SMART LIGHT CONTROL WITH NOTIFICATION ALERT FOR SMALL SCALE FARM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

SMART LIGHT CONTROL WITH NOTIFICATION ALERT FOR SMALL SCALE FARM

NURHAYATI BINTI NORDIN

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

DECLARATION

I hereby declare that this project report entitled

SMART LIGHT CONTROL WITH NOTIFICATION ALERT FOR SMALL SCALE

FARM

is written by me and is my own effort and that no part has been plagiarized

STUDENT: (NURHAYATI BINTI NORDIN) Date: 3/9/2021 اونيونرسيتي تيكنيكل مليسيا ملاك

I hereby declare that I have read this project report and found

this project report is sufficient in term of the scope and quality for the award of

Bachelor of [Computer Science (Computer Networking)] with Honours.

SUPERVISOR:

Date: 4/9/2021

(TS. DR. NAZRULAZHAR BIN BAHAMAN)

without citations.

DEDICATION

From the bottom of my heart, I dedicated this thesis to my beloved mother, Hamidah Binti Hasan, my siblings (Norfarahin Nordin and Norhamiera Nordin), family members that always be by my side. I am so thankful for the guidance that they showed to me, the comments and suggestions over the past few years. I hope this achievement will make them happy. Not to forget to my lecturer and supervisor, Ts. Dr. Nazrulazhar bin Bahaman who always give a lot of guidance and advices throughout this journey in Universiti Teknikal Malaysia Melaka (UTeM). Last but not least to all my dear friends who have encouraged, guided and inspired me with a lot of motivations throughout this pandemic.

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Merciful, the Most Compassionate. All Praise to Allah SWT the Almighty for giving me the strength to finish my PSM. I am grateful to the Allah Almighty for the good health and wellbeing that were necessary can managed to complete the report of Final Year Project I & II within the time given by my supervisor, Ts. Dr. Nazrulazhar bin Bahaman. Sincerely thank you to my supervisor for the guidance and encouragement in finishing this project. I got learn so much from your advice and comment and helped me a lot into doing my best. Thank you for everything and may Allah bless you. Last but not least, I would like to express my sincere gratitude to my family and friends for the support and willingness to spend their precious time to help me complete this project.

ABSTRACT

Smart Light Control with Notification Alert form small-scale farm is a project that being developed using NodeMCU ESP8266 with the integration of IoT technology for the farmer that has small-scale farm that need a proper simple and lowcost management system to ease their farming daily activity. In this project, the user will can control and monitor their farm condition easily through the mobile application developed. The problem that they usually faced when managing the farm manually is in terms of the farm crop yields that often to damage due to the intrusion from the wild animal and also being stolen by any irresponsible anonymous person who illegally entered the farm. Hence, this can cause loss towards the farmer in the aspects of money, resources and energy in maintaining the farm condition. Next, the farmer somehow facing difficulties in control the light source in the farm area where they at one point might be hard for them to leave the work area with a troubling feeling or maybe to control their business and track it when they are out of the work region. So at least, by turning the light at the farm could reduce the uneasy feeling where people will not be easily intended to enter the farm to do damage. So, this project will use NodeMCU ESP8266 as the main component hardware to be connect with PIR motion sensor as to detect motion where it also can produce buzzer alert sound after being triggered. In addition, a literature review is required to gather all relevant information regarding the hardware, software, language, and approach employed in this project. All of the components must be appropriate for the project at hand. Then, to construct a prototype, combine all of the hardware and software. Finally, test and verify the prototype to ensure that all of the components are working together.

ABSTRAK

Kawalan Cahaya Pintar dengan Notifikasi Pemberitahuan untuk kebun berskala kecil adalah projek yang dibangunkan menggunakan NodeMCU ESP8266 dengan integrasi teknologi IoT untuk pekebun yang mempunyai kebun berskala kecil yang memerlukan sistem pengurusan kos mudah dan rendah untuk meringankan aktiviti harian pertanian mereka. Dalam projek ini, pengguna akan dapat mengawal dan memantau keadaan kebun mereka dengan mudah melalui aplikasi mudah alih yang dibangunkan. Masalah yang biasanya mereka hadapi ketika menguruskan kebun secara manual adalah dari segi hasil tanaman kebun yang sering dirosakkan akibat pencerobohan dari haiwan liar dan juga dicuri oleh mana-mana individu yang tidak bertanggungjawab yang memasuki kawasan kebun secara haram. Oleh itu, ini boleh menyebabkan kerugian kepada petani dalam aspek wang, sumber dan tenaga dalam mengekalkan keadaan kebun. Seterusnya, pekebun juga sering menghadapi kesukaran untuk mengawal sumber cahaya di kawasan kebun di mana mereka pada satu ketika mungkin sukar bagi mereka untuk meninggalkan kawasan kerja dengan perasaan yang menyusahkan atau mungkin untuk mengawal perniagaan mereka dan mengesannya apabila mereka berada di luar rantau kerja. Jadi sekurang-kurangnya, dengan menghidupkan cahaya di kebun dapat mengurangkan perasaan yang tidak selesa di mana orang tidak akan mudah bertujuan untuk memasuki ladang untuk melakukan kerosakan. Jadi, projek ini akan menggunakan NodeMCU ESP8266 sebagai perkakasan komponen utama untuk berhubung dengan sensor gerakan PIR untuk mengesan pergerakan di mana ia juga boleh menghasilkan bunyi amaran buzzer selepas dicetuskan. Di samping itu, kajian literatur diperlukan untuk mengumpul kesemua maklumat yang relevan mengenai perkakasan, perisian, bahasa, dan pendekatan yang digunakan dalam projek ini. Semua komponen mestilah sesuai untuk projek yang bakal dibangunkan bagi memenuhi tujuan untuk membina prototaip, menggabungkan semua perkakasan dan perisian. Akhirnya, uji dan sahkan prototaip untuk memastikan semua komponen bekerjasama.

TABLE OF CONTENTS

DECLARATION	II
DEDICATION	III
ACKNOWLEDGEMENTS	IV
ABSTRACT	V
ABSTRAK	VI
TABLE OF CONTENTS	VII
LIST OF TABLES	XII
LIST OF FIGURES	XIII
LIST OF ABBREVIATIONS	XVI
CHAPTER 1: INTRODUCTION	1
1.1 UIntroductionTLTEKNIKAL MALAYSIA MELAKA	1
1.2 Problem Statement	2
1.3 Project Question	3
1.4 Project Objectives	
1.5 Project Scope	4
1.6 Problem Contribution	4
1.7 Report Organization	5
1.8 Conclusion	7
CHAPTER 2: LITERATURE REVIEW AND PROJECT METHO	DOLOGY.8

2.2	Related	l Work	9
			10
	2.2.1	NodeMCU ESP8266	10
	2.2.2	Sensor Detection	12
2.3	Critical	Review of the current problem and justifications	13
	2.3.1	Introduction	13
	2.3.2	Importance of project	14
	2.3.3	Previous Existing Product	14
	2.3.4	SMS Notifications On-Off Room Lights with Body Detection U Microcontrollers	Jsing 15
	2.3.5	Smart Intrusion Detection System for Crop Protection by Arc	duino 16
	2.3.6	Smart farmland using Raspberry Pi Crop Prevention and Ar Intrusion Detection System	nimal 17
2.4	Propose	ed Solutions	20
2.5	Conclu	او نبویر سیچ تیکنیکی ملس	21
CHAI	PTER 3: I	PROJECT METHODOLOGY	22
3.1	Introdu	ction	22
3.2	Method	lology	23
	3.2.1	Literature Review	24
	3.2.2	Component and Project Design	25
	3.2.3	Development and Simulation	27
	3.2.4	Testing and Verification	28
3.3	Project	Milestone	28
3.4	Gantt C	Chart	31
3.5	Conclu	sion	31

2.1

СНАР	TER 4: <i>A</i>	ANALYSIS AND DESIGN	32
4.1	Introdu	iction	32
4.2	Problei	m Analysis	32
4.3	Require	ement Analysis	33
4.4	Data R	equirement	33
4.5	Functio	onal Requirement	34
	4.5.1	Notification Process	34
	4.5.2	Motion Detection Process	35
	4.5.3	Light Control Process	35
4.6	Non-Fu	unctional Requirement	36
4.7	Other I	Requirement	36
	4.7.1	Hardware Requirement	36
	4.7.2	Software Requirement	43
4.8	High-L	evel Design	45
	4.8.1	System Architecture	46
	4.8.2	User Interface Design	47
4.9	Flowch	nart Design	50
	4.9.1	Smart Light Control Application Flowchart	51
	4.9.2	System Implementation Flowchart	52
4.10	Conclu	sion	53
СНАР	TER 5:]	IMPLEMENTATION	54
5.1	Introdu	ction	54
5.2	Develo	pment Environment Setup	54
	5.2.1	Hardware Development Environment Setup	55

	5.2.2 Software Development Environment Setup	57
5.3	Arduino IDE Configuration Setup	68
5.4	Implementation Status	76
5.5	Conclusion	78
СНА	APTER 6: TESTING	79
6.1	Introduction	79
6.2	Test Plan	79
	6.2.1 Test Organization	80
	6.2.2 Test Environment	80
	6.2.3 Test Schedule	
6.3	Test Strategy	
	6.3.1 Classes of Tests	
6.4	Test Design	
	6.4.1 Test Description	
	6.4.2 Test Data	
6.5	Test Result and Analysis	
	6.5.1 Test Result on Hardware	
	6.5.2 Test Result on Application	100
6.6	Conclusion	
СНА	APTER 7: CONCLUSION	103
7.1	Introduction	103
7.2	Project Summarization	103
7.3	Project Contribution	
7.4	Project Limitation	104

APPEN	DICES	107
REFER	RENCES	106
7.6	Conclusion	105
7.5	Future Works	105

LIST OF TABLES

PAGE

2
3
3
5
11
19
28
30
31
37
76
82
83
84
85
86
87
88
97
98
98
99
100
101

LIST OF FIGURES

PAGE

Figure 2.1: Taxonomy Structure	9
Figure 2.2: NodeMCU ESP8266 V2 board Hardware	12
Figure 2.3: PIR motion sensor	12
Figure 2.4: Sensing activity details overview	13
Figure 2.5: Example prototype of the project	15
Figure 2.6: Block Diagram	16
Figure 2.7: Functional Block Diagram	17
Figure 2.8: RFID Pet Microchip	18
Figure 2.9: RFID Injector	18
Figure 2.10: Proposed Solution	20
Figure 3.1: Methodology block diagram	23
Figure 3.2: Literature Review	24
Figure 3.3: Main Hardware Component	25
Figure 3.4: Software Application	
Figure 3.5: Development Project Process	27
Figure 4.1: Data requirement flow	33
Figure 4.2: Notification process	34
Figure 4.3: Motion detection process	35
Figure 4.4: Light Control process	35
Figure 4.5: Node MCUESP8266 module	37
Figure 4.6: USB cable A type	38
Figure 4.7: PIR sensor	38
Figure 4.8: Jumper wire	39
Figure 4.9: LED component	39
Figure 4.10: Piezo Buzzer	40

Figure 4.11: 220K ohm resistor
Figure 4.12: Breadboard 41
Figure 4.13: Huawei Nova 2i 42
Figure 4.14: Arduino IDE Software
Figure 4.15: MIT Apps Inventor 44
Figure 4.16: Fritzing Software 44
Figure 4.17: ThingSpeak Logo 45
Figure 4.18: System Architecture Diagram
Figure 4.19: First Interface
Figure 4.20: Second Interface
Figure 4.21: Third Interface
Figure 4.22: Fourth Interface50
Figure 4.23: System Flowchart51
Figure 4.24: System Implementation Flowchart
Figure 5.1: Details of the Node MCU ESP8266 board55
Figure 5.2: Hardware Diagram
Figure 5.3: Hardware development prototype56
Figure 5.4: Download Arduino IDE
Figure 5.5: IDE packages initialization
Figure 5.6: Arduino IDE interface
Figure 5.7: Configure and upload source code on IDE
Figure 5.8: Main page MIT App Inventor60
Figure 5.9: Create a new project60
Figure 5.10: Application name61
Figure 5.11: Design the mobile application61
Figure 5.12: Code block development
Figure 5.13: ThingSpeak main website
Figure 5.14: Create new channels for the project
Figure 5.15: ThingSpeak channels settings
Figure 5.16: ThingSpeak created channel view64
Figure 5.17: The channel status
Figure 5.18: Search BotFather to generate a new bot
Figure 5.19: Project bot development

Figure 5.21: New bot command	66
Figure 5.22: Define name for the bot	66
Figure 5.23: Create a username for the bot	67
Figure 5.24: Bot successfully created	67
Figure 5.25: Microcontroller board selection	68
Figure 5.26: Include the outside library	68
Figure 5.27: Bot establishment code	69
Figure 5.28: Bot movement detection code	69
Figure 5.29: ThingSpeak declaration code	70
Figure 5.30: Pin declaration on microcontroller	70
Figure 5.31: Void Setup declaration	71
Figure 5.32: Wi-Fi connection coding	72
Figure 5.33: Motion sensor coding in void loop	73
Figure 5.34: Motion sensor code if no motion detected	73
Figure 5.35: Brightness level control code	74
Figure 5.36: Establish client connection	75
Figure 5.37: On/off LED light control code	75
Figure 6.1: Microcontroller connectivity testing	89
Figure 6.2: Serial Monitor port COM4	90
Figure 6.3: Connectivity console status	90
Figure 6.4: Component connectivity setup	91
Figure 6.5: Motion detection component response to the functionality	91
Figure 6.6: LED light response to its functionality	91
Figure 6.7: MIT Apps	92
Figure 6.8: Starting screen of the application	92
Figure 6.9: First Interface	93
Figure 6.10: Second Interface of the application	94
Figure 6.11: Third Interface of the application	94
Figure 6.12: Fourth Interface of the application	95
Figure 6.13: Notification Alert on Telegram	96

LIST OF ABBREVIATIONS

CHAPTER 1: INTRODUCTION

1.1 Introduction

Farming is one of the usual activities that people used to fill in their leisure time as it brings a lot of benefits in terms of encouraging crop yields, productive energy, good body physical condition as it is maintaining an individual's health and many more benefits. Hence, people in the rural areas are also enjoying themselves in carrying out a small-scale farm activity. Despite a small-scale farm area, good control management is needed to ensure no harm and destructions towards their crop yields or any intrusions tragedy happening in their particular farm area.

Thus, as a result of the advancement of technology and people's dependence on smartphones to meet ever-increasing demands, it has become an easy and fast way to solve everyday life tasks. As a consequence, it is important to have a technology that can monitor applications through IoT. One of the IoT projects for low-cost solutions that can be used is Smart Light Control with Notification Alert for Small Scale Farm. Control smart lights and receive notifications Alert for small scale farm is one of the IoT projects for low-cost solutions that can be implemented specifically for small scale farmers in rural areas as an alternative to using CCTV, which is very expensive, in order to increase and improve the safety level of their farm.

In addition, this is an alternative approach to control, which is that accepting data from the sensors could give the farmers at least a small picture of what was happening on their farm. Hence, storing all of the data could help them analyze if there are any needed improvements.

1.2 Problem Statement

Smart Light Control with Notification Alert for Small Scale Farm is a project that enables users to ease their management activities in order to improve and maintain secure security levels for small-scale farms in particular, especially in rural areas, using a low-cost medium solution. The Internet has become a part and portion of human life with the exponential increase in the number of internet users over the past decade. This system can control the light and also detecting motion through the sensors for the specified farm area. Therefore, the established project consists of two parts, including a simple API, hardware and software such as devices, NodeMCU ESP8266 board, PIR sensor and many more.

WALAYS/4

This project approach in order to help ease some problems faced by the users, such as the high amount of Internet bandwidth consumption when using CCTV which is required to load the acquired footage videos from the CCTV where particularly might be very costly, especially for a small single scale farmer. In addition, there are more workloads needed to be hired, like the extra workers to facilitate the farmer in tracking for any intrusion issues at the specified working area. Thus, it might be hard for them to leave the work area with a troubling feeling or maybe control their business and track it when they are out of the work region.

PS	Problem Statement
PS1	CCTV installation for a single-scale farmer is quite costly and high-
	maintenance in order to manage the farm which is not worth it.

1.3 Project Question

Once the architecture is understood, how can this project solve the scenario of manually manage the small-scale farm? The project questions are as follows:

Table 1.2 Summary of Problem Questions

PS	PQ	Problem Questions
PS1	PQ1	What type of system will be developed?
	PQ2	How efficient is the prototype's sensor?
	PQ3	How to give a notification alert to the farmer?

1.4 Project Objectives

Based on project questions, this project consists three main objectives to ensure that the prototype can be fully implemented. Table 1.3 below is a summary of the project objectives.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 1.3 Summary	of Project	Objectives
-------------------	------------	------------

PS	PQ	PO	Project Objective
	PQ1	PO1	To develop a low-cost IoT solution prototype that
PS1			can automatically detect motion based on light control
	PQ2	PO2	To notify the user through notification alert as a precaution
	PQ3	PO3	To test the functionality of the prototype

1.5 Project Scope

For this project, there are several scopes that are going to be focused on:

- 1) User: any small-scale farmer that needs a system to guard their farm
- System: Develop a simple system for the user to manage their farm through light control with hardware utilization like NodeMCU ESP8266, led, PIR motion sensor and others.
- 3) The functionality of automatic on/off light primarily based totally on the movement sensor that stumbles on the movement presence of wild animals or intruders and also light brightness control
- 4) Real-time notification alert to let the user know the condition of their business area when detecting any motion indicates the light is automatically on in the specified area.

5) Implementing some modules like report modules for graph analysis

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

1.6 Problem Contribution

This prototype is designed especially for people with a small-scale farm that need a low-cost solution approach in handling and keeping track of their farm state, which is a better solution in saving money, time, and resources. Table 1.4 below shows the summary of the project contribution.

Table 1.4 Project Contribution

PS	PQ	РО	PC	Project Contribution
	PQ1	PO1	PC1	It proposed to develop a simple API system where users
				can easily monitor and control their farm conditions.
	PQ2	PO2	PC2	It proposed a prototype that able to strengthen the security
PS1				level of a single small-scale farm with hardware and
				software utilization.
	PQ3	PO3	PC3	It proposed an appropriate notifications alert that notifies
				the user about the farm condition.

1.7 Report Organization

This report is divided into seven chapters: Chapter 1 contains the Introduction, Chapter 2 is for Literature review, Chapter 3 consists of Methodology, Chapter 4 is for the Design, Chapter 5 contains the Implementation, Chapter 6 contains the Testing and lastly, Chapter 7 for Conclusion.

Chapter 1: Introduction " UNIVERSITI TEKNIKAL MALAYSIA MELAKA

This chapter will focus on the introduction, problem statements, project questions, project objectives, project scope, project contribution, report organization and conclusion.

Chapter 2: Literature review

This chapter will focus more on related or previous work on this project and a critical analysis of the current problem, reasoning, and suggested solution. This project's explanation and details are assisted by reading materials and a conference paper.

Chapter 3: Project Methodology

This chapter describes the methodology that will be used in this project as well as the project milestones.

Chapter 4: Analysis and Design

This chapter will deliberate over the project's problem analysis, requirement analysis, high-level design, database design, and comprehensive design.

Chapter 5: Implementation

This chapter will discuss the setup of a software development system, software configuration management, and the status of implementation.

Chapter 6: Testing

Beginning with microcontrollers and applications, Chapter 6 will begin the application testing and debugging phase. At this point, the findings are compared to the objectives in order to draw conclusions and make assumptions.

Chapter 7: Project Conclusion

For chapter 7 it will discuss the project summarization, project contribution, project constraints, and future work.

1.8 Conclusion

In conclusion, this chapter consists of the details and information of the proposed project, the smart light control with notification alert for small-scale farmers. Hence, all the primary objectives and also the scopes have been discussed. So, the next chapter will be proceeded and focus on the literature review of the project.

CHAPTER 2: LITERATURE REVIEW AND PROJECT METHODOLOGY

2.1 Introduction

This chapter will discuss the project's literature review in which there will be a few vital explanations that will be applied in this project. In addition, some other aspects will be discussed in this chapter involving the current issue, justification, and the solution approach for enhancement of the project.

Hence, this chapter will briefly explain and focus more on the functionality of the project prototype and the creative workflow of the project process. Thus, the detailed information is indeed vital in order to carry out this project. On the other hand, this chapter involves a few particularized discussions of some journal articles or any research done by others. It is more or less related to this current project, such as the terms of its components type and the methodology used in carrying out the project implementation.

In addition, this literature review aims to summarize all the information details that can be used to enhance the process of generating ideas. On the other side, the completed project can be used as a model for improving the current project in accordance with its intent and objectives.

2.2 Related Work

On Internet of Thing or to be known as "IoT" refers to the objects network or devices containing an embedded technology that help enable people to communicate and interact with one another. Thus, this connectivity is interrelated between the physical devices and could happen anywhere, everywhere and anytime such as whether in our home, office and many more places. In addition, it somehow can include appliances such as light fixtures or any of the devices that we owned that connected directly to the web or any other devices in some way. These devices also include smart gadgets where can be accessed and controlled from a remote location which benefits the users from a wide range of industries.

The common situation that the small-scale farmer has faced is they usually use to have the unease feelings and worry most of the time thinking about their farm condition as they left the place. One of the reasons is the presence of wild animals or any intruders that illegally enter the farm area, which either might cause damage or steal all the farm crop yields that can make a huge loss in terms of money, resources, or any other factors. The figure below shows the taxonomy flow of the smart light control with notification alert for small-scale farm

Figure 2.1: Taxonomy Structure

The taxonomy figure shown above describes the relation of the IoT in smart light control with notification alert with some derivation that involves several main components and explanation of its functionality. This taxonomy explains the prototype division aspect as an overview or guideline in developing this project and ensuring that this prototype development is on the right track. Therefore, for this development process it will focus more on the application to be developed for the targeted user that consists three main key components that are determined as the foundation for this project's development which it also has four functionality such as the motion detection using PIR sensor, light control, notification and also graph report.

2.2.1 NodeMCU ESP8266

NodeMCU ESP8266 is module hardware that the community has widely used to act as a microcontroller, especially in the IoT world. Hence, it's also designed to develop and build digital devices and interactive objects that can sense and control objects through both physically and digitally. ESP8266 is also one of the affordable and reasonable microcontrollers nowadays that fits users well, especially students undergoing any IoT environment research project.

The MCU within the ESP8266 is primarily used to control and process data, which can be acquired and processed via the various communications ports and data uploaded via the Wi-Fi module linked to the Internet. The most significant benefit of employing this NodeMCU ESP8266 is its low cost. (T. Qiang et al., 2018).

Besides, several types of other microcontroller boards can be used in order to build a certain type of project such as the ESP32, Arduino Uno, Arduino, Arduino WIFI R2, Arduino Leonardo, Arduino Mega, Arduino Due, Arduino Red Board, Arduino Shields, Arduino Ethernet REV3, Arduino MKR Zero any many more. Despite all of this board being categorized under Arduino, every board consists of different functionality and features, such as the total number of pin slots, whether digital or analog, the USB port, and other aspects.

	ESP8266 Node MCU V2	Node MCU V3	ESP32 Node MCU	ESP8266 WeMos D1 Mini	Arduino NANO 3	Arduino UNO R3	Arduino UNO WIFI R2	Arduino Mega
Microcontroller	ESP8266	ESP8266	ESP32	ESP8266	ATmega328p	ATmega328p	ATmega4809	ATmega2560
Operating Voltage	3.3V	3.3V	3.3V	3.3V	5V	5V	5V	5V
Power supply	7V – 12V	7V – 12V	7V – 12V	4V - 6V	7V – 12V	7V – 12V	7V – 12V	7V – 12V
Current consumption	15 μA – 400 mA	15 μA – 400 mA	20 mA – 240 mA		19 mA – 180 mA	45 mA – 80 mA	50 mA – 150 mA	50 mA – 200 mA
Current consumption Deep Sleep	0.5 μΑ	0.5 μΑ	5 μΑ		23 μA (with special settings)	35 mA	35 mA	500 μΑ
M	ALAYSI,	1 10						
Digital I/O Pins	11 or 13	16	36	11	14	14	14	54
Digital I/O Pins with PWM	11 or 13	16	36	11	6	6	5	15
LISSA				J			VI.	

Table 2.1 Microcontroller Comparison

MICROCONTROLLER COMPARISON

Hence, NodeMcu is also a microcontroller that is based on open-source programming and rigging progression framework based on the ESP8266, a small System-on-a-Chip that is cheap and can implement much functionality. In addition, NodeMCU ESP8266 comes up with 16 GPIO pins that are also integrated with its software platform, which is known as Integrated Development Environment (IDE), the main Arduino development program. It uses some programming language codes such as C and C++ for the IDE where it also has 4 MB of flash memory, a clock speed of 80-160 MHz, roughly 50 KB of useable RAM, and an on-chip Wi-Fi transceiver.

Figure 2.2: NodeMCU ESP8266 V2 board Hardware

2.2.2 Sensor Detection

One feature that makes an Arduino so beneficial is the ease with which it can obtain sensor values. There are so many types of sensors that can be used with Arduino according to some particular aspects such as the ultrasonic sensor, humidity sensor, speed sensor, gas sensor, photoresistor sensor and so on so forth. In this project, Passive Infrared (PIR) motions sensor is being used based on its reliability in detecting motions and large objects such as human, animals, and other moving objects with 99% accuracy. This detection process is happening through infrared light to define or determine the presence of the object.

Figure 2.3: PIR motion sensor

Figure 2.4: Sensing activity details overview

2.3 Critical Review of the current problem and justifications

2.3.1 Introduction

IoT is the most general topic or essence in every aspect due to its factors that ease most people in this world's work or routine. Hence, it is also reflecting the agriculture environment and day goes by the expansion of IoT technology had changed the perspective of handling and managing this sector. Even though few inventions can ease this job, some issues still arise, such as the intrusion and trespassing problem that shown that they still lack security level consideration in inventing a product.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

According to (A. Parmar et al., 2020) research in the journal, the interference of animals in agricultural lands causes a huge crop loss. Crop damage due to raiding wild animals has become a major issue of concern these days. Animals like wild boars, macaques, porcupines, deer, monkeys and bears are extremely destructive and have also caused human casualties sometimes. The total losses in crop yield are high for potatoes and wheat in villages. The small farmers have to give up in a range of 40 until 50 percent of their crop yields to the untamed animals and they can't even take any action or rights regarding to the firm wildlife laws.

2.3.2 Importance of project

The aim of this project is actually to improve the small scale farm security standard which is somehow people might think that it is not important to keep eyeing or safeguard for a small farm area with proper management in facts these are the small things that people need to emphasize and give enough attention to it in order to improve the agriculture sector which giving benefits to a small farmer that might help in generating the production of quality plants and at the same time can provide a profit on the yield grown. Hence, the importance of this project is to ensure that users would be able to receive notification alerts when there are any motions detected whether it is humans that try to trespassing into the farm or it also might be any entry of wild animals that can damage the crop yields. With the help of the microcontroller, sensor and other components it may help to lessen the difficulties in handling their farm.

2.3.3 Previous Existing Product

The previous existing product consists of its methodology that explains the system's working flow, particularly according to the flowchart, giving a clear vision about the whole concept for the project. Each of the methodologies will differentiate the product one to another where it can be used as analysis in developing this project.

2.3.4 SMS Notifications On-Off Room Lights with Body Detection Using Microcontrollers

This previous project aims to sense the movement or motion made by the human body specifically in the room area through light control with the implementation of the light sensor and the PIR sensor. In addition, with the intensity detection of light in the room is reduced if there is any human body motion that indicates people are entering the room.

Figure 2.5: Example prototype of the project

Figure 2.5 shows the example prototype made to show the room environment when it detects movement from the human body that will activate the sensor and instantly turn the lights on.

2.3.5 Smart Intrusion Detection System for Crop Protection by Arduino

For this project that is wise Intrusion System for Crop protection is one amongst the helpful project inventions that is integrated with a ton of elements that build it a complete product. With the mixing of few devices like the ultrasonics sensor, the PIR device and conjointly few buzzers connected that represent an enormous main half within the system. This analysis aims to emphasize a secure system to safeguard the farmland, notably hindrance from animals like elephants, which may be able to destroy the crops within the farmland space.

Figure 2.6: Block Diagram

Figure 2.6 shows the block diagram used in this research project where it is shown that there are many components used and connected to the heart of the system, the Arduino Uno circuit board.

2.3.6 Smart farmland using Raspberry Pi Crop Prevention and Animal Intrusion Detection System

Next, for this project research according to (Bindu D and Dilip Kumar M D et al. 2018) saying that over the years, animals from the protected area have repeatedly attacked the crop field, and the crop field's security has become a significant concern. Thus, in this journal, they present a realistic technique to ward them off in this article by developing a device that studies the animal's behavior, detects the animal, and generates various sounds that irritate the animal while also alerting the author.

Figure 2.7: Functional Block Diagram

Figure 2.7 shows the functional block diagram used in the research above where it shows the flow concept of the prototype that consists of components such as the RFID tag, RFID reader, GSM Module, speaker and also the main item components which are the Raspberry Pi board as the heart of the system. Then, it will transmit the data received by the RFID tag to the targeted users through a message (SMS) notification on their phones.

Figure 2.8: RFID Pet Microchip

Figure 2.8 above shown the RFID Pet Microchip and figure 2.9 displays the RFID injector used. Both of these two items are applied to the animal where the RFID tag will be injected under their skin by the RFID Injector, which might facilitate them in tracking the wild animal's presence, especially into the farmland as they already do the injection. Hence, the RFID reader will then read and detect if there might be any animals that are closer to the particular area and send the SMS by using the GSM module to the targeted user.

Comparison of the existing project research								
Research Journal Title	SMS Notification On- Off Room Lights with Body Detection Using Microcontrollers	Smart Intrusion Detection System for Crop Protection by using Arduino	A smart Farmland Using Raspberry Pi Crop Prevention and Animal Intrusion Detection System					
Article Resource and Author	R. Leandros, W. J. Widiaia Saputra, D. Fitria Murad, D. Atmaja August 2020.	S. <u>Yadahalli</u> , A. Parmar, Prof. A. Deshpande 2020	S. <u>Santhiya</u> , Y. <u>Dhamodharan</u> , N. E. <u>Kayi</u> Priya, C. S. Santhosh, M. Surekha March 2018.					
Microcontroller	Arduino	Arduino	Raspberry Pi 3					
Technology	GSM Modul sim 900A	GSM Modul sim 900A	Radio Frequency Identification (RFID) GSM Modem and Zig Bee					
Advantages	1. Get notifications into mobile device through phone message when detect motion of human body	 It has integration with security camera that can capture images Notify user through message notification on the phone 	 Detect the presence of wild animal through RFID tag The intrusion prevention is also using the irritation noise and cracker sound made by the connected speaker on the microcontroller Give notification alert via message (SMS) 					
Disadvantages	 Can be applied depending on the certain light source intensity only No GUI application used for user to control the light 	 It is very costly A y and not affordable for the user. It can't be use if there is no electricity source to connect due to integration with the camera system. Hence, no user GUI application being develop for the system 	 Cause discomfort and injection pain to the wild life animals nearby due to have the RFID injector tag injection under the animal skin It is not a low-cost and best solution especially for a small- scale farmer user in terms of the components used. 					

Table 2.2:	Comparison	of existing	project	research
-------------------	------------	-------------	---------	----------
2.4 Proposed Solutions

In this chapter, the proposed solution will discuss the way or the best approach that can be made in improvising this project where all the previous concept in the discussed articles journal will be taken into account. Hence, the development of this low-cost prototype might be helpful to the users which are the small-scale farmers out there, in managing their farm much easier than previous manual management routine that they used to. In addition, it can also save time, resources and energy along with the notification alert that can notify them in real-time.

Therefore, this project approach uses NodeMCU esp8266 as the main microcontroller that acts as the heart of the system with the WiFi package technology that will be implemented together. Hence, it will also use the PIR sensor as the component used to detect motions of any human body or any wild animals trespassing by the farm. So, when any movements are detected, it will trigger the LED lights to turn on and turn off if otherwise. Next, the NodeMCU esp8266 will be used in order to retrieve data value from the sensor and notify the user through the notification alert and use the Android application as the control platform.

Figure 2.10: Proposed Solution

2.5 Conclusion

In conclusion, this chapter focuses more on reviewing the literature review from multiples research articles that is very useful in enhancing and being the guidance in developing this prototype. Hence, the articles discussed in this chapter will be one of the references for this project to make any suitable improvements in the future. Thus, the project methodology will be discussed in the next chapter that will explain Smart light control with notification alert for small-scale farm project planning and discussing few related requirements.

CHAPTER 3: PROJECT METHODOLOGY

3.1 Introduction

This chapter discusses concerning the project methodology and project milestones. In project methodology, the technique utilized in this project are justified and project milestones were created to follow the point in time of the project so that the project can be complete. A project methodology ought to be chosen earlier throughout the project coming up with. The approach depends on the formalized necessities and each final project set up. The approach will affect all of the looks, so it plays an enormous half in developing this method as a foundation of the system.

In addition, the project process model is an abstract representation of a project process. Each process model represents a process from a particular perspective and thus, provides only partial information about the process. Hence, this chapter helps arrange the project planning as it also outlines each step for the project where it is very important to always keep up with the project development. In addition, a project milestone and Gantt chart will be included in this chapter to assist the student in fully guiding the timeline of each move. This project milestone and a Gantt map for the remainder of the project would yield the ideal outcome.

3.2 Methodology

In order to complete the project effectively with the proper methods and flows, project methodology is very important in the development phase. This subject will identify and clarify the most appropriate methodology.

This chapter will go through the four phases of the project: the Literature Review, Project Design and Component Selection, Development and Simulation, and Testing and Verification. Hence, each stage must be completed before moving on to the next stage.

Figure 3.1 shows each step in creating an effective prototype and hardware creation, including a connection between hardware and software. These measures are crucial to always being on the track and guidance that will help develop the project.

Figure 3.1: Methodology block diagram

3.2.1 Literature Review

The use of this Literature Review is to review and examine some of the previously existing work related to various sources such as the books, journals, articles, or any research papers to comprehend the concepts of the project that must be understood in completing this project. In addition, the Literature Review will facilitate in determining which hardware, software, processes and workflows that are appropriate for this project. Furthermore, it will also include a lot of information and skills.

Based on figure 3.2 above it shows the components related that facilitate in making the reviews and examination of previously existing works in the literature review phase. So, that it will ease the design process, components identification selection and many more aspects.

3.2.2 Component and Project Design

In Component and Project Design phase, it contains few parts that will be chosen and the design will be visualized to obtain an output during this process. Hence, the components are divided into two categories which are the hardware and also software. Then, the next step will be to decide the hardware and software based on the concept proposed. This process, component and project design, aims to ensure that the design meets the goal and can solve the problem.

Figure 3.3: Main Hardware Component

Next, figure 3.3 refers to the summarization of the main hardware components used in this project. Each component plays its functionality respectively to ensure that the communication between the hardware and software at the end of the outcome is working smoothly.

Next, for software applications it consists few aspects that being used in completing the project and the hardware modules must be compliant with the software applications to ensure that they can be function well. The user should be able to receive notifications alerts from the app. The description of the Software Application is shown in Figure 3.4 below:

Figure 3.4: Software Application

For figure 3.4 it is referring to the summarization of the software application of the project involving a few components aspect. Generally, it describes the language used in developing the prototype which is C/C++ language and uses Android as the medium platform of the application that can give notification alerts to the users.

3.2.3 Development and Simulation

Next, the development and simulation phase will describe and explain the development flow process with all the selected hardware and software components discussed previously. In addition, this phase will start with the hardware part development according to the schematics diagram with the software implementation.

Figure 3.5: Development Project Process

Figure 3.5 depicts the flow of the prototype development process, which includes both hardware and software parts. This aids in comprehending the essence of the project by serving as a guideline for the development of the project.

3.2.4 Testing and Verification

Testing is the process of running an application or program to find potential software flaws. It also aims to assist in the testing of the product to ensure that it functions as intended. This process is divided into two categories: prototype and documentation. The prototype and documentation will be the focus of testing and verification. After the prototype is complete, it will then be reviewed to ensure that the project meets the goals requirement features and functions properly. Hence, the project must be reported in a report to ensure that it is completed.

3.3 **Project Milestone**

A project milestone is a time period that describes the actions planned before the project's completion and the activities stage by stage. Plan Milestones serve as a point of reference for tracking project progress and identifying important project activities. Hence, in order to ensure that all project activities are completed within the project's timeframe, a project milestone will be established and scheduled. The Gantt chart will monitor the progress of each chapter to ensure that all tasks are completed within the time frame.

Week	Activity
W1	Proposal PSM: Discussion
15 March \rightarrow 21 March	Proposal Assessment & Verification
W2	Proposal Correction/Improvement
22 March \rightarrow 28 March	List of Supervisor/Title
W3	Proposal Presentation & Submission via
29 March \rightarrow 4 April	PSM ULearn
	Chapter 1 (System Development Begins)
W4	Chapter 1
5 April → 11 April	

Table 3.1 PSM 1 Milestone

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

W5	Chapter 2
12 April → 18 April	
W6	Chapter 2
19 April → 25 April	Project Progress
W7	Chapter 3
26 April \rightarrow 2 May	
W8	Deliverable Chapter 3
$3 \text{ May} \rightarrow 9 \text{ May}$	
W9	MID SEMESTER BREAK
$10 \text{ May} \rightarrow 16 \text{ May}$	
W10	Chapter 4
$17 \text{ May} \rightarrow 23 \text{ May}$	Project Progress
W11	Project Demonstration
$24 \text{ May} \rightarrow 30 \text{ May}$	
W12	Project Demonstration
$3 \text{ May} \rightarrow 9 \text{ May}$	PSM 1 Report
W13	Project Demonstration
7 June \rightarrow 13 June	PSM 1 Report
W14 all	Project Demonstration
14 June \rightarrow 20 June	- G. VJ.J
UNIVER 15 I TEKNIKAL	MALAYS Final Presentation
21 June \rightarrow 27 June	Submission of the PSM1 Report onto the
	PSM ULearn
W16	REVISION WEEK
28 June \rightarrow 4 July	Correction on the draft report based on the
	comments by the Supervisor and Evaluator
	during the final presentation Session. Submit
	PSM1 Logbooks to PSM e-Repository
	online System. Submission of overall marks
	to PSM/PD committee
W17 & W18	FINAL EXAMINATION WEEKS
5 July \rightarrow 18 July	

Week	Activity
W1	Chapter 5
19 July \rightarrow 25 July	
W2	Chapter 5
26 July \rightarrow 1 August	Project Progress
W3	Deliverable Chapter 5
2 August \rightarrow 8 August	
W4	Chapter 6
9 August \rightarrow 15 August	Project Progress
WAL W5/4	Deliverable Chapter 6
16 August \rightarrow 22 August	Chapter 7
W6	Deliverable Chapter 7
23 August \rightarrow 29 August	Project Demonstration
	PSM2 Draft Report
W7	Final Presentation
30 August \rightarrow 5 September	Project Demonstration
	Submission of the PSM1 Rep <mark>ort onto the</mark>
UNIVERSITI TEKNIKAL	MALAYSIAPSM ULearn
W8	FINAL EXAMINATION WEEKS
6 September \rightarrow 12 September	Correction on the draft report based on the
	comments by the Supervisor and Evaluator
	during the final presentation Session. Submit
	PSM2 Logbooks to PSM e-Repository
	online System. Submission of overall marks
	to PSM/PD committee
W9	INTER-SEMESTER BREAK
13 September \rightarrow 19 September	Submission of the final complete report,
	updated & corrected PSM2 report, onto the
	PSM2 ULearn

 Table 3.2: PSM 2 Milestone

3.4 Gantt Chart

Gantt Chart is used to ensure that all tasks are completed on time. It also serves as a project completion guide. Each procedure in a Gantt Chart triggers the execution of another procedure. The following table, Table 3.2, indicates the Gantt Chart.

Task Name									W	EEK								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Proposal PSM: Submission & Presentation																		
Chapter 1																		
Chapter 1 & Chapter 2																		
Chapter 2 & Chapter 3																		
Chapter 3 & Chapter 4																		
Chapter 4 & Project Demo																		
Project Demo																		
Project Demo & PSM 1	27																	
Project Demo		9	G															
Final Presentation			100															
REAL TERU				Y.P														
.5 Conclusion	L																	
chi (1/	-		. /	1						. 1				

Table 3.5 Gante Chart	Table	3.3	Gantt	Chart
-----------------------	-------	-----	-------	-------

In conclusion, the project milestones ensure that tasks are completed on schedule and in the correct manner. So, the next chapter, which is the Design chapter, will discuss the model creation and next step process flow for the system that must be completed well to meet the goal.

CHAPTER 4: ANALYSIS AND DESIGN

4.1 Introduction

This chapter explains the hardware and software specifications for IoT-based particularly for this project. Since certain mistakes can disrupt the entire project process, the design phase is critical. When creating and describing the concept and process architecture, it is critical to be careful and provide the best solutions and ideas. The project's execution will demonstrate how and why the project will be successful.

4.2 **Problem Analysis**

The problem analysis of this project is as stated previously in chapter 1. The farmer tends to face some difficulties such as intrusion issues from the outside or maybe wild animals to manage their small-scale farm, especially when outside the work region. Pertaining to this problem, people usually tend to install CCTV to facilitate tracking their farm condition, but CCTV installation might cost a quite expensive amount of budget to set up. It has high maintenance to keep up, including a high amount of bandwidth for the farmer to load the acquired footage videos as if any intrusion issues happen.

4.3 Requirement Analysis

The purpose of requirements analysis is to identify and analyze any tasks or requirements necessary to complete the project successfully. Data requirements, functional requirements, non-functional requirements, and other needs are all part of the content to be examined in this project. Hence, the two categories, the hardware and software requirements, will smoothly run the project functionality.

4.4 Data Requirement

The data required to produce the output from the input received and gathered is known as the data requirement. The input is triggered when the PIR sensor that is being used detects suspicious motions in the environment. It will respond by emitting an alarm sound through the buzzer as long as the movements continue. It indicates that intruders or even wild animals have entered the region. When the sensor is triggered, the user will receive messages informing them of the current status of their farm. As a result, because the user is not at the farm, this Smart Light Control does not cause them to be concerned about their farm's state.

Figure 4.1: Data requirement flow

4.5 Functional Requirement

This functional requirement section will specify the projects based on the specific functions. This section will get through each function in further detail to make it more relevant systematic and understandable. When the functional need is fulfilled with specifications, this project will be able to operate and function smoothly. As a result, this section will discuss notification and motion detection.

4.5.1 Notification Process

For this notification process part, there will be NodeMCU ESP8266 with the WiFi features that will connect the android apps. The user will be notified through the notifications alert as it detects motions. The sensor will be also being programmed through the combination with NodeMCU ESP8266 to ensure that it functions very well. Based on Figure 4.2 below shows the notification process of the project.

Figure 4.2: Notification process

4.5.2 Motion Detection Process

Next, for the motion detection process, the PIR sensor plays the main role here. After any suspicious motion triggers it, the buzzer will start the ring as the sign to indicate an intrusion is happening. Hence, it will not stop ringing as long as the motions are still mingling around the PIR sensor motion detection range. Figure 4.3 shows the flow of the motion detection process.

Next, the user can control whether to be on or off via the mobile application interface for the light control process. They can also control the brightness level of the lights according to the brightness level that they want. Figure 4.4 shows the flow for the motion detection process.

Figure 4.4: Light Control process

4.6 Non-Functional Requirement

It is unrelated to non-functional requirements with those that are not directly related to the project's specific utility. In simple terms, a non-functional requirement depicts the framework's activity capacities and imperatives that improve its usefulness.

4.7 Other Requirement

The other requirements for other essentials are based on product and equipment requirements. Hence, the product and equipment requirements are the specifications for all items and equipment employed in the project to create a framework.

The Node MCU ESP8266 is the main component of this project. It acts as the microcontroller, including the Wi-Fi functionality as one of the Node MCU development board features. This board contains a low-cost chip called ESP8266 that uses the TCP/IP protocol. It also consists few GPIO pin slots to connect the other hardware component to its body. Hence, this Node MCU version 2 in black was chosen for this project.

Figure 4.5: Node MCUESP8266 module

 Table 4.1 NodeMCU ESP8266 specification details

2. USB Cable A

The cable-A adapter will be used to link the Arduino IDE and the Node MCU ESP8266 in this project. As a result, the user will be able to establish the connection between the hardware Arduino board and the software via the programmed code.

The PIR Sensor stands for the passive infrared sensor. It is used in applications that require the detection of human or particle movement within a specific range. Hence, this sensor detects the movement of items that emit infrared light (such as human bodies). The output of the PIR motion detection sensor can be directly linked to one of the digital pins of an Arduino (or any other microcontroller).

Figure 4.7: PIR sensor

4. Jumper Wire

The jumper wires are simply wires having connector pins on both ends that can be used to connect two places without the use of solder. Jumpers are frequently used with breadboards and other prototyping equipment to allow for quick circuit replacement. Male to male, male to female, and female to female are the three most common forms of jumpers. Males are the most frequently used users.

A light-emitting diode (LED) is a two-lead semiconductor light source. The LED emits light when it is activated. In this project, the LED is activated when the motion is being detected. Red LED is being chosen to indicate an alert through the light that sparks from the LED. Figure 4.10 shows the example of LED used in this project

Figure 4.9: LED component

6. Piezo Buzzer

The buzzer shown below is known as the Piezo buzzer. Hence it is a component that was employed in the development of the project's prototype. The buzzer then emits a tone of 1000. The loop () procedure will repeat this process, making a short beeping noise each time or as long as it detects the motion. The buzzer hardware is shown in Figure 4.11.

Next, in the electronic circuit, a resistor is the electrical component that limits or governs the flow of electrical current. Resistors are then used to, among other things, reduce current flow, regulate signal levels, divide voltages, bias active devices, and terminate transmission lines. Figure 4.12 depicts an example of a resistor that was utilized in this project.

Figure 4.11: 220K ohm resistor

8. Breadboard

The Breadboard is a great way to connect other tools with Arduino UNO through its pin. These are for making prototyping the smart Light Control through the circuit. The breadboard will be used to connect with the GPIO pin at the Arduino board to allow the LED, buzzer, resistor and others to function properly. Figure 4.13 shows the example of breadboard used in this project

Figure 4.12: Breadboard

9. Android Smartphone

The Android Smartphone is one of the important hardware that needs to be used in testing the project. So, for the project testing, a Huawei Nova 2i is being used with a RAM capacity of 4GB and internal storage of 64 GB. Both EMUI and Android is 8.0.0 version. Figure 4.14 shows the Android smartphone used in this project.

Figure 4.13: Huawei Nova 2i

4.7.2 Software Requirement

1. Arduino IDE

The Arduino IDE is a multi-platform application that runs on Windows, Mac OS X, and Linux. The program writing and uploading software for Arduino compatible boards. This is how the Java programming language communicates. It comes with the GNU public license version 2, which was just released on the market. The restructure is done using the Arduino IDE's language C and C ++ code.

Figure 4.14: Arduino IDE Software

2. MIT App Inventor

The MIT Inventor Apps is being chosen because it is more precise programming and more straightforward to integrate. MIT Inventor App will be used as the project's operating system. Furthermore, it is simple to create completely complete applications. The MIT App is available for Android and iOS. It is open-source software that is free to use. As we all know, an operating system is a collection of fundamental programs and utilities that run on a specified schedule.

O ai2.appinw Apps Introduction to Co	entor.mit.edu am: 🗋 inspi	(?locale=en#565392) ration devzen 🧧 Git	6721093632 Resources 📋 Compu	stational Thini 📋	C# Reference 📙	Game Desgin	WordPress	Web Development	: 🦲 CSS 📙 C	SS3 Animations	Software Engineering	☆ 🍸 🖋 > 🚺 0t
3 Bet	2 Pro	ecta · Connect ·	Build + Help +						My Projects	Galley Guide	Report an Issue	English + winikko@hsd.k1
aktte	out o	land a street a	ACHINE SCIENT		41134011C					Compose ats		Properties
User Interface					menenanto in Vincun							Labell
Button	(7)			Check to see Prev.	inponenca în viewer iew on Tablet size.					B 3ve	rticalArrangement1	BackgroundColor
CheckBox					-	⊜ ⊿ ∎	9:48			A	Label1	None
DatePicker	0			The Best App	Ever!		-					FontBold
image	0			Text for Label1								FontItalic
Label	•				Rename Compone	int						FontSize
ListPicker	0				Old name:	Label1						18
ListView					New name	Labert						FontTypeface
Notifier	(7)						1270	_				default -
PasswordTextBox	0				Cancel		OK					
Slider												HasMargins
Spinner	0											Height
TextBox	0											Automatic
TimePicker	0											Width Fill parent
WebViewer												Text
										Ren	ame Delete	Text for Label1
ayout				ţ	\Box	Ē				Media		TextAlignment
/edia										Uş	load File	left 0 ·
Drawing and Animation												Black

program that runs in a web browser and is available for download. As a result, it is a simple software for 3D design, electronics, and coding.

Figure 4.16: Fritzing Software

4. ThingSpeak

Tinker cad is an online platform known as a cloud-based IoT analytics tool that can aggregate, visualize, and analyze live data streams. It also allows the delivery of real-time visualizations of data sent to ThingSpeak by user's devices.

4.8

The structure of this project with the employment of IoT technology will also be described in the high-level design. It will go through the agent architecture, system design, and system functions in greater depth. Even for end-users unfamiliar with technical reports in information technology, high-level design is simple to understand.

4.8.1 System Architecture

The system architecture for this project is shown in the figure below. The technological framework, end-user requirements, and a list of system components such as hardware and software must all be included in system architecture. The user will use an Android smartphone as the user interface with the integration of the application that can be used to control or manage the light at their small-scale farm.

Figure 4.18: System Architecture Diagram

4.8.2 User Interface Design

For this project, the graphical user interface (GUI) will be created in order to make it more effective and efficient. This system's user interface must be precise and straightforward so that users can grasp it. The user-friendly is also one factor that needs to be looked up for the user to flow the app and understand the use of the button created on the interface.

Figure 4.20 shows the main interface of the Smart Light Control application. The interface is being designed in a very simple and modest way to make sure that the users could understand the use of the button display in the picture. Such as the monitor or control button, so if they insist on inspecting the farm condition, they can hit the monitor and otherwise for the control button. There is also a current timestamp available, including the date and day.

Next, Figure 4.21 shows the second interface, the Motion Detection interface, where it will be navigated after the user chooses to press the monitor button. This interface will display the current status of the farm motion detection status and the motion's real-time graph.

Figure 4.20: Second Interface

Figure 4.22 shows the third interface which will be navigated after the user chooses to press the control button. This interface will have few functionalities where users can control the lights via the Android smartphone whether to turn on or turn off the light.

The light status also would be display on the interface showing the light condition. In addition, the user can also control the brightness level of the lights according to how bright they want. It will also display the amount of brightness on the screen.

Figure 4.21: Third Interface

Figure 4.23 shows the fourth interface design, which is the weather forecast information view. This interface is one of the additional functionalities of the application where the user can view the current weather of the day by just viewing the real-time data according to their location. The user just has to press the get weather button and it will display the weather.

4.9 Flowchart Design

A flowchart is also included in the system architecture. In flowchart design, it depicts the input, output, data processing, and decision-making. Each step is represented graphically or symbolically in a flowchart. Each stage in the process is represented by a separate symbol, which includes a brief description of the stage as well as an arrow representing the process flow. The workflow or process of the smart light control with the IoT technology is represented by the system flow chart design

4.9.1 Smart Light Control Application Flowchart

The figure below is a brief view of the flow in the smart light control application. In fact, with the aid of this flowchart, it helps or facilitates understanding the process of the system itself with the use of flowchart symbols in a sequential order such as the oval shape that indicates the starting point of the flow. This rectangle indicates the process that happens at that stage, moving to the diamond shape, which indicates the decision that will decide the next subprocess.

Figure 4.23: System Flowchart

4.9.2 System Implementation Flowchart

Based on the figure shown below is a quick view of the flow in the system implementation. This shows the interrelation between the NodeMCU ESP 8266 that act as a microcontroller with the Wi-Fi module embedded on its board to establish connection between the hardware and the software part. So, the flowchart below shows the hardware component flow functionality process.

Figure 4.24: System Implementation Flowchart

4.10 Conclusion

One of the most significant aspects of the realization project is the analysis and design of this chapter. All software and hardware requirements must be defined and researched before the project can be implemented. Hence, the execution phase can begin after the design has been accepted. This chapter covers the implementation preparation step as well as the overall system flow to increase the understanding of the project concept. The implementation phase and projected output from will be discussed in the next following chapter.

CHAPTER 5: IMPLEMENTATION

5.1 Introduction

This chapter explains how the Smart Light Control with Notification Alert for Small-scale farm projects can be implemented in software and hardware development. The design results are communicated to the logical procedure and software code during the system application stage. During this phase, the system will be tested to ensure that the design meets the required standards. The implementation stage involves developing and testing the functional scheme that fits the requirements for organizational design and implementing the system-to-present system interface. It necessitates the creation of a database, an application, and user and system interfaces.

5.2 Development Environment Setup

The hardware and software specs would be included in the design of the project system's construction process. All alterations will be detailed in detail and visible. The hardware and software specs are put forth in Chapter 4. They will be further explained in the association's chapter following where all the modifications will be described step by step and seen clearly.

5.2.1 Hardware Development Environment Setup

Chapter 4 describes the hardware utilization in this project. Node MCU ESP8266, PIR Sensor, Piezo Buzzer, resistor, LED and jumper wire are all included. The PIR sensor will be connected to the Node MCU ESP8266 board. All of these hardware components will be connected via the jumper wire. The motions will be detected by the PIR motion sensor. It can detect motion with its specified radius range and wave frequency of the human body or any living things that emitted heat.

Figure 5.1: Details of the Node MCU ESP8266 board

Figure 5.2 shows a diagram sketch of the microcontroller's integration and other components part of the hardware utilization in this project. Meanwhile in figure 5.3 shows the hardware development setup.

Figure 5.3: Hardware development prototype

5.2.2 Software Development Environment Setup

This sub-topic will discuss in-depth the project development software process. Furthermore, this project necessitates the use of both hardware and software in order for the project to function properly and entirely. Hence, all of these components will facilitate the user to participate more in the project's development.

1. Arduino Integrated Development Environment (IDE) setup

Next, the Arduino IDE was used to configure the code and upload the source code to the microcontroller in this project. The Arduino IDE is a software development environment that enables the hardware to function.

When the Arduino IDE receives a motion sensor value, it can respond with the alert sound buzzer and red lights on from the LED. Hence, the Arduino IDE sends the receiving command from the Wi-Fi module through the serial port.

٥ درو م

المحمد

Step 1: Firstly, is download and install the Arduino IDE platform on the Arduino official website at <u>https://www.arduino.cc/en/software</u>.

Downloads

Figure 5.4: Download Arduino IDE

Step 2: Next, run the Arduino IDE software and wait for a while until the initialization process is done.

	💿 sketch_sep06a Arduino 1.8.6	-		×
	File Edit Sketch Tools Help			
				0
	sketch_sep06a			
	<pre>void setup() { // put your setup code here, to run once:</pre>			^
	1			
	void loop() [] 186 // put your main code here,			
				~
	Done compiling			
	AN OPEN PROJECT WHITEN, DEBUGGED, AND SUPPORTED NABULINOC AND THE ADDINIO COMMUNITY WOOLGWING LIEAR MORE ADDIT THE CONTRIBUTORS OF ALBUTTED CCC on Adding.c/credity			
MAL	Sketch uses 444 bytes (14) of program storage space. Maximum is 32256 bytes.			
~	Giobal variables use 9 byles (04) of dynamic memory, leaving 2059 bytes for focal variables. Maximum 18 2040 by	ces.		
5				
	2 Antoine	Genuino	Uno on C	OM1
-				
2	Figure 5.5: IDF nackages initialization			
63	Figure 5.5. IDE packages initialization			
"AIWN				
باملا	ونيومرسيتي تيكنيكل مليسي			
Step 3:	: The first interface will display the page where the	e se	tti	ngs.
یا ملار :Step 3	ونيونر, سيبتي تيڪنيڪل مليسي The first interface will display the page where the	e se	etti	ngs

Step 3: The first interface will display the page where the settings, code modification and implementation are being done. Then, do some setup by

choosing the correct microcontroller and port to be configured.

Figure 5.6: Arduino IDE interface

Step 4: Configure the functionality with the respective source code and upload it into the microcontroller, the Node MCU ESP8266.

	COMBINEPIR_LEDONOFF Arduino 1.8.13		_	Ø	×	
	File Edit Sketch Tools Help					
	COMBINEPIR_LEDONOFF	// Tealude ThisaTeask Library			^	
	<pre></pre>	// include IntRoduced Library // Include ESP0266wifi Library			1	
	<pre>6 #define FIREBASE_HOST "loginform-5dd08-default-rtdb 7 #define FIREBASE_AUTH "xEVR313E1xabmgux6w3nSEVbxUSJ 8</pre>	.firebaseio.com" 12h7FABNUGYL"				
	<pre>9 char ssid[] = "HUAWEI nova 2i"; 10 char pass[] = "yadde5599"; 11</pre>	// Enter your WiFi SSID (router name)				
	12//char ssid[] = "950720-2"; 13//char pass[] = "ncs_4001"; 14	// Enter your WiFi SSID (router name)				
	<pre>15 // Enter your WiFi router password 16 unsigned long mychannelNumber = 1409119; 17 const char * myWriteAFIKey = "LGEP6TCX6KCGQ6KL";</pre>	// Enter your Thingspeak Abri Key				
	15 //***********************************	// Choose the pin for the LED (Pin D5, GPIO 14)				
	22 into inputtin = 05; 22 int motionState = 0; 23 int motionState = 0; 24 int wal = 0;	<pre>// Choose the input pin for motion sensor (Pin D6, GPIO 12)(PIR SENSOR) // We start, assuming no motion detected // Variable for reading the pin status</pre>				
	25 26 //***********************************				~	
	ALAYSIA					
	Figure 5.7: Confi	igure and upload source code on IDE	v Swetch, I	iston ev c		
	Formanin					
2.	MIT APP Inventor Setup					
	ال ملسبا مالات	اويوم سيخ بيكيد				

The MIT App Inventor is one of the online open-source platforms designed for any Android mobile applications development purpose. Hence, with the integration of some features by just simply dragging and dropping any desired components in the workspace to produce a mobile view interface. Meanwhile, in terms of its functionality, the part can be done via constructing the block code. Step 1: Open the MIT Apps Inventor platform on the browser and click on the "Create Apps" button to start developing the project.

🔡 MIT App Is	nventor Explore MIT / 🗙 🚽	+				•	- a	×
← → C	appinventor.mit.edu					×	* = 📀	1
- 1		reate Apps! Abou	t Educators	News Resou	irces Blogs	Give	٩	9
	With N	IIT App I	Inventor,	anyone		Ð		1
	can	build ap	ps with g	global				
	A REAL	im	pact		The last			
	Active Users	Active Users	Active Users	Registered	Countries:	Apps Built:		
	29.4K	106.6K	368.9K	8.2M	195	34.0M		
	Digit in MIT App I Appathon	Join the M	IT App Inventor App	pathon for Good 20	021.			
M	A.Y. 2221	Click here	to learn more.					
and the second s		E.						
EKA	- Figu	re 5.8: M	ain page l	MIT ADD	Inventor			
-	8*		h8	F F				
600								
911	in .	_						
Step 2: 7	Then, in o	rder to sta	rt, choose	the "Start	new proje	ect button"	•	
		~		ي يت		اوم		
UNIVE	MIT	TEK	ts Connect	Build • Settings	Helo F	My Projects Vi	ew Trash	
	APP INVENTOR						un muon	
Start	new project Move To	Trash View Trash	Login to Gallery Pu	ıblish to Gallery				

Figure 5.9: Create a new project

Step 3: Next, give a title name to the project created.

Create new App Inventor project			
Project name:	SmartLightControlApp		
Cancel	ΟΚ		

Figure 5.10: Application name

Figure 5.11: Design the mobile application

Step 5: For functionality, use the code block part to develop

In this project, a cloud-based IoT analytics tool called ThingSpeak is being used as one of the mediums in collecting and gathering real-time data. It has the functionality of delivering real-time data representative.

Step 1: Open the ThingSpeak website and click the "Profile" button to start.

Figure 5.13: ThingSpeak main website

Step 2: Click the "New Channel" button to create a new channel for the project.

Figure 5.14: Create new channels for the project

Step 3: Then, fill in the field to construct the new channel to retrieve the realtime data obtained from the motion sensor.

K	KA		
☐ ThingSpeak [™]	Channels - Apps	- Devices- Supp	ort • Commercial Use How to Buy 🕦
Motion Dete Channel ID: 1409119 Author: mws0000002761831 Access: Public,	ction Grap	Ch Real-time update for t	the motion detection status
Private View Public View	w Channel Settings	Sharing API Key:	Data import / Exort
Channel Settir Percentage complete	TEKN	IKAL M	Help Channels store all the data that a ThingSpeak application collects. Each channel includes eight fields that can hold any type of data, plus three fields for location data and one for
Channel ID	1409119		status data. Once you collect data in a channel, you can use ThingSpeak apps to analyze and visualize it.
Name	Motion Detection Graph		Channel Settings
Description	Real-time update for the	motion detection status	Percentage complete: Calculated based on data entered into the various fields of a channel. Enter the name, description, location, URL, video, and tags to complete your channel.
Field 1	Motion		Channel Name: Enter a unique name for the ThingSpeak channel.
Field 2	LED Brightness		 Description: Enter a description of the ThingSpeak channel. Field#: Check the box to enable the field, and enter a field name. Each ThingSpeak

Figure 5.15: ThingSpeak channels settings

Step 4: Then, the ThingSpeak has been created according to the information that has been filled in previously.

Name					Created	Updated	
 Motion Detection Graph 					2021-06-06	2021-06-10 14:04	
Private	Public	Settings	Sharing	API Keys	Data Import / Export		

Figure 5.16: ThingSpeak created channel view

Step 5: Then, the data will be displayed on the ThingSpeak channel page for both motion sensor and the brightness control.

Figure 5.17: The channel status

4. Telegram Bot Setup

Telegram Bot is one of the AI-inspired programs that are able to do multitask activities involving sending forecast weather updates, information, important news and many more. So, BotFather is being used in order to generate the respective bot for this project development.

Step 1: Firstly, on Telegram, search for " @BotFather ".

Figure 5.19: Project bot development

Figure 5.20: Insert start command

Step 3: Next, create the new bot to be used.

Figure 5.21: New bot command

Step 4: Then, give a suitable name for the project Telegram bot.

Figure 5.22: Define name for the bot

Figure 5.23: Create a username for the bot

Step 5: Then, successfully created the project's own bot.

Figure 5.24: Bot successfully created

5.3 Arduino IDE Configuration Setup

1. Firstly, choose the NodeMCU 1.0 (ESP-12E Module) board microcontroller and select the port which is the port "COM4". This is to ensure that it will enable the mode and upload the code to the right source to establish the right connection between Arduino IDE and the device.

	Auto Format	Ctrl+T		
	Archive Sketch			
FYPTESTIN	Fix Encoding & Reload			
1	Manage Libraries	Ctrl+Shift+I		-
2 #include	Serial Monitor	Ctrl+Shift+M	Include ThingSpeak Library	
3 #include	Serial Plotter	Ctrl+Shift+L	Include ESP8266wifi Library	
5 finclude	WiFi101 / WiFiNINA Firmware Updater			
6 #include 7	Board: "NodeMCU 1.0 (ESP-12E Module)"	,		
8 char ssi	Builtin Led: "2"		// Enter your WiFi SSID	
9 char pas	Upload Speed: "115200"	,		
.0	CPU Frequency: "80 MHz"			
12 fdefine	Flach Size: "4MB (ES:2MB OTA:=1019KB)"		suffice // your Bot Token (det from Botfather)	
L3 #define	Debug port: "Disabled"		STATE // Jose poor found (000 from poor conor)	
14	Debug Level: "None"	,		
5 X509List	w/P Variant: "v2 Lower Memory"	,		
7 Universa	VTables: "Flash"	3		
8	Exceptions: "Disabled (new can abort)"	3		
L9 // Enter	Erase Flash: "Only Sketch"	3		
10 unsigned	SSL Support: "All SSL ciphers (most compatible	۳ s	Enter your Thingspeak Channel Number	
2 const ch	Port: "COM4"	3	Serial ports	
3 //******	Get Board Info		✓ COM4	
4 int ledr			Choose the pin for the LED (Fin D5, GPIC 14)	
5 int inpu	Programmer		Channe and include air for eaching sectors (Die Dr. 2010 10) (DTD 201000)	
27 int motion	Burn Bootloader	11	We start, assuming no motion detected	
20 int Buzz 27 int motion	Burn Boolloader Istate = 0;		pacose the input pin for motion sensor (vin u4, GPIO 12)(PIR SEMBOR) We start, assuming no motion detected	
	2			
				_

2. Next, write the code for the Node MCU ESP8266 microcontroller board in order to configure and define the library of Wi-Fi ESP8266 Module, ThingSpeak Module, Telegram bot and other few modules in the header.

SLCAPP_FYP_LATEST Arduino 1.8.13	
File Edit Sketch Tools Help	
SLCAPP_FYP_LATEST	
1	
2 #include "ThingSpeak.h"	<pre>// Include ThingSpeak Library</pre>
3 #include <esp8266wifi.h></esp8266wifi.h>	// Include ESP8266wifi Library
4 #include < WiFiClientSecure.h>	
<pre>5 #include <universaltelegrambot.h></universaltelegrambot.h></pre>	
6 #include <arduinojson.h></arduinojson.h>	
7	
8 char ssid[] = "HUAWEI nova 2i";	// Enter your WiFi SSID
<pre>9 char pass[] = "yadde5599";</pre>	

Figure 5.26: Include the outside library

3. Next, in lines, 12 to 13 is the declaration of the Telegram Bot initialization of the telegram user chat id obtained from the IDbot and the BotToken generated earlier. Then, in line 15 to 16 is used to provide certificate root to the api.telegram.org and establish the bot.

SLCAPP_FYP_LATEST Arduino 1.8.13 File Edit Sketch Tools Help
SLCAPP_FYP_LATEST
<pre>10 11 12 #define BOTtoken "1877575805:AAFukuw52i7NAuUN2nAJeayGc4gIeAtPf60" // your Bot Token (Get from Botfather) 13 #define CHAT_ID "520187240" 14 15 X509List cert(TELEGRAM_CERTIFICATE_ROOT); 16 WiFiClientSecure client; 17 UniversalTelegramBot bot(BOTtoken, client); 18 </pre>
Figure 5.27: Bot establishment code
4. Then from lines 53 to 56, the code to detect movement where the
detectMovement() method is being applied. This method is responsible for
a callback, which is supposed to be executed when detecting any motion.
The void ICACHE_RAM_ATTR is acting as a linker attribute and also to
UN avoid any random crashes. L MALAYSIA MELAKA

```
53 // This will show when the motion is detected
54 void ICACHE_RAM_ATTR detectsMovement() {
55 //Serial.println("MOTION DETECTED!!!");
56 motionDetected = true;
57 }
```

Figure 5.28: Bot movement detection code

5. For the ThingSpeak connection, the channel number and the ThingSpeak api key need to be declared to obtain the real-time data from the hardware and keep it in the cloud.

18		
19 unsigned long myChannelNumbe	r = 1409119;	// Enter your Thingspeak Channel Number
20 const char * myWriteAPIKey =	"LGEP6TCX6KCGQ6KL";	// Enter your ThingSpeak API Key
21		

Figure 5.29: ThingSpeak declaration code

6. Then, start to declare each pin used on the Node MCU ESP8266 microcontroller board. This is to ensure and ease the process of knowing and understand which of the specified pin is belongs to either input or output. The pin used is distributed into 4 parts: the motion part, LED light control, and brightness part.

23					
0	SLCAPP FYP LATEST Arduino 1	.8.13			
File	Edit Sketch Tools Help	. /			
2 10	America E	-	AU in	10 con m	
			. 0.	05.5	
			10		
	SLCAPP_FYP_LATEST		LAVCIA	MEL AKA	
23	//**************	******* DECLARE F	IN FOR MOTION *	*****	* * *
24	int ledPin = D3;		11	Output pin for the Li	ED
25	int inputPin = D0;		11	Pin for motion senso:	r(PIR SENSOR)
26	int Buzzer = D5;		11	Buzzer output pin	
27	<pre>int motionState = 0;</pre>		11	Assuming there's no m	motion detected
28	<pre>int val = 0;</pre>		11	Variable for reading	the pin status
29	bool motionDetected = false	e;			
30	//********	****** DECLARE PI	IN FOR ON OFF LE	D *******	* * *
31					
32	int ledYellow = 13;				
33	WiFiServer server(80);				
34					
35	//********	******	******	*****	* * *
36					
37	//*********	****** DECLARE PI	IN LED BRIGHTNES	S *************	* * *
38	const int FieldNumber1 = 1;			// The field that wa	ant to read
39	uint8 t LEDpin = D6;				
40	unsigned int presentValue =	= 0;			
41	unsigned int changeValue =	0;			
42					
43	//*********		*******	*****	*
44					

Figure 5.30: Pin declaration on microcontroller

7. Next, will start with the void setup part where the setup () function is being used to set up the pin modes, initialize the variables declared, and allow access to the libraries imported previously. Hence, the void setup () section will only be run once as the microcontroller board is being powered.

•	SLCAPP_FYP_LATEST Arduino 1.8.13 File Edit. Sketch Tools Help				
	v	🕑 🗈 🛃 Verify			
	SL	CAPP_FYP_LATEST §			
	62	roid setup()			
	63				
	64	//************************************	PART ************************************		
	65	<pre>ThingSpeak.begin(client);</pre>	<pre>// Start ThingSpeak connection</pre>		
	66	<pre>pinMode(ledPin, OUTPUT);</pre>	// Set the LED pin as an Output		
	67	<pre>pinMode(Buzzer, OUTPUT);</pre>	//BUZZER PIN		
	68	<pre>pinMode(inputPin, INPUT);</pre>	<pre>// Set the Motion Sensor pin as an Input</pre>		
	69				
	70	//*************************************	************************************		
	71				
	72	//************************************	ART ************************************		
Ale	73	pinMode (LEDpin, OUTPUT);			
	74	//*************************************	***************************************		
2	75	70.			
4-1	76	//************************************	L ************		
20	77	<pre>pinMode(ledYellow,OUTPUT);</pre>			
50	78	<pre>digitalWrite(ledYellow,LOW);</pre>			
× .	79	//*********	*************		
	80				
-					
Y.					
6		T' 501 V	.10 . 1 1 .		
9.2		Figure 5.31: V	old Setup declaration		
410		U	-		
1.14	Π.				
	1				
ALL .					
2110	ι.		Data the state of the state		
	141		w, com, ray y		
	19	. U .	. O. V		
			14		

8. Then, to connect to the Wi-Fi access point is as simple as entering the char ssid[] and char pass[] of the used network. This is to enable communication between the microcontroller board and also the devices used. Previously, the code has been declared in line 8 to 9 statement. Then use the Wi-Fi begins to function in order to initialize the Wi-Fi network and show the current status of the network.

SLCAPP_FYP_LATEST | Arduino 1.8.13

9. Next, in the void loop () coding part, the main code for the motion sensor and other functionality will be programmed. This is to ensure that it will react and respond repetitively. So, below shown is the motion sensor coding in the void loop () section, which starts from line 121 until line 153.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

From line 121 to line 122, the motion sensor variable is being declared. It used the value 0 and 1 as the main value to an indication the motion status. So, the digitalWrite() method here plays the role of displaying output either it is HIGH or LOW. So, in line 124, it shows if the val == HIGH, it means that there is motion detected. Hence, the digitalWrite == HIGH and it will trigger the Piezo buzzer and also the LED pin status to HIGH.

At the same time, the real-time data of motion will be retrieved and sent to the ThingSpeak channel simultaneously. It will be automatically updated every time motion is detected, as shown in lines 136 to 137. Meanwhile, the notification alert in lines 138 to 139 shows the code line on how the alert message is being sent to the user via the Telegram bot that has developed.

UN detected by the PIR motion sensor, so the buzzer and the LED light will not be triggered. Hence, the real-time data will be sent to ThingSpeak as 0 value which indicates no motion identified.

142) else {	
143	digitalWrite(ledPin, LOW);	// Turn LED OFF
144	if (motionState == 1)	
145		// Motion stopped
146	Serial.println("No Motion Detected!");	
147	digitalWrite (Buzzer, LOW);	
148	noTone (Buzzer);	
149	motionState = 0;	// Only want to print on the output change, not state
150		
151	ThingSpeak.writeField(myChannelNumber, 1, val, myWriteAFIKey);	<pre>// Update ThingSpeak channel the PIR sensor value '0'</pre>
152	<pre>Serial.println("Data Sent to ThingSpeak!");</pre>	
153	delay(1000);	
154		
155	}	
156	}	
157		
158		

Figure 5.34: Motion sensor code if no motion detected

10. Next, the brightness level control functionality is being implemented with the integration of the ThingSpeak platform. As in this coding section, the analogWrite() method is being used, unlike the other functionality that used the DigitalWrite() method approach where produce the outcome of HIGH and LOW for some reason.

11. Then, for the on/off LED light control, the coding line from 175 to 190 is the code that will be displayed on the serial monitor port "COM4" to indicate and receive the client connection status that is available. This method will help the user control the mobile app's LED light via integrating the mobile device and hardware components.

SLCAPP_FYP_LATEST | Arduino 1.8.13

File Edit Sketch Tools Help

Ø	
s	LCAPP_FYP_LATEST §
173 ¹	//************************************
174 175	// Check if a client has connected
176	<pre>WiFiClient client = server.available();</pre>
177	if (!client) {
178	return;
180	}
181	// Wait until the client sends some data
182	<pre>Serial.println("Hello New client");</pre>
183	<pre>while(!client.available()) {</pre>
184	delay(1);
185	}
186	
187	// Read the first line of the request
100	<pre>string request = client.readstringOntil('\r'); Genial printle(''r');</pre>
190	client fluch():
191	Citone. Hush (),

Figure 5.36: Establish client connection

12. Then, if it matches the request, there is a condition applied in which the variable value is HIGH equal to 1 digital value. It indicates the yellow LED light is ON. Meanwhile, suppose the request index value variable is LOW equal to 0 digital value. In that case, it indicates the yellow LED light is OFF.

UNIVE®SICAPP_FYP_LATEST | Arduino 1.8.13 File Edit Sketch Tools Help

6

SL	CAPP_FYP_LATEST	
191		
192	// Match the request	
193		
194	int value = LOW;	
195	if (request.indexOf("/LED=ON") != -1)	
196	ŧ	
197	<pre>digitalWrite(ledYellow, HIGH);</pre>	
198	<pre>value = HIGH;</pre>	
199		
200	}	
201		
202	if (request.indexOf("/LED=OFF") != -1)	
203	{	
204	<pre>digitalWrite(ledYellow, LOW);</pre>	
205	value = LOW;	
206	}	
207		
208		
209	delay(1);	
210	<pre>Serial.println("Client disonnected");</pre>	
211	<pre>Serial.println("");</pre>	
212		
213	//*************************************	

Figure 5.37: On/off LED light control code

5.4 Implementation Status

This sub-topic will be discussing the project development implementation progress in detail. This involves the main aspect, such as the components used and the duration taken in developing the project prototype.

No	Sections	Description	Duration
1.	Software to be used	Completing the installation and also the	3 days
	installation set up	setting of the software used, which is the	
	MALAYSIA 4	Arduino IDE with a port setting, Fritzing	
		software	
2.	Sketch the circuit	By using the Fritzing software, sketch the	2 days
	diagram of the	circuit diagram for the project	
	project prototype	اونية سية تكنيك	
3	Assembling	Assemble the hardware components first:	5 days
	Hardware SITI TE	the Node MCU ESP8266, PIR motion	
	components and	sensor, Piezo buzzer, LED light, resistor,	
	prototype	jumper wire, USB cable (Type-c), and a	
	development	breadboard and all components used.	
4.	Coding setup on the	Coding implementation for the Node	7 days
	microcontroller	MCU ESP8266 board in terms of the Wi-	
	board	Fi connection part and the integration of	
		the hardware components pin related to	
		the board.	

Table 5.1: Implementation Status

5.	Implementation code	Apply the code for the motion sensor pin	10 days
	for the PIR motion	and also its functionality detecting the	
	sensor	movement.	
6.	Implementation code	This code will function in order to create	7 days
	for Piezo Buzzer and	an alert sound from the Piezo buzzer with	
	LED light.	the respective tone sound buzzer and	
		trigger red light as an indicator of	
		intrusion.	
7.	Implementation code	Apply the code for on/off light control	7 days
	for LED on/off	functionality and the brightness level	
	control and	control.	
	brightness level.		
	E Ca		
8.	ThingSpeak	Create ThingSpeak channel for retrieving	5 days
	configuration setup.	real-time data from the motion sensor and	
	ara and a second	LED brightness level.	
	in in its in the second s		
9.	Application	Develop Android mobile application	20 days
	development using	involving interface and functionality	
	MIT App Inventor	through the code block. Establish the	
		connection from other software such as	
		the Node MCU ESP8266, ThingSpeak,	
		and others into the application.	
10.	Implementation code	Develop and generate Telegram bot for	15 days
	for Telegram bot	the project involving the connection of	
	installation	Telegram bot in Arduino IDE and bot	
	development in	installation package, Arduino Json in the	
	Arduino IDE	IDE.	

5.5 Conclusion

This chapter will show the implementation process of the project in terms of both hardware and software aspects. It also shows how the process is from one functionality to another through the coding writing, software application development, and integration of each of the hardware components.

CHAPTER 6: TESTING

6.1 Introduction

In this chapter, the project testing will be performed and conducted. The final project development will be tested in this testing phase. In addition, in the testing phase, it will focus on utilizing the microcontroller that communicates with the other hardware components and the software development part, which is the application established to display results.

Hence, testing is one of the methods of determining a product's efficiency, whether it requires improvement or is a success. The test phase will include creating a test plan, a test strategy, and a test design. The project will consist of testing and usability features.

ونيومرسيتي تيكنيكل مليسيا ما

6.2 UNIVERSITI TEKNIKAL MALAYSIA MELAKA Test Plan

In this section explains the test plan that will be employed in the project. It will consist of a few actions that will outline the project's scope. The purpose of this test plan is to guarantee that all of the objectives are met in general. The major purpose of the test plan is to document difficulties, deal with faults that occur during system operation, and identify areas that need to be improved and enhance the system to make it works well.

6.2.1 Test Organization

The Smart Light Control with Notification Alert is a prototype that has been designed as a low-cost solution alternative for the small-scale farmer in order to ease their farm management with a much easier application system that suits the new modern era technology which nowadays lots of various industries use IoT technology as a platform that facilitates and improve human life in many aspects.

6.2.2 Test Environment

Wi-Fi connection is one of the requirements needed as the prototype needs to perform its functionality such as sending the real-time data to the ThingSpeak for graph monitoring view, sending notifications alerts to the user via Telegram and also controlling the light brightness level.

اونيۈم سيتي تيڪنيڪل مليسيا ملاك Toot Schodula

6.2.3 Test Schedule | TEKNIKAL MALAYSIA MELAKA

The test schedule identifies time durations or periods taken for the project to be completed. In fact, several errors and problems occurred during this procedure, which will take more time to resolve and will need to be checked during the implementation phase. As a result, the testing step will continue until the system is error-free. The use of time must be planned carefully and efficiently.

6.3 **Test Strategy**

The test strategy serves as the guidance for the project's software development cycle, describing the testing method. Hence, this stage will outline the suitable testing approach used in this project. Thus, the end-user is required to install the application on their Android smartphone to obtain notifications, access the features, and view the detail on the smartphone. The figure below shows the prototype test strategy used to test in this section.

6.3.1 **Classes of Tests**

The purpose of this test is to ensure that the project prototype would be able to interact and integrate with the microcontroller, the Node MCU ESP8266, PIR motion sensor, Piezo Buzzer LED, resistors, cable so that it can work well. Hence, all of these components are linked together to make it functional and capable of storing data in a real-time database. بتی تیکنید

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

6.4 **Test Design**

ملالت

As for the test, design is the section where it discusses the most important part of the testing phase because it involves putting the components and modules to the test to validate the system. The project's functionality can be improved by conducting this testing, allowing it to meet its objectives. To offer the perfect output of the system, all components and modules must have a satisfactory result. The workflow for system testing is shown below: -

The project's test description was utilized to determine which parts needed to be tested. This section will go over the components and modules required to get a precise and effective output. The test scenarios from the project system are detailed in the table below: -

 Testing the connectivity of the microcontroller of Node MCU ESP8266 with a laptop.

Test	Test the connectivity of Node MCU ESP8266 with a laptop.		
ALAY:			
Test Purpose	Identify any errors on the ESP8266 microcontroller board.		
2			
3			
Test	Test all the hardware components connection with the		
Environment	microcontroller board.		
2			
AINO			
Precondition	• The Node MCU ESP8266 and laptop has been connected via		
5 Male	ala Gi Gi taun ana		
	USB adapter.		
	• Arduino IDE software has been installed in the lanton earlier		
UNIVERS			
Test Setup	1) Launch the Arduino IDE Software.		
	2) Connect the ESP8266 microcontroller board to the laptop.		
	3) Then, upload the source code into the microcontroller board.		
Expected	• The Arduino IDE software can detect the microcontroller		
Result	board		
	• Suppose when compiling and uploading the code, it should		
	not show any error message on the serial monitor port com.		
Error	None		
Magaaga			
Message			
Result	Pass		
ivouit	1 455		

Table 6.1: Microcontroller ESP8266 connectivity

ii) Testing the connectivity of the Node MCU ESP8266 with PIR motion sensor.

Test	Test the connectivity of Node MCU ESD2266 with DID motion	
Test	Test the connectivity of Node MCU ESP8266 with PIR motion	
	sensor.	
Test Purpose	To test the sensor ability in detecting motion of the small-scale	
	farm area.	
Test	In order to run the situation test for sensor, the microcontroller	
Environment	board must be setup first.	
	-	
Drecondition	The DID metion sensor and the Mede MCU ESD0266 has	
Precondition	• The PIR motion sensor and the Node MCU ESP8266 has	
KW.	been connected before.	
Test Setup	1) Connect the PIR motion sensor component to the	
	microcontroller board using jumper wire.	
Star =	2) Switch on the Node MCU ESD2266 microcontroller board	
in .	2) Switch on the Node WCO ESP 8200 incrocontroller board	
Mr all	3) Upload and run the code program that function in order to	
* *	detect the real-time movement or presence of human or any	
JNIVERSITI	TEK wild animal LAYSIA MELAKA	
Expected	• The PIR motion sensor should be able to detect movement	
Result	of living object such as human or animal.	
	• Suppose the PIR Motion sensor will detect infrared	
	radiation that emitted from the entity itself and send the	
	real time data representative which are 1 and 0 to the	
	ThingSpeak.	
Error	None	
Message		
0		
Dogult	Daga	
Kesuit	Pass	

Table 6.2: PIR Motion sensor function

iii) Testing the Piezo Buzzer function

Table 6.3: Buzzer function testing

Test	Buzzer sound function test		
Test Purpose	To test the buzzer of the prototype that function to produce alert sound.		
Test	In order to run the situation test for the buzzer, the microcontroller		
Environment	board must be setup first, as in the section 5.2.		
Precondition	• The Piezo buzzer and the Node MCU ESP8266 have been		
	connected before.		
Test Setup	1) Connect the Piezo buzzer component to the		
E.	microcontroller board using jumper wire.		
*PAININ	2) Switch on the Node MCU ESP8266 microcontroller board		
يسيا ملاك	3) Upload and run the code program that function to produce an alert sound as an output when detecting any motion and		
JNIVERSITI	trigger the red LED light as a precaution indicator.		
Expected	• The buzzer will be able to produce a high tone buzzer		
Result	sound as for warning alert when detecting motion and		
	trigger the red-light LED.		
Error	None		
Message			
Result	Pass		

iv) Testing the LED function

Table 6.4: LED function testing

Test	LED function test		
Test Purpose	To test the LED light of the prototype for the Turn on/off and brightness control functionality.		
Test	In ord	er to run the situation test for the led, the microcontroller	
Environment	t board must be setup first, as in the section 5.2.		
Precondition	40.0	The LED and the Node MCU ESP8266 have been	
	N.C.	connected before.	
Test Setup	1)	Connect the LED component to the microcontroller board	
For a		using the breadboard and resistor.	
Samo .	2)	Switch on the Node MCU ESP8266 microcontroller board	
يسيا ملاك	(3 کل ما	Upload and run the code program to the microcontroller board.	
UNIVERSITI	TE4X	Turn on and off the LED light via the Android smartphone application.	
	5)	Control the amount of the brightness level of the LED.	
Expected	•	The LED light will function as after the source code has	
Result		been uploaded. The user can manage to turn on or off the	
		LED light and control the brightness level amount.	
Error	None		
Message			
Result	Pass		

v) Testing the ThingSpeak function

Table 6.5: ThingSpeak function

Test	ThingSpeak function test		
Test Purpose	To test the ThingSpeak functionality and connectivity to the Node MCU ESP8266 microcontroller board.		
Test	In orde	er to run the situation test for ThingSpeak need to launch the	
Environment microcontroller board setup first and the other co		controller board setup first and the other component as well.	
Precondition	40.	The ThingSpeak has been setup and configured before.	
	E.		
Test Setup	1)	Create the ThingSpeak channel on the website for the	
<u> </u>		Motion detection graph.	
St SALL	2)	Switch on the Node MCU ESP8266 microcontroller board	
يسيا ملاك	3) کل ما	Upload and run the code program to the microcontroller board.	
UNIVERSIT	4) TEKI	After the motion sensor detect the motion, it will send the real-time data to ThingSpeak.	
	5)	ThingSpeak will store the data representative and display	
		on the graph view.	
Expected	•	The ThingSpeak will display the current real-time data	
Result		view of the motion sensing detection details whether 1 or	
		0 detection status including it timestamp and date.	
Error	None		
Message			
Result	Pass		

vi) Testing the notification function on smartphone

Table 6.6: Notification function testing

Test	Notification on Telegram bot function test		
Test Purpose	To test the user will receive the notification alert message on the Telegram of the warning alert if motion detected.		
Test Environment	In order to run the situation test for notification the Telegram bot and the microcontroller board must be first setup.		
Precondition	• The Telegram bot has been setup and configured before.		
Test Setup	 Create the Telegram chatbot application and obtain the token as to integrate with the microcontroller board. Upload and run the code program of the Telegram chatbot setting on the Arduino IDE to the microcontroller board If any motion is detected, a popup notification alert message will be automatically sent to the user indicate the alert warning. 		
Expected Result	• The alert notification will be sent to the user via the Telegram chatbot that has been setup automatically after the motion sensor been triggered.		
Error Message	None		
Result	Pass		

i) Testing the weather forecast information view

Table 6.7: Weather forecast testing

Test	Weather forecast information testing		
Test Purpose	To test the user will able to view the current weather temperature climate according to their current location in real-time view.		
Test	In order to run the situation, test the SLC app that has been created		
Environment	using MIT App Inventor must be open.		
TALAY SIA			
Precondition	• The mobile application that has been fully developed		
	before.		
Test Setup	 Create the application interface for weather forecast menu Integrate the weather API website to the application 		
+Nolum	develop		
Expected	• User will be able to view the current weather temperature		
Result RSIT	daily anytime, anywhere according to their current		
	location.		
Error	None		
Message			
Result	Pass		

6.4.2 Test Data

The purpose of the data testing is it used to verify the data on the project. As a result, the test data is being used to determines whether it will achieve the project deliverables or not.

1. Node MCU ESP8266 connectivity test

The figure below shows the connectivity test of the Node MCU ESP8266 microcontroller board that is connected to the laptop via a USB cable.

Figure 6.1: Microcontroller connectivity testing

Therefore, to identify whether the connectivity status is successful or not, thus it can be a check on the Arduino IDE via serial monitor port COM4 and run the code. The figure below shows a connection between the Node MCU ESP8266 and the USB port by listing the port com for code upload purposes.

∞ COM4	—	\times
		Send
		-
Wifi Connected Success!		
NodeMCU IP Address : 192.168.43.250		
Motion Sensor Detector		
Use this URL to connect: http://192.168.43.250/		
Figure 6.2: Serial Monitor port COM4		

The figure below shows the connection setup of the hardware components: the PIR motion sensor, Buzzer, LED lights, and some other components with the ESP8266 board connected via the jumper wires and the breadboard.

Figure 6.4: Component connectivity setup

Figure 6.5: Motion detection component response to the functionality

Figure 6.6: LED light response to its functionality
3. Application connectivity test

For this project application development, the MIT App Inventor platform has been used in order to establish the Smart Light Control application. Hence, the application has been named the SLC app and used on Android smartphones.

Figure 6.8: Starting screen of the application

The first interface of this project is the application's view list menu, which consists of 3 menus as shown in the diagram. Each and every one of these menus will be redirected to its responsive page according to the menu tsk itself, such as monitoring the motion detection, light control page, and weather forecast information view page.

As for this project's second interface, the ThingSpeak is integrated with the application through the API created. The figure below shows the real-time data obtain from the motion sensor updated in the real-time graph view with the details of the timestamp and condition status data representative.

Figure 6.10: Second Interface of the application

The third interface of this project is the light controlling page, where users can either perform light on/off or brightness control activity via their smartphone. The figure below shows the 2-button available for the light on/off and the slider widget to control the light brightness.

Figure 6.11: Third Interface of the application

The fourth interface is the forecast weather information which is one of the additional features that can ease the farmer in order to estimate the weather of the day. The forecast weather may help the farmer to plan their daily farming activity by just press the get weather button to view the current weather condition of the location.

Figure 6.12: Fourth Interface of the application

The figure above shows the current weather information of the location to ease the small-scale farmer in making plans and decisions to carry out their agricultural activities well and smoothly every day.

MALAYSIA

The figure shown below displays the notification alert message sent to the user as the motion detected via the Telegram bot. AS after the bot is automatically startup, the message will also automatically send to the user stated that there is motion detected at their farm area.

Following are the completion of the previously described test plan, test strategy, and test design. Once the project is fully integrated, test cases and the expected outcome of the entire project will be recorded. The testing results on each of the components utilized in this project are shown in the sections below.

6.5.1 Test Result on Hardware

i. PIR motion sensor function

Test Case Identification	1	2	
Test Identification	Sensor detecting motion	Sensor doesn't detect any motion	
Result Expectation	Thus, if any motion of living object such as human	If there is no motion detected the sensor will	
WALAYSIA 40	is detected it will send the real-time data to the	send the real-time data representative which is	
	ThingSpeak as a motion indicator via representative	0 to the Thingspeak as no motion detected.	
E. S. MARINE	data which is 1.		
مليسيا ملاك	سيتي تيڪنيڪ	اونيوس	
JNIVERSITI TE	KNIKAL MALAYSIA N	IELAKA	
Success/Fail	Success	Success	

Table 6.8: Motion sensor result analysis

The figure shown above is about the testing summarization of the PIR Motion sensor function that has been conducted. Hence, this result analysis is needed to ensure that all the components respond when conducting the test. The motion sensor will help the farmer in order to detect any suspicious movement from the outside of the small-scale farm region.

ii. Piezo Buzzer function

Test Case	1	2		
Identification				
Test	Sensor detecting motion	Sensor doesn't detect		
Identification	any motion			
Result	The Piezo buzzer will be	The Piezo buzzer will		
Expectation	triggered and produce a high	not produce any		
	tone buzzer sound and the red-	sound and the red-		
	light LED will be turn on too as	light LED will be		
	an alert indicator.	remain off.		
Success/Fail	Success	Success		

Table 6.9: Piezo Buzzer function result analysis

The figure shown above is about the testing summarization of the PIR Motion sensor function that has been conducted. Hence, this result analysis is needed to ensure that all the components respond when conducting the test. The alert sound may help notify the farmer of impending threats in the small-scale farm area if any intrusion happens.

iii. LED light on/off function

Table 6.10: LED light on/off function result analysis

Test Case	1	2		
Identification				
Test	The light on button was	The light off button was		
Identification	pressed	pressed		
Result	The LED light will be turn	The LED light will be		
Expectation	on when the on button is	turn off when the off		
	being pressed and control button is being press			
	via the mobile application	mobile application.		

	on th	eir An	droid	
	Smartphor	ne.		
Success/Fail	Success			Success

The figure above shows the testing summarization of the on/off led light function that has been conducted. Hence, this result analysis is needed to ensure that all the components respond when conducting the test. The on/off control function may help the farmer control the lights when they are out of the region as they can simply control via their Android mobile application.

iv. LED brightness level control

×	5		
TE	Test Case		2
E	Identification		
60	Test	The light brightness level	The light brightness level
	Identification	control adjustment	control doesn't have any
رك	ل مليسيا ما	سيتي تيڪنيڪ	adjustment
	Result	The LED light brightness	The LED light will be off
UNI	Expectation	will be appeared according	or became dimmer if the
		to the amount of brightness	amount of brightness
		level control on the mobile	level control decreases.
		application.	
	Success/Fail	Success	Success

 Table 6.11: Brightness control function level analysis

The figure shown above is about the testing summarization of the light brightness level control function that has been conducted. Hence, this result analysis is needed to ensure that all the components respond when conducting the test. This function may help the farmer control the light's brightness according to how bright the light they want depends on the amount of brightness level on the widget.

6.5.2 Test Result on Application

i. MIT Apps

Test Ca	ase	1 2		
Identifica	ation			
Test		User receive real-time User receive real-time data		
Identificat	ation	data of the motion is no motion detection on		
		detection on ThingSpeak ThingSpeak		
Resu	lt	The user will able to view The user will able to view		
Expecta	tion	the real-time data as 1 of the real-time data as 0 of		
N. S.	The second	motion detection as the motion detection as the		
7		ThingSpeak will update ThingSpeak will update the		
		the status on the motion status on the motion		
a Alun		detection graph including detection graph including		
		its timestamp and date. its timestamp and date.		
Success/	Fail	Success Success		
		a.9		

Table 6.12: Application test function

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The figure shown above is about the testing summarization of real-time data graph view by using ThingSpeak. As for this functionality, the data will be kept updated every time it obtains any motion detection data in real-time based. Hence, users can monitor via the motion detection graph on their Android smartphone.

ii. Notification alert on Telegram

Table 6.13: Notification function result analys

Test Case	1	2	
Test	User receive notifications	User not receive any	
Identification	alert	notifications alert	
Result	User will receive a pop-	User will not receive any	
Expectation	up notification on the	notifications on the	
	Telegram stating alert	Telegram stating alert	
	message if there is any	message if there is any	
MALAYSIA 4	suspicious movement	suspicious movement	
S SA	detected in the farm	detected in the farm region.	
	region.		
Success/Fail	Success	Success	

The figure shown above is about the testing summarization of notification alerts to the user via the Telegram platform. As for this functionality, the notification alert will be automatically sent to the user's smartphone every time it obtains any motion detection data in real-time based.

6.6 Conclusion

In a conclusion, all of the functionality tests and outcome evaluations were completed in this stage. The feature test is used to ensure that the prototype can work properly. The findings were evaluated and concluded based on different settings. The conclusion of this project is discussed in the following section.

CHAPTER 7: CONCLUSION

7.1 Introduction

This chapter will summarize the overall aspect of the project from the beginning until the end of the project plan. Hence, it will also highlight the project's limitations as well as potential work for future enhancements. Thus, it will increase the scheme's efficiency and efficacy, making it more effective and thorough.

7.2 **Project Summarization**

ALAYS/

Smart Light Control with Notification Alert for a small-scale farm is a project of low-cost solution with the IoT technology approach for the farmer. The purpose of this project is to facilitate proper and easy management in enhancing the security level of their farm area via a simple API development application. As for this project, there are three (3) objectives stated in Chapter 1 that need to be achieved. There are, first to develop a low-cost IoT solution prototype that can automatically detect the motion and control the light, Second, to notify the user through the notification alert as a precaution and last, to test the functionality of the prototype of the project.

Furthermore, this project may reduce the burden of these small-scale farmers to control or manage their farm when they are out if the region with the aid of this simple project where they don't have to be worried as they can just control and monitor via their Android smartphone application. As for the CCTV installation are way much expensive, involving its installation cost, needed high bandwidth usage to load the video footage for analysis, lead to excessive money spending on the hardware setup, especially for the surveillance camera, PC monitor and so on which is not convenient to be used by a single small-scale farmer.

7.3 **Project Contribution**

This section, which is the project contribution, will describe or detail what kind of aspects the project can contribute to the user. Thus, this Smart Light Control with Notification Alert for the small-scale farm can somehow benefit the users, especially in term of cost where it is very affordable and reasonable, which is not costly in terms of installation setup and includes its characteristic, user-friendly. In fact, Smart Light control with Notification Alert for Small-Scale farms can be a good low-cost solution to the human life as everything is just at one's fingertips, where they can just control and monitor the farm condition via the smartphone at any time, anywhere and also access all the details by just using the smartphone. Hence, they can also obtain notifications alert if any suspicious motion is detected into the farm if they were outside the farm region with a warning alarm as an intrusion indicator.

7.4 Project Limitation

This section's purpose is to highlight any project limitations, such as the project constraints or restrictions. This section also examines several circumstances that may cause the project's objectives to be lowered and how to recognize the project's limitations. As for this project, the project limitation is that the PIR motion sensor might have to struggle if the weather temperature is $> 35^{\circ}$ C especially in the hotter climate that might impact the sensor. But as in Malaysia, the normal average climate weather is in the range of 25°C to 27°C it should be fine. Hence, the Internet connection is also one of the project limitations in this project as it is using the Node MCU ESP8266 where it needs a Wi-Fi connection in order to perform the code that will be uploaded into the microcontroller board and for a user to receive notification alert, retrieve real-time motion sensor data requires internet connection. So, if the Internet connection is out of range, there will be no data will be received.

7.5 Future Works

In the future, this project can be enhanced in terms of its application features or the development of any new implementation to make it more functional and detailed. Some new enhancements that can be made can improve the application GUI into a more elegant and systematic interface where can add more other functional widgets like the farm plant condition if any unknown damage has been done to the farm crop yields. Therefore, with GUI improvement, it hopes it can increase efficiency and improve the application's user-friendliness. Next, in terms of the buzzer, that can be improved by enhancing it into a high decibel alarm that can produce a more louder sound alert for the project.

7.6

Conclusion

At the end of this project, starting from the planning, analysis, design, implementation, and testing phase, the Smart Light Control with Notification Alert for a small-scale farm is successfully completed. Thus, all of the project objectives have been achieved. Hopefully, this project development might give some benefits and facilitate the user in lessening the burden in managing their small-scale farm area condition in their daily routine. In addition, this project is an alternative approach as it is a low-cost solution and user-friendly motion detector that can afford with a simple application.

REFERENCES

- R. Leandros, W. J. Widjaja Saputra, D. Fitria Murad, D. Atmaja August 2020. SMS Notification On-Off Room Lights with Body Detection Using Microcontrollers.
- S. Yadahalli, A. Parmar, Prof. A. Deshpande (2020). Smart Intrusion Detection System for Crop Protection by using Arduino.
- S. Santhiya, Y. Dhamodharan, N. E. Kayi Priya, C. S. Santhosh, M. Surekha March (2018). A smart Farmland Using Raspberry Pi Crop Prevention and Animal Intrusion Detection System.
- Nilesh A. Lakade1, Rajat Patel, Pinak Panchal, (2019, June). Intelligent Lighting System for Classrooms and Mall using IoT. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue
- Syeda Puspita Mouri, Syed Nazmus Sakib, Zannatul Ferdous, Md. Abu Taher, (2016, January). Automatic Lighting and Security System Design using PIR Motion Sensor. IEEE

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

- Deepak Kumar Rath, (2016, March-April). Arduino Based: Smart Light Control System. International Journal of Engineering Research and General Science Volume 4, Issue 2.
- A.Z.M Tahmidul Kabir, Al Mamun Mizan, Nirmal Debnath, Akib Jawad Ta-sin, N. Zinnurayen, Md. Tanhir Haider (2020). IoT Based Low-Cost Smart Indoor Farming Management System Using an Assistant Robot and Mobile App.

APPENDICES

Appendix B: Prototype completed testing

redONE 🔹 😤 🔏 77% 🗰 x 4:35 pm	Clock - Now 🔨		SLC APP
MOTION STATUS	Tutup Lampu Kebun !!!! 4:09 pm	SLCAPP	WEATHER FORECAST
Motion_Detected	CLOSE SNOOZE	REMINDER ALARM 11	GET WEATHER
Motion Detection Graph	LED ON LED OFF REMINDER ALARM 11 16 09 Turtup Lampu Kebun III	Tutup Lampu Kebun !!! Remind Me ! DRIGHTNESS LEVEL	Rantau, Negeri Sembilan $p \equiv$ As of 13:49 pm MVT 26° Mostly Cloudy 16% chance of rain through 12 am
SLC Motion Log	Remind Me ! BRIGHTNESS LEVEL	13 a few seconds app BACK	Rantau, Negeri Sembilan, Malaysia Forecast Morning Afternoon Evening Overnight 26* 30* 20 Today Houry 10 Day Radar Ida

Appendix C: Application testing display

Appendix D: real-time data sent to the ThingSpeak Cloud

2 #include "ThingSpeak.h" 3 #include <ESP8266WiFi.h> 4 #include <WiFiClientSecure.h> // Include ThingSpeak Library
// Include ESP8266wifi Library #include <UniversalTelegramBot.h> 6 #include <ArduinoJson.ht 8 char ssid[] = "HUAWEI nova 2i"; 9 char pass[] = "yadde5599"; // Enter WiFi SSID 10 11 // Initialize Telegram BOT 12 //#define BOTtoken "1877575805:AAFukuw52i7NAuUN2nAJeayGc4gIeAtPf60" // Bot Token (Get from Botfather) 13 #define BOTtoken "1998242615:AAHrYOM82vd222-18LkWi4U_rubkZg4PJEw" // Bot Token (Get from Botfather) 14 #define CHAT_ID "520187240" 16 X509List cert(TELEGRAM_CERTIFICATE_ROOT); 17 WiFiClientSecure client; 18 UniversalTelegramBot bot(BOTtoken, client); // Enter Thingspeak Channel Number // Enter ThingSpeak API Key 25 int ledPin = D3; // Output pin for the LED 26 int inputPin = D0; 27 int Buzzer = D5; 28 int motionState = 0; // Pin for motion sensor(PIR SENSOR)
// Buzzer output pin
// Assuming there's no motion detected
// Variable for reading the pin status 29 int val = 0; 30 bool motionDetected = false; 31 32 int ledYellow = 13; 33 WiFiServer server(80); 34 38 const int FieldNumber1 = 1; // The field that want to read 38 Const int rigidnumbers - 1, 39 uint8_t LEDpin = D6; 40 unsigned int presentValue = 0; 41 unsigned int changeValue = 0; // Time delay interval (90 seconds) to prevent false triggers when setting up device Appendix E: Arduino source code for pin declaration and package setup +4 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 82 83 84 85 88 89 91 92 94 95 97 pinMode(ledYellow,OUTPUT); WiFi.begin(ssid, pass); Serial.begin(115200); Serial.println(); Serial.print(); Serial.print("Connecting to "); Serial.print(ssid); while (WiFi.status() != WL_CONNECTED) delay(500);
Serial.print("."); }
Serial.println();
//Serial.println("WiF1 connected");
//Serial.print("TF address: ");
Serial.print("WiedWoU IP Address: ");
Serial.print("WiedWoU IP Address: "); 98 99 Serial.println(WiFi.localIP());

Appendix F: Source code for Wi-Fi connection establishment and pin initialization