003 Success -

CB3003 T003 Success -

CB3004 T003 Success -

CB4001 T004 Success -

CB4002 T004 Success -

CB4003 T004 Success -

CB5001 T005 Fail Customer phone number duplicated.

Success -

CB5002 T005 Success -

CB5003 T005 Success -

CB5004 T005 Success -

CB5005 T005 Success -

CB5006 T005 Success -

CB6001 T001 Success -

72

6.6 Conclusion

This chapter is designed to ensure that the system is performed according to

the system specifications and that no error occurs. Device monitoring is then carried

out to know if the system is operating exactly as expected. It is also essential to

recognize system constraint to prepare for the challenges faced by this project.

CHAPTER 7: PROJECT CONCLUSION

7.1 Observation on Weaknesses and Strengths

From the development of this project and testing, it can be seen that the project

has multiple weaknesses it could improve on. However, it also has many strengths that

sets it apart from other systems in its genre.

One of the weaknesses of the system is the restriction of platform. The CaSS

Customer can only support on mobile smart phone with Android operating system

while the CaSS Branch can only support on personal computer with Windows

operating system. Figure 7.1 shows the platforms that can be installed by using Flutter

which include Windows and Android platforms. Besides, the performance of CaSS

Branch occupies too much resources from computer compared with normal desktop

application, especially for CPU and power usage of the computer. Figure 7.2 shows

the task manager of the computer that run the CaSS Branch application which occupied

¼ of the CPU usage.

Figure 7.1: Result of Flutter Doctor

74

Figure 7.2: Performance of CaSS Branch

The strength of the system is it provides a unique real-time tracking feature for

the servicing process. The real-time tracking process is handling by the web service

that designed for this system which ensure the tracking process is secure and efficient.

7.2 Propositions for Improvement

From the weaknesses of the system, we can see that there are many

propositions and improvement for this system.

The system can be developed to support more platforms. For example, the

CaSS Customer can be developed in IOS platform while the CaSS Branch can be

developed in MacOS and Linux platforms. Fortunately, Flutter supports many

platforms with one codebase development. Figure 7.3 shows the platforms that

supported by Flutter.

Figure 7.3: Supported Platforms by Flutter

75

Besides, the web service can be hosted to online server. The current web

service is running in localhost with the server which only allow the client applications

request to the API while accessed to the same Local Area Network (LAN) with the

server. Therefore, the web service or CaSS API should be hosted to online server to

enable the client application to access the web service in anywhere and anytime as

long as connected to the internet. Same to the database, the current local database

should also be stored in online. For example, databases can be stored in cloud services

which allow provide enough space for the users to store large amounts of data.

7.3 Project Contribution

The project mainly contributed to the automotive industry and concerned more

about the communication of data in real-time.

This project promotes the digitalization of the automotive industry. All of the

data of the car owners are stored into the database instead of recording on the papers

or sheets. The data are encapsulated to standard information and encrypted before

stored into the database. Besides, most of the activities also can be done without

conversing to each other such as make a reservation of service and check the status of

car which is servicing.

This project also promotes the technology of ubiquitous computing in Malaysia.

CaSS focused on the feature of tracking the process of servicing a car by exchange the

data in real-time. The percentage of the process completed is computed and updated

through the web service from time to time and simultaneously to all users. Therefore,

the users can now their servicing status in anytime and everywhere.

7.4 Conclusion

Car Service System really can be helpful and useful application to customer

and staff of car service center. Even though this system still has flaws and weakness,

I definitely keep hoping that the weakness can be resolved soon. I also hoping that all

the users will be happy and satisfied in using this system.

REFERENCES

Conway, L. (2021, June 1). Blockchain Explained. Retrieved from Investopedia:

https://www.investopedia.com/terms/b/blockchain.asp

Data Modeling: Conceptual vs Logical vs Physical Data Model. (n.d.). Retrieved from

Visual Paradigm: https://online.visual-paradigm.com/knowledge/visual-

modeling/conceptual-vs-logical-vs-physical-data-model/

Hamilton, T. (2021, August 30). TEST PLAN: What is, How to Create (with Example).

Retrieved from Guru99: https://www.guru99.com/what-everybody-ought-to-

know-about-test-planing.html

Nanda, V. (2021, March 8). Object-oriented Life Cycle Model in Software

Engineering. Retrieved from tutorialspoint:

https://www.tutorialspoint.com/object-oriented-life-cycle-model-in-software-

engineering

APPENDICES

Appendix A – Sample Source Code 1

// CaSS Branch – booking_main_page.dart

import 'package:cass_branch/api/reservation_api.dart';

import 'package:cass_branch/model/branch.dart';

import 'package:cass_branch/model/reservation.dart';

import 'package:cass_branch/utils/dialog_utils.dart';

import 'package:flutter/material.dart';

import 'package:modal_progress_hud/modal_progress_hud.dart';

import 'package:syncfusion_flutter_calendar/calendar.dart';

import 'add_booking_dialog.dart';

import 'booking_data_source.dart';

import 'booking_detail_dialog.dart';

class BookingMainPage extends StatefulWidget {

 static const String ROUTE = 'booking_main_page/';

 @override

 _BookingMainPageState createState() => _BookingMainPageState();

}

class _BookingMainPageState extends State<BookingMainPage> {

 BookingDataSource _bookingDataSource;

 List<Reservation> _reservations;

 List<Reservation> _filteredReservations;

 bool _isLoading;

 bool _isReservedChecked;

 bool _isServicingChecked;

 bool _isServicedChecked;

 bool _isCancelledChecked;

 DateTime _selectedDate;

 void _fetchReservations() async {

 setState(() => _isLoading = true);

 final response = await ReservationAPI.fetch(

 id: Branch.instance.id,

 type: ReservationAPI.TYPE_BRANCH,

);

 setState(() {

 if (response.isSuccess) {

 _reservations = response.data;

 _filterReservations();

 } else

 DialogUtils.show(context, response.message);

 _isLoading = false;

78

 });

 }

 void _filterReservations() {

 _filteredReservations = (_isReservedChecked &&

 _isServicingChecked &&

 _isServicedChecked &&

 _isCancelledChecked)

 ? _reservations

 : _reservations

 .where((r) =>

 (r.status == Reservation.STATUS.reserved &&

 _isReservedChecked) ||

 (r.status ==

 Reservation.STATUS.servicing &&

 _isServicingChecked) ||

 (r.status == Reservation.STATUS.serviced &&

 _isServicedChecked) ||

 (r.status == Reservation.STATUS.cancelled &&

 _isCancelledChecked))

 .toList();

 _bookingDataSource = BookingDataSource(_filteredReservations);

 }

 void _onFilter({

 @required bool reserved,

 @required bool servicing,

 @required bool serviced,

 @required bool cancelled,

 }) {

 setState(() {

 _isReservedChecked = reserved;

 _isServicingChecked = servicing;

 _isServicedChecked = serviced;

 _isCancelledChecked = cancelled;

 _filterReservations();

 });

 }

 @override

 void initState() {

 _reservations = [];

 _isLoading = false;

 _isReservedChecked = true;

 _isServicingChecked = true;

 _isServicedChecked = true;

 _isCancelledChecked = true;

 _fetchReservations();

 super.initState();

 }

79

 @override

 Widget build(BuildContext context) {

 return ModalProgressHUD(

 inAsyncCall: _isLoading,

 child: Scaffold(

 appBar: AppBar(

 title: Text(

 'Booking',

 style: Theme.of(context)

 .textTheme

 .headline5

 .copyWith(color: Colors.white),

),

 actions: [

 IconButton(

 icon: Icon(Icons.today_outlined),

 tooltip: 'Make booking',

 onPressed: () => showDialog(

 context: context,

 barrierDismissible: false,

 builder: (_) => AddBookingDialog(date: _selectedDate),

),

),

 _BookingStatusFilterPopupMenuButton(

 reserved: _isReservedChecked,

 servicing: _isServicingChecked,

 serviced: _isServicedChecked,

 cancelled: _isCancelledChecked,

 onFilter: _onFilter,

),

 IconButton(

 icon: Icon(Icons.refresh),

 tooltip: 'Refresh',

 onPressed: _fetchReservations,

),

],

),

 body: _BookingCalendar(_bookingDataSource, (d) => _selectedDate = d),

),

);

 }

}

class _BookingCalendar extends StatelessWidget {

 final BookingDataSource _bookingDataSource;

 final void Function(DateTime) onCalendarClick;

 _BookingCalendar(this._bookingDataSource, this.onCalendarClick);

 @override

 Widget build(BuildContext context) {

 return SfCalendar(

80

 timeZone: 'UTC',

 showNavigationArrow: true,

 showDatePickerButton: true,

 showCurrentTimeIndicator: true,

 allowedViews: [

 CalendarView.week,

 CalendarView.month,

 CalendarView.schedule,

],

 view: CalendarView.month,

 monthViewSettings: MonthViewSettings(

 showAgenda: true,

 dayFormat: 'EEE',

),

 dataSource: _bookingDataSource,

 onTap: (calendarTapDetails) {

 onCalendarClick(calendarTapDetails.date);

 if (calendarTapDetails.targetElement == CalendarElement.appointment) {

 showDialog(

 context: context,

 builder: (_) =>

 BookingDetailDialog(calendarTapDetails.appointments[0]),

);

 }

 },

);

 }

}

class _BookingStatusFilterPopupMenuButton extends StatelessWidget {

 final bool reserved;

 final bool servicing;

 final bool serviced;

 final bool cancelled;

 final void Function({

 @required bool reserved,

 @required bool servicing,

 @required bool serviced,

 @required bool cancelled,

 }) onFilter;

 _BookingStatusFilterPopupMenuButton({

 @required this.reserved,

 @required this.servicing,

 @required this.serviced,

 @required this.cancelled,

 @required this.onFilter,

 });

 @override

 Widget build(BuildContext context) {

81

 bool _reserved = reserved;

 bool _servicing = servicing;

 bool _serviced = serviced;

 bool _cancelled = cancelled;

 return PopupMenuButton(

 icon: Icon(Icons.filter_list),

 tooltip: 'Filter Status',

 itemBuilder: (context) => [

 PopupMenuItem<Widget>(

 child: Text(

 'Select the status to be filtered:',

 style: TextStyle(color: Colors.black),

),

 enabled: false,

 padding: EdgeInsets.symmetric(horizontal: 24.0),

),

 _checkbox(

 label: Reservation.STATUS.reserved,

 isChecked: _reserved,

 onChecked: (checked) => _reserved = checked,

),

 _checkbox(

 label: Reservation.STATUS.servicing,

 isChecked: _servicing,

 onChecked: (checked) => _servicing = checked,

),

 _checkbox(

 label: Reservation.STATUS.serviced,

 isChecked: _serviced,

 onChecked: (checked) => _serviced = checked,

),

 _checkbox(

 label: Reservation.STATUS.cancelled,

 isChecked: _cancelled,

 onChecked: (checked) => _cancelled = checked,

),

 PopupMenuItem<Widget>(child: Container(), enabled: false, height: 12),

 PopupMenuItem<Widget>(

 enabled: false,

 child: Center(

 child: ElevatedButton(

 child: Text('FILTER'),

 onPressed: () {

 onFilter(

 reserved: _reserved,

 servicing: _servicing,

 serviced: _serviced,

 cancelled: _cancelled,

);

 Navigator.of(context).pop();

82

 },

),

),

)

],

);

 }

 PopupMenuItem<CheckboxListTile> _checkbox({

 @required String label,

 @required bool isChecked,

 Function onChecked,

 }) {

 return PopupMenuItem(

 enabled: false,

 child: StatefulBuilder(

 builder: (context, setState) {

 return CheckboxListTile(

 activeColor: Reservation.STATUS.colors[label],

 controlAffinity: ListTileControlAffinity.leading,

 value: isChecked,

 title: Text(label),

 onChanged: (checked) {

 setState(() => isChecked = checked);

 onChecked(checked);

 },

);

 },

),

);

 }

}

83

Appendix B – Sample Source Code 2

// CaSS Customer – service_page.dart

import 'dart:async';

import 'dart:ui';

import 'package:cass_customer/api/booking_api.dart';

import 'package:cass_customer/api/service_api.dart';

import 'package:cass_customer/model/action.dart' as a;

import 'package:cass_customer/model/booking.dart';

import 'package:cass_customer/model/customer.dart';

import 'package:cass_customer/model/servicing.dart';

import 'package:cass_customer/utils/dialog_utils.dart';

import 'package:flutter/cupertino.dart';

import 'package:flutter/gestures.dart';

import 'package:flutter/material.dart';

import 'package:flutter/painting.dart';

import 'package:flutter/rendering.dart';

import 'package:flutter/widgets.dart';

import 'package:loading_overlay/loading_overlay.dart';

class ServicePage extends StatefulWidget {

 @override

 _ServicePageState createState() => _ServicePageState();

}

class _ServicePageState extends State<ServicePage> {

 Booking? _booking;

 Servicing? _servicing;

 List<String>? _tasks;

 List<a.Action>? _actions;

 List<String>? _acceptedActions;

 Timer? _timer;

 bool _isLoading = false;

 int _currentStep = 0;

 int _currentProgress = 0;

 final _progressTitles = [

 "CHECKING CAR",

 "SELECT ACTIONS TO APPLY",

 "REPARING",

 "COMPLETED",

];

 void _fetchServicing() async {

 setState(() => _isLoading = true);

 _reset();

 final response =

 await BookingAPI.fetchServicing(customer: Customer.instance!);

 if (response.isSuccess) {

 setState(() {

84

 _servicing = response.data;

 _booking = response.data!.booking;

 _currentStep = response.data!.step!;

 _currentProgress = response.data!.progress!;

 });

 if (_servicing?.progress == 0)

 _fetchTasks();

 else if (_servicing?.progress == 1)

 _fetchActions();

 else if (_servicing?.progress == 2) _fetchAcceptedActions();

 if (_servicing?.progress != 1) {

 if (_timer != null && _timer!.isActive) _timer!.cancel();

 _timer = Timer.periodic(Duration(seconds: 10), _timerCallback);

 }

 }

 setState(() => _isLoading = false);

 }

 void _fetchTasks() async {

 setState(() => _isLoading = true);

 final response = await ServiceAPI.fetchTasks(_booking!.service!);

 if (response.isSuccess) {

 setState(() {

 _tasks = response.data?.map((t) => t.description!).toList()

 ?..add("Checking completed!\nPrepareing for next step...");

 });

 } else

 DialogUtils.show(context, response.message!);

 setState(() => _isLoading = false);

 }

 void _fetchActions() async {

 setState(() => _isLoading = true);

 final response = await ServiceAPI.fetchActions(

 service: _booking!.service!,

 actions: _servicing!.actions!.join(","),

);

 if (response.isSuccess) {

 setState(() => _actions = response.data);

 } else

 DialogUtils.show(context, response.message!);

 setState(() => _isLoading = false);

 }

 void _fetchAcceptedActions() async {

 setState(() => _isLoading = true);

 final response = await ServiceAPI.fetchActions(

 service: _booking!.service!,

 actions: _servicing!.acceptedActions!.join(","),

);

 if (response.isSuccess) {

85

 setState(() {

 _acceptedActions = response.data?.map((t) => t.description!).toList()

 ?..add("Repairing completed!\nPrepareing for next step...");

 });

 } else

 DialogUtils.show(context, response.message!);

 setState(() => _isLoading = false);

 }

 void _timerCallback(Timer timer) async {

 final response = await BookingAPI.fetchServicing(booking: _booking!);

 if (response.isSuccess) {

 if (response.data!.step! > _currentStep) {

 setState(() {

 _servicing = response.data;

 _currentStep = _servicing!.step!;

 });

 }

 if (response.data!.progress! > _currentProgress) {

 setState(() {

 _servicing = response.data;

 _currentStep = _servicing!.step!;

 _currentProgress = _servicing!.progress!;

 });

 if (_servicing!.progress == 1) {

 timer.cancel();

 _fetchActions();

 }

 if (_servicing!.progress == 3) timer.cancel();

 }

 }

 }

 void _onStepContinue() async {

 _servicing!.acceptedActions =

 _actions!.where((a) => a.selected).map((a) => a.id.toString()).toList();

 _servicing!.progress = _servicing!.progress! + 1;

 _servicing!.step = 0;

 _servicing!.totalStep = _servicing!.acceptedActions!.length;

 setState(() => _isLoading = true);

 final response = await BookingAPI.updateServicing(

 servicing: _servicing!,

 booking: _booking!,

);

 if (response.isSuccess) {

 if (_timer != null && _timer!.isActive) _timer!.cancel();

 _timer = Timer.periodic(Duration(seconds: 10), _timerCallback);

 _fetchAcceptedActions();

 setState(() => _currentProgress++);

 } else

86

 DialogUtils.show(context, response.message!);

 setState(() => _isLoading = false);

 }

 void _reset() {

 setState(() {

 if (_timer != null && _timer!.isActive) _timer!.cancel();

 _booking = _servicing = _tasks = _actions = _acceptedActions = null;

 _currentStep = _currentProgress = 0;

 });

 }

 @override

 void initState() {

 _fetchServicing();

 super.initState();

 }

 @override

 void dispose() {

 if (_timer != null && _timer!.isActive) _timer!.cancel();

 super.dispose();

 }

 @override

 Widget build(BuildContext context) {

 return Scaffold(

 backgroundColor: Colors.indigo.shade100,

 body: LoadingOverlay(

 isLoading: _isLoading,

 child: _isLoading

 ? Container()

 : _servicing == null

 ? _noServicing()

 : Stepper(

 currentStep: _currentProgress,

 type: StepperType.vertical,

 physics: ScrollPhysics(),

 controlsBuilder: (_, {onStepCancel, onStepContinue}) {

 return _currentProgress == 1 && _actions != null

 ? Align(

 alignment: Alignment.centerLeft,

 child: ElevatedButton(

 onPressed: onStepContinue,

 child: Text("CONTINUE"),

),

)

 : Container();

 },

 onStepContinue: _onStepContinue,

 steps: List.generate(_progressTitles.length, (index) {

87

 return Step(

 title: Text(

 _progressTitles[index],

 style: TextStyle(

 color: index <= _currentProgress

 ? Colors.indigo

 : Colors.grey.shade600,

 fontWeight: FontWeight.bold,

),

),

 content: _getStepContent(index),

 isActive: _currentProgress >= index,

 state: _currentProgress > index

 ? StepState.complete

 : StepState.indexed,

);

 }),

),

),

 floatingActionButton: FloatingActionButton(

 heroTag: "fab_service_page",

 onPressed: _fetchServicing,

 child: Icon(Icons.refresh),

 tooltip: "Refresh",

),

);

 }

 Widget _noServicing() {

 return Column(

 mainAxisAlignment: MainAxisAlignment.center,

 crossAxisAlignment: CrossAxisAlignment.stretch,

 children: [

 CircleAvatar(

 radius: 72,

 backgroundColor: Colors.white,

 child: Icon(

 Icons.handyman,

 size: 96,

 color: Colors.blueGrey,

),

),

 SizedBox(height: 12),

 Text(

 "No Servicing Car",

 style: TextStyle(fontSize: 24, fontWeight: FontWeight.bold),

 textAlign: TextAlign.center,

),

 Container(

 margin: EdgeInsets.symmetric(horizontal: 72, vertical: 12),

 child: RichText(

88

 text: TextSpan(

 style: TextStyle(color: Colors.blueGrey.shade800, fontSize: 16),

 children: [

 TextSpan(text: "Please "),

 TextSpan(

 text: "contact us",

 style: TextStyle(

 color: Colors.indigo,

 fontWeight: FontWeight.bold,

),

 recognizer: TapGestureRecognizer()..onTap = () {},

),

 TextSpan(text: " if your car doesn't service in time."),

],

),

),

),

],

);

 }

 Widget _getStepContent(int index) {

 switch (index) {

 case 0:

 return _tasks == null ? _progressIndicator() : _content0();

 case 1:

 return _actions == null ? _progressIndicator() : _content1();

 case 2:

 return _acceptedActions == null ? _progressIndicator() : _content2();

 case 3:

 return Card(

 elevation: 4,

 child: Container(

 width: double.infinity,

 padding: const EdgeInsets.all(24),

 child: Text(

 "Your car had completely serviced. You can pick-

up your car before 8:00pm today. 😁",

 style: TextStyle(

 fontSize: 18,

 color: Colors.blueGrey.shade700,

),

),

),

);

 default:

 return Container();

 }

 }

 Widget _content0() {

89

 return Card(

 elevation: 4,

 child: Container(

 padding: EdgeInsets.all(24),

 child: Column(

 children: [

 Stack(

 alignment: AlignmentDirectional.center,

 children: [

 Text(

 "${_servicing!.stepPercentage}%",

 style: TextStyle(

 fontWeight: FontWeight.bold,

 fontSize: 24,

 color: Colors.indigo,

),

),

 Container(

 width: 150,

 height: 150,

 child: CircularProgressIndicator(

 value: _servicing!.stepValue,

 strokeWidth: 12,

 backgroundColor: Colors.blueGrey.shade200,

),

),

 Container(

 width: 150,

 height: 150,

 child: CircularProgressIndicator(

 strokeWidth: 2,

 color: Colors.blueGrey.shade200,

),

),

],

),

 SizedBox(height: 24),

 Text(

 _tasks![_currentStep],

 style: TextStyle(

 fontSize: 18,

 color: Colors.blueGrey.shade700,

),

),

],

),

),

);

 }

 Widget _content1() {

90

 return Column(

 children: [

 Text(

 "Your car need to perform the following actions after checking by our

technical staff. Please select the actions which you agree to perform on your ca

r:",

 style: TextStyle(

 fontWeight: FontWeight.bold,

 color: Colors.blueGrey.shade700,

 fontSize: 16,

),

),

 SizedBox(height: 16),

 Card(

 elevation: 4,

 child: Container(

 padding: const EdgeInsets.symmetric(vertical: 24),

 child: Column(

 children: List.generate(_actions!.length, (index) {

 return CheckboxListTile(

 controlAffinity: ListTileControlAffinity.leading,

 value: _actions![index].selected,

 title: Text(_actions![index].description!),

 onChanged: (value) {

 setState(() {

 _actions![index].selected = value ?? false;

 });

 },

);

 }),

),

),

),

 SizedBox(height: 16),

],

);

 }

 Widget _content2() {

 return Card(

 elevation: 4,

 child: Container(

 padding: EdgeInsets.all(24),

 child: Column(

 children: [

 Container(

 padding: EdgeInsets.symmetric(vertical: 12),

 child: Stack(

 alignment: AlignmentDirectional.center,

 children: [

 Text(

91

 "${_servicing!.stepPercentage}%",

 style: TextStyle(

 fontWeight: FontWeight.bold,

 fontSize: 24,

 color: Colors.indigo,

),

),

 Container(

 width: 150,

 height: 150,

 child: CircularProgressIndicator(

 value: _servicing!.stepValue,

 strokeWidth: 12,

 backgroundColor: Colors.blueGrey.shade200,

),

),

 Container(

 width: 150,

 height: 150,

 child: CircularProgressIndicator(

 strokeWidth: 2,

 color: Colors.blueGrey.shade200,

),

),

],

),

),

 SizedBox(height: 12),

 Text(

 _acceptedActions![_currentStep],

 style: TextStyle(

 fontSize: 18,

 color: Colors.blueGrey.shade700,

),

),

],

),

),

);

 }

 Widget _progressIndicator() {

 return Center(

 child: Padding(

 padding: const EdgeInsets.all(24.0),

 child: CircularProgressIndicator(),

),

);

 }

}

92

Appendix C – Sample Source Code 3

// CaSS API – app.js

require("dotenv").config();

const express = require("express");

const app = express();

const cors = require("cors");

const branchRouter = require("./api/branches/router");

const customerRouter = require("./api/customers/router");

const carRouter = require("./api/cars/router");

const reservationRouter = require("./api/reservations/router");

const serviceRouter = require("./api/services/router");

app.use(cors());

app.use(express.json());

app.get("/", (req, res) => res.send("Hello World"));

app.use("/cass/api/branches", branchRouter);

app.use("/cass/api/customers", customerRouter);

app.use("/cass/api/cars", carRouter);

app.use("/cass/api/reservations", reservationRouter);

app.use("/cass/api/services", serviceRouter);

const PORT = process.env.PORT || 8080;

app.listen(PORT, () => console.log("Server listening on port", PORT));

