IOT - BASED WATER QUALITY MONITORING SYSTEM FOR FISHERY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

IoT - BASED WATER QUALITY MONITORING SYSTEM FOR FISHERY

This report is submitted in partial fulfillment of the requirements for the Bachelor of Computer Science (Computer Networking) with Honours.

FACULTY OF INFORMATION AND COMMUNICATION TECHNOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2021 i

DECLARATION

I hereby declare that this project report entitled

IoT - BASED WATER QUALITY MONITORING SYSTEM FOR FISHERY

ST WALAYSIA 40	without citations.		
	2		
STUDENT :	lift	Date :	9/9/2021
Mann (N	NOHD SYAHMI BIN SALIN	M)	
كل مليسيا ملاك	سيتي تيڪنيڪ	اونيۇس	
UNIVERSITI TEKN	IKAL MALAYSIA N	IELAKA	

is written by me and is my own effort and that no part has been plagiarized

I hereby declare that I have read this project report and found

this project report is sufficient in term of the scope and quality for the award of

Bachelor of Computer Science (Computer Networking) with Honours.

Date : <u>9/9/2021</u> SUPERVISOR :

(DR. WAHIDAH BINTI MD SHAH)

DEDICATION

Thanks to Allah S.W.T,

for giving me a strength to accomplish this project.

To my supervisor,

Dr. Wahidah Binti Md Shah,

Thank you for being supportive and give non-stop guidance throughout this journey to

complete this project. To my wonderful parents, Salim Bin Zakaria and Jamaliah Binti Abdul Razak, Thank you for your prayers and moral support. To my friends,

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Merciful, the Most Compassionate all praise be to Allah, the Lord of the universes and prayers and peace be upon Muhammad His servant and messenger. I am grateful to numerous members and individuals who have assisted me in the completion of this project.

I would like to thank my supervisor, Dr. Wahidah Binti Md Shah, who has always led and provided guidance throughout this project. The project would not have been completed without her, and the progress of the project would not have been known.

Special thanks to my family, Salim Bin Zakaria, Jamaliah Binti Abdul Razak, and all my siblings for their moral support while studying at UTeM to complete this project. I had many problems and mistakes in making this project a great project, which made me inactive. With their presence, they have boosted my enthusiasm by giving me endless inspiration to make me emotionally stronger to complete my project.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA Finally, I would like to express my appreciation to my friends who are always willing to help me by sharing their incredible ideas. This project would not have been completed on time without them.

ABSTRACT

Water plays a significant role include hydration, agriculture, electricity, and aquaculture use. Water quality is an important aspect of fish farming production. Poor water quality led to slow fish growth and result in fish death. Fishpond water quality monitoring could be hassle and time consuming which requires breeders to obtain their own water samples and test it using special meters. The IoT-based system is proposed to assist fish breeders in monitoring the fishponds water and alert them about poor water quality conditions. The system consists of Raspberry Pi, pH sensor, and temperature sensor. A pH sensor is used to detect the pH of the water while a temperature sensor is used to detect the water temperature of fishponds, Raspberry Pi is a microprocessor that processes these water parameter readings. This system uses Wi-Fi for the data transmission process as it uses the built-in Wi-Fi module on the Raspberry Pi, fish breeders can perform monitoring via mobile apps on their android smartphones. If the pH and temperature values exceed the set action levels, fish breeders will get alert notifications from mobile apps. This will help breeders to carry out the process of maintaining the fishpond. The results are collected through testing, and the system's efficacy judgments are drawn from the findings for which sensor readings could be performed with a moderate degree and notification alerts functioned with excellent response.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Air memainkan peranan penting termasuk hidrasi, pertanian, elektrik, dan penggunaan akuakultur. Kualiti air adalah aspek penting dalam pengeluaran ternakan ikan. Kualiti air yang buruk menyebabkan pertumbuhan ikan lambat dan mengakibatkan kematian ikan. Pemantauan kualiti air kolam ikan dapat menjadi kesulitan dan memakan masa yang memerlukan penternak untuk mendapatkan sampel air mereka sendiri dan mengujinya dengan menggunakan meter khas. Sistem berasaskan IoT dicadangkan untuk membantu penternak ikan dalam memantau air kolam ikan dan memberi tahu mereka tentang keadaan kualiti air yang buruk. Sistem ini terdiri dari Raspberry Pi, sensor pH, dan sensor Suhu. Sensor pH digunakan untuk mengesan pH air sementara sensor suhu digunakan untuk mengesan suhu air kolam ikan, Raspberry Pi adalah mikropemproses yang memproses pembacaan parameter air ini. Sistem ini menggunakan Wi-Fi untuk proses penghantaran data kerana menggunakan modul Wi-Fi bawaan pada Raspberry Pi, penternak ikan dapat melakukan pemantauan melalui aplikasi mudah alih di telefon pintar android mereka. Sekiranya nilai pH dan suhu melebihi tahap tindakan yang ditetapkan, penternak ikan akan mendapat pemberitahuan amaran dari aplikasi mudah alih. Ini akan membantu penternak menjalankan proses pemeliharaan kolam ikan. Hasilnya dikumpulkan melalui ujian, dan penilaian keberkesanan sistem diambil dari penemuan yang mana bacaan sensor dapat dilakukan dengan tahap sederhana dan amaran pemberitahuan berfungsi dengan respons yang sangat baik.

TABLE OF CONTENTS

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
اويون سيني پيڪنيڪل مليسيا ملاڪ	xiii
LIST OF ABBREVIATIONS MIKAL MALAYSIA MELAKA	xvi
LIST OF ATTACHMENTS	xvii
CHAPTER 1: INTRODUCTION	1
1.1 INTRODUCTION	1
1.2 PROBLEM STATEMENT (PS)	2
1.3 PROJECT QUESTION (PQ)	3
1.4 PROJECT OBJECTIVE (PO)	3
1.5 PROJECT SCOPE	4
1.6 PROJECT CONTRIBUTION (PC)	4
1.7 REPORT ORGANIZATION	5

1.8 CONCLUSION	7
CHAPTER 2: LITERATURE REVIEW	8
2.1 INTRODUCTION	8
2.2 RELATED WORK	8
2.2.1 WATER QUALITY REQUIREMENTS OF TILAPIA	8
2.2.2 SENSORS FOR WATER MONITORING	11
2.2.3 RASPBERRY PI	13
2.3 CRITICAL REVIEW	15
2.3.1 WATER QUALITY MONITORING SYSTEM BASED ON IOT	
PLATFORM	
2.3.2 MONITORING OF WATER PURIFICATION PROCESS BASED O	N IOT 16
2.3.3 WATER QUALITY MONITORING USING IOT	
2.4 PROPOSED SOLUTION	
2.5 CONCLUSION	24
CHAPTER 2 PROJECT METHODOLOCY	25
CHAPTER 5: PROJECT METHODOLOGY	,
3.1 INTRODUCTION	
3.2 METHODOLOGY	25
UNIVERSITI TEKNIKAL MALAYSIA MELAKA 3.2.1 REQUIREMENTS PHASE	26
3.2.2 ARCHITECTURE AND DESIGN PHASE	29
3.2.3 DEVELOPMENT PHASE	
3.2.4 TESTING AND FEEDBACK PHASE	
3.3 PROJECT MILESTONES	
3.4 CONCLUSION	34
CHAPTER 4: ANALYSIS AND DESIGN	35
4.1 INTRODUCTION	35
4.2 PROBLEM ANALYSIS	35
4.3 REQUIREMENT ANALYSIS	36

4.3.1 DATA REQUIREMENT	
4.3.2 FUNCTIONAL REQUIREMENT	
4.3.3 NON-FUNCTIONAL REQUIREMENT	
4.3.4 OTHERS REQUIREMENT	
4.4 HIGH-LEVEL DESIGN	42
4.4.1 SYSTEM ARCHITECTURE	44
4.4.2 USER INTERFACE DESIGN	44
4.5 DETAILED DESIGN	46
4.5.1 CIRCUIT DIAGRAM	46
4.5.2 FLOW CHART	47
4.5.3 PSEUDOCODE	49
4.6 CONCLUSION	50
CHAPTER 5: IMPLEMENTATION	51
5.1 INTRODUCTION	51
5.2 DEVELOPMENT ENVIRONMENT SETUP	51
5.2.1 RASPBERRY PI ENVIRONMENT	51
5.2.2 DESKTOP ENVIRONMENT	
5.2.3 WATER QUALITY MONITORING SYSTEM ENVIRONMENT	53
5.3SOFTWARE CONFIGURATION MANAGEMENT	54
5.3.1 CONFIGURATION ENVIRONMENT SETUP	55
5.4 IMPLEMENTATION STATUS	64
5.5 CONCLUSION	65
CHAPTER 6: TESTING	66
6.1 INTRODUCTION	66
6.2 TEST PLAN	66
6.2.1 TEST ORGANIZATION	
6.2.2 TEST ENVIRONMENT	67
6.2.3 TEST SCHEDULE	67
6.3 TEST STRATEGY	67

0.3.1 CLASSES OF TESTS	68
6.4 TEST DESIGN	69
6.4.1 TEST DESCRIPTION	69
6.5 TEST RESULTS AND ANALYSIS	72
6.5.1 TEST CASE 01	72
6.5.2 TEST CASE 02	73
6.5.3 TEST CASE 03	74
6.5.4 TEST CASE 04	79
6.5.5 TEST CASE 05	80
6.6 CONCLUSION	
CHAPTER 7: PROJECT CONCLUSION	83
7.1 INTRODUCTION	83
7.1 INTRODUCTION	83
 7.1 INTRODUCTION 7.2 PROJECT SUMMARIZATION 7.3 PROJECT CONTRIBUTION 	83
 7.1 INTRODUCTION 7.2 PROJECT SUMMARIZATION 7.3 PROJECT CONTRIBUTION 7.4 PROJECT LIMITATION 	83 83 83
 CHAPTER 7: PROJECT CONCLUSION 7.1 INTRODUCTION 7.2 PROJECT SUMMARIZATION 7.3 PROJECT CONTRIBUTION 7.4 PROJECT LIMITATION 7.5 FUTURE WORKS 	83 83 83 83 83
 7.1 INTRODUCTION 7.2 PROJECT SUMMARIZATION 7.3 PROJECT CONTRIBUTION 7.4 PROJECT LIMITATION 7.5 FUTURE WORKS 7.6 CONCLUSION 	83 83 83

LIST OF TABLES

TABLE 1.1: SUMMARY OF PROBLEM STATEMENT	3
TABLE 1.2: SUMMARY OF PROJECT QUESTION	3
TABLE 1.3: SUMMARY OF PROJECT OBJECTIVE	4
TABLE 1.4: SUMMARY OF PROJECT CONTRIBUTION	5
TABLE 2.1: SPECIFICATION OF RASPBERRY PI 3 MODEL B+	14
TABLE 2.2: COMPARISON OF PREVIOUS PROJECT	20
TABLE 2.3: FUNCTIONALITY COMPARISON BETWEEN PREVIOUS PROJECTS	22
TABLE 3.1: SYSTEM REQUIREMENT	27
TABLE 3.2: HARDWARE REQUIREMENT	27
TABLE 3.3: SOFTWARE REQUIREMENT	28
TABLE 3.4: PROJECT MILESTONE	31
TABLE 3.5: PROJECT GANTT CHART	33
TABLE 4.1: THINGSPEAK DATA DICTIONARY	36
TABLE 5.1: DESKTOP SPECIFICATION	53
TABLE 5.2: System Component Connection	54
TABLE 5.3: IMPLEMENTATION STATUS DETAILS	64
TABLE 6.1: CONNECTIVITY OF RASPBERRY PI AND DESKTOP	69
TABLE 6.2: CONNECTIVITY OF THE SYSTEM COMPONENT AND THINGSPEAK	70
TABLE 6.3: SENSORS READING AND DISPLAY TEST	70
TABLE 6.4: ALERT NOTIFICATION TEST	71
TABLE 6.5: GRAPH DISPLAY TEST	71

TABLE 6.6: TEST CASE 01 RESULT	72
TABLE 6.7: TEST CASE 02 RESULT	73
TABLE 6.8: TEST CASE 03 RESULT	74
Table 6.9: Manual Method & Developed System Comparison	75
TABLE 6.10: TEST CASE 04 RESULT	79
TABLE 6.11: TEST CASE 05 RESULT	80
Table 7.1: Project Strength & Weaknesses	84

LIST OF FIGURES

FIGURE 2.1: WATER PERCEPTIONS FROM FISH FARMING COMMUNITY
FIGURE 2.2: WATER PARAMETER INDICATION10
FIGURE 2.3: DS18B20 TEMPERATURE SENSOR11
FIGURE 2.4: DS18B20 CIRCUIT CONNECTION
FIGURE 2.5: E-201-C PH SENSOR
FIGURE 2.5: ANALOG DISSOLVED OXYGEN SENSOR
FIGURE 2.6: RASPBERRY PI 3 MODEL B+14
FIGURE 2.7: CONCEPT DESIGN OF WATER QUALITY MONITORING SYSTEM BASED ON
IOT PLATFORM
FIGURE 2.8: CONCEPT DESIGN OF MONITORING OF WATER PURIFICATION PROCESS
BASED ON IOT
FIGURE 2.9: OPERATION ALGORITHM17
FIGURE 2.10: CONCEPT DESIGN OF WATER QUALITY MONITORING USING IOT
FIGURE 2.11: CHANGE IN PH DUE TO INCREASE IN TEMPERATURE
FIGURE 2.12: ARCHITECTURE DESIGN FOR PROPOSED SOLUTION
FIGURE 3.1: AGILE MODEL
FIGURE 3.2: OVERALL SYSTEM DESIGN
FIGURE 4.1: SYSTEM USE CASE DIAGRAM
FIGURE 4.2: RASPBERRY OS
FIGURE 4.3: KODULAR
FIGURE 4.4: THINGSPEAK
FIGURE 4.8: BREADBOARD

FIGURE 4.9: MCP3008	41
FIGURE 4.10: JUMPER WIRE	42
FIGURE 4.11: RESISTOR	42
FIGURE 4.12: HIGH LEVEL DESIGN DIAGRAM	43
FIGURE 4.13: SYSTEM ARCHITECTURE	44
FIGURE 4.14: MAIN DASHBOARD	45
FIGURE 4.15: PH SENSOR CIRCUIT DIAGRAM	46
FIGURE 4.16: TEMPERATURE SENSOR CIRCUIT DIAGRAM	47
FIGURE 4.17: FLOW CHART	48
FIGURE 4.18: PSEUDOCODE	49
FIGURE 5.1: RASPBERRY PI DEVELOPMENT ENVIRONMENT SETUP	52
FIGURE 5.2: SYSTEM DEVELOPMENT ENVIRONMENT SETUP	53
FIGURE 5.3: RASPBIAN OS	55
FIGURE 5.4: PYTHON VERSION	56
FIGURE 5.5: THINGSPEAK CHANNEL	57
FIGURE 5.6: KODULAR PROJECT	57
FIGURE 5.7: SENSORS CODE	58
FIGURE 5.8: MAIN DASHBOARD BLOCKS	59
FIGURE 5.9: MAIN DASHBOARD OUTPUT	60
FIGURE 5.10: ALERT FUNCTION BLOCKS	60
FIGURE 5.11: ALERT FUNCTION EXAMPLE	61
FIGURE 5.12: LOCATION SPINNER FUNCTION BLOCKS	62
FIGURE 5.13: LOCATION DROPDOWN FUNCTION	62
FIGURE 5.14: THINGSPEAK GRAPH	63
FIGURE 5.15: WEB VIEWER COMPONENT SETTING	63
FIGURE 5.16: DAILY AVERAGE GRAPH	64
FIGURE 6.1: BLACK BOX TESTING	68
FIGURE 6.2: RASPBERRY PI LED LIGHT	72
FIGURE 6.3: RASPBERRY PI DISPLAY	73
FIGURE 6.4: RASPBERRY PI TERMINAL	74
FIGURE 6.5: ALERT NOTIFICATION FUNCTION	79

FIGURE 6.6: REAL-TIME GRAPH DISPLAY	81
FIGURE 6.7: DAILY AVERAGE GRAPH DISPLAY	82

LIST OF ABBREVIATIONS

FYP	-	Final Year Project
ІоТ	-	Internet of Things
RPI	-	Raspberry Pi
GPIO MALAYSIA		General-Purpose Input/Output
RAM	- 2	Random Access Memory
Wi-Fi 🚪	- 3	Wireless Fidelity
MATLAB	•	Matrix Laboratory
API	•	Application Program Interface
APK	-	Android Package
DIN Syla hum	کے میل	او نبوم رست ت Data In
DOUT		Data Out
VREFUNIVERSITI	TEK	Voltage Reference SIA MELAKA
VDD	-	Voltage Drain-to-Drain
VCC	-	Voltage Common Collector

LIST OF ATTACHMENTS

	PAGE
APPENDIX A – APPS DEVELOPMENT FULL BLOCK	90

CHAPTER 1: INTRODUCTION

1.1 Introduction

One of the most crucial aspects of a healthy environment is water quality. Clean water is essential for the survival of a wide range of plants and animals. The quality of the water used in fish farming is crucial. Poor water quality is a low water quality or standard that it is in bad condition. The status of various water parameters like pH and temperature cannot be overlooked for maintaining a healthy aquatic environment (Bhatnagar and Devi, 2013). The neglection of water quality can lead to fish death, this happens to fish breeders where water pollution is mostly caused by waste generated from agricultural activities. This is because, the main water source is from a nearby river that has been polluted (Astro Awani, 2019).

To determine the water quality, the water manually tested using complete equipped to test the water before it can be used for fish farming purposes. Nowadays, most fish breeders, especially rural breeders, use manual methods in monitoring the water of their fishponds. This water quality monitoring is done by using special equipment that requires the breeders themselves to go down to the location of the pond to obtain water samples for testing. Once the results were obtained, all records were kept in a book by hands for future reference. This monitoring process is done periodically either once a week or once every two weeks. This poses difficulties to breeders, additionally, this water analysis process requires some time to obtain water quality results. In the agricultural sector perspective, the use of sensors is used for water monitoring processes. A system developed for measuring parameters water such as turbidity, solute, pH and temperature. The developed system is equipped with suitable sensors for measuring water parameters. Therefore, Water Quality Monitoring System is designed to monitor the condition of the water quality in the fishponds based on the water parameters (R. Verma and D. Kiran, 2019). Just like other livestock sectors, fish also needs good monitoring of water parameters especially tilapia which is the focus in this project for better fish growth and production. By leveraging the use of sensors, the system will detect the pH level and temperature of the water in the fishponds as a benchmark for the water parameters. This system will alert the fish breeder if the water parameters exceed the action level. Values that exceed this level of action are expected to have negative effects on fish survival and quality. Therefore, with the use of this system, breeders can anticipate and perform water maintenance on the fishpond more efficiently.

1.2 Problem Statement (PS)

In fish farming, it is difficult for breeders to monitor water for the purpose of water maintenance process. The need for fully equipped tools and a lengthy process to test water causes breeders to have time constraints with other matters in managing their premises. Easiest way could be by manually look at the color or turbidity of the water. However, this method is not accurate since other parameters such as pH and temperature cannot directly observable. This can endanger the fishpond environment and interfere with fish growth. Despite the color of the water is clear, does not guarantee good water quality in the fishpond. Thus, manual tools are used for measuring, for example water samples obtained from the ponds by the breeders themselves which are then evaluated manually using special meters for pH and temperature readings. This also pose problem and hard time to fish breeders in monitoring their fishpond. To summarize this, the problem statements for this project are shown in Table 1.1.

Problem Statement
Hard to monitor the quality of water using the manual method
No indicator for water maintenance and only based on the physical change of water color
Lack of notification to identify the poor water quality

Table 1.1: Summary (of Problem	Statement
----------------------	------------	-----------

1.3 Project Question (PQ)

Project questions were used to identify questions on monitoring water quality conditions. Based on several studies, it can be concluded that there are some difficulties in determining whether water quality reaches the required level for fish farming purposes. Table 1.2 shows the summary of the project question.

PS	PQ	Project Question
PS ₁	PQ ₁	How to monitor water quality for tilapia farming more
	**	effectively?
PS ₂ INF	PQ ₂	How to determine water quality conditions based on water
		parameters?
PS ₃	PQ ₃	How to warn fish breeder if water quality exceeds the level of
		action?

Table 1.2: Summary of Project Question

1.4 Project Objective (PO)

Project objectives are tailored to the problem statement and project questions. The objectives of this Water Quality Monitoring System project are shown in the Table 1.3 below.

PS	PQ	РО	Project Objective
PS ₁ ,	PQ ₁ ,	PO ₁	To identify water quality parameters for tilapia
PS ₂ ,	PQ ₂ ,		fish farming.
PS ₃	PQ ₃	PO ₂	To design and develop IoT based monitoring
			system that able to monitor and alert water
			quality.
		PO ₃	To test the effectiveness of the system
			functionality, response time, and accuracy.

Table 1.3: Summary	of Project	Objective
--------------------	------------	-----------

1.5 Project Scope

- 1. Focus on the use of fish breeders in maintaining the water quality of their fishponds. Fish breeders can view water quality indicators through their mobile phone.
- 2. A smart IoT project that focuses on the development of features that can be offered through the system by detecting water parameters in terms of pH level and water temperature using sensors. Initially, the dissolved oxygen water parameter also includes as part of the project plan but cannot be done due to finance constraint. Alerting system that can notify the mobile phone user when the parameters values exceed the action level.

1.6 Project Contribution (PC)

Project contribution defines the expected outcome from this project. This project may help many fish breeder especially modest breeder by providing the monitoring system for their fishpond water quality maintenance. The main goal of this project is to monitor the water quality for fish farming purposes.

The utilization of IoT with mobile application technology eases the project development in monitoring and alerting to the mobile phone. Detecting the parameters of

the water helps to increase the water quality that meets the requirement for the use of fish farming. Table 1.4 below shows the summary of project contribution.

PS	PQ	РО	PC	Project Contribution
PS ₁ ,	PQ ₁ ,	PO ₁	PC ₁	Provide a solution in detecting the parameter of
PS ₂ ,	PQ ₂ ,			the water quality.
PS ₃	PQ ₃	PO ₂	PC ₂	Provide mobile application that can monitor and
				alert.
		PO ₃	PC ₃	Provide an effective system for consumerism.

Table 1.4: Summary of Project Contribution

1.7 Report Organization

Chapter 1: Introduction

This chapter discuss about the purpose in developing the Water Quality Monitoring System which includes project background, problem statement, project question, and project objective to clarify the intention of the system.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Chapter 2: Literature Review

This chapter discuss about other topics that have similar fields and can correlated to this project. Previous work or related work that using different tools and methods been compared. In this chapter will make changes to the existing work and identify the improvements needed in this project.

Chapter 3: Project Methodology

This chapter consists of a preview to the project methodology and methods that can be done on this project. This project uses Agile model and every stage of this methodology will be described in this chapter. The project milestones will be planned for proper project planning to make sure every task and phases are being through smoothly.

Chapter 4: Analysis and Design

This chapter will cover all the requirement that need to be analyzed for the project which include the Data Requirement, Functional Requirement, and Non-functional requirement. The results of the analysis and detailed design will be described. This chapter can be considered important where it is necessary to formulate a good analysis and design in order to produce a successful project.

Chapter 5: Implementation

In this chapter contain the implementation of the project design that has been determined previously. The system development begins using the required software and hardware. The implementation status and progress for each of the component or module been described.

Chapter 6: Testing

Through this chapter, testing phase and testing strategy that been adopted in the project are described. Testing will be made according to the testing strategy which include the Test Plan, Test Strategy, Test Design, and Test Results & Analysis. This allows the developed project system to be analyzed for any weaknesses and improvements that need to be made.

Chapter 7: Project Conclusion

This chapter explains the conclusions of this project on how the objectives are achieved based on the implementation and the testing phase. Significant results obtained in this project are summarized including the weaknesses and strengths of this project.

1.8 Conclusion

In conclusion, this project helps to improve water quality for the purpose of fish farming. In this chapter, all objectives, problem statements, project questions, project scope, and project contributions can be identified in detail. Water Quality Monitoring System can solve the problems faced by fish breeders in monitoring the use of their water quality in fishponds. This project can provide an overview of how the sensor method can detect the parameters of the water to be captured and transferred to the mobile phone. When the project is complete and ready to use in real situations, it can be useful and provide effective solutions to solve problems faced by fish breeders.

CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This chapter discuss about the related works that relevant to the specific area of the research chosen. The literature will briefly describe in detail the significance of monitoring the water quality especially for the purpose of the fish farming by referring some certified sources. This provides a critical summary for the research -related topics published. Developing a Water Quality Monitoring System will be the focus of this chapter. All explanation and information about the sensors and applications is explained.

2.2 Related Work

Related work explained about the domain that related to the water monitoring system. The purpose of this related work is to identify and analyze the domain that can enhance the knowledge and understanding in aiding the developing process.

اوينوم سيتي تيكنيكل ما

2.2.1 Water Quality Requirements of Tilapia

Water quality plays an important role in determining the production of healthy fish products. Fish live depend entirely on the water in which they live for all their needs. If the water quality is in accordance with the needs of the fish, then it will be more beneficial for the fish to get the maximum weight and size. The pH level essentially determines the acidic or basic nature of the water. Figure 2.1 shows the perception from the fish farming community, most of the fish breeders agree and aware about the water qualities in term of pH, Dissolved oxygen, CO2, and Soluble salts can influence the good or bad of the water.

However, based on statistics shows that only a few of the respondents practice the adoption of water quality maintenance and some of them do not apply it. This may be closely related to the lack of knowledge and information, time constraints, and high cost of getting a fully equipped tools which implies the effort in adopting the water quality.

Figure 2.1: Water Perceptions from Fish Farming Community

Different fish species have different specific aspects of water quality. Tilapia is no exception in this regard, aspects of water quality including pH and temperature determine where they can survive, grow, and reproduce. Tilapia usually stops feeding when the water drops below 17 °C and death occurs below 11 °C (Atwood et al., 2003; Popma and Masser, 1999). The optimal water temperature for tilapia growth is between 29 and 31 °C (Popma and Masser, 1999). The temperature outside this level of comfort reduces appetite, growth, increased stress, and incidence of disease to tilapia. Higher temperature increases the rate of bio-chemical activity of the micro biota, plant respiratory rate, and so increase in oxygen demand (Bhatnagar, A., & Devi, P., 2013).

Regarding pH, readings below 4 can result in low survival rates to tilapia, increased mucus secretion, irritation and swelling of the gills can occur. The pH of water should be maintained between 4 and 9. Below 4 and above 10.5 can indicate a significant mortality rate.

Therefore, fish breeders must always be sensitive to changes that occur in the water. Based on figure 2.2 shows an indication of the level of action that needs to be given attention by breeders. Once the value exceeds the value of the action level, the breeder must take action to make the water conservation. Values exceeding these levels of action are expected to have a negative impact on fish survival and production quality.

Parameter	Optimal	Action level
Temperature (°C)	29-31	<12-13
Dissolved oxygen (mg/L)	>5-6°	<3.1
Carbon dioxide (mg/L)	<20 ^e	>60°
$\Delta P (\text{mm Hg})$	<30-40°	>85-100
Un-ionized ammonia (mg/L)	< 0.43	>1.0 ^e
pH	4-9	<3.9 and >10.1

Figure 2.2: Water Parameter Indication

Fish waste and food surplus are broken down into ionized ammonium (NH4), or non -ionized ammonia (NH3). Ammonium is harmless to fish, whereas ammonia is toxic. The pH of water is the determining factor that causes fish waste and food to decompose into ammonium, or ammonia. A lower pH level will have a higher ammonium concentration, and a higher pH level will have a higher ammonia concentration. Its concentration level is directly proportional to pH. As the pH increases, the concentration (toxicity) of ammonia also increases. When the pH level rises above 9, most of the ammonium in the water is converted into toxic ammonia (NH3), which can kill fish. This stage can also cause gill and kidney damage, impaired growth, and decreased resistance to disease (Chewy Editorial, 2021). Beside of that, rain can be the reason that influence the value of pH water. There's no doubting that rain is good for ponds since it provides a free and gentle water source that's devoid of pollutants like chlorine and chloramine. However, the presence of acid rain can endanger fishponds. Simply put, acid rain is a mixture of wet and dry particles (nitric and sulfuric acids). Technically it refers to all types of rainfall with a pH less than 7, posing a threat to fish. Acid rain is caused by pollution in the air, which is mostly caused by vehicles, power plants, and the burning of coal and oil (Nualgi America, Inc., 2020).

2.2.2 Sensors for Water Monitoring

Water quality monitoring systems require sensors to obtain readings of water quality parameters. A single sensor has the ability to provide different parameters such as for pH level and water temperature. By connecting the sensor with the Raspberry Pi in series to get each value. Each value is decoded and split up using python programming. Water quality can be easily predicted using pH and temperature values.

For use in this project, the DS18B20 Temperature Sensor is an ideal sensor for monitoring water temperature. DS18B20 is a 1 -wire Temperature sensor that can be programmed from a maximum combination. It is widely used to measure temperature in harsh environments such as in chemical solutions or soils.

The sensor has a unique single -wire interface method. It only requires a mouth line to connect microprocessors and to establish two-way communication. No peripheral devices are required during use.

Figure 2.4: DS18B20 Circuit Connection

The power supply is available via a data channel, and the associated voltage ranges from + 3.0V to + 5.5V. The temperature measurement ranges from $-55 \degree C$ to $+125 \degree C$, the inherent resolution of the temperature measurement is $0.5 \degree C$. Digital reading patterns with $9 \sim 12$ bits can be realized by programming. The upper and lower alarm thresholds can be set by the user.

The pH of a solution is a measurement of its acidity and alkalinity. The hydrogen ion concentration index is another name for it. The pH scale measures hydrogen-ion activity in solution. Typically, pH is expressed as a number ranging from 0 to 14. pH 7 is considered neutral. A pH of less than 7 is classified as acidic. A pH greater than 7 is then considered alkaline (basic).

Figure 2.5: E-201-C pH Sensor

The pH sensor E-201-C is intended to quantify the pH of a solution and reflect its acidity or alkalinity. This instrument tests the hydrogen-ion activity of a water-based solution and is commonly used to determine the pH of a liquid. Acidic solutions have a high number of hydrogen ions and have a low pH value. Therefore, the more hydrogen ions, the lower the pH, on the contrary, the fewer hydrogen ions, the higher the pH value.

Beside of that, the precautions should be taken when using this sensor. The sensitive glass bubble in the pH probe's head should not encounter the hard substance. The electrode will fail if it is damaged or scratched once touched with the hard material. Moreover, the pH probe needs to be disconnected from the signal converter board once the measurement is complete. For lengthy periods of time, the pH analogue sensor probe should not be attached to the signal converter board without power.

Analog Dissolved Oxygen Sensor used to determine the amount of dissolved oxygen in water and hence the water quality. It's used in a variety of water quality applications, including aquaculture, environmental monitoring, and natural science. One of the most important metrics for representing water quality is dissolved oxygen. Low levels of dissolved oxygen in the water will make it difficult for fish to breathe, endangering their lives. However, these sensors will cost a high price and research results this product only available from overseas supplier.

2.2.3 Raspberry Pi

Raspberry Pi is a powerful computer in the size of a credit card. The Raspberry Pi 3 comes with Bluetooth Low Energy (BLE) and Wi-Fi built-in (Balon, B., & Simić, M., 2019). Raspberry Pi 3 has improved power management, with an upgraded switched

power source of up to 2.5A, to support more powerful external USB devices. It uses ARM (Advance RISE Machine) with clock speed 1.4 GHz 64Bit quad-core processor.

Figure 2.0. Raspberry 115 Model D

For years work was done on the Arduino, but the difference is that the Arduino is a microcontroller, and the Raspberry pi is a microprocessor that can process data very efficiently with a 1.4 GHz, 64 Bit Quad-core ARM processor (Nath, O., 2020). Also, the performance of the Pi 3 is about 50-60% faster than the Pi 2 which means it is ten times faster than the original Pi. Table 2.1 shows the detail specification of Raspberry Pi 3 Model B+.

Microprocessor	Raspberry Pi 3 Model B+
SOC Type	Broadcom BCM2837B0 (with metal cover)
(Processor)	
Core Type	Cortex-A53 (ARMv8) 64-bit
CPU Clock	1.4GHz
RAM	1GB LPDDR2 SDRAM
Wi-Fi	2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN
Bluetooth	Bluetooth 4.2, Bluetooth Low Energy (BLE)

Table 2.1: Specification of Raspberry Pi 3 Model B+

Memory	Micro SD port for loading operating system and storing data
Power Rating	5V/2.5A DC power input
Ethernet	Gigabit Ethernet over USB 2.0 (maximum throughput 300
	Mbps)
HDMI	Full-size HDMI
USB Port	4 x USB 2.0 ports
POE	Power-over-Ethernet (PoE) support (requires separate PoE
	HAT)

2.3 Critical Review

In this section of Chapter 2 Literature Review, several work from previous projects will be compared and analyzed to identify appropriate methodologies, techniques, and components that can be used in this project.

2.3.1 Water Quality Monitoring System Based on IoT Platform

According to (Fadel, A. A., & Shujaa, M. I., 2020), proposes a technique for water factory manufacturers by using wireless sensor nodes. This project suggestion due of constant changes in water, either due to seasonal changes in water chemistry or due to the operative circumstances of the manufacturing climate, this dynamic system can be used by the water manufacturers. Therefore, to minimize the risk of contamination, water quality monitoring is defined as a method of obtaining data and information about water from various regions in order to assess water quality over a regular or continuous duration. In order to collect data from water, two types of sensors are used. These sensors are TDS Sensor and pH sensor that are linked to microcontroller devices using Esp32 to handle data collection. The node then sends the status over a wireless network using a specified internet protocol (IP) where all information is transmitted to web application, which will store data on the website.

Figure 2.7: Concept Design of Water Quality Monitoring System Based on IoT Platform

The IoT is outlined as networked devices that has the means to sense and collect completely different information from too many locations at a same time. Through the data collected, the system has ability to detect water testing parameters such as pH and TDS with high accuracy and monitor quality of water automatically without human intervention using wireless sensor networks nodes. This reduces the cost and time required to perform laboratory analysis with proposed system.

2.3.2 Monitoring of Water Purification Process Based on IoT

Based on (Khalil, I. M., & Abdulrazzak, H. N., 2019), to get good water quality, a monitoring system is needed that expands the wireless and IoT sensor network. The monitoring device for a drinking water purification system consists of a microcontroller that controls the entire process of the purification system. Besides, LCD notifies and tell the information to the maintenance person, a detector that analyzes data to determine the healthy condition of the filter element, a reminder device that generates a message warn the user about the unhealthy water condition of the filter element.

Figure 2.8: Concept Design of Monitoring of Water Purification Process Based on IoT

The system comprised of two microcontrollers, one of which is the Arduino Uno which is used to link the sensing element and transfer the measured value via the NRF24L01, which serves as a transmission node. The other microcontroller is the ESP8266 which is used to obtain the measured value by attaching to another node NRF24L01 and transmitting the purification system status to the global database server. Server then sends the status to the secure web, which notifies the maintenance person, Monitoring is meant to display the measured value and the switch on/off purification mechanism based on the measured value compiled from the sensor. A reminder is made by producing a message and displaying the graphical state of the unhealthy water filtration elements. Based on Figure 2.8, good water quality results were obtained using the following algorithm, which took into account suitable pH and TDS values and indicated the system's status in terms of pH and TDS separately using the equation.

$SystemStatuswithrespecttopH = \begin{cases} 1\\ 0 \end{cases}$	when pHwith in the acceptance range when pHout of the acceptance range $^{(1)}$
$SystemStatus with respect to TDS = \begin{cases} 1 \\ 0 \end{cases}$	whenTDS with in the acceptance range (2) whenTDS out of the acceptance range

Figure 2.9: Operation Algorithm

2.3.3 Water Quality Monitoring using IoT

By referring to (Sengupta et al., 2019), because of urbanization and pollution, it is now important to track and assess the quality of water entering homes. The project focuses on measuring variables such as pH, turbidity, and water temperature, which can be checked on a regular basis. The pH sensors, turbidity sensors, and temperature sensors are some of the sensors used to measure water quality. The pH and turbidity sensors are analog sensors, while the temperature sensor is a digital sensor. The Raspberry Pi 3 B+ used only accommodate digital inputs. Therefore, the temperature sensor is directly attached to the Raspberry Pi's GPIO pins, while the pH and turbidity sensors are connected to the Analog to Digital Converter (ADC) to receive digital output. The Raspberry Pi module processes the sensor data and sends it to the cloud server. The sensed values are available on the cloud through cloud computing and are used to decide whether or not the data is within a safe range. Depending on whether or not this condition is met, the Raspberry Pi rules the relay machine, which determines whether or not the water supply can be continued. The water quality parameters thus recorded are then shown on web server, where the relevant authority may track and manage the water supply manually.

Figure 2.10: Concept Design of Water Quality Monitoring using IoT
Temperature and pH value relations also been discussed. The pH of water is also affected by temperature changes. Since pH varies with temperature, the pH of water at 10°C will not be the same as the pH of water at 25°C. The pH value in water reduces as the temperature rises, making the water more acidic. As seen in Figure 2.11, the pH values vary very little in the acidic region as the temperature rises, but dramatically in the basic region.

pH Range	Temperature		
	0°C	25°C	60°C
Acid	0.99	1.00	1.01
Neutral	7.47	7.00	6.51
Base	14.94	14.00	13.02

Figure 2.11: Change in pH due to increase in temperature

Based on (Fadel, A. A., & Shujaa, M. I., 2020), (Khalil, I. M., & Abdulrazzak, H. N., 2019) and (Sengupta et al., 2019) studies, their projects focus on the web-based platform monitoring. Nowadays, mobile phone has commonly been used and are often held close to the user. Warning alerts via mobile phones make it easier for users to constantly monitor. As a result, fish breeders will be able to get fast warning updates and information about the water quality in their fishpond.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Journal Name /	Microcontroller /	Sensor Type	Parameters	Communication	Platform
Author	Microprocessor			Technology	
Water Quality	ESP 32	Total Dissolved	TDS & pH Value	Wi-Fi	Web-Based
Monitoring System		Solid (TDS)			
Based On IoT	MALAYSI	Sensor & pH			
Platform (Fadel, A.	S.	Sensor			
A., & Shujaa, M. I.,	S	R.			
2020)		2			
Monitoring of	🚽 Arduino Uno	Total Dissolved	TDS & pH Value	Wi-Fi	Web-Based
Water Purification	&	Solid (TDS)			
Process Based on	ESP8266	Sensor & pH			
IoT (Khalil, I. M.,	chil (Sensor	1		
& Abdulrazzak, H.	سبا ملاك	يتھے مار	Ju, an	اوىبۇم س	
N., 2019)		· · ·	1 V 1	v - 4-	
Water Quality	Raspberry Pi 3B+	Turbidity Module,	Turbidity, pH, &	Not stated	Web-Based
Monitoring using		pH Sensor Module,	Temperature		
IoT (Sengupta et		& Temperature			
al., 2019)		Sensor			

 Table 2.2: Comparison of Previous Project

Proposed Solution	Raspberry Pi 3B+	pH Sensor Module,	pH & Temperature	Wi-Fi	Mobile Apps
		& Temperature			
		Sensor			

Based on Table 2.2 above shows the comparison between the previous projects. As been showed, the previous projects used ESP 32, Arduino Uno, ESP8266, and Raspberry Pi 3B+ as their microcontroller or microprocessor. In this project used Raspberry Pi 3B+ as the microprocessor. Total Dissolved Solid (TDS) Sensor, pH Sensor, and Temperature Sensor are among the sensors used in the previous project, hence this project used pH Sensor and Temperature Sensor as the sensor which monitor the pH and temperature water parameters. Moreover, most of the previous projects used Wi-Fi as a communication technology as well in this project. On the other hand, all the previous projects provide a web-based platform, but in this project mobile apps are implemented.

Journal Name / Author	Display Data	Mobile Apps Dashboard (Visualize Data)	Notification
Water Quality Monitoring System Based on IoT Platform (Fadel, A. A., & Shujaa, M. I., 2020)	HALAYSU HA	X	X
Monitoring of Water Purification Process Based on IoT (Khalil, I. M., & Abdulrazzak, H. N., 2019)			
Water Quality Monitoring using IoT (Sengupta et al., 2019)	Allen	X	
Proposed Solution	ڪل مليسيا ما VERSITI TEKNIK	سيتي تيڪنيغ AL MALAYSIA MI	اوييونم AXA

Table 2.3: Functionality Comparison Between Previous Projects

Table 2.3 shows the gaps from the existing works with the proposed project. It clearly highlights that all the previous project and this proposed project have a display data for the monitoring purpose. Moreover, the main advantage of this proposed project is to provide a mobile application dashboard to users that was not available in the previous project. Besides, most of the previous projects did not have an alert function whereas this proposed project was to provide and use an alert function.

2.4 Proposed Solution

From the critical reviews, this project is aims to improve and develop a system for measuring water quality using pH sensor and temperature sensor good detection accuracy. The pH and temperature are crucial water parameter to be measured to determine the water quality condition in the fishpond. The optimal water temperature for tilapia growth is between 29 and 31 °C whereas the pH of water should be maintained between 4 and 9. The value outside this level can affect growth and incidence of disease to tilapia as discussed early in this chapter.

Unclean water can cause pathogens that may affect aquaculture growth and safety (De Belen, M. C., & Cruz, F. R. G., 2017). Monitoring the water can be done by using pH sensor and temperature sensor which will constantly record the pH and water temperature value. The importance of correct pH and temperature values in the preparation of accurate data should not be underestimated. Once water parameters have been recorded, data should be delivered to fish breeders. Breeders are able to monitor the water quality of their fishponds even if they are not in the pond area. This would increase the water quality and the effectiveness with which the fishpond is maintained.

The system would have a microprocessor, Raspberry Pi 3 B+, which will read data from pH sensor and temperature sensor to detect pH and temperature values and then send the information to a cloud database platform. Analog-to-Digital Converter can be used to transform data from analog to digital so that it can be read. The data would be submitted to the user's smartphone and made available online. If the water parameters exceed the action level value, a warning message will be sent to the mobile. The fish breeders will get alert notification from their mobile and will take the appropriate actions to keep the fishpond in good water quality condition.

2.5 Conclusion

This chapter discusses the project's literature analysis, which is an ongoing project review, in order to complete a successful project. The system architecture review will be explored in depth. The literature review includes data collection and details, as well as problem identification and criteria. Any outcome is a result of the data review, and some conclusions and recommendations have been drawn from the findings of this chapter.

CHAPTER 3: PROJECT METHODOLOGY

3.1 Introduction

This chapter went through in detail about the methodology used as a guide and reference to make sure the project is in track and in the correct order. The methodology offers steps and procedures in achieving the milestones while in the project completion process. There are various types of methodologies that can be selected for use as a reference, using the right methodology can determine the overall success and quality of the project report.

Based on this IoT project, SDLC methodology, namely the Agile model, is seen to be able to provide good effectiveness in developing the project. Agile model can provide mobility and flexible advantages throughout the development phase. Agile model breaks down tasks into iterations or smaller parts. Development and testing are based on continuous iteration throughout the project development life cycle. Both development and testing activities been conduct simultaneous.

3.2 Methodology

The methodology chosen for this project is the Agile model. Just like other methodologies, Agile model also has its own stages in implementing the project. This provides descriptive guidelines for creating efficient performance support in four stages. Agile Model phases consists of Requirements, Architecture and Design, Development, and Testing and Feedback phases. The Agile model offers a flexible guide to build efficient and high-quality system.

Based on Figure 3.1, shows the methodology of Agile model. Agile model starts with the requirements phase where the project requirements are identified. This procedure then moves to the architectural and design phase, when the system setting is drafted. The system development phase will begin in accordance with the project plan. Finally, testing and feedback phases were undertaken in order to obtain any input and enhance the project. Aside from that, this methodology allows for flexibility in the project implementation process. Once completed with the specific phases, able to refer back to the prior phase for any modification and improvement.

3.2.1 Requirements Phase

Each project development life cycle requires to discuss the requirements needed to develop a product. The main objective of this phase is to identify and define the system

requirements in detail. All the requirements will be listed and detailed. It is necessary in ensure that process representatives have a clear understanding of the role and how each requirement should be implemented.

Item	Description
Collect the data	The system able to detect and collect the data from
	the sensors.
Monitor and alert notification	The system offers to monitor and alert the user
	when exceeding the normal values via notification.
Testing the effectiveness of	The system should be effective for consumerism.
system	

 Table 3.1: System Requirement

The selection of hardware is done after considering based on several factors such as hardware availability, affordable costs, and the suitability of the hardware to support in developing this project system. Based on Table 3.1, system requirement been listed and each of the system requirement been described.

Item	Description
Raspberry Pi 3 Model B+	This microprocessor makes it an ideal candidate for this
	IoT project as multiple sensors can be connected to it
	simultaneously. It used to host Raspbian operating
	systems and offers to connect and control external
	electronic devices via a set of GPIOs, or 'General
	Purpose Outputs'.
E-201-C pH Sensor	Selection of this sensor model is based on its affordable
	price compared to other models in addition to being able
	to provide the same functionality. It is convenient to use
	with Raspberry Pi to measure the PH of liquids.

UNIVERSITI Table 3.2: Hardware Requirement

DS18B20 Temperature	This is the only one common sensor available in the	
Sensor	market to be used. It is used to measure temperature	
	value in harsh environments like in chemical solutions,	
	mines or soil.	
Breadboard	This breadboard be used to act as the platforms that	
	allow to build and test electronic circuits without having	
	to solder anything.	
MCP3008	MCP3008 is an Analog-to-Digital Converter used to	
	convert the Analog voltage to digital value. This	
	converter is needed because E-201-C pH Sensor is an	
	analog sensor. The Raspberry Pi computer does not read	
AL MALAISIA MA	analog inputs. Therefore, the MCP3008 will translate	
	for Raspberry Pi use.	
Jumper Wire	Used to making connections between items on the	
LIS	breadboard and Raspberry Pi pins.	
Resistor 4.7K Ohm	Used to reduce current flow	

Based on Table 3.2, hardware requirement been listed and the description details of each of the hardware been elaborate. L MALAYSIA MELAKA

ingl

and a

isi in

2

Item	Description
Raspbian OS	Free operating system based on Debian,
	optimized for the purpose of Raspberry Pi
	hardware use. This software been chosen
	because of it is official OS for Raspberry

 Table 3.3: Software Requirement

	Pi.
Kodular	Tools used to build applications for
	Android devices. Kodular is a web-based
	platform that does not require a high pc

	specification, this allows application
	development to be done more easily and
	economically.
Thingspeak	Thingspeak is a cloud-hosted database
	used to store and sync data in real-time. It
	is used to obtain a graph visualization of
	the data stored and included in the
	application of this project.

Based on Table 3.3, software requirement been listed and the description details of each of the software been elaborate.

3.2.2 Architecture and Design Phase

Architecture and design are a phase that discuss about the architecture of the project that helps in defining the overall system using the requirement specify in the previous phase which is requirement phase. The prototype design is to use the sensors to measure water quality and send data to the Raspberry Pi. The program code will be written specifically for each sensor. Then, the connection circuit design between the sensor, microprocessor and microchip on the breadboard is drafted.

Based on Figure 3.2, shows an overview design of the overall system to illustrate how the system will work. Basically, Raspberry Pi 3 B+ will gained the data from sensors which are pH sensor and Temperature sensor. Raspberry Pi 3 B+ then analyze this data and transmit it to the cloud database. From this, mobile apps will show the output based on the data received from the cloud database.

3.2.3 Development Phase

The development process begins with the connection of each hardware device. Once the connection is complete, the Raspbian OS is installed as the operating system to the Raspberry Pi's SD card. All configurations will be recorded and stored on the SD card; this is where all the code will be written on Raspberry Pi. The connection between the sensor and microprocessor is then tested to obtain an output reading.

Once an accurate read is achieved, it then needs to be transferred to the cloud database. Wi-Fi connection been established on the Raspberry Pi to ensure its connection to the internet. Firebase cloud database then been setting up to receive the data from the

Raspberry Pi. After that, application development will start using Android Studio. This application will be developed to suits the android platform and will be installed on smartphones. The application should receive all the upcoming data gain from the cloud database and display it on the smartphone.

3.2.4 Testing and Feedback Phase

In this phase, the testing process been conducted to ensure that everything goes in line with the expected results and goals. Android emulator have been used to run the testing of the application developed. After that, testing is done on a real smartphone device before it can be deployed on the real situation. Any feedback and review will be sought to improve and correct any issue from the developed application. This testing process is repeated until all critical issues are removed, and the application is developed stably.

Table 3.4: Project Milestone

WWW .	
Phase	Activity
Requirements	Project proposal
UNIVERSITI T	 Proposal assessment and verification Proposal improvement and correction
	 Proposal submission
	 Project objectives, scopes, and problem statement
	identification
	 Project requirements identification
Architecture and	 Design the project architecture
Design	 Project hardware connection identification
	 Construct flow chart for the system flow
Development	 Build the hardware connection
	 Program code been written into the Raspberry Pi
	 Set up connection with the cloud database

3.3 Project Milestones

	 Develop the application for android platform 	
Testing and Feedback	 Monitor the system for any error and flaw 	
	• System is tested into real environment scenarios	
	 Test and collect feedback from users 	
	 Improve and correct any issue arise 	

Table 3.4 shows the phases involved in the project milestone. The phases include Requirement's phase, Architecture and Design phase, Development phase, and Testing and Feedback phase. Activities involved from each of the phases been listed.

Table 3.5: Project Gantt Chart

Task Name		Week																			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Requirements																					
Architecture and																					
Design			AAL	AY:	\$14	14															
Development	4	Y				1															
Testing and	N.						K/A														
Feedback	Ë.			•												1					
	E													-							
		Ŷ۵)	b																		

Based on Table 3.5, shows the project gantt chart. This project is divided into two sessions, namely Final Year Project 1 (FYP 1) and Final Year Project 2 (FYP 2). Basically, Final Year Project 1 (FYP 1) will involve between week 1 to week 14. On the other hand, Final Year Project 2 (FYP 2) will be performed for 7 weeks which will involve between week 15 to week 21. Therefore, Final Year Project 1 will go through the Requirement, Architecture and Design, and half of the Development phases while Final Year Project 2 will go through the Testing and Feedback phases.

3.4 Conclusion

To summarize, Agile SDLC model methodology is chosen to assist project development in deliver the project efficiencies to meet the deadline. This chapter consist of the significance of planning by committing the steps determined in the selected methodology. Project milestones are stated for planning use to guide project implementation according to a predetermined timeline. For the next chapter, analysis and design will be discussed and explained. Complete details on the design and structure of the system will be described in the next chapter.

CHAPTER 4: ANALYSIS AND DESIGN

4.1 Introduction

Chapter 4 cover about the analysis and design of the project in determine on the best plans and preparations for the project. The project problem been identified to be analyses before commit with the further analysis and project requirement. Moreover, the project design been developed to achieve the expected outcome or output. Then, the hardware and software that related and required in this project also will been discusses in this chapter.

4.2 Problem Analysis

Water quality is a serious matter that fish breeders need to consider. The production and rearing of fish farms are influenced by good water quality factors in accordance with the needs of the fish. Therefore, care and monitoring of fishpond water quality should always be done from time to time. However, fish farmers have certain obstacles in conducting the monitoring. Among them are manual method used by the fish breeders, they need to perform manual monitoring activities that are somewhat little energy -intensive and time consuming. Therefore, the Raspberry Pi microprocessor and sensors such as pH sensor and temperature sensor will be placed at the location of the fishponds to perform the water monitoring process, this does not need the fish breeders to go down the location every time the monitoring process be done. Besides, no indicator for water maintenance where the water maintenance is only based on the physical changes of the water color. By implementing the system, pH and temperature will be the main indicator of the water parameter by appreciating the pH sensor and temperature sensor.

Moreover, fish breeders are unable to know when the exact time the immediate maintenance can be done when the water quality declines. Therefore, the system will be designed to provide a mobile apps using Kodular platform with a real-time information that can assist the breeders in knowing their fishpond water quality status as well as get notifications when water quality changes occur.

4.3 Requirement Analysis

4.3.1 Data Requirement

5Mb

In monitoring the water quality, data means significance things that need to be process. Therefore, sensors will act to detect and measure the information such as temperature and pH value. This data will be process locally in the Raspberry Pi. Once then, it will be transferred to be stored in the ThingSpeak cloud database. ThingSpeak is a cloud based IoT analytics tool with built in MATLAB analytics that lets to gather, visualize, and analyze live data streams. Below, Table 4.1 shows the data dictionary of the data that been generated and stored in the ThingSpeak cloud database.

Field Name TI TE	Data Type	AYSIA M Description
created_at	Datetime	Time and date will be auto generated
		once receive the value.
entry_id	Int	Entry number for the received data.
field1	Double	Data value received from Raspberry
		Pi

Table 4.1: ThingSpeak Data Dictionary

4.3.2 Functional Requirement

Based on Figure 4.1, shows the use case diagram of the water monitoring system.

From this, the functional requirement of this system is to allow the user to view the main interface for monitoring, view the graph, and get the alert notification from the application. Basically, all the information generated in the android app are being processed and gathered from the ThingSpeak cloud database. This data information was previously obtained from the Raspberry Pi that generated from the sensors.

4.3.3 Non-functional Requirement

This system will perform according to few quality requirements such as Consistency, Usability, and Availability:

Consistency

The system will show and display the data consistently as long as the Raspberry Pi and the sensors keep running and generated the value to be transmitted to the cloud database.

Usability

It is important to ensure that the application that has been designed is easy to be used and understand especially for the novice user.

Availability

System services will function as required and will not fail or undergo repair actions when required.

4.3.4 Others Requirement

Software Specifications: UNIVERSITI TEKNIKAL MALAYSIA MEL

Raspbian OS

Raspbian OS is a Raspberry Pi operating system based on Debian. The Raspberry Pi Foundation has officially made it accessible as the primary operating system for the Raspberry Pi series of tiny single board computers since 2015. By default, the Raspberry Pi supports C/C++, Python 2/3, and Scratch. On Raspbian OS, however, virtually any language compiler or interpreter may be installed.

Figure 4.2: Raspberry OS

Kodular

Kodular is an online suite tools for mobile app development. It mainly provides a free drag-and-drop Android app creator without coding, based on MIT AppInventor. It brings lots of new features like new components and blocks. It also provides a free online app store to share and distribute apps and an extensions IDE for advanced users.

Figure 4.3: Kodular

ThingSpeak

ThingSpeak is an open-source Internet of Things (IoT) application and API for storing and retrieving data from things over the Internet or over a Local Area Network utilizing the HTTP and MQTT protocols. ThingSpeak allows developers to create sensor recording apps, location tracking apps, and a social network of things with status updates.

Figure 4.4: ThingSpeak

Hardware Specifications:

- Raspberry Pi 3 Model B+
- E-201-C pH Sensor
- DS18B20 Temperature Sensor

Raspberry Pi and sensors information have been explained in detail as mentioned in the previous Chapter 2 Critical Review.

- Breadboard
 - VERSITI TEKNIKAL MALAYSIA MELAKA

A breadboard is a rectangular piece of circuit board with many mounting holes. It is used to link electronic components to single-board computers and microcontrollers like the Arduino and Raspberry Pi. The connections are not permanent and may be removed and reinstalled at any time.

Figure 4.8: Breadboard

MCP3008

The MCP3008 is well-known for providing analogue input to a Raspberry Pi that is exclusively digital. This chip will give your microcontroller or microcomputer project 8 channels of 10-bit analogue input.

Figure 4.9: MCP3008

Jumper Wire

A jumper wire is an electrical wire having a connector or pin on both ends that is used to connect the components of a breadboard.

Figure 4.10: Jumper Wire

Resistor 4.7K Ohm

Resistors are used for a variety of purposes such as reducing the current flow. It's a two-terminal passive electrical component that acts as a circuit element by implementing electrical resistance.

Figure 4.11: Resistor

4.4 High-Level Design

Development of Water Quality Monitoring System interacts with the environmental of the physical sensor which are the pH sensor and the temperature sensor. This interaction requires the interconnection between the physical equipment and the software applications. Therefore, it is a responsible to the software as an intermediary to enable the system to function. Raspbian OS that based on the Raspberry Pi will then be run and execute the code for the system functional.

UNIVERSI Figure 4.12: High Level Design Diagram AKA

As been illustrated in Figure 4.12 above, once Raspberry Pi read the data gained from the sensors, it will then be connected and transferred the data to the ThingSpeak cloud. Graph will be generated based on the data value received. Once then, Kodular will received the sensor data and the graph, alert notification will be produced if the data values exceed the action level to notify the user.

4.4.1 System Architecture

Based on Figure 4.13, Micro USB will be connected to power up the Raspberry Pi. This system uses the Raspberry Pi microprocessor which will be programmed to execute and read the data generated from the sensors to obtain the temperature and pH value of the water. This sensors data will be sent to the smartphone user via the built-in Wi-Fi module on the Raspberry Pi to be connected to the cloud database first.

4.4.2 User Interface Design

The visual layout of the items that a user could interact with in an app is referred to as user interface design. User interface designs will be not only appealing to the users, but also practical and designed with them in mind especially for the use of novice user.

Figure 4.14 above shows the application user interface for the main dashboard of the water quality monitoring system. The main purpose of this interface is to provide users the output value from the temperature sensor & pH sensor, and the real-time graph that present the historical data for a given period of time. As been discussed in Chapter 2 Critical Review, pH of water is affected by temperature changes. The pH value in water reduces as the temperature rises, making the water more acidic. Therefore, the plotted graph of pH and temperature on figure above to some extent undergoing the changes due to the temperature changes that affected by environmental factors.

4.5 Detailed Design

This part depicts the project's detailed design, which includes the structure perspective of the system to be built, which includes the circuit diagram, system flow chart, and pseudocode.

4.5.1 Circuit Diagram

Circuit diagram is a drawing that depict what the physical arrangement of the wires and the components connected. It is used to build and maintain the component and hardware devices. Once finished the prototype, this design can be used as the clear reference and guideline for understanding how it work. Due to avoid the circuit diagram being too crowded and dizzying, this diagram is divided into two diagrams which are the pH sensor circuit diagram and the temperature sensor circuit diagram.

Figure 4.15: pH Sensor Circuit Diagram

Based on Figure 4.15, shows the pH Sensor Circuit Diagram. This diagram consists of wire connections and components that associated with a pH sensor.

Figure 4.16: Temperature Sensor Circuit Diagram

Based on Figure 4.16, shows the Temperature Sensor Circuit Diagram. This diagram consists of wire connections and components that associated with a temperature sensor.

4.5.2 Flow Chart

A flowchart is a diagram that shows how a workflow or process works. A flowchart is a diagrammatic depiction of an algorithm, or a step-by-step procedure for completing certain process.

Figure 4.17: Flow Chart

Based on Figure 4.17, shows the Flow Chart diagram that explaining the process of the system flow. The system starts by power on the raspberry pi, then it will be functioning to detect the pH and temperature value. The conditional decision has determined based on the previously discussed in Chapter 2 Literature Review. Once then, the conditional decision of pH and temperature value will be finalized, if unnormal value been detected will send an alert notification to the users. The value will been display on the android apps that can be monitored by users.

4.5.3 Pseudocode

Pseudocode is basically a common language explanation of an algorithm or code. It is designed so that humans can understand and not machines to understand its code. Pseudocode is better understood than any algorithm code.

Figure 4.18: Pseudocode

Based on Figure 4.18, shows the pseudocode. It is used to design an algorithm by sketching out the program's structure before moving on to the actual coding implementation.

4.6 Conclusion

The stages of project development include analysis and design. Prior to design implementation, all software and hardware specifications must be defined and validated. This chapter is the application's pre-preparation phase, in which the overall flow of the system is described so that it may be better understood before implementation. This chapter also covers all the critical design requirements, which will be executed and tested in the following chapter. It also discusses the intended project's architectural design.

CHAPTER 5: IMPLEMENTATION

5.1 Introduction

In this chapter, the design and analysis from the previous chapter be implemented. The implementation of the project discussed in depth in this chapter. This chapter also cover project environment setup and configuration management, which ensure that the project runs smoothly and efficiently. The Raspberry Pi is used in this project to monitor the water quality, and the user been notified when the pH and temperature levels exceed the threshold. This project also makes use of additional software and hardware that is part of the system.

ويتوبر سيتي تيك Development Environment Setup

A development environment is a set of methods and tools used to create, test, and debug a program or application. By setting up the development environment is to allow an environment in which any changes to the system are being applied. Development environment setup cover of Raspberry Pi environment, Desktop environment, and Water Quality Monitoring System environment.

5.2.1 Raspberry Pi Environment

To begin the system building, the Raspberry Pi is one of the most important components to be setup. This section will go over the Raspberry Pi environment settings in detail. The Raspberry Pi is the most important component of this project since it allows everything to work. It serves as a microprocessor to ensure that the water quality monitoring system runs smoothly and efficiently. Therefore, to make the Raspberry Pi completely functional to use, Raspberry Pi development environment would need to be setup by following a few simple steps.

Figure 5.1: Raspberry Pi Development Environment Setup

Based on Figure 5.1, shows the development environment setup for the Raspberry Pi. The Raspberry Pi has an HDMI connector built in, so it able to connect to any monitor or TV that has an HDMI port for providing the display of the Raspberry Pi interface. Besides, to powered up the Raspberry Pi is by using the standard USB charging cable on the micro-USB port. Keyboard and mouse are needed for the initial set-up and capability of control to the RPI. MicroSD card is required to stored Operating System and the working files for the use of the system. On the other hand, other easy ways to access and use RPI is by remotely access using the VNC viewer via the desktop, whereas the VNC Server is built into Raspberry Pi OS.

5.2.2 Desktop Environment

Desktop computers work as a main development environment in developing the water quality monitoring system. Any requirement to access the RPI using VNC remote method and development of the mobile apps are done by using this desktop. Based on Table 5.1 below shows the specification of the desktop computer been used in this project.

Table 5.1: Desktop Specification

Item	Value
OS	Microsoft Windows 10
Model	Acer Swift 1
Processor	Intel Pentium CPU N4200 @ 1.10GHz
RAM	4.00 GB
ROM	128.00 GB

5.2.3 Water Quality Monitoring System Environment

To form a complex and well -functioning system, some components need to be setup and connected. Water Quality Monitoring System is a system that are formed from several components among which are Raspberry Pi, E-201-C pH sensor, DS18B20 temperature sensor, MCP3008, breadboard, jumper wire, and transistor.

Figure 5.2: System Development Environment Setup

Based on Figure 5.2 above shows the environment setup of the Water Quality Monitoring System. This setup is not too difficult, nor too easy to be developed. However, the connection on the part of the pH sensor and the Temperature sensor requires good scrutiny. All the connection requires a connection between the sensors and the Raspberry Pi GPIO pins. Previously in Chapter 4, Figure 4.15 and Figure 4.16 already illustrate the circuit diagram for the connection. Based on Table 5.2 below, shows the details of the connection between several components to the RPI as the main component using the jumper wire. It is advisory best practice to use the same color of jumper wire on the same connection function to avoid the confusion.

Component	Connection Details
pH sensor	 Both GND pins connect to RPI Ground
	 VCC pins connect to RPI 5V power
AL MAL	PO pins connect to MCP3008 CH1
Temperature	 DAT pins connect to RPI GPIO 4 (GPCLK0)
sensor	 VCC pins connect to RPI 5V power
LIG	 GND pins connect to RPI Ground
MCP3008	 V_{DD} pins connect to RPI 3V3 power
) ملاك	 <i>V_{REF}</i> pins connect RPI 3V3 power AGND pins connect to RPI Ground
	 CLK pins connect to RPI GPIO 18 (PCM_CLK)
ONIVE	 <i>D_{OUT}</i> pins connect to RPI GPIO 23
	• D_{IN} pins connect to RPI GPIO 24
	 CS/SHDN pins connect to RPI GPIO25
	 DGND pins connect to RPI Ground
	 CH1 pins connect to pH sensor PO

 Table 5.2: System Component Connection

5.3 Software Configuration Management

Software configuration management is the process of discovering and defining the software configuration elements in the system. Configuration management, when
effectively done, guarantees that the technological assets are setup correctly and that they are related to one another.

5.3.1 Configuration Environment Setup

Configuration Environment Setup cover the configuration in the Raspberry Pi, Desktop, and the Water Quality Monitoring System itself.

5.3.1.1 Raspberry Pi Configuration

The first and most important thing to do is make sure that the Raspberry Pi is operated with Rasbian OS. Latest Rasbian OS will been download and write into the MicroSD card. This MicroSD card will then be inserted into the Raspberry Pi and been power up. The Raspbian OS will boot straight to the desktop, and the username *pi* and password *raspberry* will been automatically set as the default credential.

Figure 5.3: Raspbian OS

Figure 5.3 shows the installed Raspbian OS in the Raspberry Pi which indicate that the version used in this project is the Raspbian GNU/Linux 9.4 version.

Figure 5.4: Python Version

Based on Figure 5.4, shows the python version in the Raspberry Pi which is Python 2.7.13 version. By default, Python 2 is already installed on the Raspbian OS. Basically, Python will be used to write and execute the code on the Raspberry Pi especially for the use of pH sensor and temperature sensor functions.

5.3.1.2 Desktop Configuration

Thingspeak and Kodular are web-based platform that will been used as part of the tools used in this project. Thingspeak act as an analytic platform to retrieve the data from Raspberry Pi and then generate the plotted graph. Whereas Kodular is an online tool to develop the android mobile apps in this project. Both web-based platform will only been access and develop by using the browser via desktop.

☐ ThingSpeak [™]	Channels +	Apps - De	vices +	Support -	Commercial Use How to Buy SS
Watelity					
Channel ID: 1408650 Author: mwa0000022757919 Access: Public		Tom	onitor t	emperature a	nd pH of water
Private View Public Vie	w Channel S	ettings Shar	ing	API Keys	Data Import / Export
Channel Setti	ngs				Help
Percentage complete Channel ID	50% 1408650				Channels store all the data that a ThingSpeak application collects. Each channel includes eight fields that can hold any type of data, plus three fields for location data and one for status data. Once you collect data in a channel, you can use ThingSpeak apps to analyze an visualize it.
Name	Watelity				Channel Settings
Description	To monitor tem	perature and pH of	water	į,	 Percentage complete: Calculated based on data entered into the various fields of a channel. Enter the name, description, location, URL, video, and tags to complete you channel.
Field 1	Temperature				Channel Name: Enter a unique name for the ThingSpeak channel.
Field 2	pH	•			 Description: Enter a description of the ThingSpeak channel. Field#: Check the box to enable the field, and enter a field name. Each ThingSpeak channel can have use to 8 fields.

Figure 5.5: Thingspeak Channel

Based on Figure 5.5, shows the created Thingspeak account channel to retrieve both data value of pH and temperature from the Raspberry Pi. These channels will be detected and authorized using the API Keys that will be configured through the sensor code in the Raspberry Pi.

	1	200	Da.												
	0	Cre	ator	Projec	Test Expo	et Help						()	e	\$	ව
	Wa	telity	. 1	Scr	een1 💿 🛛 Add So	creen 🕢 Cop	oy Screen () Remove Scree	n ⊗			۵	10 Der	signer	Blocks	
	Pale	otto		Q	Viewer	6	En Samsung Galaxy	Note 5 🗸 🔌	All Con	nponents 🗸 🥒	Screen1	roperties			
	60		Button	0	www.	- W	ATELITY		0 D Sc		Common	properties			
		~	Checkbox	0	10 1	-	add items			HEADER	About Scr	3en]
-	۲	0	Circular Progress	0		r – n	T		-	Label1	- About Scr	een Backgrour	nd Color		
U	0	ŧŀ	Custom Progress	G	TITE			ALA	YS	Spinner1	• #4444	44FF	ht Thome		J
	Ø	۵	Date Picker	0			add items 🗸		0 8	Location_A	About Scr	een Title			h
	6	O	Floating Action Button	0			8			Horizontal_Arrangem	- Alian Har	ivental			1
	ß		Image	0						Card View4	Left : 1			~	
	Ô		Label	0	×	C TEMPERATUR	<u>ه</u>	I 1			Align Vert	ical —		~	
	0	**	Linear Progressbar	0		0.00 °C	0.00 indicat			E tabale and	- Backgrour	nd Color			1
	2	5=	List Picker	()			add items 👻	ו ו		Label5_copy	#FFFF	FFF			
	6		Matifiar	0			8			Label2_copy	Backgrou	ıd Image		A [7]	1
	3	1	Nonner	0				4		 Horizontal_Arrange 	jem Chus Fra	and designed in a	- (- 2	
	86 0	۲	Radio Button	()		· · · · ·				temp_copy	Default	en Animation		~	
	ψ	*	Rating Bar	\odot					l		- Navinatio	Bar Color			

Figure 5.6: Kodular Project

Figure 5.6 shows the created Kodular project to develop the android mobile apps in monitoring the water quality. It is compulsory to having an account first before proceeding with the mobile app's development. The design work will be done in this section, it requires some skill and focus in visualizing the interface design for these apps. User-friendly, consistency and simple interface should be considered in designing the user interface to make users feel more comfortable and able to get things done quickly.

5.3.1.3 Water Quality Monitoring System Configuration

Sensors Coding

To enable the pH sensor and temperature sensor to function, Raspberry Pi need to be configured with the sensors code. Based on Figure 5.7, shows the sensors code that have been write in Raspberry Pi. This code is intended to make sensors read water data readings as well as make a few calculations before the data is sent to the Thingspeak database using the Thingspeak Write Key that already been set in the code. The code can be run by simply enter '*sudo python watelity3.py*' through the Raspberry Pi terminal.

Figure 5.7: Sensors Code

Main Dashboard Output

Main dashboards play a vital part in this project to provide the users with monitoring of water parameter data. Therefore, in this section, an interface has been designed which then the blocks are built to collect the data from ThingSpeak. Figure 5.8 below shows the blocks to retrieve the pH and temperature value from ThingSpeak by using the ThingSpeak URL and ThingSpeak Read Key. This is intended for an identification and authorization process before data can be retrieved.

Figure 5.8: Main Dashboard Blocks

Based on Figure 5.9 shows the example of output value on the main dashboard after been run on the real android device. The pH indicator automatically been assigned by considering the if else condition statement from the blocks that have been built.

Figure 5.9: Main Dashboard Output

Alert Notification Function

As this project objective to warn fish breeder about the water changes that are not suitable for the fishpond environment. Alert notification function can assist the users to been notified once the water quality exceeds the level of action. Based on Figure 5.10 below, shows the alert function blocks that been build up in the Kodular. To be simplify, the blocks will been set with the level of action value that already been considered by referring the Chapter 2 Literature Review, this blocks values will be compared with the received values from the sensors. Once values from the sensors exceed the blocks values, it will trigger a notification according to the pH perspective or the temperature perspective. Once the notification triggered, the time interval will automatically been sign up intended for the next notification inspection.

Figure 5.10: Alert Function Blocks

Based on Figure 5.11, shows the example of alert notification function. The notification title and message been showed in the bar notification of the phone according to the blocks that have been build. The simple action been suggested within the notification to provide the fish breeders some idea in overcoming the issues.

Figure 5.11: Alert Function Example

Multiple Location Dashboard

To monitor multiple fishpond locations, the mobile app interface needs to be designed with options that allow users to switch dashboards between locations. In Figure 5.12, spinner component been used in the Kodular to provide the dropdown function in enabling the users to switch the dashboard. This dashboard will provide users the selected location interface from the dropdown option.

Figure 5.12: Location Spinner Function Blocks

In Figure 5.13, the dropdown option of the location will allow the users in switching their fishpond monitered dashboard. Logically, this is necessary because most fish breeder are not only focused on one fishpond, but also several other fishponds to be monitored

Figure 5.13: Location Dropdown Function

Graph Function

Graph is intended to show the analyzed and summary of the data within a certain period of time. ThingSpeak web-based platform provide the plotted graphs according to the received data value from the sensors. These plotted graphs can be used for use in the mobile apps. On the other hand, these graphs also can be plotted in the specific period such as the daily average values by changing in the graph setting. In Figure 5.14, highlight the share button that contain the graph URL to be used in the Kodular using the Web Viewer component.

Figure 5.14: ThingSpeak Graph

MALAYSIA

Based on Figure 5.15, shows the example of the setting in the web viewer component. By using the web viewer component, can be used to display the ThingSpeak graph in the mobile apps. The previous ThingSpeak graph URL will be assigned in the Home Url setting.

ionn .	
All Components ~ ~ ī	Le 稔 Designer Blocks tempchartreal Properties
UNIVERSITI TEKING COAL N	Common properties
⊖ ⊒ Card_View3	- Height
Spinner2	- Width
tempchartreal	Fill parent 🖸 🖸
tempchartdaily	Home Url
phchartreal	Scrollbar
phchartdaily	Visible
⊖ 且 Location_B	Zoom DisplayZoom Enabled
⊖	Zoom Percent

Figure 5.15: Web Viewer Component Setting

Figure 5.16 shows the example of the graph display output in the mobile apps. Simply put, there is no difference between displays on the web and in mobile apps. If any changes are to be made to the graph, it can be made directly through ThingSpeak platform and the reconfiguration needs to be done again.

Figure 5.16: Daily Average Graph

5.4 Implementation Status

In this section, the progress of the development status for each of the module been described as the Table 5.3 below.

No.	Module	Description	Duration	Date
				Completed
1	Assemble Hardware	Collecting all the	7 Days	24 April
		components and		2021
		hardware for the project.		

Table 5.3: Implementation Status Details

2	Building the	All components	7 Days	10 May 2021
	Prototype	successfully been	5	5
	<i></i>	connected to breadboard		
		and Raspberry Pi.		
3	Software	Sensor's code configured	14 Days	24 May 2021
	Configuration &	using necessary libraries	_	
	Sensors Code	and connect with the		
	Implementation	ThingSpeak.		
4	Mobile Apps	Simple interface mobile	7 Days	30 May 2021
	Development	apps developed		
		successfully connected		
		and received the values		
		from Raspberry Pi.		
5	Alert Notification	Alert notification	7 Days	20 July 2021
	Function	function block been built,		
		and the bar notification		
	MALAYSIA	successfully display on		
	ST Ve	the phone.		
6	Real-time & Daily	Setting up the graphs	7 Days	22 July 2021
	Average Graph	setting in ThingSpeak		
	F	and Kodular to be		
	E	display in the mobile		
	a de la companya de l	apps.		
7	Multiple Location	Designing and built up	7 Days	24 July 2021
	Dashboard	the blocks for the		
	, ملىسىا ملاك	dropdown function to	ويتومرس	
	10 10 h	switch the different	0	
		locations dashboard.		
	UNIVERSITIE	NNINAL MALATSIA	A MELAKA	

5.5 Conclusion

For the conclusion, the implementation phase demonstrates how the project development process works in detail. The procedures and activities involved in this project are broken down step by step to ensure that the project runs smoothly and efficiently. Furthermore, in order to be more successful, the environment and configuration setup must be carefully designed at this phase. The outcome from this chapter is obtained and used in preparation for testing and analysis in the next chapter.

CHAPTER 6: TESTING

6.1 Introduction

A brief discussion on project implementation was held in the previous chapter. After the installation is complete, the testing and evaluation of the project will continue. This is necessary to guarantee that the project is completed, and the objectives of water quality monitoring are met. Several test plans will be explained in this chapter, such as Test Plan, Test Strategy, Test Design, and Test Results Analysis. The verification method is critical to ensuring that the finished product fulfills the required standards and functions properly while furthering the project's aim of achieving the project objectives.

6.2 Test Plan

This section will describe the basis of each system test. It involves the project's scope, including the organization of the test, the environment of the test and the test schedule.

ويبؤير سيتى نتكنه

6.2.1 Test Organization

Testing Organization states about the individuals involved when the test is performed. For this project, the testing process will only involve two individuals: the system developers and the user. System developer is the person responsible for developing and providing functions system, in addition to deciding which test subjects to use and test cases to employ to find any problems in the system. The user will be any adult to do the system testing that can provide insights and opinions for any improvements of the system.

6.2.2 Test Environment

Testing location for this project is carried out at home using several different water samples. These different water samples represent water solutions with different pH and temperatures values. This location environment has an internet connection and power source. Raspberry Pi uses Wi-Fi technology that requires an internet connection for the data transmission process and the power source is needed to power up the Raspberry Pi. In addition, an android smartphone is required to perform water quality monitoring testing through mobile apps that have been developed. Tools such as pH meter and temperature meter are also needed to represent the manual method to make comparisons with the system that has been implemented.

6.2.3 Test Schedule

In general, the tests must be scheduled in such a way that the best results are obtained for each testing process. It also has the advantage of making the testing more methodical. If the tests are done in a timely manner, the results will be more accurate. The test is scheduled for two weeks to enable the testing process performed in a more flexible way. In this project, testing is dynamically conducted on Week 4 and Week 5 of FYP 2. 10 sensor readings from the testing be taken and recorded for comparison with the manual method. If any faults are discovered throughout the testing process, the process will return to the implementation phase to identify and remedy the problem. This method will be repeated until the desired outcome is achieved.

6.3 Test Strategy

Test Strategy explained the strategy selected to test the system such as bottom-up or top-down and black-box/white-box classes of tests. Black box testing strategy is used and been selected in this project. Testing the system with no prior knowledge of its internal workings is known as Black Box testing.

Figure 6.1: Black Box Testing

Figure 6.1 shows the illustration cycles of Black Box testing. Tester gives the system under test an input and watches the output it produces. This allows the system to react to expected and unexpected user activities and the system reaction time, usability difficulties, and reliability concerns. This is a powerful testing approach as it puts the system through its steps from start to finish. Tester able to mimic user activity and see if the system lives up to its promises. End users did not know how the system is built or constructed and hoped to obtain an acceptable answer to their request. In addition, the accuracy of the sensor readings is one of the things to be achieved in this test. Therefore, 10 sensor readings will be selected based on repeated readings and nearest to the manual method readings.

6.3.1 Classes of Tests

Classes of test include any involved tests in this project such as output correctness or Functionality test, Security test, Stress test, etc. Due to the selected test strategy is Black Box testing, the functionality test will be applied. The functionality test ensures that the Raspberry Pi and the sensors, which include a pH sensor and a temperature sensor, are fully functioning. Testing began when the Raspberry Pi receives data from the sensors, it sends it to the developed mobile apps. Besides, the mobile apps functionality such as alert notification and graph display also be tested in the functionality test.

6.4 Test Design

Test Design is the process of evaluating the correctness and reliability of the system components or modules. Each component must be examined and the comparison tests between the system and manual method performed to validate the system. This testing is required to confirm that the system meets the requirements and functions correctly.

6.4.1 Test Description

The project test cases and expected outcomes are created and documented in this part. All tests assigned with Test Case ID for structured documentation and reference purposes.

6.4.1.1 Connectivity Test between Raspberry Pi and Desktop

Test Case ID	TC01 MALATSIA MELAKA
Test Functionality	Test the connectivity between Raspberry Pi and Desktop
Prerequisites	 Both are power on and connect within the same network Desktop installed with VNC Viewer Identify the IP address of Raspberry Pi through local network
Execution Steps	 Launch VNC Viewer on desktop. Enter the VNC Server address of Raspberry Pi. Enter username and password of Raspberry Pi.
Expected Result	Desktop access the main display of Raspberry Pi via VNC Viewer

Table 6.1: Connectivity of Raspberry Pi and Desktop

6.4.1.2 Connectivity Test between System Component and ThingSpeak

Test Case ID	TC02
Test Functionality	Test the connectivity between the System Component and
	ThingSpeak
Prerequisites	 All component of the system includes the sensors is connected
	 Raspberry Pi is power on
	 Sensors Source code contain with ThingSpeak Write API
	Кеу
Execution Steps	1. Launch terminal in the Raspberry Pi.
TERUINA	2. Change the working directory to the source code file directory in the terminal.
E	3. Run the source code file using <i>sudo python</i> command.
Expected Result	Raspberry Pi terminal produce 'OK' statement indicate
= میں سا ملاك	successfully connect and transmit data to ThingSpeak
(112 Samaana Daad	ing and Dignlay Test

Table 6.2: Connectivity of the System Component and ThingSpeak

6.4.1.3 Sensors Reading and Display Test

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 6.3: Sensors Reading and Display Test

Test Case ID	TC03
Test Functionality	Test the sensors reading and display the data through mobile apps
Prerequisites	 Source code is executed in Raspberry Pi
	• Android smartphone already installed with mobile apps
	АРК
Execution Steps	1. Download the APK file from Kodular into the android
	smartphone.
	2. Install the APK file of the developed mobile apps.
	3. Run the mobile apps.

Expected Result	Mobile apps display pH and temperature data seamlessly and
	with near -accurate readings

6.4.1.4 Alert Notification Test

Test Case ID	TC04
Test Functionality	Test the alert notification generate by the mobile apps
Prerequisites	 Source code is executed in Raspberry Pi
	 Android smartphone installed with mobile apps APK
	 Prepare cold/hot water or high acidic/alkaline solution
Execution Steps	1. Run the mobile apps in android smartphone.
and the second se	2. Soak the sensors into cold/hot water or high
TEK	acidic/alkaline solution
Expected Result	Mobile apps triggered the alert notification

6.4.1.5 Graph Display Test

and a

5

Table 6.5: Graph Display Test

Test Case ID ERS	TC05EKNIKAL MALAYSIA MELAKA
Test Functionality	Test the real-time and daily average graph generate by
	ThingSpeak and display in mobile apps
Prerequisites	 Source code is executed in Raspberry Pi
	 Setting up the graphs setting in ThingSpeak and Kodular
	 Android smartphone installed with mobile apps APK
Execution Steps	1. Run the mobile apps in android smartphone.
	2. Tap the dropdown option to switch the real-time and daily
	average graph display.
Expected Result	Mobile apps display the real-time and daily average graph
	generate by ThingSpeak

6.5 Test Results and Analysis

6.5.1 Test Case 01

Test Case		Results
Identification	Tester Identification	(Success/Fail)
Connectivity between	 Raspberry Pi red power LED 	
Raspberry Pi and	lights up	Success
Desktop	 VNC Viewer access the display 	
	of Raspberry Pi	

Table 6.6: Test Case 01 Result

Figure 6.2: Raspberry Pi LED Light

Based on Table 6.6, shows the connectivity test between the Raspberry Pi and the Desktop that resulted in a successful test. Figure 6.2 shows the Raspberry Pi red power LED lights up, this indicates that it has an active power supply and there are absolutely no problems with the Raspberry Pi.

Figure 6.3: Raspberry Pi Display

Figure 6.3 shows the VNC Viewer in the Desktop able to access the display interface of Raspberry Pi, this indicates that the Raspberry Pi successfully connected with the Desktop and ready to be used.

6.5.2 Test Case 02

Table 6.7: Test Case 02 Result

Test Case Identification	Tester Identification	Results (Success/Fail)
Connectivity between	 Raspberry Pi terminal produce 	
the System	'OK' statement	Success
Component and		
ThingSpeak		

Figure 6.4: Raspberry Pi Terminal

Table 6.7 shows the connectivity test between the System Component and ThingSpeak that resulted in a successful test. Figure 6.4 above, shows the terminal of Raspberry Pi that run the source code file using *sudo python* command. The Raspberry Pi then successfully connect and transmit data to ThingSpeak by produce the 'OK' statement.

653	Test	Case	03
0.5.5	rest	Case	UJ

AINO		
Test Case Identification	Tester Identification	Results (Success/Fail)
Cold Water Test UNIVERSIT	• The low value of water TEKNIKAL MALOYSIA MEL temperature display in the	AKA
	mobile apps	
Room Temperature	• The moderate value of water	c
Water Test	temperature display in the	Success
	mobile apps	
Hot Water Test	• The high value of water	
	temperature display in the	Success
	mobile apps	
Neutral Solution Test	• The value of pH and indicator	1 st test – Fail
	for natural solution display in	2 nd test – Success
	the mobile apps	

 Table 6.8: Test Case 03 Result

Acidic Solution Test	•	The value of pH and indicator	1^{st} & 2^{nd} test – Fail
		for acidic solution display in	3 rd test – Success
		the mobile apps	
Alkaline Solution Test	•	The value of pH and indicator	1st test – Fail
		for alkaline solution display in	2nd test – Success
		the mobile apps	

Table 6.8 shows the sensors reading and data display through mobile apps that resulted in a successful test. Temperature sensor has directly successful results within the cold and hot water whereas the pH sensor has an inconsistent result to neutral, acidic, and alkaline solutions. Several revisions and improvements have been attempted especially on the source code and physical parts of the pH sensor. However, these unstable results are likely due to the degradation in the quality of sensor components.

Cold Water Test 21°C 21.06°C 10 Test Image: Cold Cold Cold Cold Cold Cold Cold Cold	Test Case Identificatio n	Manual Method	Developed System	
21.29	Cold Water Test	21°C	21.06°C ALAYSIA MELAKA	10 Reading 21.56 21.25 21.12 21.06 21.12 21.19 21.25 21.31

 Table 6.9: Manual Method & Developed System Comparison

			21.44
Room	32°C	30.56°C	10
Temperature			Reading
Water Test	TD, \$28C met. (hold)		30.62
		• :	30.56
		<u>n</u>	30.50
			30.56
		30.56 °C	30.50
			30.44
			30.50
N	LAYSYA		30.56
S.S.Y			30.50
li Kal	A		30.56
Hot Water			10
Test	45°C	44.38°C	Reading
-11	TDST EC		44.61
ملاك	hund this	اونىۋەرسىت تىچ	44.62
			44.50
UNIV	RSITI TEKNIKAL M		44.38
		44.38 °C	44.31
			44.12
			44.11
			44.38
			44.35
			44.31
Neutral	7.03	7.21	10
Solution Test			Reading
			7.39

		PH 7.21 Neutral	7.40 7.38 7.21 7.21 7.21 7.20 7.21 7.21 7.21 7.21 7.21 7.21 7.21 7.21
Acidic Solution Test		2.33	10 Reading 2.47 2.45 2.38 2.33 2.33 2.33 2.33 2.33 2.34 2.32
Alkaline Solution Test	8.69	8.54 PH 8.54 Alkaline	10 Reading 9.00 8.54 8.54 8.50 8.50 8.54

	8.61 8.59 8.54
	8.42
A BARA	

As detailed in Table 6.9, the comparison results between the manual method and the developed system are shown. The manual method is represented using pH meter and temperature meter. The test performed several times which almost exceeded 10 readings, repeated good readings and close to the manual readings were recorded directly as stated. As shown, the cold-water test yields 21.0°C on manual methods and 21.06°C on developed systems. Result for room temperature water shows a difference of 1.44°C where 32°C on manual method and 30.56°C on developed system. Hot water results show a difference of 0.62°C where 45°C on manual method and 44.38°C on developed system.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Testing the pH sensor readings, on the other hand, gives a different experience. Testing was performed over 10 trials to obtain an acceptable reading. Neutral solution results the difference of 0.18 with 7.03 for the manual method and 7.21 for the developed system. Result for acidic solution shows a difference of 0.30 with 2.03 for manual method and 2.33 in the developed system. Moreover, the manual method yielded an alkaline solution of 8.69, whereas the developed system yielded an alkaline solution of 8.54, indicating a 0.15 difference between the two.

6.5.4 Test Case 04

Table 6.10:	Test	Case	04	Result
--------------------	------	------	----	--------

Test Case Identification	Tester Identification	Results (Success/Fail)
Alert Notification Test	 Mobile apps triggered the alert 	
	notification in the smartphone	Success
	bar notification	

Figure 6.5: Alert Notification Function

Table 6.10 shows the alert notification function test on the developed system that resulted in a successful test. Figure 6.5 shows the display of the alert notification that been

triggered by the system to be displayed on the bar notification of the android smartphone. The alert notification be triggered and responded immediately upon detection of abnormal pH and water temperature conditions. Its response rate takes less than 2 seconds after the abnormal condition of water is identified. It takes 15 minutes for the next alert notification to be displayed on the notification bar depending on whether the water condition is still abnormal, this is as has been set during the development of these mobile apps. If the water condition is good, the next warning notification will not appear until new abnormal circumstances are discovered.

6.5.5 Test Case 05

Test Case Identification	Tester Identification	Results (Success/Fail)
Graph Display Test	 Mobile apps able to display the 	
and the second s	real-time and daily average	Success
alwn	graph generate by ThingSpeak	
يسيا ملاك	ومرسيتي تيڪنيڪل ما	اوىي

Table 6.11: Test Case 05 Result

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 6.11 shows the graph display function test on the developed system that resulted in a successful test. Figure 6.6 above, shows the example of the real-time graph display on the developed system. Significant changes are visible on the graph due to differences in water conditions detected by the sensors which are subsequently plotted on the graph. The change in water condition is due to tests performed where the sensors are placed in different solutions. In fact, ambient temperature is also a factor influencing the change of the graph plot as occurs in the water temperature graph. Users can monitor and view the pH value and temperature of water as well as see the pattern of changes in pH and temperature through the graph for the pass few minutes.

Figure 6.7: Daily Average Graph Display

Figure 6.7 shows the example of the daily average graph display on the developed system. The average value of the pH and temperature for each day are shown on the graph. The ups and downs plots on the graph are the result from ThingSpeak calculations to obtain daily average values for pH and temperature. These average values are plotted on the graph by date. This patterns of changes in pH and temperature values can be seen and compared over the past few days. Switching between the daily average graphs and real - time graphs also possible and works well in this system.

6.6 Conclusion

This chapter describes the project overall results. It may be concluded that the system capable of detecting water pH and temperature and distinguishing between normal and abnormal water conditions through the alert notification function. However, a few errors occur during testing, such as the pH value being unstable. This is likely due to the degradation in the quality and performance of the pH sensor components. Replacement of new components or using a better version of pH sensors may help to obtain more stable and accurate readings.

CHAPTER 7: PROJECT CONCLUSION

7.1 Introduction

The project progress and conclusion are summarized in this chapter. This chapter discusses the development and achievements of the project, as well as the contributions, limitations, and future improvements of the project. In addition, discussing the summarization of project help to clarify and understand all the specifics of the project. As the result, this chapter also discuss the possible upgrades and implementation to ensure project continuity in the future.

7.2 Project Summarization

This project is based on IoT which integrate with Raspberry Pi, pH sensor, and temperature sensor to create a water quality monitoring system. This device not only monitors water quality but also sends out alerts if a certain condition of water is recognized by an algorithm. Besides, this system designed to enhance water quality while also aiding in more effective fishpond water monitoring.

The first objective of this project is to identify water quality parameters for tilapia fish farming. This objective is achieved by finding a suitable water parameter to be used in this project. Temperature and pH are the water parameters focused on this project due to it play an important role in determining water quality for fish farming as discussed in Chapter 2 previously. Second objective of this project is to design and develop IoT based monitoring system that able to monitor and alert water quality. The integration of the Raspberry Pi, pH Sensor, and Temperature Sensor assist in build the system that allows this water quality monitoring to be done. Water quality alert also be implemented through android mobile apps that have been built based on the Kodular framework. All of this has been achieved as detailed in Chapter 5 previously.

The last objective of this project is to test the effectiveness of the system functionality, response time, and accuracy. Once the system is successfully built, testing is carried out to see how well the system functionality, respond time, and accuracy can operate. This has been accomplished in Chapter 6 where all the tests can be executed well although there are some tests that are encountered with little difficulty.

Overall, this project accomplished all the project objectives. As a result, this initiative improves water quality monitoring and increase the fishpond water quality. Therefore, brief assessment about the weaknesses and strength of this project are stated as Table 7.1 below.

Project Strength	ALATS Project Weakness
 Mobile Apps Visualize Data 	 Equipment Deterioration
 Alert Notification 	 Financial Constraints
 Enhance Water Quality 	
Monitoring Effectiveness	

Table 7.1: Project Strength & Weaknesses

7.3 Project Contribution

This project is intended to assist the fish breeders in monitoring their fishpond water quality. It keeps track of the temperature and pH of the water. The monitoring of fishponds water quality through mobile apps is a good added value in the implementation of this project, the use of smartphones has become a daily routine for everyone. As a result, it is a better way to save the time and alert the fish breeders to take an action and avoid the worst-case scenario. Fish breeders no longer need to be around fishponds all the time and early signs of poor water quality in the fishpond can be identified. So, this is a facility that fish breeders can take advantage of to observe their fishponds.

7.4 Project Limitation

There are some limitations found in this project. The quality and type of sensor to some extent affect in the accuracy of the readings, better sensors are required and the price for these sensors costs more. In fact, most of these sensors are sold by suppliers from overseas, shipping costs should also need be considered. As a student, this factor becomes a major limitation.

In addition, existing sensors especially the pH sensor are among the constraints faced. This pH sensor is very sensitive and needs to be taken care of carefully. The deterioration of the quality of this sensor causes the functionality of the sensor to decrease. As a result, the accurate readings expected from the sensor become difficult. Besides, only pH and temperature are among the water parameters focused on this project. Thus, the more and varied water parameters are better.

7.5 Future Works

In the future, this project can be improved by using better sensors with more accuracy in obtaining the data. The sensor released by the supplier from DFRobot is better and it is more compatible for use with Arduino. This can help the data be obtained easily and provide the better results. Of course, it costs more, but the efficiency of the system can be improved.

In addition, system offerings for iOS smartphone users can be taken into account. Since application development using Kodular can only be offered to android users, other initiatives to develop apps for iOS users may can be considered in the future.

Furthermore, other water parameter monitoring options may be added to this system. Monitoring in terms of dissolved oxygen can be done with the addition of a dissolved oxygen sensor. This is because the water quality monitoring for fish farming can be improved due the dissolved oxygen in the water is one of the factors that affect the needs of fish life.

7.6 Conclusion

At the end of this project, the objectives stated in Chapter 1 were successfully achieved. Through mobile apps, the system can monitor water parameters such as temperature and pH while deliver alert notifications to the users for certain conditions. In the meantime, the system performance is reduced as a result of several weakness, which has an impact on the accuracy of the readings. To sum up, no perfect system can be developed; however, improvements can be made to achieve the level of perfection described.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

REFERENCES

- Atwood, H.L., Tomasso, J.R., Webb, K., Gatlin, D.M., 2003. Low-temperature tolerance of Nile tilapia, Oreochromis niloticus: effects of environmental anddietary factors. Aquaculture Research 34, 241–251
- Astro Awani. (2019, August 7). Ikan mati akibat sumber air tercemar, 17 penternak rugi lebih RM500,000. https://www.astroawani.com/berita-malaysia/ikan-mati-akibat-sumber-air-tercemar-17-penternak-rugi-lebih-rm500000-214425
- Balon, B., & Simić, M. (2019, May). Using Raspberry Pi computers in education. In 2019
 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 671-676). IEEE.
- Bhatnagar, A., & Devi, P. (2013). Water quality guidelines for the management of pond fish culture. International journal of environmental sciences, 3(6), 1980.
- Chewy Editorial. (2021, January 21). The role of pH in the aquarium nitrogen cycle. BeChewy. https://be.chewy.com/the-role-of-ph-in-the-aquarium-nitrogen-cycle/
- Colt, J., & Kroeger, E. (2013). Impact of aeration and alkalinity on the water quality and product quality of transported tilapia—a simulation study. Aquacultural engineering, 55, 46-58.
- Components101. (2018, May 7). DS18B20 temperature sensor. https://components101.com/sensors/ds18b20-temperature-sensor
- De Belen, M. C., & Cruz, F. R. G. (2017, December). Water quality parameter correlation in a controlled aquaculture environment. In 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-4). IEEE.

- EXISTEK. (2018, April 25). SDLC models explained: Agile, waterfall, V-shaped, iterative, spiral. Offshore Software Development Company | Offshore Software Development Services. https://existek.com/blog/sdlc-models/
- Fadel, A. A., & Shujaa, M. I. (2020, November). Water Quality Monitoring System Based on IOT Platform. In IOP Conference Series: Materials Science and Engineering (Vol. 928, No. 3, p. 032054). IOP Publishing.
- Khalil, I. M., & Abdulrazzak, H. N. (2019). Monitoring of Water Purification Process Based on IoT.
- M. M, K. K. B M, R. Verma and D. Kiran, "Design and Development of Real-Time Water Quality Monitoring System," 2019 Global Conference for Advancement in Technology (GCAT), 2019, pp. 1-6, doi: 10.1109/GCAT47503.2019.8978414.
- Muddassir, M., Noor, M. A., Ahmed, A., Aldosari, F., Waqas, M. A., Zia, M. A., ... & Jalip, M. W. (2019). Awareness and adoption level of fish farmers regarding recommended fish farming practices in Hafizabad, Pakistan. Journal of the Saudi Society of Agricultural Sciences, 18(1), 41-48
- Nath, O. (2020) REVIEW ON RASPBERRY Pi 3b+ AND ITS SCOPE. International Journal of Engineering Applied Sciences and Technology, 2020 Vol. 4, Issue 9, ISSN No. 2455-2143, Pages 157-159
- Nualgi America, Inc. (2020, February 17). Protect your pond's pH levels from the effects of (Acid) rain. Nualgi Ponds. https://nualgiponds.com/protect-ponds-ph-level-from-effects-of-acid-rain/
- Popma, T., Masser, M., 1999. Tilapia–Life History and Biology. Southern Regional Aquaculture Center, SRAC Publication No. 283.
- RASPBERRY PI FOUNDATION. (n.d.). Raspberry Pi 3 Model B+. https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/

- Sengupta, B., Sawant, S., Dhanawade, M., Bhosale, S., & Anushree, M. (2019). Water Quality Monitoring using IoT. Int. Res. J. Eng. Technol., 6, 695-701.
- ThingSpeak. (2021, March 1). The Things Industries. https://www.thethingsindustries.com/docs/integrations/cloudintegrations/thingspeak/
- Xiong, F. (2015, June). Wireless temperature sensor network based on DS18B20, CC2420, MCU AT89S52. In 2015 IEEE International Conference on Communication Software and Networks (ICCSN) (pp. 294-298). IEEE.

APPENDIX A – APPS DEVELOPMENT FULL BLOCK

