
SOFTWARE BASED LOAD BALANCING TO ENHANCE NETWORK

PERFORMANCE

AZLINDA BINTI AZMAN

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1

SOFTWARE BASED LOAD BALANCING TO ENHANCE NETWORK

PERFORMANCE

AZLINDA BINTI AZMAN

This report is submitted in partial fulfilment of the requirements for the Bachelor of

Computer Science (Computer Networking)

FAKULTI TEKNOLOGI MAKLUMAT DAN KOMUNIKASI

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

2

DEDICATION

To my beloved parents, thank you for bringing me into this world as a good human

being.

To all my friends who always support me in completing this project.

Thank you so much.

Lastly, special thanks for my supportive supervisor, thank you for all the motivation

and for believing in me completing this project.

May we all be blessed.

3

ACKNOWLEDGEMENT

Praise to the All Almighty, Allah SWT for giving me the opportunity and strength to

finish my Final Year Project. I would like to thank Dr Zaheera Zainal Abidin for her time

assisting me in completing this project successfully.

To my family, I would like to express my gratitude for their support and understanding

towards me throughout my journey in completing my project. Thank you to my mother Wan

Rizah Binti Shahid for inspiring me with your wonderful energy to keep me working hard to

complete this project.

To all of my friends that never stop giving advice and support towards me while

completing this project, big gratitude to you all. Hope everything will be good for you too.

Last but not least, I am grateful to Universiti Teknikal Malaysia Melaka (UTeM) for

providing me with this opportunity.

4

ABSTRACT

Software Defined Networking (SDN) is an architectural network approach that allows

software-based load balancer applications to control, programme and manage the network.

SDN separates the network configuration and data traffic from the root hardware infrastructure,

to ensure integrated and harmonious control of the network. The SDN enables network

behaviour to be programmed in a centralised manner using APIs.

Furthermore, users programme, manage the entire network and implement network

devices consistency by adopting a common SDN layer while disregarding the complexity of

the root network technology in the legacy network. In this project, SDN offers a lot of benefits

to find. SDN centralised network provisioning, allowing for enterprise management and

provisioning to be centralised. More VLANs, for example, are being created and part of the

physical LANs, which produce links of Gordian Knot and dependencies. As a matter of fact,

SDN offers benefits such as lower operating cost, administrative efficiency, improvements in

server utilization and a better control of virtualization.

However, SDN consists of limitations such as security problems and managing load

balancing. Security and load balancing are two common problems in SDN since hardware

routers and switches have been removed from the network, and security features such as

firewalls are no longer available in the network architecture. These limitations and

disadvantages of SDN are discussed and examined in this final year project to ensure that SDN

offers ways that are widely used in the future. Therefore, the SDN approach is simulated using

Mininet, and OpenDayLight to evaluate the characteristics and performance of the security and

load balancing to be operated on the network.

5

TABLE OF CONTENTS

Chapter 1: Introduction

1.1 Introduction 11

1.2 Problem Statement 11

1.3 Project Question 12

1.4 Project Objective 13

1.5 Project Scope 14

1.6 Project Contribution 14

1.7 Report Organization 15

1.8 Conclusion 16

Chapter 2: Literature Review

2.1 Software Defined Network 17

2.2 Load Balancing 22

2.2.1 Two types of Load Balancing 23

2.2.2 Network Load Balancing 23

2.2.3 Applications of SDN in Load Balancing 24

2.2.4 Load Balancing Techniques 24

2.2.4.1 Balance Flow 24

2.2.4.2 Hybrid Flow 25

2.2.5 Works Related Load Balancing 25

6

2.2.5.1 Round Robin 25

2.2.5.2 Least Connection 25

2.2.5.3 Agent Based Adaptive Load Balancing 26

2.2.5.4 Chained Failover 26

2.2.5.5 Weight Response Time 26

2.3 Project Software 27

2.3.1 Mininet 27

2.3.2 GNS3 27

2.3.3 OpenDayLight SDN Controller 27

2.3.4 Conclusion 28

2.4 Proposed Solution 28

2.5 Conclusion 29

Chapter 3: Methodology

3.1 Introduction 29

3.2 Methodology 30

3.2.1 Requirements 31

3.2.2 Design 31

3.2.3 Implementation 32

3.2.4 Testing 32

3.2.5 Deployment 32

3.3.6 Maintenance 32

7

3.3 Project Milestones 33

3.4 Conclusion 34

Chapter 4: Design

4.1 Introduction 35

4.2 Network Architecture 35

4.2.1 Software Defined Network Application 35

4.2.2 Software Defined Network Controllers 36

4.2.3 Experiment Setup of Software Defined Network Controllers 37

4.3 Possible Scenarios 39

4.3.1 Scenario A Single Topology. 40

4.3.2 Scenario B Linear Topology 40

4.3.3 Scenario B Tree Topology 42

4.4 Metric units of Measurement 43

4.5 Conclusion 43

Chapter 5: Implementation

5.1 Introduction 44

5.2 Environment Setup 44

5.2.1.Network Scenario Environment Setup 44

5.2.1.2 Scenario A Topology Environment Setup 46

5.2.1.3 Scenario C Topology Environment Setup 46

5.2.2 Controller Environment Setup 47

8

5.2.2.1 Load Balancing Controller Environment Setup 47

5.2.3 Network Monitoring Environment Setup 48

5.2.3.1 Wireshark Environment Setup 48

5.3 Conclusion 48

Chapter 6: Testing and Analysis

6.1 Introduction 49

6.2 Result and Analysis 50

6.2.1 Bandwidth Utilization 50

6.2.2 Packet Transmission Rate 52

6.2.3 Round Trip Time Delay 53

6.2.4 Throughput 55

6.3 Conclusion 58

Chapter 7: Project Conclusion

7.1 Introduction 59

7.2 Project Summarization 59

7.4 Project Limitation 61

7.5 Future Works 61

7.6 Conclusion 62

References

9

LIST OF FIGURE

Figure 3.1 Waterfall Model Illustration 31

Figure 4.1 Network Architecture 36

Figure 4.2.1 GNS3 Network Environment 37

Figure 4.2.2 Installing JAVA 37

Figure 4.2.3 Starting up OpenDayLight 37

Figure 4.2.4 Pinging Ubuntu Docker 38

Figure 4.2.5 Create Topology 38

Figure 4.2.6 Topology of created Network on Firefox 39

Figure 4.2.7 Pinging Host 1 and Host 9 39

Figure 4.2 Scenario A Single Topology 40

Figure 4.3 Scenario B Linear Topology 41

Figure 4.4 Scenario C Tree Topology 42

Figure 5.1: Scenario A Topology Configuration 48

Figure 5.2: Scenario B Topology Configuration 49

Figure 5.3: ScenarioC Topology Configuration 50

Figure 5.4: Load Balancing configuration on Mininet 50

Figure 5.5: Wireshark Environment 51

Chart 6.1: Bandwidth Utilization 54

Chart 6.2: Packets Transmission Rate 55

Chart 6.3: Minimum Round Trip Delay 57

Chart 6.4: Maximum Round Trip Delay 57

Chart 6.5: Maximum Throughput 58

Chart 6.6: Minimum Throughput 59

 LIST OF TABLES

10

Table 1.1 Summary of Problem Statement (PS) 11

Table 1.2 Summary of Problem Question 11

Table 1.3 Summary of Project Objective 12

Table 1.4: Summary of Project Contribution 13

Table 3.1 Project Milestones 33

Table 4.1 Calculation Formula 41

Table 6.1 Bandwidth Utilization 52

Table 6.2 Packets Transmitted Rate 55

Table 6.3 Round Trip Time Delay 54

Table 6.4 Summary Table 59

11

CHAPTER 1: INTRODUCTION

1.1 Introduction

Software-Designed Networking is an architectural network approach that allows the

network to be controlled, programmed and managed by software applications. SDN separates

the network configuration and traffic from the root hardware infrastructure, to ensure integrated

and harmonious control of the network. In this project, a simulation-based research has been

done using SDN using GNS3.

Generally, SDN permits the programming network manners in a centrally controlled

manner through software applications using APIs. By initiating traditionally closed network

platforms and implementing a common SDN layer, users can manage the whole network and

network devices consistency, ignoring the complexity of the root network technology.

1.2 Problem Statement

 A SDN is a software-based network controller producing flexible, scalable, cost

effective and adaptive features that is ideal for high-bandwidth and complex applications.

However, due to the increasing demands for internet bandwidth from the new internet-of-things

devices and mobile users, the internet is still not sufficient to meet the high network

requirements, such as flow requests, load balancing and security.

The traditional load balancer is a vendor manufactured on specific hardware

development which is costly, inflexible and non-programmable to use. Thus, network

administrators are unable to customize the settings and cannot create their own algorithm. To

overcome this problem, this project emulates scenarios of network controller technologies.

12

Table 1.1 Summary of Problem Statement (PS)

PS 1 The traditional load balancer is unable to be customized and non-

programmable.

PS 2 The SDN based load balancing offers a visualization platform.

PS 3 The variation of performance in SDN based Load Balancing.

1.3 Project Question

Table 1.2 Summary of Problem Question

PQ 1 How is load balancing customised and programmed in the existing network?

PQ 2 How to perform visualization on SDN based load balancing?

PQ 3 What is the difference between having a load balancer or without it affecting

the SDN performance?

13

1.4 Project Objective

Nowadays, an enormous usage of bandwidth for data streaming and an increase on the

use of Internet-of-Things (IoT) technology on various devices world-wide demand. Software

Defined Networking (SDN) to be the software-based controller to be used widely in improving

the administrative efficiency, server utilization, a better control of virtualization and reducing

the operating cost.

Thus, in this project, a study is carried out on SDN and how it can be applied in the

legacy Networking environment. Moreover, investigation on the advantages and the

disadvantages of the SDN is carried out to make sure this SDN is one of the software-based

controllers used in the networking environment. SDN has several drawbacks, which is security

and Load Balancing, but in this study the load balancing is under study. Therefore, in this

project, the SDN is examined using the simulation approach using GNS3 emulator. The

objective of the study is summarized in Table 1.3.

Table 1.3 Summary of Project Objective

PO 1 To study Software-Defined Network (SDN) in the legacy network environment.

PO 2 To implement the SDN using open-source tools GNS3, Mininet and

OpenDayLight.

PO 3 To analyze SDN performance based on several algorithms in the load balancing

controller.

14

1.5 Project Scope

 The scope of this study is to use the GNS3 as an SDN simulator. GNS3 is a network

simulator similar to Packet Tracer but with advanced technology developed. GNS3 is a network

software emulator that combines virtual and real-world devices to simulate complicated

networks. Computer network simulation is a significant modern technology that allows for

quick and cost-effective network testing and validation.

1.6 Project Contribution

 Table 1.4 Summary of Project Contribution

PS PQ PO PC Description

PS1 PQ1 PO1 PC1 A study on a new load balancer using SDN that

customised the new legacy of the network environment.

PS2 PQ2 PO2 PC2 Implementation of SDN using open-source tools such as

GNS3, Mininet and OpenDayLight.

PS3 PQ3 PO3 PC3 Analysis of SDN performance based on several

algorithms in the load balancing controller.

15

1.7 Report Organization

 The final year project report consists of seven chapters, which will include Introduction,

Literature Review, Methodology, Analysis and Design, Implementation, Testing and

Conclusion.

 This project's introduction is covered in Chapter 1. This chapter contains a problem

statement as well as project objectives. The project's background on Software Defined Network

is covered in Chapter 1.

 The literature review in Chapter 2 outlines previous research that were conducted

before this approach was offered to the community. Using the studies as a reference allows for

a better understanding of the project.

 The methodology of the project is discussed in Chapter 3. This chapter explains how

GNS3 was utilised to build SDN. This will be the use of software in which the project will be

carried out. The software will be explained in great detail.

 The fourth chapter deals with project analysis and design. There is a need for analysis

and design. It is concerned with the project's approach, whereas chapter five is concerned with

the experimental. The process of creating a system prototype is well-documented. It's an

important aspect since it confirms the project's efficacy once it's finished.

 The fifth chapter deals with the implementation of the project which consists of

software setup and configuration.

 Chapter 6 involves a Testing process where simulation will be done using GNS3 to test

out the Load Balancing in SDN approach.

 The final chapter of the project is Chapter 7. Also, share future ideas for improving the

present prototype.

16

1.8 Conclusion

 The expected objective of this project is that it will illustrate how simulation of various

network scenarios can be developed and how it may affect network performance. Furthermore,

this study evaluated the efficiency of the load balancing actuators and compared the latency

and reaction time for the various design topologies. The objective of this project is to create a

load balancing network scenario utilising network controller software tools.

17

CHAPTER 2: LITERATURE REVIEW

2.1 Software Defined Network

SDN (Software Defined Networking) is a new networking model that makes network

management activities even easier. Furthermore, it allows for network evolution by providing

a programmable flexible interface that controls the whole network's action. Classic IP

networks, on the other hand, have been difficult to handle, error-prone, and difficult to

implement new functionalities for decades. Traditional IP network protocols were created with

a distributed control architecture in mind, requiring network devices to connect with one

another using a vast number of network protocols in order to negotiate the exact network

activity depending on each device's configuration. Network computers are marketed as closed

modules, and network operators may only modify the parameters of various network protocols.

Network administrators can convert high-level network rules into low-level scripts written for

each specific system, referred to as the "Configuration Language."

The networking market has undergone a paradigm change as a result of SDN. Rather

than using a hierarchical control architecture, it concentrates all control in a single node known

as the "Network Controller," which is essentially software operating on a commercial cloud

platform. Network forwarding machines are no longer involved in network management and

only forward packets according to a series of rules installed by the network controller. The

“Openflow protocol” is used by the network controller to programme the forwarding rules of

the forwarding devices, and hence the network forwarding devices are referred to as “Openflow

switches.” Since Openflow is a vendor-independent standard protocol, no special knowledge

18

of the equipment vendor is needed to monitor the forwarding actions.The Openflow protocol

was created in late 2008 by a group of researchers from various universities, including Stanford

University, the University of Washington, MIT, Princeton University, and others.

For the development of new services, SDN has created a very scalable gui. Network

programmers must use a high-level programming language to create their own network policies

and facilities (one example of network policies is load-balancing the traffic to a certain

destination over multiple paths to avoid the congestion of a certain path). These high-level

programmes should be able to be translated into low-level forwarding laws that can be applied

to individual forwarding devices by the network controller. Network managers can simplify

network activities by using unified high-level programmes to monitor network activity. These

programmes are written in high-level general-purpose programming languages such as C++,

Java, and Python.

19

2.1.1 Software Defined Network Architectures

SDN architectures are divided into 4 layers. The first layer is the Network Data

Processor. There are data processing machines in this layer. The activities installed by the

network controller in each individual system determine how data packets are managed. The

basic protocol used to communicate with the network controller and forwarding devices in

order to instal data processing rules is known as Openflow. Priority, matching state, operation,

and associated active counters are the four key sections of an openflow law. The priority field

is used to specify the order in which data packets are matched against the installed rules; if a

higher priority rule is matched, lower priority rules are ignored. Any mixture of IP/Ethernet

headers (such as source IP, destination IP, port numbers, and VLAN id) may be used as a

matching condition. The operation field specifies what can be done with the packet after it has

been sent, such as forwarding it to an outgoing interface, modifying any of the header fields

before forwarding, or dropping it. Finally, the counters sector specifies the corresponding

counters for this law, such as the count of the total of matching packets, so that the values can

be sent to the controller for data plane statistics. Openflow has undergone several changes,

including the inclusion of several additional matching criteria and behaviours to accommodate

more complex use cases.

Layer 2 is known as Network Operating System. The network control is present in this

layer, which is why it is referred to as the "Network Controller" or "Network Brain." Based on

the logic specified by the running applications, a controller interacts with either the data

forwarding devices to load, upgrade, and uninstall openflow standards. The SDN controller

performs important functionality to the SDN applications, similar to how a typical computer's

20

operating system performs functions like resource management and file system management.

There are several open source SDN controllers that bring different openflow versions,

programming interfaces, and, ultimately, various utilities for running applications. The

controller has many durability, scalability, security, and performance issues due to its

centralised design. There are no specifications specifying the interfaces or utilities provided by

the SDN controller to network applications, so there are many difficulties in this layer.

Next, Layer 3 which is the Network Compiler. Network programmes are written in this

layer using SDN-specific programming languages, with related compilers translate the program

to the proper API provided by the network controller or SDN system software. It is widely

recommended to use this layer for the following reasons which is Application Portability, High

level of network abstraction and Code reusability. Application portability is not possible for

existing SDN networks due to the variety of network controllers and related APIs. To ensure

device portability between separate controllers, using a network programming language and

only using the correct network compiler will suffice. For necessity, this implies that a compiler

programme for the targeted network operating system applies, but this is yet another task that

most of the common network operating systems' simulator developers can handle. When using

a high-level programming language, the writer is responsible for the programming logic while

the programming language is responsible for the low-level operations. This means that the

developer can only define high-level policies, and the programmer should be able to evaluate

these policies and create similar openflow rules to be installed over specific switches without

troubling the developer. Network advancement is getting much simpler as a result of this. The

Code reusability, while most controllers have a direct programming interface, the low level

structure of the exposed programming APIs prevents conflict-free execution of composite

code. The concurrent execution of two basic programmes over a NOX controller (one

21

programme forwards packets from one interface to another interface while the other

programme tests web traffic accessing the same interface), as indicated by Frenetic, would

result in entirely incorrect performance, and a third programme should be designed to merge

the executions of the two programmes.

The fourth layer is called the Cross Layer. This layer uses two interfaces to link the

application and infrastructure layers. The infrastructure layer is connected to the infrastructure

layer in a downward direction through a south-bound interface. This gui allows controllers to

interact with switching systems and access their capabilities. Providing network status and

importing packet forwarding rules are among the features. The north-bound interface is used

to link programme layers in a northward direction. It provides service access points in the form

of an API that provides network status data from switching devices. Since a network domain

can include several routers or switches, an east-west interface is present to allow controllers to

exchange network details and coordinate decision-making progress. Knowledge on QoS for

network implementations aids in the implementation of cross-layer techniques to achieve the

desired QoS. A stronger QoS for video conferencing, for example, can be shown by obtaining

a bandwidth timetable from an SDN controller.

2.1.2 Advantages of Software Defined Network

In SDN, a centralised and programmable network may be developed that can

dynamically deliver in order to meet the changing demands of organisations. In addition, there

are the following benefits of SDN.

First of all, it may be programmed directly. The network can be directly programmed

since the control operations are separated from the forwarding operations. This allows the

22

network to be configured programmatically using proprietary or open source automation

technologies such as OpenStack, Puppet, and Chef.

Moreover, management that is centralised. Intelligence relating to networks is logically

centralised in the SDN controller software such that it established a strong network view that

presents to programs and policy algorithms as an one, logical switch.

Furthermore, Agility and Flexibility are delivered. SDN enables enterprises to quickly

deploy new applications, services, and infrastructure in order to keep up with changing business

goals and objectives.

Lastly, Providing a platform for innovation. SDN also enables businesses to tailor new

sorts of applications, services, and business models, thereby generating new income streams

and increasing network value.

2.2 Load Balancing

One of the most difficult aspects of computer networking is load balancing. Memory,

CPU capacity, network demand, and even delay load can all contribute to this stress. Load

balancers are designed to continually spread the workload of all nodes in a distributed system

in order to improve system performance and resource usage. This can also help in

circumstances when the nodes in the network have greater or less load by avoiding them. Load

balancing is the practise of ensuring that the work load is evenly spread among a pool of system

nodes or processors so that the ongoing operation may be finished without interruption.

In (SDN) software defined networking, load balancing functions as an aware routing

protocol; it is an essential element that aids availability and scalability, resulting in the shortest

possible application response time. Millions of individuals are linked to the internet, resulting

in increased web traffic, network congestion, and packet losses. So, in order to address this

issue, The use of load balancing strategies improves network efficiency.

23

Load balancing approach that maximises throughput by decreasing response time

intervals and decreasing jams. Traditional load balancing networks are not detailed, but

Software Defined Networks are significantly more efficient and have a higher performance.

2.2.1 Two types of Load Balancing

 In a static method, traffic is divided evenly across the servers. For systems with little

load fluctuation, the static method is ideal. This method requires previous knowledge of the

system resources in order to ensure that load shifting decisions are not based on the present

condition of the system.

 In a dynamic method, the lightest server in the system is sought, and load balancing is

prioritised appropriately. As a result of the necessity for real-time connection with the network,

the system's traffic may grow. In addition, the current system status is used to make load

management decisions.

2.2.2 Network Load Balancing

 Network load balancing improves the availability and flexibility of mission-critical net

servers and applications such as Web based, firewall, File Transfer Protocol (FTP), proxy,

virtual private network, and other servers.

If any of the hosts in the cluster die unexpectedly, Network Load Balancing guarantees

that traffic is directed to all of the remaining hosts in the network. Up to 32 servers can be

added to a Network Load Balancing cluster. This makes it easier to work on crucial operations.

24

2.2.3 Applications of SDN in Load Balancing

There are several used to disperse incoming load among numerous servers in order to

prevent a single server from being overloaded. First, Network virtualization protects physical

networks and divides them into several components. Network virtualization enhances network

performance and automation when new software components are introduced.

Moreover, the SDN controller assigns topology discovery as a service. It maintains and

gives a global perspective of the network. Furthermore, Traffic monitoring offers the necessary

data to warn drivers of potential difficulties as well as information important to road engineers

such as vehicle count, speed, and occupancy.

Last but not least, beyond the fundamental specification, security augmentation refers

to the enhancement of security capabilities and services.

2.2.4 Load Balancing Techniques

2.2.4.1 Balance Flow

 According to (H Sufiev and Y Haddad, 2016), this approach is named "BalanceFlow,"

and it involves a SuperController doing load balancing amongst network controllers (SC).

"Balance flow" focuses on system load balancing such that flow-requests are dynamically

divided across controllers for quick response.

 To improve controller usage, the load on the overloaded controller is dynamically

transferred to an appropriate low-loaded controller. This method necessitates that each switch

enables a certain flow of service from a subset of controllers. The algorithm's precision is

achieved by splitting the switch load among some controllers by each current's source and

destination.

25

2.2.4.2 Hybrid Flow

 The second strategy that may be utilised in network controllers is HybridFlow, which

consists of separating the controllers into clusters so that each cluster may aid each other and

conduct load balancing inside the same cluster.

When all of the controllers in the cluster are full, a request to the SC to lower the number

of switches to be operated in the cluster will be submitted. This "local" load balancing strategy

helps to lessen the burden on the SC while maintaining overall load balancing.

2.2.5 Works Related Load Balancing

2.2.5.1 Round Robin

 Tolerance against trivial defects is provided using this way. A set of identical servers is

allocated to work in such a way that they can all provide the same services. Despite the fact

that each server has its own IP address, they are all set up to utilise the same domain name. The

DNS server keeps track of all IP addresses linked with Internet domain names. When a request

for an Internet domain name and its associated IP address is received, all of the addresses are

delivered back in a rotating order.

2.2.5.2 Least Connection

 The Least Connection technique takes current server load into account. The request is

then sent to the server that has served the fewest number of active sessions at the moment.

Least Connection (Weighted) Every server is assigned a number, similar to the Weighted

Round Robin technique. This is what the load balancer looks for when assigning server

26

requests. If the number of active connections on two servers is the same, the higher weighted

server will get a new request.

2.2.5.3 Agent Based Adaptive Load Balancing

 Every server in a pool is assigned an agent, which reports to the load balancer on its

current load. This real-time data is used to determine which server should be used to best handle

requests. Other strategies, such as Weighted Round Robin and Weighted Least Connection, are

employed in conjunction with this one.

2.2.5.4 Chained Failover

 This strategy necessitates a specified sequence of servers that must be configured in the

chain in which they are present. All requests are routed to the first server in the chain. If the

next server in the chain is unable to take any more requests, all requests are routed to the third

server, and so on.

2.2.5.5 Weight Response Time

This approach continually receives response time information from servers in order to

determine if the server is responding at its quickest in a certain period of time. The next server

access request is made to that server. This is meant to ensure that if a server is currently under

a lot of pressure and is responding slowly, no new requests will be sent to it. This allows the

load to be distributed equally across the available server pool over time.

27

2.3 Project Software

2.3.1 Mininet

Mininet is a network emulator that produces a virtual network comprising hosts,

switches, controllers, and connections. Mininet switches offer OpenFlow for extremely flexible

custom routing and Software-Defined Networking, and its hosts run conventional Linux

network software. Mininet can be used for research, development, learning, prototyping,

testing, debugging, and any other job that would benefit from having a fully functional

experimental network on a laptop or other PC.

2.3.2 GNS3

GNS3 (Graphical Network Simulator) is an open source programme that simulates

complicated networks as closely as possible to how they operate in real life. All of this is

accomplished without the need of network gear such as routers and switches.

This programme provides an easy-to-use graphical user interface for designing and

configuring virtual networks. It operates on standard PC hardware and is compatible with

Windows, Linux, and MacOS X.

2.3.3 OpenDayLight SDN Controller

 The OpenDaylight controller is a Java virtual machine (JVM) that may operate on any

operating system and hardware that supports Java. The controller is an implementation of the

Software Defined Network (SDN) idea, and it makes use of Maven, OSGi, JAVA, and Rest

APIs.

28

2.3.4 Conclusion

Load balancing can be implemented using one of two methods: hardware-based or

software-based. The load balancing platform is built on software and uses software defined

networking technologies. SDN technology is a network management strategy that allows for

dynamic, programmatically efficient network design to increase network performance and

monitoring, making it more like cloud computing than traditional network administration.

Furthermore, load balancing techniques might have an influence on network performance.

2.4 Proposed Solution

 According to studies, employing a software-based platform is the best approach to

accomplish load balancing. Because a software defined network is an open source software

that provides dynamic, programmatically efficient network setup in order to increase network

performance, it is the ideal approach to execute load balancing methodology.

 The dynamic application load balancing strategy was used in this project. This approach

works in conjunction with an external server load balancer, calculating the round robin

scheduling weight parameter in the load balancer to distribute requests across nodes.

 Finally, based on prior journals, Round Robin is the optimal parameter to utilise. This

parameter displays the optimal outcome when used with load balancing technology. This

approach is characterised as sending requests one by one in a circular way to each server in the

queue. When a packet arrives, the next selected server from the list of all servers on the network

system becomes available. So that, except for the load on each server, all servers in the database

are in the same sequence and do the same amount of loads.

29

2.5 Conclusion

 As a conclusion, this chapter is critical to the project's completion. A literature review

is a summary of research on a certain topic as well as responses to relevant research questions.

From the preceding study, we can gather all relevant data and sources. We may learn what the

optimal approach, approach, attribute, or parameters are for completing this project by reading

this chapter. The approach identifies duplicate computing throughout individual runs as well

as across many simulators.

CHAPTER 3: METHODOLOGY

3.1 Introduction

The approach employed in this project will be explained in this chapter. This chapter

will detail all of the data elements, population structure, and sample strategies utilised in the

30

interviews for this study. All of the information acquired will be presented in a step-by-step

format, including all of the processes covered in this chapter. Finally, this part provides a full

overview of the study approach adopted and the data gathering procedure. In addition, the Gantt

chart for this project will be shown in this chapter. The Gantt chart depicts how the work is

organised and if the project is on time or not. The Gantt chart's purpose is to direct the project's

progress.

3.2 Methodology

Scrum, Kanban, Lean, Waterfall, and Six Sigma are just a few examples of methods

that may be utilised to build this project. In this project, waterfall methods were used.

Waterfall was the original software development technique, originating in the manufacturing

and construction industries, where you can't afford to iterate after you've constructed a tower

or a bridge since you can't go back and "upgrade" the foundation.

Winston W. Royce introduced the Waterfall model in 1970. It's simple to comprehend

and use. In a waterfall design, each stage must be completed before the next one can begin,

and the phases do not overlap. The Waterfall model was the first SDLC approach to be used

in software development. The several phases of the waterfall model are depicted in the

following diagram.

31

Figure 3.1: Waterfall Model Illustration.

3.2.1 Requirements

 This phase captures all potential needs for the system to be created and documents them

in a requirement specification document.

3.2.2 Design

 This stage examines the requirements specifications from the previous phase and

prepares the system design. This system design aids in designing the overall system

architecture as well as describing hardware and system requirements. In this project, the

designing network structure is a design that must be taken into consideration. A simulation

approach employing Mininet software was used to develop the network structure. The network

will be designed with a variety of scenarios in mind and load balancing mechanisms will be

included

32

3.2.3 Implementation

 The system is first built as tiny programmes called units, using inputs from the system

design, in this phase, and then combined in the following step. Unit Testing refers to the process

of developing and testing each unit for its functioning. Following the network's design. The

network controller and load balancing methods will be used to implement it. The information

gathered in chapter two was used to implement this stage.

3.2.4 Testing

 After each unit has been tested, all of the units built during the implementation phase

are merged into a system. The entire system is then checked for any flaws or failures after it

has been integrated. The functionality of each network scenario will be tested, and the findings

will be gathered for documenting. The measurement testing, developed with the aim, network

control testing, load balancing checking, and added in series The infrastructure was put to the

test in terms of throughput, latency, and disturbance.

3.2.5 Deployment

The product is deployed in the client environment or released into the market once

functional and non-functional testing is completed.

3.3.6 Maintenance

 In the client environment, there are a few challenges that arise. Patches are published

to address these vulnerabilities. In order to improve the product, newer versions have been

produced. Maintenance is carried out in order to bring about these modifications in the

customer's environment. After then, the testing stage will be repeated a few times until a better

result is obtained.

33

3.3 Project Milestones

This project has been assigned project milestones. A milestone is a specific point in the

plan's life cycle that was used to evaluate the project's progress toward its final aim. Project

Milestones are used to indicate things like the project's start and completion dates, the

requirement for external approval or input, financial constraints, the submission of important

deadlines, and more. Milestones have a set date but no set duration, ranging from the first week

of presentation to the last week of presentation.

Activities

Weeks
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FYP Proposal

Chapter 1

Introduction

Chapter 2

Literature Review

Chapter 3

Methodology

Chapter 4

Design

Project Demo

FYP 1

Final

Presentation

Table 3.1 Project Milestones

34

3.4 Conclusion

 In conclusion, this project methodology will consist of 6 phases which are Requirement,

Design, Testing, Deployment and Maintenance. This section is critical to this project's success

since it ensures that the project follows the correct methodology and that the development

process runs smoothly. Gantt charts and project milestones are also critical to ensure that this

project stays on track. Design is the next phase to be created. The overall design for this project

will be demonstrated in this chapter.

35

CHAPTER 4: DESIGN

4.1 Introduction

This chapter discuss all of the network design for this project, as well as the

outcomes of the preliminary design analysis and the detailed design outcome. This project

comprises different network scenarios that will be analysed using simulation tools. The

details of each network situation, as well as the parameters of each network architecture, will

next be discussed.

4.2 Network Architecture

4.2.1 Software Defined Network Application

A software-defined networking (SDN) application is a programme that performs a job

in a software-defined networking environment. It is this approach to computer networking that

not only allows network administrators to programmatically adjust, control, initiate, and

manage network behaviour through open interfaces, but also introduces the idea of lower-level

functionality. SDN applications also aid in the expansion and replacement of tasks that are now

performed by firmware in the hardware devices of a traditional network.

36

4.2.2 Software Defined Network Controllers

 To deploy intelligent networks, an SDN controller manages flow control to the

switches/routers "below" (through southbound APIs) and the applications and business logic

"above" (through northbound APIs). They use common application interfaces to consolidate

and mediate between multiple controller domains. SDN controllers communicate with

switches/routers via two of the most well-known protocols.

An SDN controller platform usually includes a number of “pluggable” modules that

can be used to conduct various network activities. Inventorying what devices are on the

network and their capabilities, getting network data, and other monitoring operations are only

a few of the essential responsibilities. Extensions that improve functionality and support more

advanced features can be added.

Figure 4.1 Network Architecture of SDN

37

4.2.3 Experiment Setup of Software Defined Network Controllers

Step 1: Setting up a network environment as shown below on GNS3.

Figure 4.2.1 GNS3 Network Environment

Step 2: Using the Ubuntu Docker as shown in the network environment, install Java and

OpenDayLight SDN Controller.

Figure 4.2.2 Installing JAVA

Figure 4.2.3 Starting up OpenDayLight

38

Step 3: Make sure Ubuntu Docker and Mininet can ping with each other.

Figure 4.2.4 Pinging Ubuntu Docker

Step 4: On Mininet, create a virtual topology as shown below:

Figure 4.2.5 Create Topology

Step 5: By clicking the topology section, topology that has been created through Mininet is

shown.

39

Figure 4.2.6 Topology of created Network on Firefox

Step 6: To check the connectivity between the hosts in the topology using Mininet is as shown

below.

Figure 4.2.7 Pinging Host 1 and Host 9

4.3 Possible Scenarios

There are three network scenarios in this project:Topology A, B, and C. All of these

designs will be created using Mininet, a simulation software that will be used for this project.

This project will be completed entirely in a simulation environment. Every network design

40

for this project includes an SDN controller, switches, and a variety of client connections, all

of which must be tested.

4.3.1 Scenario A Single Topology.

 This is the first architecture to use a single OpenFlow switch to connect four hosts.

Mininet configuration was used to generate this topology. It's referred to as single topology. A

single topology consists of a single switch that is connected to several hosts. A single switch

with ten hosts is created in this example. This topology was referred to in a Journal with a title

Design and Performance Analysis of OpenFlow Enabled Network Topologies using Mininet

by the author Idris Zoher Bholebawa and Upena D.Dalal.

Figure 4.3.1 Topology A

4.3.2 Scenario B Linear Topology

41

 The second design is known as Linear Topology, and it consists of four OpenFlow

switches, each of which is connected to a single host. A linear topology is made up of back-

to-back switches with a single host (PC) linked to each switch.

Figure 4.3.2 Topology B

42

4.3.3 Scenario B Tree Topology

 Tree Topology is the third network design, which consists of a core switch and two

fanout switches. As a result, two switches are connected to the main switch. Because there is

a depth of two, the depth is one two. The fanout command will determine the number of hosts

connected to each leaf switch. As a result, there are no hosts connected to the core switch.

Hosts are connected to the leaf switches.

Figure 4.3.3 Topology C

43

4.4 Metric units of Measurement

 We compare load balancing algorithms using attributes like throughput,

latency, and jitter in order to test them. The throughput, latency and jitter can be determined

mathematically as follows:

Throughput

Number of bits/s

Latency

Time of 2nd packet - time of first packet

Table 4.1 Calculation Formula

4.5 Conclusion

 To summarise, this chapter focuses on the creation of a network scenario for this

project, which is a key phase in the project's planning. This chapter contains all of the critical

design requirements that must be implemented and tested in the following chapter. It also

discusses how the architecture for this projected project was designed.

44

CHAPTER 5: IMPLEMENTATION

5.1 Introduction

 This chapter describes the execution of the Load Balancing Mechanisms Analysis

project for better network performance using open flow. In this phase, it focuses on the

implementation of a number of configurations for data acquired in this project. Setup of the

Network scenario, setup and network monitoring and display how to install and manage

software. Everything about how this chapter is implemented and configured.

5.2 Environment Setup

5.2.1.Network Scenario Environment Setup

In this section, the method on network configuration was discussed for the project

implementation. The implementation steps are shown step by step in this section. Mininet was

fully used to simulate and illustrate the details of the project network configuration.

5.2.1.1 Scenario A Topology Environment Setup

 The configuration was done using a Mininet VM that was placed on the GNS3 network

environment. Mininet VM connected to the switch that also connected to the Ubuntu Docker

Guest that holds the OpenDayLight Controller. Through Mininet a topology can be created

with a single line. There are several topologies that can be created through Mininet which are

Tree, Linear and Single. These three topologies were the most common topology used (Idris

Zoher Bholebawa and Upena D.Dalal).

45

 Based on Figure 5.1 below, shows the Topology of Scenario 1. This topology consists

of a single OpenFlow switch and 4 hosts connected to it at once.

Figure 5.1 Scenario A Topology Configuration

46

5.2.1.2 Scenario A Topology Environment Setup

 The configuration is known as Linear Topology, and it consists of four OpenFlow

switches, each of which is connected to a single host. A linear topology is made up of back-to-

back switches with a single host (PC) linked to each switch.

Figure 5.2 Scenario 2 Topology Configuration

5.2.1.3 Scenario C Topology Environment Setup

 Tree Topology is the third network configuration on Mininet, which consists of a core

switch and two fanout switches. As a result, two switches are connected to the main switch.

Because there is a depth of two, the depth is one two. The fanout command will determine the

number of hosts connected to each leaf switch. As a result, there are no hosts connected to the

core switch. Hosts are connected to the leaf switches.

47

Figure 5.3 Scenario 3 Topology Configuration

5.2.2 Controller Environment Setup

5.2.2.1 Load Balancing Controller Environment Setup

In this project, an OpenFlow controller is linked to a switch. It includes many controller

types that may be utilised with Mininet software. The OpenFlow switches were implemented

with OpenFlow13 protocols. OpenFlow provides direct access to and modification of network

devices' forwarding planes, such as switches and routers, both physical and virtual (hypervisor-

based).

Figure 5.4: Load Balancing configuration on Mininet

48

5.2.3 Network Monitoring Environment Setup

 This project will utilise Wireshark software to test the network and enable the

simulation to collect the required parameters. The parameter will be dependent on the results

and will be based on throughput, delay, and jitter.

5.2.3.1 Wireshark Environment Setup

Wireshark must be executed as part of the system application to capture packet

transfers. The following command is used to start Wireshark as shown in the Figure 5.5

 Figure 5.5 Wireshark Environment

5.3 Conclusion

Finally, this chapter discusses how this project will be fully implemented. It mostly

focused on how the network and parameters were used, how the technique was implemented,

49

and how the Testing Phase continued. The following chapter will go through in detail how the

data acquired using Wireshark to be tested was captured.

CHAPTER 6: TESTING AND ANALYSIS

6.1 Introduction

The testing and analysis of the proposed solutions will be covered in this chapter. This

study employed a data gathering approach to analyse the testing results. Furthermore, this

50

chapter employed a Mininet experiment setup, as well as a Software Defined Networking

controller, to analyse the performance of three types of topologies. This project employs three

metric measurements: throughput, delay, and jitter.

This chapter begins with the project's network simulation being implemented. The data

will then be gathered utilising a data transmission from the host to the server. In this setting,

the Round Robin algorithm is utilised to distribute client requests among a number of servers.

All of the data gathered is utilised to evaluate the network's performance.

6.2 Result and Analysis

6.2.1 Bandwidth Utilization

The simulation results for network bandwidth usage are acquired by using the ‘iperf'

command in Mininet. As stated in the preceding section, the number of OpenFlow-enabled

switches required for the construction of single, linear, and tree topology networks for a

common 4-host design, as shown in Table 6.1.

51

Network Topologies A Single B Linear C Tree

Number of OpenFlow Controllers 1 1 1

Number of OpenFlow-enabled Switch 1 4 2

Number of Host 4 4 4

Maximum Utilized Bandwidth(Gbps) 5.00 4.99 5.37

Minimum Utilized Bandwidth (Gbps) 4.90 4.30 4.90

Table 6.1 Bandwidth Utilization

Chart 6.1: Bandwidth Utilization

According to the results, the bandwidth utilized in linear topology is the least and the

most in tree topology, as shown in Chart 6.1. In a B linear topology, the connection between a

switch and a host is one-to-one; one host is linked to one switch, and the switches are connected

to each other for end-node communication. For the number of nodes, the overall bandwidth

52

usage of the network is restricted. Whereas with C tree topology, the design is dispersed yet

centrally regulated, resulting in higher overall bandwidth usage.

6.2.2 Packet Transmission Rate

 The three topologies are then compared based on Packet Transmission Rate (PTR). The

PTR for each of the three topologies is compared in Table 6.2 and graphed in Chart 6.2.

Number of Packets Transmitted A B C

5 4077 ms 4094ms 4097 ms

10 9223 ms 9209 ms 9212 ms

20 19437 ms 19453 ms 19447 ms

30 29676 ms 29673 ms 29695 ms

Table 6.2 Packets Transmission Rate

53

Chart 6.2: Packets Transmission Rate

Based on the above PTR results, the overall time required by the three OpenFlow

network topologies for various packet transmissions is nearly the same. Because all nodes in

an OpenFlow network behave the same way, the OpenFlow network is active for the same time

interval to execute diverse network topologies for a similar packet transmission rate.

6.2.3 Round Trip Time Delay

Following that, a comparison of three topologies is made based on the time it takes for

nodes in a network to communicate with one another. This may be accomplished by running a

‘ping' connection test to determine the round-trip time (rtt) between nodes. The least and

maximum round-trip delay between nodes for various network topologies with varying PTR is

54

listed in Table 6.3 and graphically displayed in Charts 6.3 and 6.4 for minimum and maximum

delay, respectively.

Number of Packets

Transmitted

A

Min.rtt Max.rtt

B

Min.rtt Max.rtt

C

Min.rtt Max.rtt

5 0.042ms 0.182ms 0.045 ms 0.063ms 0.046ms 0.160ms

10 0.041ms 0.182ms 0.045ms 0.212ms 0.049ms 0.171ms

20 0.040ms 0.161ms 0.043ms 0.371ms 0.040ms 0.269ms

30 0.041ms 0.254ms 0.042ms 0.277ms 0.029ms 0.251ms

Table 6.3 Round Trip Time Delay

Chart 6.3: Minimum Round Trip Delay

55

Chart 6.4: Maximum Round Trip Delay

According to the Chart 6.4, a linear topology takes longer to transmit a packet to its

target node than a A single or B tree architecture. Because the number of hops between end

nodes is increasing, more propagation time is necessary for intermediate nodes to send packets

to their precise destination. In contrast, A single topology takes the shortest amount of time to

transmit a packet to its destination. Because all nodes are linked by a single OpenFlow-enabled

switch thus. A single topology, packet delivery will be quicker.

6.2.4 Throughput

Finally, throughput analysis of a network is used to compare fundamental OpenFlow

topologies. The amount of data sent from source to destination in a particular time period is

described as network throughput.

56

Chart 6.5: Maximum Throughput

Chart 6.6: Minimum Throughput

Charts 6.5 and 6.6 illustrate a minimum and maximum throughput graph in relation to

packet transmission rate. According to the produced graph, the throughput of the B linear

topology is very low when compared to the other two topologies. This is because the bandwidth

utilisation is low and the overall round-trip propagation latency between nodes is high.

Meanwhile the A single topology network has the highest throughput when compared

to the other two topologies, this is due to the single topology having only one switch and only

two hops between any two nodes in a network. Thus, in a single topology, the delay is less and

the throughput is greater, but in a linear topology, the delay is more and the throughput is lower.

57

6.2.5 Summary Table

Parameters A Single B Linear C Tree

Max Bandwidth Utilization (Gbps) 5 4.99 5.37

30 Packets Transmitted Rate (ms) 29676 29673 29695

Maximum Round Trip Time Delay (ms) 0.254 0.277 0.251

Maximum Throughput (ms) 121.95 118.81 185.17

Table 6.4 Summary Table

58

6.3 Conclusion

In summary, this chapter discusses how the project was tested, as well as how the data

was analysed and presented in the graph view. Based on the performance study of the suggested

network topologies and the discussion of the results, we can infer that the A single topology

outperforms the other two B linear and C tree topologies, with certain restrictions.

Meanwhile, when compared to the other two topologies, the A single topology network

has the best throughput. This is owing to the A single topology having just one switch and only

two hops between any two nodes in a network. As a result, in a single topology, the delay is

less and the throughput is higher, but in a B linear topology, the delay is larger and the

throughput is lower.

A Tree topology may be easily implemented with a single command. The complexity

of a network is somewhat more than that of a single and linear topology, but the number of

hops between hosts is the same. And, in terms of speed, the performance is increased when

compared to linear topology but restricted when compared to single topology.

59

The total performance of a single topology network will undoubtedly decrease as the

number of hosts rises, but this is not the case with B tree topology because the load is spread.

In addition, the installation space and cost configuration are less than with linear topology.

CHAPTER 7: PROJECT CONCLUSION

7.1 Introduction

 The purpose of this chapter is to provide a summary of the research conducted in this

project. First, this chapter will look at whether the project's goal has been met. Second, we

discuss the importance of the study's details. Furthermore, ideas for future study paths are

emphasised, as well as how this project will be enhanced in the future.

7.2 Project Summarization

The primary goal of this project is to simulate a network scenario of load balancing

utilising upcoming technologies such as OpenFlow and tools such as GNS, Mininet and

OpenDaylight Controller for the improvement of network performance and reduce the cost of

inventing a network environment.. With the integration of Mininet into the Software Define

Network Controller project using GNS3, a three-network scenario may be implemented using

a virtual network, which is a simulation environment, without the use of expensive network

hardware.

60

The second goal is to create dynamic load balancing utilising various approaches in

order to get better outcomes and better performance. Using the pox controller and load

balancing available in OpenFlow, this project implemented a controller and a basic round robin

load balancing algorithm to be used and to analyse how the server will be controlled by the

load balancing controller can result in a better result and higher performance, or vice versa.

Finally, the Round Robin method must be configured in the load balancer. Round robin

is the algorithm used in this project. The round robin algorithm, which is the algorithm, assigns

equal amounts to each process in a circular sequence, managing all processes without priority.

It is clear from the output that the controller instructs the packet to send to the nearest accessible

server.

7.3 Project Contribution

The contribution mentioned in the first chapter includes. First, a new network scenario

design with and without load balancing for improved data transmission. In this project, three

network scenarios are chosen and implemented using a load balancing controller for analysis

in Chapter 6. Each scenario utilised a different host connection to see if the results were

different.

The second step is to implement the Round Robin method at the network controller. A

round robin implementation is utilised for the controller. Several tests were run utilising

network simulation in three different settings for analysis. Several indicators are used to assess

the effectiveness of the load balance system. This project concentrated on throughput, latency,

and jitter.

The third is the Round Robin Load Balancing. In addition, Wireshark, a free and open-

source packet analyzer, is used in this project. Software and communications protocols are

developed as well as network maintenance, analysis, and teaching. OpenFlow was also used in

61

this project. A flexible network protocol, OpenFlow manages and directs traffic across routers

and switches from different manufacturers. As a result, routers and switches may be

programmed independently of their physical components

7.4 Project Limitation

 According to the study's primary focus on load-balancing mechanisms that reduce

throughput, latency, and jitter for better network performance, this project constraint exists. A

module for traffic categorization has been created. However, the accuracy, precision, and

memory of traffic classification were not addressed in this study. To make matters worse, each

controller utilises a different programming language, such as Python scripts. The latest

OpenDayLight Controller uses JDK 11 and it can be used in the Ubuntu Docker Container as

it is only used up to JDK 8. Hence, the old OpenDayLight Controllers were used. The study of

SDN in GNS3 is still not widely used thus making this project hard.

7.5 Future Works

This research was focused on how load balancing affects the network performance in

reducing throughput, delay and jitter. However the scalability of the load balancer is not

discussed. In the future the test on load balancing scalability can be tested using an SDN

controller. Other upcoming projects involve offering alternative traffic classification

approaches that may be analysed, as well as testing Transaction Rate and Response Time as

metric measurements. Other controllers can be used instead of OpenDayLight controllers to

obtain better results. As a result, in the event of a failure.

62

7.6 Conclusion

This chapter provides a summary of the research conducted in this study. First, go

through the research goals. Second, project contributions are no longer utilised. Finally,

recommendations for future study directions are emphasised.

REFERENCES

Mishra, S and AlShehri, M.A.R (2017). “Software Defined Networking: Research

Issues,Challenges and Opportunities” Indian Journal of Science and Technology. 10(29). pp

1-9

Rishabh, K, Angadi, K, Chegu, K, Harikrishna, D.H and Ramya, S (2017). "Analysis of Load

Balancing Algorithms in Software Defined Networking,"2nd International Conference on

Computational Systems and Information Technology for Sustainable Solution (CSITSS).

Bangalore, 2017. pp. 1-4.

Yu, J,Wang, Y,Pei, K,Zhang, S and Li, J (2016). "A load balancing mechanism for multiple

SDN controllers based on load informing strategy,"18th Asia-Pacific Network Operations

and Management Symposium (APNOMS), Kanazawa, 2016, pp. 1-4.

Craig, A, Nandy, B, Lambadaris, I and Smith, P.A (2016). "Load balancing for multicast

traffic in SDN using real-time link cost modification," 2015 IEEE International Conference

on Communications (ICC), London, pp. 5789-5795.

Hikichi, K, Soumiya, T and Yamada, A (2016). "Dynamic application load balancing in

distributed SDN controller,"18th Asia-Pacific Network Operations and Management

Symposium (APNOMS), Kanazawa. pp. 1-6

Joshi, N and Gupta D (2019). “A Comparative Study on Load Balancing Algorithms in

Software Defined Networking.”Ubiquitous Communications and Network Computing

(pp.142-150)

Sufiev, H and Haddad, Y (2016). "A dynamic load balancing architecture for SDN,"IEEE

International Conference on the Science of Electrical Engineering (ICSEE). pp. 1-3.

63

Yang, X and Wang, L (2018). “SDN Load Balancing Method based on K-

Dijkstra.”International Journal of Performability Engineering. 14. pp. 709-716

Lara, A., Kolasani, A., & Ramamurthy, B. (2014). Network innovation using OpenFlow: A

survey. IEEE Communications Surveys and Tutorials, 16(1), 493–512.

Open Networking Foundation (ONF). (April, 2012). Software defined networking: The new

norm for networks. White Paper. From

https://www.opennetworking.org/images/stories/downloads/openflow /wp-sdn-newnorm.pdf

Naous, J., Erickson, D., Covington, G. A., Appenzaller, G., & McKeown, N. (2008).

Implementing an OpenFlow switch on the NetFPGA platform. Proceedings of the 4th

ACM/IEEE Symposium on Architectures for Networking and Communication Systems (pp.

1–9). CA, USA.

Shimonishi, H., Takamiya, Y., Chiba, Y., Sugyo, K., Hatano, Y., Sonoda, K., Suzuki, K.,

Kotani, D., & Akiyoshi, I. (2012). Programmable network using OpenFlow for network

researches and experiments. Proceedings of the Sixth International Conference on Mobile

Computing and Ubiquitous Networking (pp. 164-171). Okinawa, Japan.

