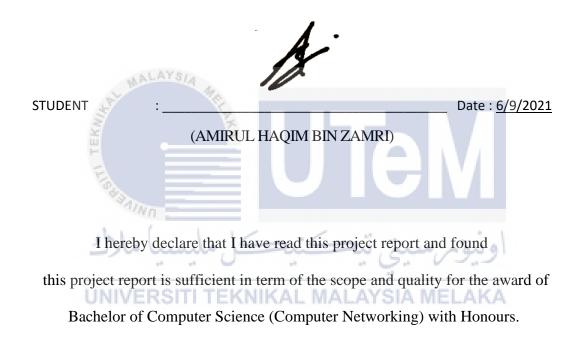

DATA LOGGER FOR IOT SYSTEM

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DATA LOGGER FOR IOT SYSTEM

AMIRUL HAQIM BIN ZAMRI


FACULTY OF INFORMATION AND COMMUNICATION TECHONOLOGY UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I hereby declare that this project report entitled

DATA LOGGER FOR IOT SYSTEM

Is written by me and is my own effort and that no part has been plagiarized without citations.

SUPERVISOR

Date : <u>10/9/2021</u>

(Ts Dr. Norharyati Binti Harum)

DEDICATION

First of all, this dedication is for my creator, Allah S.W.T that give me strength to complete this project. This thesis itself is dedicated to my supervisor, Ts Dr. Norharyati Binti Harum that always assist me during the process of completing this project. To my beloved parents En. Zamri Bin Mohd Noor and Puan Surina Binti Kassim that always support me especially in term of emotion and moral. Last but not least, I would like to dedicate this project to the entire lecturer of Faculty of Information and Communication Technology and my classmate. Without them, this project cannot be completed in the time scheduled.

ACKNOWLEDGEMENT

First and foremost, I would like to thank you to my supervisor, Ts Dr. Norharyati Binti Harum for the valuable guidance and advice to lead me until the end of this final year project session 2020/2021. Her willingness to motivate me contributed tremendously to my project. In this opportunity, I would like to thank you my evaluator Ts. Dr Nurul Azma Zakaria for taking some of her time to evaluate me. This evaluation gave me a deeper understanding of my weakness and what I can improve to make it better.

I would like also to thank the authority of Universiti Teknikal Malaysia Melaka (UTeM) for providing me with a good environment and facilities to complete this project. Finally, a honorable mention goes to my families and friends for their understandings and supports me in completing this project. With the help of everyone that was mentioned above, I was able to overcome many problems and completed my project successfully on time.

ABSTRACT

Data Logger for IoT System is a product that will programmed using a specific sensor which will be implemented to company environment and will not use a lot of cost in term of installing the technology. Data Logger for IoT System allow multiple sensors to be connected for this project, this system used a sensor that can detect the current temperature and humidity around the area. It also equipped with gas sensor to detect any gas leakage on the surrounding. The problem statement states that data logger available on the market needs high installation and maintenance fees. Which caused a difficulty for small company to install a data logger on their company to monitor the condition of their premises. Based on the problem statement, Data Logger for IoT System is proposed to develop with the objectives to implement a lower cost data logger. Other than that, to integrate the system with the database for it to save the data. Furthermore, it is also designed to notify the user through phone if the temperature exceeds the set limit. To ensure the project can be successfully developed, the Prototyping Model has been used. The reason is, prototyping model are used for software development model that required of building the prototype, tested, and modified until it become an acceptable prototype for the end user to use. Result obtained from this project is, the system can collect data by using a specific sensor and saved the data into a database. Other than that, user will be notify if the data collected from the sensor exceeds the limit set. All the data that has been saved inside the database can be shown to the user by using a simple user interface.

TEKNIKAL MALAYSIA MELAKA UNIVERSITI

ABSTRAK

Data Logger for IoT System adalah sebuah produk yang akan diprogramkan menggunakan sensor tertentu dan akan dilaksanakan untuk persekitaran syarikat dan tidak akan menggunakan kos yang tinggi bagi pemasangan teknologi tersebut. Data Logger for IoT System membolehkan beberapa sensor disambungkan ke peralatan tersebut, tetapi untuk projek ini, sistem ini hanya akan menggunakan sensor yang dapat mengesan suhu dan kelembapan bagi persekitaran kawasan tersebut. Selain daripada itu, sensor gas juga akan di sambungkan bagi mengesan sebarang kebocoran gas pada keadaan sekeliling. Pernyataan masalah menyatakan bahawa kebanyakan data logger yang tersedia ada di pasaran memerlukan kos yang tinggi bagi menampung kos pemasangan dan penyelenggaraan yang tinggi. Hal ini menyebabkan kesukaran bagi syarikat kecil untuk memasang data logger di syarikat mereka bagi tujuan memantau keaadan premis mereka. Berdasarkan penyataan masalah tersebut, Data Logger for IoT System diusulkan untuk membangunkan dengan objektif untuk melaksanakan data logger dengan kos yang rendah. Selain daripada itu, untuk mengintegrasikan sistem dengan pangkalan data bagi tujuan penyimpanan data. Di samping itu, ia juga dirancang untuk memberi tahu pengguna melalui tefon sekiranya suhu melebihi had yang telah ditetapkan. Bagi memastikan projek ini dapat dikembangkan dengan jayanya, Model Prototaip telah digunakan. Hal ini kerana, model prototaip merupakan model pengembangan perisian yang diperlukan untuk membangunkan prototaip, diuji, dan diubah sehingga menjadi prototaip yang dapat diterima oleh pengguna akhir. Hasil yang diperoleh daripada projek ini adalah, sistem ini dapat mengumpulkan data dengan menggunakan sensor tertentu dan menyimpan data tersebut ke dalam pangkalan data. Selain itu, pengguna akan diberitahu sekiranya data yang dikesan oleh sensor melebihi had yang telah ditetapkan. Semua data yang telah disimpan di dalam pangkalan data akan dipaparkan kepada pengguna dengan menggunakan antara muka pengguna yang sederhana. اونيۆم سيتى تيكنيكل مليسيا ملا

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

DECL	ARATION	ii
DEDI	CATION	iii
ACKN	NOWLEDGMENT	iv
ABST	TRACT	v
ABST	'RAK	vi
CHAF	TER I INTRODUCTION	1
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Introduction Problem Statement Project Question Objective Project Scope Project Contribution Conclusion	1 2 3 3 3 4
CHAF	TER II LITERATURE REVIEW	5
2.1	Introduction	5
2.2	Related Work / Previous Work	6
2.2.1	A Model for Working Environment Monitoring in Smart Manufacturing	6
2.2.2	Improved Internet of Things (IoT) Monitoring System for Growth Optimization of Brassica Chinensis	6
2.2.3	A New Data Logger based on Raspberry-pi for Arctic Notostraca Locomotion Investigations	6
2.2.4	Design and Implementation of a Low-cost Sensor Network to Monitor Environmental and Agronomic Variables in a Plant Factory	7
2.2.5	Design and Validation of a Low-cost Indoor Environment Quality Data Logger	7
2.2.6	IoT based Real Time Energy Monitoring System Raspberry Pi	7
2.2.7	Intelligent Manufacturing Production Line Data Monitoring System for Industrial Internet of Things	8
2.2.8	Deep Learning Techniques for Energy Forecasting and Condition Monitoring in the Manufacturing Sector	8
2.2.9	A Cloud-Monitoring Service for Manufacturing Environments	8

2.2.10	Data Logger-based Measurement of Household Water Consumption and Micro-component Analysis of an Intermittent Water supply system	9
2.3	Critical Review of Current Problem and Solution for the Studies	10
2.4	Proposed Solution / Further Project	17
2.5	Conclusion	18
CHAP	TER III METHODOLOGY	19
3.1	Introduction	19
3.2	Project Methodology	19
3.2.1	Requirements Gathering	20
3.2.2	Quick Design	21
3.2.3	Building Prototype	22
3.2.4	Customer Evaluation	22
3.3	Project Schedule and Milestones	22
3.4	Conclusion	26
CHAP	TER IV ANALYSIS AND DESING	27
4.1	Introduction	27
4.2	Problem Analysis	27
4.3	Requirement Analysis	28
4.3.1	Data Requirements SITI TEKNIKAL MALAYSIA MELAKA	28
4.3.2	Functional Requirements	29
4.3.3	Hardware and Software Requirements	30
4.3.3.1	Hardware Requirements	30
4.3.3.2	2 Software Requirements	41
4.4	High Level Design	44
4.4.1	System Architecture, Physical Design	44
4.4.2	User Interface Design	45
4.4.3	Database Design	49
4.4.3.1	Conceptual and Logical Database Design	49
4.5 Co	nclusion	51

CHAP	PTER V IMPLEMENTATION	52
5.1	Introduction	52
5.2	Hardware and Software Development Environment Setup	52
5.2.1	Hardware Development Environment Setup	52
5.2.2	Software Setup	55
5.3	Software Configuration Setup	56
5.3.1	Gas Detection Configuration	56
5.3.2	Telegram Configuration	58
5.3.3	Node Red Configuration	59
5.3.4	Grafana Configuration	62
5.4	Implementation Status	64
5.5	Conclusion	65
CHAP	PTER VI TESTING	66
6.1	Introduction	66
6.2	Test Plan	66
6.2.1	Test Organization	66
6.2.2	Test Environment	67
6.2.3	System Usability Scale (SUS)	67
6.3	Test Strategy IVERSITI TEKNIKAL MALAYSIA MELAKA	67
6.4	Test Design	67
6.4.1	Test Description	68
6.5	Result and Analysis	71
6.5.1	Functionality Test	71
6.5.1.1	1 Temperature and Humidity Test	71
6.5.1.2	2 Gas Detection Test	73
6.5.1.3	3 Telegram Test	74
6.5.1.4	4 InfluxDB Test	75
6.5.2	System Usability Scale (SUS)	78
6.6	Conclusion	82
CHAP	PTER VII PROJECT CONCLUSION	83

7.1	Introduction	83
7.2	Project Summarization	83
7.2.1	Project Objective	83
7.2.2	Project Weakness and Strength	83
7.2.2.1	Project Weakness	83
7.2.2.2	Project Strength	84
7.3	Project Contribution	84
7.4	Project Limitation	84
7.5	Future Work	85
7.6	Conclusion	85
REFE	.6 Conclusion 85 REFERENCES 86	
APPEN	NDICES	87

اونيۈم سيتي تيڪنيڪل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Sanno -

LIST OF TABLES

Table 1.1: Problem Statement	2
Table 1.2: Summary of Project Question	2
Table 1.3: Summary of Project Objective	2
Table 1.4: Summary of Project Contribution	3
Table 2.1: Problem and solution proposed based on the previous work	10
Table 2.2: Comparison of Functionality with Previous Project and Proposed Solution	15
Table 3.1: Milestones for the project	23
Table 3.2: Gantt Chart for PSM1 and PSM2	25
Table 4.1: Summary of Hardware Equipment	38
Table 4.2: Table Temperature Table 4.3: Table Humidity Table 4.4: Table Gas Table.5.1: Details of each Pin Numbers	50 50 50 53
Table 5.2: Implementation Status	64
Table 6.1: Temperature and Humidity Detection Test	68
Table 6.2: Gas Detection Test TI TEKNIKAL MALAYSIA MELAKA	69
Table 6.3: Telegram Notification Test	69
Table 6.4: InfluxDB Test	70
Table 6.5: Calculation of System Usability Scale	81

LIST OF FIGURES

Figure 2.1: Proposed solution	18
Figure 3.1: Prototyping Model	20
Figure 3.2: Physical Design	21
Figure 4.1: Block Diagram for Data Logger for IoT System	28
Figure 4.2: Context Diagram for Data Logger for IoT System	29
Figure 4.3: Raspberry Pi Model B	30
Figure 4.4: Micro SD Card	31
Figure 4.5: USB C Wire	31
Figure 4.6: HDMI to Micro HDMI connector	32
Figure 4.7: HDMI Cable	32
Figure 4.8: Monitor	33
Figure 4.9: Mouse	33
Figure 4.10: Keyboard	34
Figure 4.11: Breadboards	34
Figure 4.12: Jumper Wire	35
Figure 4.13: DHT11	35
Figure 4.14: MQ-2 Gas Sensor TI TEKNIKAL MALAYSIA MELAKA	36
Figure 4.15: MCP3008	36
Figure 4.16: Access point	37
Figure 4.17: Node Red	41
Figure 4.18: Raspbian OS	41
Figure 4.19: Influxdb	42
Figure 4.20: Grafana	42
Figure 4.21: Telegram	43
Figure 4.22: Physical Design of Data Logger for IoT System	43
Figure 4.23: Flowchart of Data Logger for IoT System	44
Figure 4.24: User Interface Output	45

Figure 4.25: User Interface Output (Temperature)	47
Figure 4.26: User Interface Output (Humidity)	47
Figure 4.27: User Interface Output (Gas)	48
Figure 4.28: Alert received by the user (Temperature)	48
Figure 4.29: Alert received by the user (Gas)	49
Figure 4.30: ERD Diagram	49
Figure 5.1: Schematic Diagram	54
Figure 5.1: Hardware Installation	54
Figure 5.2: Code for Gas Detection	55
Figure 5.3: Code for Gas Detection	57
Figure 5.4: Telegram Token	58
Figure 5.5: Telegram Token Implemented in the Node	58
Figure 5.6: Node Red Flow Configuration	59
Figure 5.7: Input Data from The Sensor	59
Figure 5.8: Input Processing of Temperature Data	60
Figure 5.9: Input Processing of Humidity Data	60
Figure 5.10: Input Processing of Gas Data	61
Figure 5.11: Grafana HTTP Setup TEKNIKAL MALAYSIA MELAKA	62
Figure 5.12: Grafana Source File Setup	63
Figure 5.13: Grafana Source File Setup	63
Figure 6.1: Detecting Temperature and Humidity	71
Figure 6.2: Successfully Detecting Temperature and Humidity	70
Figure 6.3: Temperature Grafana Dashboard	72
Figure 6.4: Humidity Grafana Dashboard	72
Figure 6.5: Detecting Gas	73
Figure 6.6: Successfully Detecting Gas	73
Figure 6.7: Gas Grafana Dashboard	74
Figure 6.8: Notification Received by the User when High Temperature Reading Detected	74

Figure 6.9: Notification Received by the User when High Gas Reading Detected	74
Figure 6.10: Notification Received by the User when High Temperature Reading Detected	74
Figure 6.11: Notification Received by the User when High Gas Reading Detected	74
Figure 6.12: Temperature Reading Stored in Temperature Table	75
Figure 6.13: Humidity Reading Stored in Humidity Table	76
Figure 6.14: Gas Reading Stored in Gas Table	76
Figure 6.15: Temperature Data Grafana Dashboard	77
Figure 6.16: Humidity Data Grafana Dashboard	77
Figure 6.17: Gas Data Grafana Dashboard	77
Figure 6.18: Gender Information	78
Figure 6.19: Age Information	79
Figure 6.20: Set of Questions	79
Figure 6.21: Data of System Usability Scale	80
UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

CHAPTER I

INTRODUCTION

1.1 Introduction

Room temperature and humidity is a normal term to indicate a temperature level within a closed space at which humans can live with a more comfortable. Most of the time, room temperature can be used to indicated by general human comfort, though climate may acclimatize people to higher or lower temperatures. Other than that, multiple equipment used for the company are sensitive to the temperature and humidity on the surroundings. It will affect the performance and the life span of the equipment. Other than that, a save working space for the worker to work on also important thing to consider inside every building. Because of that, Data Logger for IoT System is needed to solve the problem of unexpected turn of event to the equipment and worker inside the company.

Most of the Data logger used by the company nowadays have a lot of problem which still need to be improved. For example, the data logger itself only record the data by collecting the data from the sensor and store it inside the database. Other than that, the cost needed to build one data logger used now quite expensive such as HOBO U20L-04. The price for the whole system is up to RM2667.50. While for the cheap system, the number of sensors that can be connected to the system is limited such as LogTag data logger. Due to that, it causes a lot of difficulty for a small company to install a data logger on their premises.

Data Logger for IoT System is a product that will programmed using a specific sensor to monitor and control room temperature and humidity together with the gas presence around the equipment. This program will detect the surrounding temperature and humidity reading and also gas presence from the surroundings and saved it inside the database. All of the recorded data can be shown to the user by using a simple type of interface so the user can read the data and alert about the condition of their company. Other than that, the system will alert the user if there any abnormalities happen to the temperature and humidity around the equipment. The system also will send an alert notification to the user if the presence of the is high and not save to the human. By doing that, an early measure can be done by the user and the record can be analyze back for the future use.

1.2 Problem Statement

A AVAN

Some of the industries have rising concerns for the demand to store specific production materials within a particular temperature range. Nowadays, some of the industries do not have incomprehensive data logger to monitor the surrounding for their equipment. The main reason behind it is due to the high cost to develop and installation fee for the data logger.

Table 1.1: Problem S	tatement
----------------------	----------

PS	Problem Statement
PS1	Existing data logger is expensive with very limited features.

1.3 Project Question

Project questions is used to identify the question of the existing temperature and electric current usage control system. Based on the research, we can conclude that there are few weaknesses of the current temperature and electric current usage control system.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Table 1.2: Summary of Project Question

PQ	Project Question
PQ1	What type of data logger exist in factory?
PQ2	How to save the collected data, notify the user, and display the data to user?
PQ3	How will the data logger perform?

1.4 Objective

Objectives provide structure and clarity of expectation for the project. Thus, the project aim had been stated below:

PO	Project Objective
PO1	To identify characteristic of existing data logger in factory
PO2	To develop a data logger that integrated with database, smart notification, and
	dashboard for IoT System
PO3	To validate the performance of the developed data logger

Table 1.3:	Summary	of Project	Objective
1 4010 1.5.	Summury	of I toject	Objective

1.5 Project Scope

- 1. The project would detect the temperature and humidity changes within the premise.
- 2. The system will save collected data from the sensor into a database.
- 3. Data Logger for IoT System will notify the user using Telegram if the temperature and humidity exceed the limit set.

اونيۆم سيتى تيكنيكل مليسيا ملاك

1.6 Project Contribution

Project contribution defines the expected output from this project. This part can be referred to the objectives of this project. Therefore, the project contribution had been stated below.

PC	Project Contribution
PC1	Use Node Red as a software system to program the data logger.
PC2	Hardware system using a cheap microprocessor that enable to connect with multiple sensors.
PC2	Data logger that can save data from sensor into a database and have interface for user to view the data.

Table.2.4: Summary of	of Project Contribution
-----------------------	-------------------------

1.7 Conclusion

For the conclusion, this chapter helps to understand the project background and also the objective that should be accomplish and problems happened before begun the project. Based on the related topic and subtopic in this chapter, which is the problem statement, project objective, and expected output that this study wants to purpose a new approach of manufacturing monitoring system.

Additionally, this project will record all the reading from the sensor, and it will be uploaded into the database. This study is expected to be able to ease the user in order to monitor the temperature and humidity inside their premise in the best way.

This project also provides a contribution on how the tools can be used as easy as a plugand-play in the real environment perhaps for the big network inside the industries. In the next chapter, the discussion will be focusing on the literature review that will cover about the model approached and related work about the framework, enhancing the framework and system integration.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter will discuss about the problem and solution regarding Data Logger for IoT System, to have a better understanding about the concept and technique needed to be implemented in this project. Other than that, this chapter will contain previous data logger monitoring system design by many types of engineers in the past that would be studied together with their thoughts on the project would be properly recorded. Their multiple type of design and implementation methodologies and techniques will also be documented in attempt to reach a comparison between the past and the current project timeline.

In this modern era, there were a lot of IoT device available for a company owner to improve their production and management. North Star BlueScope Steel that keeps track health of the worker and environmental temperature to avoid any accident to occur during work (O'Connor, 2016). Unfortunately, very little manufacturing company implement data logger system to monitor their company. Although the company used data logger as a monitoring system, the system itself is expensive and can result in a loss of funds. Therefore, the main reason for this data logger for manufacturing system invented is to create a low-cost data logger while at the same time it can work successfully.

2.2 Related Work / Previous Work

2.2.1 A Model for Working Environment Monitoring in Smart Manufacturing

Due to the new development in Industry 4.0 which is the expansion of smart and easy manufacturing systems that will allow mass production. According to Kadir et al., Industry 4.0 research is new and mainly focused on technical and technological aspects, while ignoring the human factor. Reason behind that is most of the current systems are run by human workers that may cause disturbance and cannot running smoothly. Latest trends in Industry 4.0 put a lot of requests on the workforce because they need to build up their organization, communication, cognitive, and physical skills in to order to work efficiently and safely in the new digitalized industrial era. The paper presented a model to monitor the working environment in in smart manufacturing and designed with idea to include in developing technologies and contemporary methods in complex building.

2.2.2 Improved Internet of Things (IoT) Monitoring System for Growth Optimization of Brassica Chinensis

Marimoto and Hashimoto stated that there are multiple climatic parameters need to be considered such as humidity, temperature, and light parameters in order for the plant to grow with consistent quality inside the plant factory. The WSN nodes which consist of multiple sensor such as temperature, humidity, light sensor, and actuator. The WSN nodes is connected to Zigbee or WIFI module that can send data over the air to a local gateway or router for it to transfer to the cloud server. The purpose of the WSN nodes was to sample the data and perform environmental control mechanism in real time.

2.2.3 A New Data Logger based on Raspberry-pi for Arctic Notostraca Locomotion Investigations

Based on the study by V. Pasqualli et al., an infrared sensor device is used and controlled by a Raspberry-Pi which act as a controller of the measurements and data logger. Infrared barriers are mounted in the aquarium for it to detect the locomotor activity of the animal. The electric pulsed will be generated when the animal passes through the barrier then go through a conditioning circuit that adapt it to the input range of the Raspberry-Pi. The signals are stored and will be processed based on the requirement needed.

2.2.4 Design and Implementation of a Low-cost Sensor Network to Monitor Environmental and Agronomic Variables in a Plant Factory

An Arduino Mega 2560 Rev3 was used in this low-cost system that act as a datalogger and also multiple sensors is used such as temperature, humidity, canopy surface temperature, air velocity, photosynthetic photon flux density, PH, electric conductivity, dissolved oxygen and nutrient solution temperature sensor. Additional hardware was used to measure the real time and recorded inside the system. All of the collected data was sent by using Bluetooth device that connected to the Arduino serial port.

2.2.5 Design and Validation of a Low-cost Indoor Environment Quality Data Logger

The data logger design in this research is to support on the research seeking for a better understand the links between resident satisfaction and indoor environment quality inside an apartment. Frontczak et al. describe that the heat, visual, sound and air- quality environments contribute to a satisfying and safe indoor environment for the residents. The device itself consist of Arduino Mega 2560 micro-controller board and multiple sensor that connected to the controller.

2.2.6 IoT Based Real Time Energy Monitoring System Raspberry Pi

The proposed IoT based energy monitoring system consists of existing energy meters that commonly used in the industry, Raspberry Pi, cloud, and visualization systems. The cloud is consisting of database, data web service, control application, and monitoring application. Energy meter that has been used are Schneider and Elmeasure. The meter itself capable of reading different electrical parameters such as power, energy, and real power reactive power. The microcontroller used is Raspberry Pi that has been installed with Node.js and other various libraries.

2.2.7 Intelligent Manufacturing Production Line Data Monitoring System for Industrial Internet of Things

Based on this paper written by Wei Chen (2020), this paper suggests a reference architecture for smart factories by referring existing product of IoT application in industrial workshops. The studies itself said that the company management and real manufacture process need a monitoring system that anti-interferences, can functioning in a real-time and has a rapid deployment capability. The client or server mode needs to be implemented in order to pass the data. The server will process data that received from the client and send the result back to the client.

2.2.8 Deep Learning Techniques for Energy Forecasting and Condition Monitoring in the Manufacturing Sector

V.J Mawson and B.R Hughes (2020) stated that two deep learning based neural network models is used to monitor and make a prediction about the hourly energy and workshop environmental condition. All of the data from the building obtained from pre-installed energy data collection system located at the manufacturing facility in order to validate the model. Other submetered data used for individual components such as energy consumption of lighting and HVAC (heating, ventilation, and air condition) was not available because it only collects energy data on a building level.

2.2.9 A Cloud-Monitoring Service for Manufacturing Environments

The proposed architecture by Ricardo Toro et al. is gather relevant data from one or multiple equipment and show it to the user by using cloud-based service application. It used twolayer-network architecture named as sensing layer and a cloud layer. The sensing layer consist of nodes gathering sensor data which connected to the manufacturing system. While the cloud layer consists of a network of data consumers together with other manufacturing application. There were two types of nodes used which is slave node that collect data while the other node is the master node that received data from the slave node.

2.2.10 Data Logger-based Measurement of Household Water Consumption and Microcomponent Analysis of an Intermittent Water supply system

Method that has been proposed by B. Guragai et al. in this research is a water level data logger used to monitor the water level in the rooftop tanks. The data logger able to monitor the water level of rooftop tanks with a height minimum 1.5m. The accuracy of the sensor is depending on the water level measurement plus or minus 0.004m. The data loggers manually set at a logging interval of 30 seconds, which is the minimum resolution for the weeklong monitoring of the data logger model used. The raw data obtained from the data logger was used to determine the household water consumption.

2.3 Critical Review of Current Problem and Solution for the Studies

and the first second

From the related work that has been listed, there are many types of development and methods being used. Multiple weakness and flaws have been discovered from the previous related work. In order to create a success and reliable IoT device, all of these flaws and weakness need to be avoided. The summary from the study has been done below in table 2.1.

Data Logger Monitoring System					
Research Title / Product	Purpose	Problem	Solution		
A Model for Working Environment	This paper presented a model	The two divided sensor nodes	Only used one type of sensor nodes		
Monitoring Smart Manufacturing	for monitoring a working	can cause lot of error,	only which is fixed wireless sensor. It		
E	environment in smart	especially the portable wireless	can be connected directly to the		
By: Dalibor Dobrilovic, Vladimir	manufacturing and designed	sensor. The battery used may	power supply without relying on		
Brtka, Zeljko Stojanov, Gordana	with idea to include an	wear out due to a long-time	battery. The data can be captured all		
Jotanovic, Dragan Perakovic, and	emerging technologies and	usage and may affect the sensor	the time by the sensor.		
Goran Jausevac (2021)	modern methods. The sensor	board. The data recorded by the	او بيو		
	nodes divided into two which is	sensor may not be accurate in			
UNIN	fixed wireless sensor and	the future. AYSIA MEL	AKA		
	portable wireless sensor.				
Improved Internet of Things (IoT)	Monitoring system is used to	Microcontroller ESP-07 only	Raspberry Pi 4 is used for the		
Monitoring System for Growth	meet the requirement for the	featured with 16 MHz	microcontroller. The product itself		
Optimization of Brassica Chinensis	best growth. Microcontroller	maximum speed 32-bit	come with 1.5 GHz Quad core		
		processor and 36Kbyte RAM	Cortex-A72 (ARM v8) 64-bit		

Table 2.1: Problem and solution proposed based on the previous work

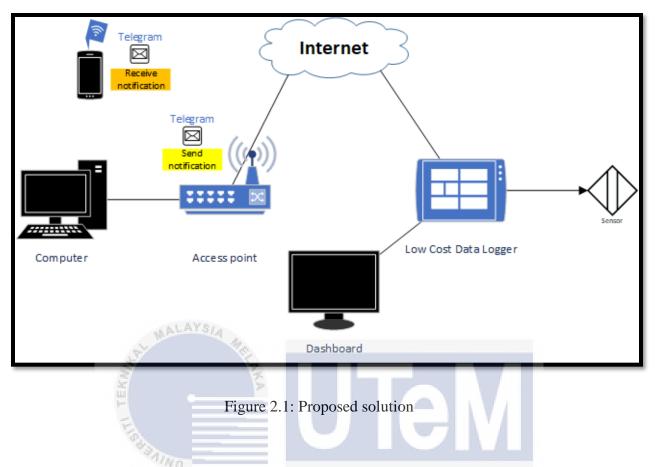
By: Ahmad Nizar Harun, Norliza	that has been used is ESP-07	build in it. Three AA battery is	processor and come with minimum
Mohamed, Robiah Ahmad, Abd	made by AI Thinker.	used to power up the	2GB ram. The high specifications
Rahman Abdul Rahim, and Nurul		microcontroller which is not	help to process data faster. It can be
Najwa Ani (2019)		efficient. The device itself can	power up by using USB type c cable.
		only connected to 3 sensors at	This microcontroller can be
		one time.	connected to 5 sensors at one time. It
	MALAYSIA 4		also has a temporary storage which is
5			an essential feature for a
No.	X.		microcontroller.
A New Data Logger based on	Based on this paper, Raspberry	The data collected from the	A system that can saved the recorded
Raspberry-Pi for Arctic Notostraca	Pi is used as a data logger	sensor is view directly to the	data from the sensor directly to the
Locomotion Investigations	instead of computer-based data	monitor, but the data is not	database can be used. The recorded
	logger. Data collected by the	stored inside the system or	data can be shown by using Node
By: V. Pasquali, G. D'Alessandro, R.	sensor are shown directly to the	database. All of the data are	Red dashboard interface which is an
Gualtieri, and F. Lecesse (2017)	user by using Raspberry Pi	shown by using the Raspberry	open-source software.
	hardware interface.	Pi hardware interface. Users	
UNIV	/ERSITI TEKNIKA	need to record the data fetch by	AKA
		the sensor manually.	
Design and Implementation of a Low-	The monitoring device used is	A lot of sensors used may	Use a reliable microcontroller to
cost Sensor Network to Monitor	Arduino as a microcontroller	consume all port available at	process a lot of data from multiple

Environmental and Agronomic	which is Arduino Mega 2560	the Arduino Mega 2560 Rev23.	sensors in a short time. A quick	
variables in a Plant Factory.	Rev23. Multiple difference	HC-06 that used as	connection also needed for the user	
	sensor is used to monitor the	communication device is not	able to connect to the microcontroller	
By: A.P. Montoya, F.A. Obando, J.A.	plant factory condition. HC-06	very reliable because it used	such as 5.0 Bluetooth and 5.0 GHz	
Osorio, J.G. Morales, and M. Kacira	is used as a Bluetooth	Bluetooth connection.	wireless connection.	
(2020)	communication device in order			
~	to access the data.			
Design and Validation of a Low-Cost	It used Arduino Mega 2560	The highest speed for Arduino	Use a microcontroller that can	
Indoor Environment Quality Data	micro-controller board as a	Mega 2560 to processing data	process data with the speed up to 1.5	
Logger	logger controller. 2.4 GHz	only up to16 MHz. The 2.4	GHz. The recorded data can be saved	
E	radio is used to communicate	GHz radio communication is	on a database for it to store a lot of	
By: Andrew Carre and Terence	between the microcontroller	not effective to communicate	data for future used.	
Williamson (2018)	and sensor nodes. All of the	between microcontroller and		
112	recorded data is saved inside	sensor nodes. Limited recorded	1.1.1	
1	the Secure Digital (SD) card in	data can be saved inside the	او يو	
	text file format.	Secure Digital (SD) card.		
IoT Based Real Time Energy	Based on the paper, the data	The system will not give any	A notification will be sent to the user	
Monitoring System Using Raspberry	logger will record all of the data	alert to the user if any	smartphone from the system by using	
Pi	that has been collected by the	abnormalities occur around the	a suitable application to alert the user.	
	power sensor. User can view	sensor. This might cause huge	So they can make an immediate step	
By: Mani Dheeraj Mudalir and	the data captured from the	lost to the company if the	to control the abnormalities.	
N. Sivakumar (2020)	sensor by using Node.js			

	applications on the local	equipment broken due to the	
	device.	abnormalities.	
Intelligent Manufacturing Production	In this paper, the author	User cannot access the	Established a connection between
Line Data Monitoring System for	discusses about the use of	microcontroller used for	microcontroller and other computer
Industrial Internet of Things	Internet of Things technology	monitoring the system remotely	by using wireless Internet
	that can be used in order to	by using another computer.	connection. By doing this, user can
By: Wei Chen (2020)	create a smart factory.	This might cause a difficulty to	connect to the microcontroller
2		check the condition of the	remotely in order to check the
<u> </u>	100	sensor connected to the	condition of the sensor or conducting
E	·	microcontroller.	update to the system.
Deep Learning Techniques for Energy	An artificial neural network is	Complicated artificial neural	A simple data logger and sensor
Forecasting and Condition Monitoring	used to forecast the energy	network needs a lot of time to	nodes can be used to collect the data
in the Manufacturing Sector	consumption in the	develop the simulation for it to	from the manufacturing facility. Less
112	manufacturing facility. The	generate a precise result. A high	time consuming to be developed and
By: Victoria Jayne Mawson and Ben	data captured from the energy	error was obtained for	can be used instantly. The real time
Richard Hughes (2020)	data collection system will be	prediction of energy	data can be shown to the user by
UNIV	processed by the artificial	consumption Sat the	using an open-source platform.
	neural network with multiple of	manufacturing facility.	
	simulation for it to forecast the		
	energy consumption for the		
	upcoming time.		

A Cloud-Monitoring Service for	A battery powered sensor node	The battery used for the sensor	The sensor can used direct power	
Manufacturing Environments	is used to collect the data from	node cannot last long especially	supply by using micro-USB wired	
	the facility. It used 915MHz	when the data collection	and it will let the sensor to capture	
By: Ricardo Toro, Jorge E. Correa,	radio band to communicate	frequencies is high. The	much more data without need to	
and Placid M. Ferreira (2018)	between the sensor and the	connection between the sensor	worry about the battery live. Used	
	microcontroller.	and the microcontroller is not	5GHz wireless connection or ethernet	
	MALAYSIA 4	stable and need to troubleshoot	wire to connect the microcontroller	
S.	2	frequently.	and the sensor.	
E.	8			
11				
E				
Data Logger-based Measurement of	In this paper, datalogger that	The captured data from the	A datalogger that will record all the	
Household Water Consumption and	has been used will show	sensor is not stored directly into	data from the sensor into the system	
Micro-component Analysis of an	directly to the user the captured	the system will may cause	autonomously can be implemented.	
Intermittent Water Supply System	data from the sensor with 30	multiple work need to be done	User interface can be design using	
	seconds intervals. All of the	and time consuming. A non-	Node Red dashboard that will show	
By: B. Guragai, T. Hashimoto, K.	data is recorded manually by	friendly user interface will	all the recorded data to the user.	
Oguma and S. Takizawa (2018)	the researcher and align with	create a difficulty for the user to		
	other data obtained by using a	read the data.		
	questionnaire.			

Author/ Year	Microcontroller	Communication	Data Storage	Type of Sensor	Cost
		Technology			
Dalibor Dobrilovic, Vladimir Brtka,	Arduino Uno	Wi-Fi	Database	Gas Sensor	RM 788.60
Zeljko Stojanov, Gordana Jotanovic,	NodeMCU				
Dragan Perakovic, and Goran Jausevac	BLAYSIA				
(2021)	ALLISIA MA				
Ahmad Nizar Harun, Norliza	ATMega 🦕	Wi-Fi	Database	• Light	RM 400.60
Mohamed, Robiah Ahmad, Abd	3			Sensor	
Rahman Abdul Rahim, and Nurul	-				
Najwa Ani (2019)					
V. Pasquali, G. D'Alessandro, R.	Raspberry-Pi	Wired Connection		Infrared	RM 407.26
Gualtieri, and F. Lecesse (2017)	Wn			Sensor	
A.P. Montoya, F.A. Obando, J.A.	Arduino Mega	Bluetooth	MicroSD	• Temperature	RM 556.90
Osorio, J.G. Morales, and M. Kacira		44	memory card	and	
(2020)				Humidity	
UNIVI	ERSITI TEI	KNIKAL MA	LAYSIAN	Sensor	
Andrew Carre and Terence Williamson	Arduino Mega	Wired Connection	MicroSD	• Light	RM 2479.96
(2018)			memory card	Sensor	
				• Air velocity	
				Sensor	


Table 2.2: Comparison of Functionality with Previous Project and Proposed Solution

Mani Dheeraj Mudalir and N.	Raspberry Pi	Wi-Fi	MicroSD	• Energy	RM 1083.68
Sivakumar (2020)			memory card	Meter	
Wei Chen (2020)	Not Stated	Wi-Fi	Database	RFID	RM 625.20
Victoria Jayne Mawson and Ben	Not Stated	Wired Connection	-	• Energy	RM 2000.00
Richard Hughes (2020)				Meter	
	ALAY CO			• Temperature	
1. P	ALLISIA MA			Sensor	
Ricardo Toro, Jorge E. Correa, and	Adafruit Feather	Wi-Fi	Database	Temperature	RM 600.00
Placid M. Ferreira (2018)	M0 💡			Sensor	
B. Guragai, T. Hashimoto, K. Oguma	HOBO U20L-04	Wired Connection		Pressure	RM 2667.50
and S. Takizawa (2018)				Sensor	
Proposed Solution	Raspberry Pi	Wi-Fi	Database	• Temperature	RM 265.00
	an			and	
112	Junilo	Sic	an in	Humidity	
		4.9	. 5.	Sensor	
UNIV	ERSITI TEI			Gas Sensor	

2.4 Proposed Solution / Further Project

Multiple problems have been occurred on the previous project such as based on (A.P. Montoya, F.A. Obando, J.A. Osorio, J.G. Morales, and M. Kacira, 2020), (Andrew Carre and Terence Williamson, 2018), and (Mani Dheeraj Mudalir and N. Sivakumar, 2020), most of the data collected by the sensor is stored inside an internal SD card that most likely will run out of space. Other than that, in research done by (V. Pasquali, G. D'Alessandro, R. Gualtieri, and F. Lecesse, 2017), (A.P. Montoya, F.A. Obando, J.A. Osorio, J.G. Morales, and M. Kacira, 2020), (Victoria Jayne Mawson and Ben Richard Hughes, 2020), and (B. Guragai, T. Hashimoto, K. Oguma and S. Takizawa, 2018), the system have a non-reliable connection for the system to be communicated by the user. Next problem is the cost needed to build the data logger from the previous project are not suitable with the functionality offered by the system. Based on (Andrew Carre and Terence Williamson, 2018), (Mani Dheeraj Mudalir and N. Sivakumar, 2020), (Victoria Jayne Mawson and Ben Richard Hughes, 2020), and (B. Guragai, T. Hashimoto, K. Oguma and S. Takizawa, 2018), (Mani Dheeraj Mudalir and N. Sivakumar, 2020), (Victoria Jayne Mawson and Ben Richard Hughes, 2020), and (B. Guragai, T. Hashimoto, K. Oguma and S. Takizawa, 2018), the system is so expensive which is above RM 1000.

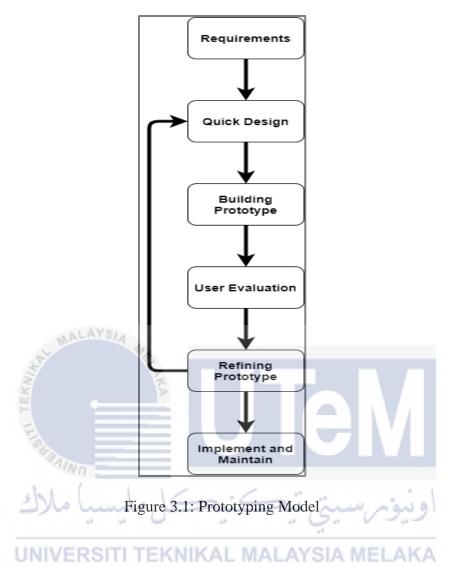
From the study that have been done based on the previous work, a lot of problem and weakness that has been occurred for the implementation of data logger. To overcome the weakness and problem from the existing project, Data Logger for IoT System is suggested to be implement. In this project, a Data Logger has been created by connecting a sensor directly to the Raspberry Pi 4 microprocessor. The sensor will capture the data from the facility environment based on the type of sensor that been used. Data that have been received from the sensor will be uploaded and recorded by the microcontroller into the database automatically. The Microcontroller can be connected to the wireless Internet connection so it can upload the data directly to the system without causing any delay. A user interface will be created by an open-source software which is Node Red dashboard. The data recorded inside the database will be shown to the user by using the Node Red interface. By using Node Red interface, it will create a user-friendly interface is needed to help the user to view and make an analysis from the data for future use.

2.5 Conclusion

From all of the review that has been done, we can summarize the purpose, weakness and solution of the previous project. Other than that, some of the technology used in this project has been elaborate. Multiple problem and weakness have been occurred such as high-cost data logger and slow processing data logger can be avoided by implementing the proposed solution. The development of Data Logger for IoT System seems to be the best solution for a simple and reliable data logger. In conclusion, literature review is a necessary chapter, and it is very important part to build the project concept, it helps to understand the existing features of the system and to get a clear picture to implement the system. The research and study will make the progression on doing this project smoothly and more understanding.

CHAPTER III

METHODOLOGY


3.1 Introduction

In this chapter, it will be focus on the methodology used in the project. Methodology refers to systematic, theoretical analysis of the methods applied to the field of study. The first topic is the project methodology which it will discuss about the software development life cycle used. The stages of the model will be detailed inside this chapter.

3.2 **Project Methodology**

The purpose of project methodology is to allow for managing the entire management process through the best decision making and problem solving, while make sure the accomplishment of specific processes, approaches, techniques, methods, and technologies. Basically, a methodology gives a backbone for explaining every step much more specific so it will help on what need to be done to deliver and implement the work accordingly. There are multiple type of software development methodology model such as waterfall model, spiral model, fountain model, and prototyping model. In this project, software development methodologies will be used as a project methodology.

In this project, prototyping model has been used to complete the project. Prototyping model is a software development model that required of building the prototype, tested, and modified until it become an acceptable prototype to be developed as a product for the end user. There are six sequence that need to be followed such as requirements, quick design, building prototype, user evaluation, refining the prototype, and implement and maintain. All of the listed stages need to be followed in a proper sequence so that the project can be success and finish on time. The flow of the prototyping can be referred to the figure below:

3.2.1 Requirements

In this phase, every requirement needed for the system are defined in detail manner. To complete the Data Logger for IoT System project, some requirement has been listed down.

- 1. Hardware
 - Raspberry Pi 4 Model B
 - Micro SD card (32GB)
 - USB C wire
 - HDMI to Micro HDMI connecter
 - HDMI Cable
 - Monitor

- Mouse
- Keyboard
- Breadboard
- Jumper Wire
- DHT11 Temperature and humidity sensor
- Access point
- 2. Software
 - Node Red
 - Raspbian OS
 - InfluxDB
 - Grafana ALAYS

3.2.2 Quick Design

The first design of Data Logger for IoT system is created in this phase. To a achieve a brief idea about the system that would be developed, a simple design of the system is designed. However, the produce design is not a complete design. To visualize the connection of the project, physical design is developed for the used device. The simple physical design for this project is shown below:

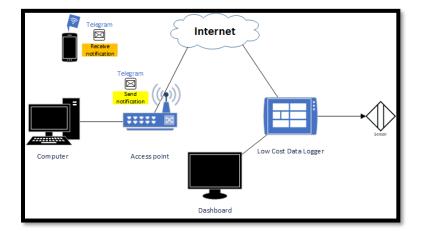


Figure 3.2: Physical Design

3.2.3 Building Prototype

Based on the information that has been gathered from the quick design phase, an actual prototype is built. The prototype consists of the hardware and software listed before. All of the hardware will be connected with each other so the installation and basic setup of Raspberry Pi OS can be done. After the Raspberry Pi OS has been setup, which is Raspbian, other software package listed before can be installed. The Raspberry Pi will be connected to the Node Red so the data from the sensor can be read and stored inside the database.

3.2.4 User Evaluation

After the prototype complete or finished, the client or evaluator will evaluate the prototypes. It helps a lot in order to find and point out to the inventor where the weakness and strength that can be found from the proposed prototype. All of the comment and suggestion received from the evaluation will be collected and analyzed. For this project to achieve success result, a usability testing will be conduct in terms of performance and functionality testing. For the performance testing aspects, the Data Logger for IoT Systems will be evaluated thoroughly whether it can meet the requirement of the project such as success rate and user satisfaction. While from functionality testing aspects, it should verify that the functions of Data Logger for IoT System are working as intended and it also measure the ease of use for the product to be used by the user.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

3.3 **Project Milestones**

Project Milestones as a reference point that will be used to monitor the project's progress and marks the major activity in a project. To make sure the flow of the project runs smoothly, the project milestones will be created and well planned to ensure all of the activities in the project are able to complete within the timeframe. The milestones and Gantt chart used are shown below:

Activity	Responsibility	Date Start	Date End				
Gathering the	Student	Week 1	Week 2				
requirements							
Analyze the	Student	Week 2	Week 2				
requirement							
Designing the project	Student	Week 3	Week 4				
Submit design to the	Student	Week 4	Week 4				
supervisor							
Hardware gathering	Student	Week 5	Week 10				
Installing required OS	Student	Week 5	Week 10				
Building the	Student	Week 6	Week 10				
prototype							
Progress evaluation	Student and	Week 7	Week 10				
E	supervisor						
Testing the prototype	Student	Week 8	Week 10				
User evaluation	Student, supervisor,	Week 13	Week 13				
NC-	and evaluator	رسىتى تېكن	اوىيۇم				
Drafting new design	Student	Week 1	Week 3				
based on the	ERSITI TEKNIKA	L MALAYSIA ME	LAKA				
evaluation							
Refining the	Student	Week 4	Week 4				
prototype							
Progress evaluation	Student and	Week 4	Week 4				
	supervisor						
Building the full	Student	Week 5	Week 5				
project							
Testing the full	Student, supervisor,	Week 6	Week 6				
project	and evaluator						

Table.3.1: Milestones for the project

Refining the full	Student and	Week 7	Week 7
project	supervisor		
User evaluation	Student, supervisor,	Week 8	Week 8
	and evaluator		

Week Method	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Requirements gathering and analysis			2	MAI	AY S	IA I																	
Quick design							MAN BAR																
Building prototype			-														1						
User evaluation			100	A.M.	Thur				1														
Refining prototype			ely	0		h	٥	<	2	ĥ.		5	5,			~	نيو:	او					
Implement and maintain		L	INP	/EF	RSI	TIT	ΓEł	(NI	KA	LI	ΛA	LA	Y	s SIA	M	EL	.Ał	<a< td=""><td></td><td></td><td></td><td></td><td></td></a<>					

Table 3.2: Gantt Chart for PSM1 and PSM2

3.4 Conclusions

As a conclusion, this chapter explains the methodology that been used in the project. The Data Logger for IoT System development consists of different phase that help to develop the system faster and systematically. The milestone set the time to finish the project so that the progression of the project will always keep in track. This is a very important aspect to make sure the project can be achieved within the timeframe.

CHAPTER IV

ANALYSIS AND DESIGN

4.1 Introduction

This chapter will describe the results of the analysis and the preliminary design of the project. It will focus on the problem analysis, requirement analysis, high-level design, and conclusion of the requirements of the project. Problem analysis will cover the analysis of current data logger problem while in requirements analysis, certain requirement such as data requirements, functional requirements, and hardware together with the software requirements will be discussed. Hardware and software used to build this project will be determined. The block diagram architecture and proper analysis in detail for this project also will be stated to ensure the project can be completed and well designed.

4.2 **Problem Analysis**

The function of the existing data logger system in the market is not comprehensive as it expensive and does not provide alert or notification to users if the room temperature is exceeding the desired temperature. This situation might lead to a massive loss to company because of the late notification to the user. Hence, there is and application that will implement in this project to notify the user if any abnormalities occur.

4.3 Requirement Analysis

4.3.1 Data Requirements

Data that have been collected by the sensor will act as input for the device. From there, the system will process the data by using Node Red APIs. Data will be divided into two which is temperature data and humidity data. The data also will be filtered based on the limit that has been set up in the system. One of the outputs from the device is alert message to notify the. If the data exceed the limit value, it will alert and notify the user so they can alert about the abnormalities that occur. Other than that, all of the data collected from the sensor will be stored inside a database. User interface also included for the user to view all of the recorded data saved inside the database.

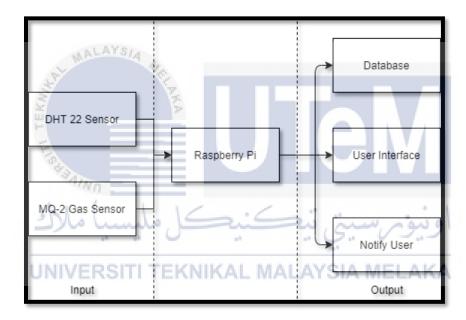


Figure 4.1: Block Diagram for Data Logger for IoT System

4.3.2 Functional Requirements

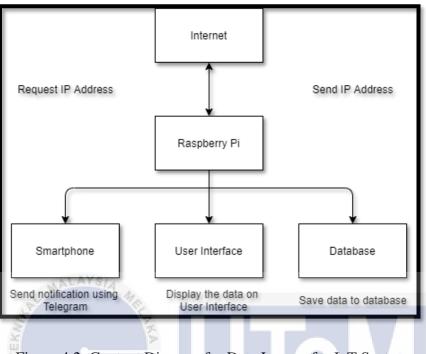


Figure 4.2: Context Diagram for Data Logger for IoT System

Based on the diagram, Raspberry Pi need to connect to the Internet so the device can run its function. When the sensor collect data based on the surrounding, the data will be saved into a database, and it will show the data to the user by using a user interface. If the reading of the data exceeds the limit value that has been set up, a notification will be sent to the user using Telegram application.

4.3.3 Hardware and Software Requirements

4.3.3.1 Hardware Requirements

In order to this project, the requirement is defined. There are multiple requirement need to be used such as the hardware and software. Proper hardware must be used to detect and stored data from the sensor accurately.

i. Raspberry Pi 4 Model B

Raspberry Pi is a single-board computer or the small computer. This single-board computer is widely used in teaching, learning, robotics used and many more because of its good performance in programming, processing and running series of program. Furthermore, the capability of Raspberry Pi to connect to various type of sensor make it more efficient to develop a project. The information collected by the sensor will be send to Raspberry Pi in order to be processed.

Figure 4.3: Raspberry Pi Model B

ii. Micro SD Card (32 GB)

All of the operating system needed to operate the Raspberry Pi and other software needed in this project is stored inside the Micro SD card. This Micro SD card will be installed into specific slot available on the Raspberry Pi.

Figure 4.4: Micro SD Card

iii. USB C Wire

In order to run the Raspberry Pi, USB C wire is used to connect the Raspberry Pi to a power supply. Power voltage required for Raspberry Pi to run is 5V. There are multiple choice for the power supply such as directly connect to a plug-in electricity or just by using portable power supply such as power bank.

Figure 4.5: USB C Wire

iv. HDMI to Micro HDMI connector

HDMI to Micro HDMI connector is used in order to connect the Raspberry Pi to a monitor. This is because, most of the monitor in the market used HDMI type of wire but on Raspberry pi, only Micro HDMI slot available.

Figure 4.6: HDMI to Micro HDMI connector

v. HDMI Cable

HDMI cable is used to display an interface from the Raspberry Pi to a monitor.

Figure 4.7: HDMI Cable

vi. Monitor

To display the user interface and open programs, allowing the user to interact with the Raspberry Pi.

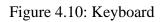


Figure 4.9: Mouse

viii. Keyboard

Act as user input device to input any command and perform a variety of other tasks.

ix. Breadboards

Breadboards are used to help connect components to complete the circuit between

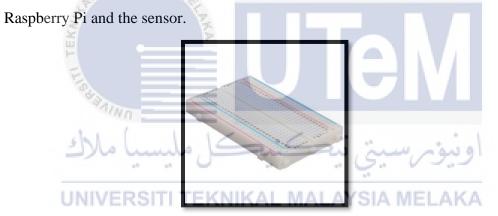


Figure 4.11: Breadboards

x. Jumper Wire

An electrical wire which is used to interconnect the components of a breadboard to other equipment or components without soldering which in this project is sensor to Raspberry Pi.

Figure 4.12: Jumper Wire

xi. DHT11 Temperature and humidity sensor

This sensor has a temperature and humidity sensor complex that can be calibrated by using a digital signal output. By using this sensor, it can detect temperature and humidity in the surrounding precisely.

Figure 4.13: DHT11

xii. MQ-2 Gas Sensor

One of the gas sensors available from the MQ sensor series. It can detect any gas concentration in the air.

Figure 4.14: MQ-2 Gas Sensor

xiii. MCP3008 AC to DC Converter

MALAYS/4

A low cost 8 channel and 10-bit analog to digital converter. Used to convert analog signal from the sensor into digital reading so the data can be read by the PI.

Figure 4.15: MCP3008

xiv. Access point

An access point is needed for the project to request and IP Address for the Raspberry Pi to be able to be control from other computer by using SSH connection.

Hardware	Functionality	Picture					
Raspberry Pi 4 Model B	Used as microcontroller to embedded electronics and sensor						
Micro SD Card (32 GB)	Store all of the operating system needed for this project	Saltistice of the trans					
USB C Wire	USB C Wire Connecting the microcontroller to power supply						
HDMI to Micro HDMI connector	Used to connect the microcontroller to the HDMI cable						
HDMI Cable	Used to display an interface from the microcontroller to a monitor						

Table 4.1: Summary of Hardware Equipment

Monitor	Display the user interface	
Mouse	Controlling the cursor on the user interface	
Keyboard	Used to input any command into the	
	MALAYSIA system	
Breadboards	Act as platform to connect all the	
	يني تيدelectronics components ممالاك	MELAKA
Jumper Wire	Used to interconnect the components of a breadboard to other equipment	

DHT11 Temperature and humidity sensor	To detect temperature and humidity in the surrounding	
MQ-2 Gas Sensor	To detect any gas concentration in the air	
MCP3008 AC to DC	Converting analog data into digital data	
Converter		
Access point UN	Used to transmit data from the microcontroller into user device by using	MELAKA
	Wi-Fi	

4.3.3.2 Software Requirements

i. Node Red

To connect all the hardware devices used in this project, Node-Red APIs is used for the programming. In this project, Node-Red used to create a configuration, develop, and create multiple extensions to be connected with the data collected from the sensor.

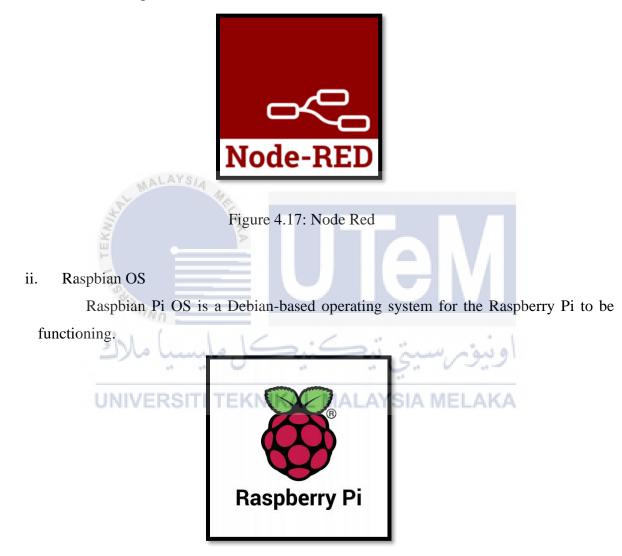
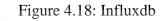



Figure 4.18: Raspbian OS

iii. InfluxDB

InfluxDB is an open-source time series database used to save data detected by the sensor. It is one of the best and reliable databases that can be used to save data.

iv. Grafana

In this project, Grafana is used to display data collected from the sensor to the user. It is a multi-platform open-source analytics and have interactive web application interface. It comes with charts and graphs for the web when connected to the data sources.

Figure 4.20: Grafana

v. Telegram

Telegram is a communication platform between smartphones. By using Telegram, people can communicate with each other by sharing image, text, video, and others. In this project, telegram is used to notify the user if the sensor collected data that exceeds the limit set in the system.

Figure 4.21: Telegram

vi. Python

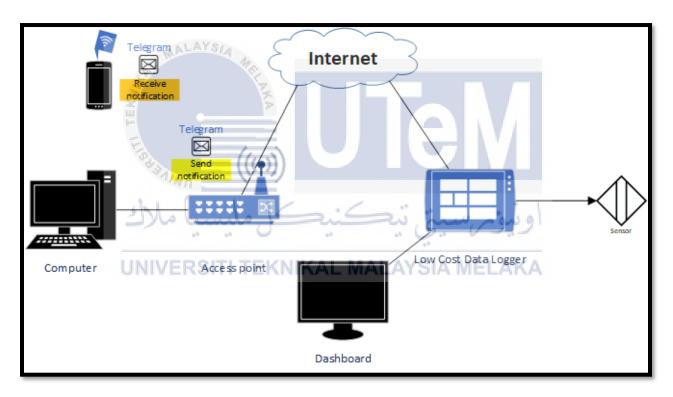

Python language is used in this project to detect gas changing in the surroundings. This python script will be run in the Raspberry Pi which it will compile and execute the code.

Figure 4.22: Python

4.4 High-Level Design

Connection between the computer and smartphone and Raspberry Pi is defined. In order for the device to interact with the smartphone and other computer, wireless communication is used. Notification will be sent to the user through a Telegram application if the data value exceeds the limit set. User also can access and control the device remotely by using another computer. Proper design must be determined so that the data sent to the user is accurate without any loss of data and the data can be stored inside a database.

4.4.1 System Architecture, Physical Design

Figure 4.23: Physical Design of Data Logger for IoT System

4.4.2 User Interface Design

i. Flowchart

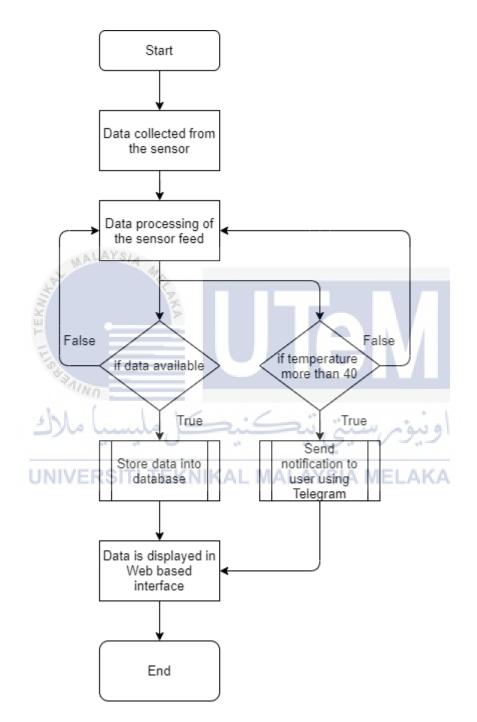


Figure 4.24: Flowchart of Data Logger for IoT System

Figure below shows on how the Data Logger for IoT System works. The Data Logger will receive data from the sensor. From there, it will be sent to the system in order to be process. All of the collected data will be saved inside a database together with date and time. Although the data is higher than the exceed limit, it still will be saved inside the database. If the reading of the data is high than the maximum limit set in the system, it will send alert notification to the user by using Telegram application. The notification will be included with the reading from the sensor which has been exceed the set limit. After the data is saved inside the database, it will be extracted by the system and displayed it to the user using a web-based interface which is Grafana. On the interface, user can see all of the detail on when the data has been collected and also the reading from the sensor.

ii. Output Design

Input that are processed by the Raspberry Pi will produce the output. The collected data from the sensor that have been stored inside a database will be shown to the user by using a web-based interface. Other than that, the system would send an alert notification to the user by using Telegram application if the data detected by sensor is above the limit of the set data that has been set. The system also allows the user to view the dashboard remotely by using another computer and it can be connected by using Internet connection.

a) Grafana Dashboard TI TEKNIKAL MALAYSIA MELAKA

• Diagram below show the value of temperature and humidity percentage data on the surrounding. There was also a line graph to show the up and down of the temperature data.

0	器 General / TEMPERATURE ☆ 😪				#14 월 🕘 🔿 Lest 6 hours - 역 🏹 - 🖶
0 + H @ @ D	2021-8-31 temperature.date		25:50 ature.time_in	1200 1200 1200 1000 <td< th=""><th></th></td<>	
		temperature.date 2021-8- 31	Temperature temperature.temperature 30	temperature.time_in 21:25:50	

Figure 4.25: User Interface Output (Temperature)

Figure 4.26: User Interface Output (Humidity)

Ø	嘂 General / GAS ☆ 😪					a 🔒		Q C × ₽
		Gas				Gas		
Q								
+ 88								
ø								
₽	2021-8-31	84	21:38:30					
0	gas.date	gas.gas	gas.time_in	0 16:00 16:30	17:00 17:30 18:00	18:30 19:00	19.30 20.00 20.30	21:00 21:30
Ø	gus.uute	guo.guo	gus.une_m	— gas.date — gas.gas — ga Gas	s.time_in			
		gas.date	gas.gas		.time_in			
		2021			1:39:11			
			0 04	-				
		31						

Figure 4.27: User Interface Output (Gas)

- b) Telegram Notification Alert
 - From the data collected by the sensor, the system will process and detect if the data exceeds the data set limit or not. When the system detects the data exceeds the set limit, it will give notification alert to the user. Diagram below shows the notification alert received by the user due to the abnormalities. The notification will be received by using telegram application.

Figure 4.28: Alert received by the user (Temperature)

Figure 4.29: Alert received by the user (Gas)

4.4.3 Database Design

4.4.3.1 Conceptual and Logical Database Design

	i. ERD Diagram for Data Logger											
	TEMPERA	TURE		н	UMIDITY			GAS				
РК	time_id	Las I	PK	<u>time_</u> i	d	V	РК	time_id				
	temperature	Aina .		humid	ity		FK1	gas				
	date	سبا ملاك	Jo,	date	تنكنه	in	m	date				
	time_in			time_i	n	~ .		time_in				
		UNIVERSIT	LTE	KNI	KAL MALAY	SIA	M	ELAKA				

Figure 4.30: ERD Diagram

- ii. Business Rule
 - 1. Many data can be recorded in TEMPERATURE, HUMIDITY and GAS
- iii. Data Dictionary

Table 4.2: 7	Fable T	Cemperature
--------------	---------	-------------

TEMPERATUR	TEMPERATURE												
ATTRIBUTE NAME	CONTENTS	DATA TYPE AND SIZE	FORMAT	RANGE	REQUIRED	DEFAULT VALUES	UNIQUE	PK or FK	FK REFERENCE D TABLE				
time_id	time_id	INT	99999		Yes			PK					
temperature	temperature	INT	99999										
date	date	DATE	0000-00-00										
time_in	time_in	TIME	00:00:00										

Table 4.3: Table Humidity

HUMIDITY									
ATTRIBUTE NAME	CONTENTS	DATA TYPE AND SIZE	FORMAT	RANGE	REQUIRED	DEFAULT VALUES	UNIQUE	PK or FK	FK REFERENCE D TABLE
time_id	time_id	INT	99999		Yes			РК	
humidity	humidity	INT	99999						
date	date	DATE	0000-00-00						
time_in	time_in	TIME	00:00:00						

Table 4.4: Table Gas

shi

GAS									
ATTRIBUTE NAME	CONTENTS	DATA J TYPE R AND SIZE	FORMAT SITI TEK	RANGE	REQUIRED	DEFAULT VALUES	UNIQUE	PK or FK	FK REFERENCE D TABLE
time_id	time_id	INT	99999		Yes			PK	
gas	gas	INT	99999						
date	date	DATE	0000-00-00						
time_in	time_in	TIME	00:00:00						

4.5 Conclusion

Analysis and design is one of the important part to implement a project. All of the software and hardware requirements need to be identified and studied before carrying out a project. This chapter is the pre-preparation stage for the implementation and include the flow of the overall system in order to have a better understanding before implementing it. In the next chapter, further discussion about the project implementation and the output expected from this project will be discussed.

CHAPTER V

IMPLEMENTATION

5.1 Introduction

This chapter will focus on how to implement the Data Logger for IoT System in both software and hardware development. The testing process will also be carrying out to ensure the system can functioning well and achieve the satisfaction of the users. The system will be tested by the developer and the end user by following the proper procedure to identify the system's performance.

5.2 Hardware and Software Development Environment setup

The development environment setup for Data Logger for IoT System will involve hardware and software requirements. All of the setups will be stated step by step and clearly shown. The hardware and software requirements are stated in Chapter 4 and will be explain further for the connection in further section.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

5.2.1 Hardware Development Environment Setup

For this project, the hardware used are stated in the Chapter 4. There are two sensor which is DHT11 sensor and MQ-2 Gas sensor that are connected to the Raspberry Pi microprocessor by using jumper wires. The Raspberry Pi will process data collected from the sensor by using Node Red command line. Figure 5.1 shows the idea of prototype to demonstrate on how the project will be implemented. This prototype is set up by all of the hardware that has been listed before.

Hardware	Wire	Pins			
DHT11 Sensor	+VE	5V			
	-VE	GND			
	OUT	GPIO 4			
MQ-2 GAS Sensor	AO	CH0			
	DO	GPIO 26			
	GND	GND			
	VCC	5V			
MCP8002 AC to DC	CH0	AO			
Converter	VDD	5V			
	VREF	5V			
	AGND	5V			
S & BAILTON	CLK	5V			
	DOUT	GPIO 09 MISO (SPI0)			
مليسيا ملاك	ىيتى ئىھەرال يە	GPIO 10 MOSI (SPI0)			
	CS/SHDN	GPIO 25			
UNIVERSITI TE	DGND	GND			

Table.5.1: Details of each Pin Numbers

Next, we are going to install the hardware. Figure below shows the complete hardware setup after following the details provided by the table on how it is connected.

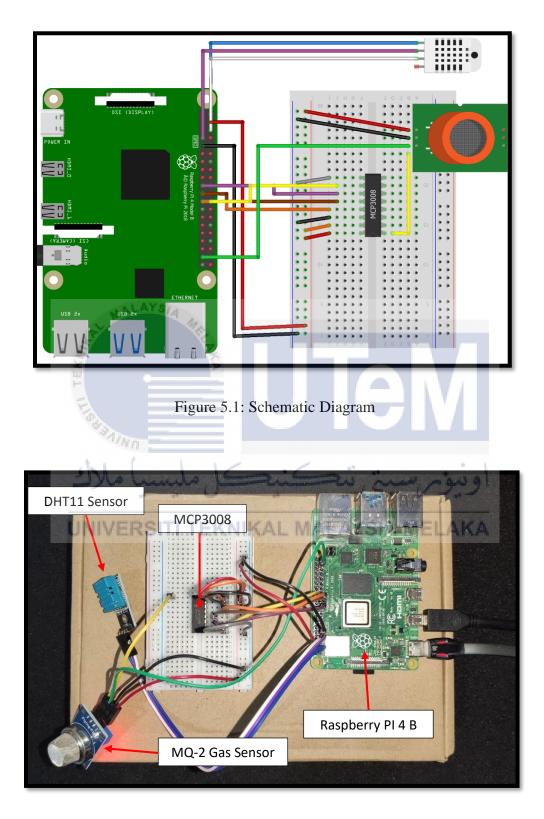


Figure 5.2: Hardware Installation

5.2.2 Software Setup

a) Software Installation

There are several software that need to be installed for this project such as Node-Red, Raspbian OS, InfluxDB, and Grafana. All of this software will be used to ensure the project is fully functional. The installation method used to install all of the software are by using terminal.

i. Raspbian OS need to be upgraded to the latest version. In order to ensure the system is up to date, this command is used.

- sudo apt-get update

- sudo apt-get upgrade

ii. By using the terminal, install or upgrade Node-Red on the Raspbian OS.

bash <(curl -sL https://raw.githubusercontent.com/nodered/raspbian-deb-package/master/resources/update-nodejs-andnodered)

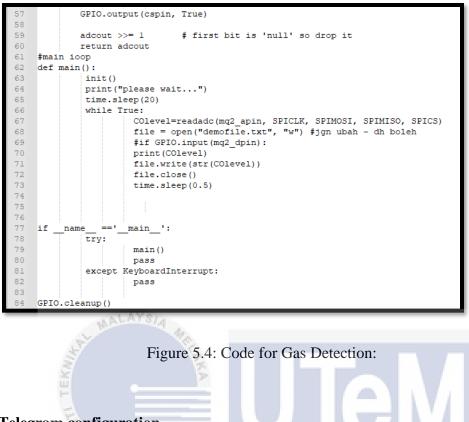
iii. Influxdb is installed into the Raspberry Pi in order to create a database. This

database will save data collected from the sensor.

- wget -qO- https://repos.influxdata.com/influxdb.key | sudo apt-key add -
- source /etc/os-release
- echo "deb https://repos.influxdata.com/debian \$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/influxdb.list

- iv. Grafana will be installed into the Raspberry Pi in order to create a web-based user interface to show data collected from the sensor to the user.
 - wget -q -O https://packages.grafana.com/gpg.key | sudo apt-key add -
 - echo "deb https://packages.grafana.com/oss/deb stable main" | sudo tee
 -a /etc/apt/sources.list.d/grafana.list
 - sudo apt-get update
 - sudo apt-get install -y grafana

5.3 Software Configuration Setup


5.3.1 Gas detection configuration

In order to detect any high presence of gas on the surrounding collected by the MQ-2 gas sensor, we must configure it by using Python IDE which is Thonny that installed inside the Raspberry PI. The reason why the python language is selected to program the MQ-2 gas sensor is, because the reading collected by the sensor itself is an analog output. Raspberry Pi cannot read any analog data unless it is converted into digital output. After that, every single data collected by the sensor will be saved in a text file.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

```
import RPi.GPIO as GPIO
    import time
    # change these as desired - they're the pins connected from the
    # SPI port on the ADC to the Cobbler
    SPICLK = 11
 6
    SPIMISO = 9
    SPIMOSI = 10
    SPICS = 8
    mq2 dpin = 26
    mq2_apin = 0
12
13
14
    #port init
    def init():
15
16
17
             #to specify whilch pin numbering system
              # set up the SPI interface pins
18
19
20
             GPIO.setup(SPIMOSI, GPIO.OUT)
             GPIO.setup(SPIMISO, GPIO.ON)
GPIO.setup(SPICLK, GPIO.OUT)
GPIO.setup(SPICS, GPIO.OUT)
21
22
23
24
             GPIO.setup(mq2_dpin,GPIO.IN,pull_up_down=GPIO.PUD_DOWN)
25
    #read SPI data from MCP3008(or MCP3204) chip,8 possible adc's (0 thru 7)
26
27
    def readadc(adcnum, clockpin, mosipin, misopin, cspin):
28
29
30
31
32
33
34
35
            if ((adcnum > 7) or (adcnum < 0)):
                    return -1
            GPIO.output(cspin, True)
            36
37
38
            commandout = adcnum
            39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
             for i in range(5):
                    if (commandout & 0x80):
                           GPIO.output (mosipin, True)
                    else:
                             GPIO.output(mosipin, False)
                     commandout <<= 1
                     GPIO.output(clockpin, True)
                    GPIO.output(clockpin, False)
             adcout = 0
             # read in one empty bit, one null bit and 10 ADC bits
            for i in range(12):
GPIO.output(clockpin, True)
GPIO.output(clockpin, False)
                                                                        الده
                                                            cw
                  adcout <<= 1
                     if (GPIO.input(misopin)):
adcout |= 0x1
                             EKNIKAL
```

Figure 5.3: Code for Gas Detection

5.3.2 Telegram configuration

In order to send alert message from the Node Red to the user by using Telegram, a Telegram bot must be created first by using the Telegram BotFather in order to get the token that will be used to connect the Raspberry Pi to Telegram. The Raspberry Pi will send notification to the user by using the bot which the token is the unique ID for the bot.

Use this token to access the HTTP API: 1820083145: AAFMOWZAFzRE-GRMsrZEYVsJtmWNUfQFFTg Keep your token secure and store it safely, it can be used by anyone to control your bot.

Figure 5.5: Telegram Token

The token must be inserted into the Node Red node that specified for Telegram. The following chat ID is for specific user or group that the Raspberry Pi will send the notification to.

Bot-Name	smarthaqim_bot	
a, Token	1820083145:AAFMOWZAFzRE-GRMsrZEYVsJtmWNUfQFFTg]

Figure 5.6: Telegram Token Implemented in the Node

5.3.3 Node Red configuration

Node Red application mostly has all the configuration needed for the implementation of the Datalogger System. It receives data through the sensor that connected to the pin available on the Raspberry Pi. It also makes it easier to configure and program the system.

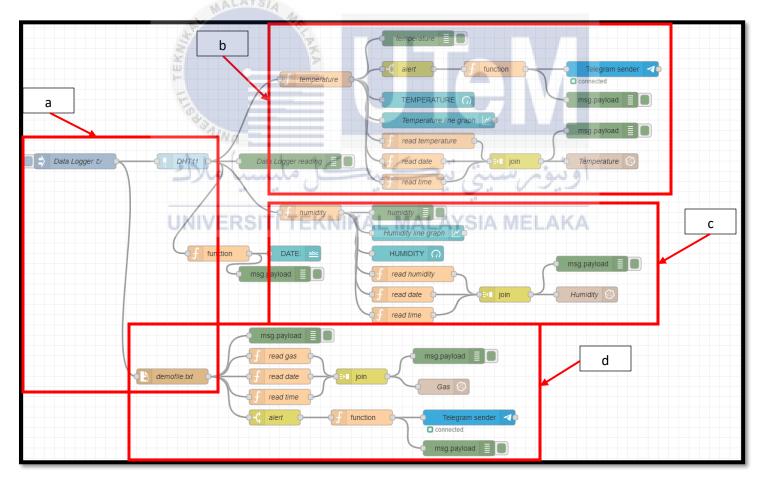
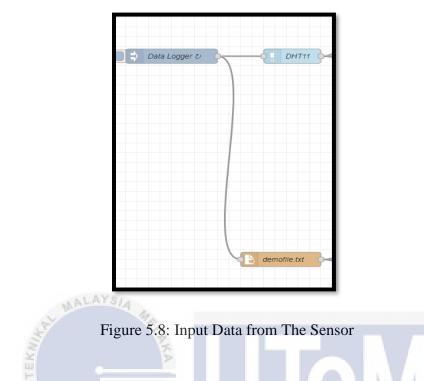



Figure 5.7: Node Red Flow Configuration

a) Input data from the sensor

The code snippet shown above is the configuration of receiving temperature and humidity data from the DHT11 sensor. While for gas data, it is read from the text file created by running the python language code by using the python IDE.

b) Input processing of temperature data

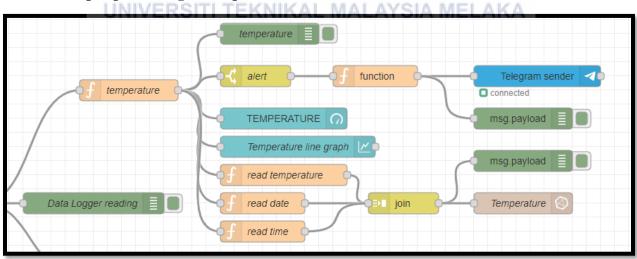


Figure 5.9: Input Processing of Temperature Data

Figure above shown the temperature collected from the sensor will be saved inside a database table named as Temperature. All of the data will be saved inside the database together with date and time. Other than that, the system will send a notification to the user by using Telegram if the temperature reading exceeds the set limit.

f humidity	humidity
	Humidity line graph
	read humidity
	read date
	f read time
Figu	re 5.10: Input Processing of Humidity Data
2.1.1	

c) Input processing of humidity data

The code snippet shown above is the configuration of inserting the humidity data into the database. Data collected by the sensor will be saved in a database together with the date and time when the data received by the sensor.

d) Input processing of gas data

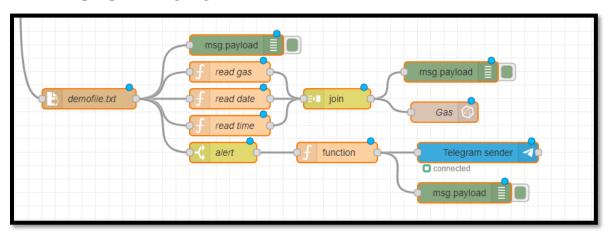
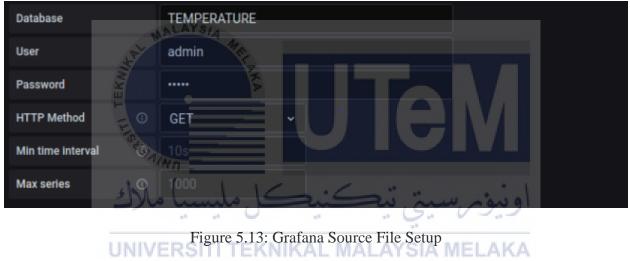


Figure 5.11: Input Processing of Gas Data

The code snippet shown above is the configuration for the Gas data that has been collected by the MQ-2 gas sensor. For this data, it is different from other data collected by the sensor. In this configuration, the Node Red will read data inside a text file that has been created by running the python-based coding executed before by using Thonny. All of the data such as gas reading, date and time will be saved inside a database. Other than that, an alert message will be send to the user via Telegram if the gas reading is exceed the set limit.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA


5.3.4 Grafana Configuration

For this project, the user interface used is Grafana. The user can view all of the data that has been saved inside the database such as temperature value, humidity value, gas value and also date and time. On the interface, the data will be shown in a multiple type such as line graph and gauge.

НТТР					
URL	3	http://127.0.0.1:8086			
Access		Server (default)		~	Help >
Whitelisted Cookies	()	New tag (enter key to add)	Add		

Figure 5.12: Grafana HTTP Setup

Figure above shown on how to setup the data source for the Grafana. As the Grafana are running on the same Pi, the URL set to localhost is a default influx port which is 8086 ports.

On this part, the database name for the source file is inserted together with the username and password to the InfluxDB database.

5.4 Implementation Status

In this part, the duration for each component's development will be discuss and explain in detail.

No.	Component	Description	Duration for
			completed
1.	Assembling Hardware	Process to connect the jumper	13 days
		wires and sensor to the	
		microcontroller. Connecting	
		the microprocessor to the	
	ALAYSIA	monitor and other peripheral	
	at an an	for the setup. Established an	
	LINK A	SSH connection for the	
	ــــــــــــــــــــــــــــــــــــــ	microprocessor to be accessed	
	The second	by another computer remotely.	
2.	Building Prototype	This process is to setup the	15 days
	2) ahmul all	prototype of the project.	low
3.	Upload Raspberry Pi	This process is to ensure the	10 days
	Coding IVERSITI TEKI	Raspberry Pi microprocessor	AKA
		can control the hardware	
		attached to it.	
4.	Developing System	All the functions of the system	60 days
		will be created using Node-Red	
		APIs.	

Table 5.2: Implementation Status

5.5 Conclusion

In Conclusion, the implementation chapter is the most important part for implement a system as it includes the process of hardware installation and software setup also together with the development. It provides a clear picture and idea to develop the project in order to achieve the objective of this project. The configuration is tested once it is implemented in order to avoid any error which will cause project malfunction. The configuration implemented in this chapter will ensure the Data Logger for IoT System is working properly.

CHAPTER VI

TESTING

6.1 Introduction

This chapter will more focus on discussion about testing the project. Purpose of this testing is to verify that the system will work without any problem. The first part of this chapter will more be focusing on test plan which will explain about the testing activities. Next, test strategy will be discussed follows by the test design. The test description will be focusing on a specific test in detail. It will cover the temperature and humidity detection test, gas detection, database connection, user interface test, and user alert notification. After that, the result and analysis will be discussed which covers the functionality test, performance test and system usability scale (SUS). Final part of this chapter is the conclusion which summarize all of the chapter.

6.2 Test Plan

Testing plan describes the activities, scope, and basic testing for the system. It is important to ensure all of the objective achieved and overall, of the system is running smoothly without any problem. Any bugs or errors can be detected and fixed before any further process.

6.2.1 Test Organization

In this section, the test will be done by the system developer who has develop the system. The project will be test according to its functionality. The developer will be in charge for this test organization because they know a lot better on how the device work.

6.2.2 Test Environment

For the test environment section testing, the structure of the testing will be determined. It is crucial for the test requirement, and it will be decided in the test environment. When the project is test, certain problem needed to be face if the test environment did not manage appropriately.

6.2.3 System Usability Scale (SUS)

System Usability Scale is a set of questionnaires that has been made to collect feedback from the end user. All of the participants will be brief by the developer about the system. After that, the participant will answer the questionnaires based on what they feel about the project created by the developer. The demo process can be done by using various type of online platform available on the Internet such as Google Meet, Microsoft Teams, and Discord. Hence, the System Usability Scale (SUS) will provide data to the developer on how the end user feel about the project whether it meets the user satisfaction or need to do some improvement.

6.3 Test Strategy

In this section, the flow of the testing will be determined. The test strategy for this project is how the test will be conducted in order to collect the temperature and humidity reading together with the gas reading on the surrounding. First, the sensor will collect data from the surrounding and save it into the database. From there, the saved data will be shown to the user by using user interface provided by the system. Other than that, the system will send an alert notification to the user by using Telegram if the data reading collected by the user exceed the set limit that has been set in the system. Hence the test of the project is successful.

6.4 Test Design

Test design discussed about the test case identification, test cases and expected result for each scenario which are designed and documented. The test description discusses integration test and functionality test. Table 6.1-6.4 shows the result of testing.

6.4.1 Test Description

Specific test such as temperature and humidity detection test, gas detection test, Telegram notification test, and database test will be conducted in detail. The test purpose, test environment, test setup, and expected result will be tabulated for each test.

Test	Temperature and Humidity Detection Test			
Test Purpose/ Test Functionality	To be able to detect temperature reading from the			
	surrounding.			
Test Environment	To test this project, the sensor will be in one closed			
	spaced such as room.			
Hardware Needed	i. DHT11 Sensor			
Test Setup/ Execution Test	1. Connect the Raspberry Pi to Internet			
A A	connection			
E E	2. Run Node Red			
Les .	3. Edit Node Red configuration			
"aning	4. Click Deploy			
>Malunda 15	5. Put any hot element closed to the sensor			
	such as hot water.			
Expected Result RSITI TEKNI	When the program is running, the sensor will			
	collect all of the data from the surrounding. The			
	data will be saved in a database. If the sensor			
	reading exceed the set limit, the system will notify			
	user by using Telegram message.			

Table 6.1: Temperature and Humidity Detection Test

Test	Gas Detection Test
Test Purpose/ Test Functionality	To be able to detect any high gas reading from the
	surrounding.
Test Environment	To test this project, the sensor will be in one closed
	spaced such as room.
Hardware Needed	i. MQ-2 Gas Sensor
Test Setup/ Execution Test	1. Run Python IDE
	2. Write coding to upload data from the
	sensor into a text file.
	3. Click Execute.
MALAYSIA	4. Connect the Raspberry Pi to Internet
Ser Ser	connection.
A N	5. Run Node Red
	6. Edit Node Red configuration
The second se	7. Click Deploy
Alna .	8. Put any gas closed to the sensor.
Expected Result	When the program is running, the sensor will
0	collect gas reading from the surrounding. The data
UNIVERSITI TEKNI	will be saved in a database. If the sensor reading
	exceed the set limit, the system will notify user by
	using Telegram message.

Table 6.2: Gas Detection Test

Table 6.3: Telegram Notification Test

Test	Telegram Notification Test
Test Purpose/ Test Functionality	To ensure that notification about the high
	temperature or gas leakage is received by the user
	through Telegram.
Test Environment	To test this project, user mobile phone must be
	connected to the Internet.

Hardware Needed	i. Mobile Phone			
Test Setup/ Execution Test	1. Connect the mobile phone to Internet			
	2. Ensure that the Telegram account is logged			
	in and activated.			
Expected Result	Once there any high temperature or high gas			
	reading detected at the area, user will receive the			
	notification through Telegram application along			
	with the reading collected by the sensor.			

Table 6.4: InfluxDB Test

Test	InfluxDB Test
Test Purpose/ Test Functionality	To be able to save all of the data collected from the
A NUMBER	sensor into a database.
Test Environment	To test this project, user need to check the database
EX.	by typing SQL command into the database by
***A1110	using Raspberry Pi terminal.
Hardware Needed	· Circo in sind
Test Setup/ Execution Test	1. Run the InfluxDB
UNIVERSITI TEKNI	 Select database table Enter the table measurement
	4. Enter SQL command to show data from the
	table.
Expected Result	When the command is inserted on the Raspberry
	Pi terminal, all of the data collected by the sensor
	will be shown to the user. The sensor reading is
	kept within the specific id, date, and time.

6.5 Result and Analysis

In this section, the result from the testing will be discussed in detail. Analysis of the result also will be covered in this part.

6.5.1 Functionality Test

Functionality test will be handled to check the functionality of the temperature and humidity detector and also gas detector. Test that will be perform is temperature and humidity detection, gas detection, Telegram notification test, and InfluxDB test.

6.5.1.1 Temperature and Humidity Test

Temperature and humidity detection test is done by referring to the figure below. The result of the test is shown below in figure 6.1 until 6.4. It shows the temperature and humidity detection on hardware and data displayed on Node Red debug console.

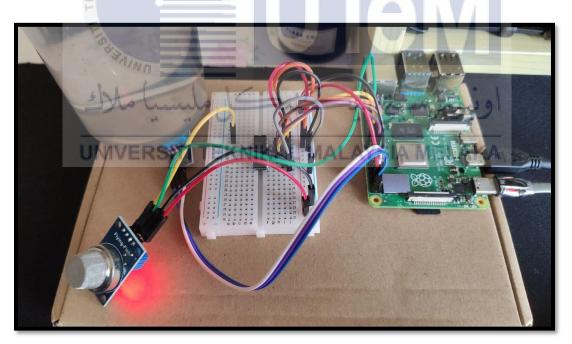


Figure 6.1: Detecting Temperature and Humidity



Figure 6.2: Successfully Detecting Temperature and Humidity

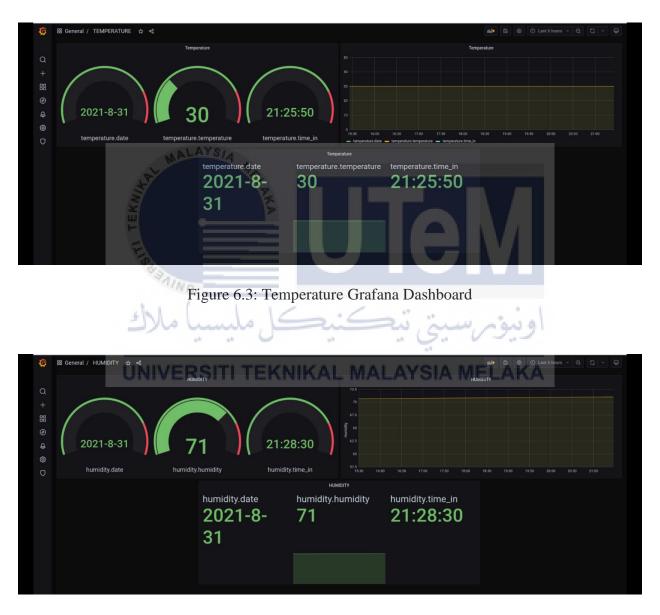


Figure 6.4: Humidity Grafana Dashboard

6.5.1.2 Gas Detection Test

Gas detection test is done by referring to the figure below. The result from conducting the test is shown below. In figure 6.5 until 6.7, it shows the gas detection sensor can read gas reading from the surrounding and the data is shown on the Node Red console.

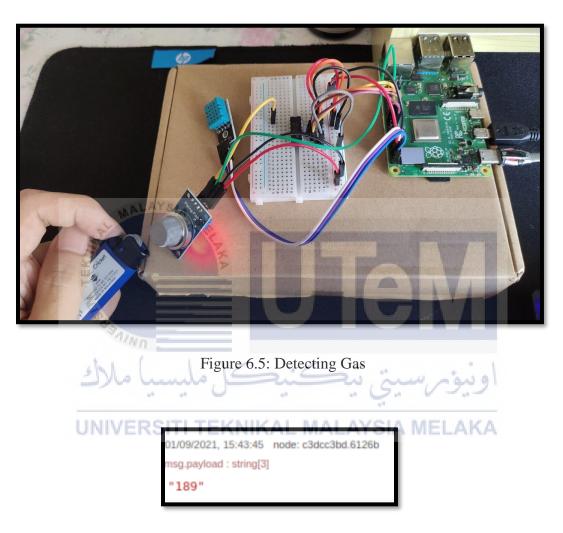


Figure 6.6: Successfully Detecting Gas

器 General / GAS ☆ ペ				### 🛱 🕘 🕘 La:	st 6 hours ∽ 🔍 😋 🖓 🖓
	Gas			Gas	
		1.25 K			
		750			
2021-8-31	84)(2	1:38:30			
2021-8-31	04 // -				
gas.date	gas.gas	gas.time_in _ 9	16:00 16:30 17:00 17:30 18:00 18 as.date — gas.gas — gas.time_in		
gas.date		Gas			
	gas.date	gas.gas	gas.time_in		
	2021-8-	84	21:39:11		
		U .	21.000.111		
	31				

Figure 6.7: Gas Grafana Dashboard

6.5.1.3 Telegram Test

Once the system detects any high temperature reading or high gas reading, a notification message will be sent to the user through Telegram along with the reading.

Figure 6.8: Notification Received by the User when High Temperature Reading Detected

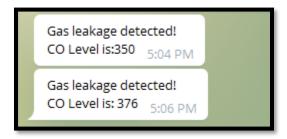


Figure 6.9: Notification Received by the User when High Gas Reading Detected

6.5.1.4 InfluxDB Test

When the sensor collected reading from the surroundings, the system will process the data and store it in InfluxDB database. The reading will be included with time_id, date, and time of the reading from the sensor.

		pi@raspb	errypi: ~			~	~ >
File Edit Tabs Help							
name: temperature time	date	temperature	time_in				
$\begin{array}{r} 1624470759378560353\\ 1624470798884493021\\ 1624470838878380517\\ 1624470835147766359\\ 1624470925138656689\\ 1624470965155639222\\ 1624471005153172994\\ 1624471045168245775\\ 1624471085158481428\\ 1624471125154260699\\ \end{array}$	2021-6-24 2021-6-24 2021-6-24 2021-6-24 2021-6-24 2021-6-24 2021-6-24 2021-6-24	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	1:52:39 1:53:18 1:53:58 1:54:45 1:55:25 1:56:5 1:56:45 1:57:25 1:58:5 1:58:5				
1624471165161450725 1624471205171250469 1624471245163902049 1624471285163006602 1624471325167615902 1624471365164314504 1624471405175559038 1624471445168659867 1624471485177347215 1624471525177615558 >	2021-6-24 2021-6-24 2021-6-24 2021-6-24 2021-6-24 2021-6-24 2021-6-24 2021-6-24 2021-6-24	30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	1:59:25 2:0:5 2:0:45 2:1:25 2:2:5 2:2:45 2:3:25 2:4:5 2:4:45 2:5:25	e	M		

Figure 6.10: Temperature Reading Stored in Temperature Table

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

		pi@ra	aspberrypi: ~	~ ^ X
File Edit Tabs Help				
name: humidity				4
time	date	humidity	time_in	
1629710777087541701	2021-8-23	58.00	17:26:17	
1629710816949767356			17:26:56	
1629710857006733623			17:27:36	
1629710896951159632			17:28:16	
1629710937444446482 1629710976976523702			17:28:57 17:29:36	
1629711017976851280			17:30:17	
1629711057448403173			17:30:57	
1629711097471199087			17:31:37	
1629711137484259035			17:32:17	
1629711176967737370 1629711216972980311			17:32:56 17:33:36	
1629711258498430720			17:34:18	
1629711297037590464			17:34:57	
1629711338514642394			17:35:38	
1629711377472149818			17:36:17	
1629711416977821808 1629711457518933604			17:36:56 17:37:37	
1629711497000084582			17:38:16	
1629711536985526042	THE REAL PROPERTY OF A DESCRIPTION OF A		17:38:56	
>	4.			
A. A	Y			
Figure	6 11 Hum	idity Rea	ding Stored in Humidity Table	
T Iguio	0.11 Hum	idity ited	ang stored in Humany Tuble	
H	-			
F		_		
Par la	and the second se			
ATT.		pi@ra	ispberrypi: ~	~ ^ X
File Edit Tabs Help	-	_		
name: gas time	date	gas tim	e in Contra anna	1
		945 CIII	اوىوم سىپى ئىكىشە	
1629710777147415432	2021-8-23	85 17:	26:17	
162971 0816954607848	AND ADDRESS OF TAXABLE PARTY.	88 17:	26:56	
1629710857035141266				
1629710896957294180 1629710937449181420			28:16 28:57	
1629710976982243218			29:36	
1629711017983146714			30:17	
1629711057452448434			30:57	
1629711097475244718			31:37	
1629711137490407879 1629711176971493153			32:56	
1629711216976255007			33:36	
1629711258505425219	2021-8-23	84 17:	34:18	
1629711297046947495			34:57	
1629711338519867391			35:38	
1629711377480956353 1629711416981773392			36:17 36:56	
1629711457542443663			37:37	
1629711497013179673			38:16	
1629711536988713294	2021-8-23	84 17:	38:56	

Figure 6.12: Gas Reading Stored in Gas Table

Figure 6.13: Temperature Data Grafana Dashboard

UNIV Figure 6.14: Humidity Data Grafana Dashboard

Figure 6.15: Gas Data Grafana Dashboard

6.5.2 System Usability Scale (SUS)

For this testing, 10 respondents are chosen to give their feedback and recorded regarding Data Logger for IoT System. The feedback only consists of one type of testing which is user interface testing that has been provided by the system. The test is conducted from user aspect which they will navigate through the user interface which is Grafana on how the data is shown. Due to the pandemics time, the testing is done by using online meeting platform such as Google Meet, Zoom, Microsoft Team, and Discord. The tester will be brief shortly about the purpose of the system before they can test the user interface. The tester will be given permission to control the system through the developer's computer by using option provided by the online meeting platform. After completing the testing, the tester will be given a google form to be answered which containing SUS question. Figure 6.16 and Figure 6.17 shows the information about the tester.

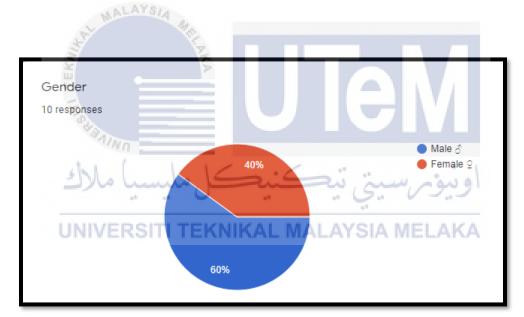


Figure 6.16: Gender Information

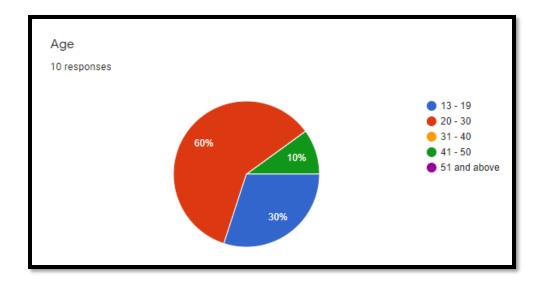


Figure 6.17: Age Information

For the question provided inside the Google Form, a set of ten question is asked (Thomas, n.d.), to the tester which is listed in Figure 6.18 below.

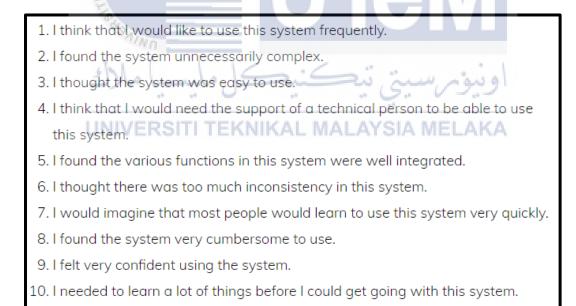
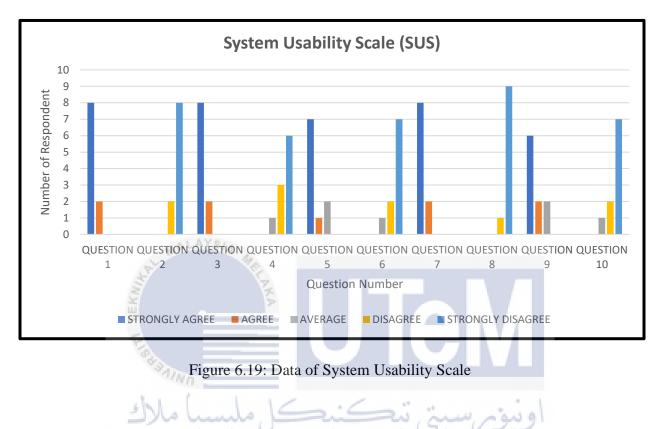



Figure 6.18: Set of Questions

The feedback question is answered based on scale from strongly disagree, disagree, average, agree, and strongly agree. All of the answer is tabulated into histogram chart as shown in Figure 6.19.

Based on the collected data shown on previous figure, the calculation score for System Usability Scale (SUS) is counted. Formula used to calculate the data is shown as follows:

- 1. For each of the odd numbered questions, subtract 1 from the score.
- 2. For each of the even numbered questions, subtract their value from 5.
- 3. Take these new values which you have found and add up the total score. Then multiply it by 2.5.

Table 6.5 shows a tabulated data calculation of the System Usability Scale (SUS). The grade for the Data Logger for IoT System is A because the final System Usability Score is 93.25.

Number of	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	SUS	SUS
respondents											Raw	Final
											Score	Score
1	4	4	4	4	4	4	4	4	4	4	40	100
2	4	4	4	4	4	4	4	4	4	4	40	100
3	4	4	4	4	4	4	4	4	4	4	40	100
4	3	3	4	2	4	3	3	3	4	2	37	92.5
5	4	4	4	4	4	4	4	4	4	4	40	100
6	4	4	3	3	4	3	4	4	3	4	36	90
7	3	3	3	3/43	2	4	3	4	2	3	30	75
8	4	4	4	3	3	4	4	4	2	3	35	87.5
9	4	4	4	4	2	2	4	4	3	4	35	87.5
10	4	4	4	4	4	4	4	47	4	4	40	100
Average:												93.25/100

Table 6.5: Calculation of System Usability Scale

6.6 Conclusion

ģ

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

For the conclusion, the testing process is a crucial part in order to verify whether the project is successful or not. It helps the developer to improve the performance of the system by minimizing any error that occur in the system.it is also help in improving the user experiences from the feedback given by the end users. As for the result and analysis, we can conclude that the device can detect temperature and humidity from the surrounding and the presence of gas.

29

CHAPTER VII:

PROJECT CONCLUSION

7.1 Introduction

In this chapter, there will be a conclusion and summarization for the project from the beginning until the completion of the system. The limitation and future work of the project also will be stated for any further improvement in the future. This will effectively improve the efficiency of the system and make it much more efficient and comprehensive.

7.2 Project Summarization

7.2.1 Project Objective

There are three project objective that is used for the completion of the project which is:

- i. To identify characteristic of existing data logger in factory
- ii. To develop a data logger that integrated with database, smart notification, and dashboard for IoT System.
- iii. To validate the performance of the developed data logger

7.2.2 Project Weakness and Strength

7.2.2.1 Project Weakness

In this project, there are multiple weakness identified during the implementation of the project such as the high power consumes. This project needs to standby at any time in order to verify the temperature and humidity change and also gas presence from the surroundings. It needs to operate 24/7 a week without any downtime. Because of that, the system cannot be operated when there no electricity supplied. Other than that, the sensor uses to get reading from the surrounding might show a wrong reading because of the device overheating. MQ-2 gas sensor is

sensitive to overheating. It might show a high gas reading although the gas presence at the surrounding is low due to the sensor overheating.

7.2.2.2 Project Strength

In this project, multiple strengths are found. One of the strengths is the system provides a real-time notification to the users. The system will send alert notification to the user through Telegram application if the reading get by the sensor is exceed the set limit. The alert notification will be included with alert message together with the exceed data collected by the sensor. Other than that, the system has its own user interface that can be used by the user to view all the collected data. The user only needs to login into the Grafana interface by using the correct username and password. After that, user can choose on how to view the data simply by choosing available option on the Grafana dashboard. This project also easy to install and maintain because it is developed with minimum cost which suitable for every small or medium industries.

7.3 Project Contribution

Data Logger for IoT System will help any organization or small industries to create a data logger simply by programming it using Node Red as software system. This project is developed in a low cost and comprehensive function because hardware use for this system is using a cheap microprocessor that are able to connect with multiple sensors. Other than that, this data logger will be integrated with a database and a web-based interface. Data collected from the sensors will be saved in a database at it can be shown to the user by using a web-based user interface.

7.4 **Project Limitation**

There are several limitations about the project such as this project requires a lot of storage in order to save a lot of data collected by the sensor. Other than that, the Raspberry Pi need to connect to the Internet to ensure the system can send a notification message to the user. The Internet connection signal and speed are important to prevent any delay from happening.

7.5 Future Work

One of the future works that can be done to the system to make it more efficient and comprehensive is provide it with a cloud database so it can reduce storage space used on the microprocessor storage. Other than that, a microprocessor with high ram capacity can be used in order to increase the system processing time. Hence, it can ease the user to manage and handle the data.

7.6 Conclusion

In conclusion, this project is successful since it meets all of the objectives that has been stated before. All of the implementation and testing part is clearly shown in the previous chapter. Based on the project weakness and project strength that has been discussed before, it can be concluded that there are several weaknesses that need to be fixed in the future to ensure the system can be operated with a better performance. The project strength also determined that there were multiple advantages that user can get by using this system. Other than that, project contribution and project limitation are also identified and discussed in detail. Last but not least, multiple enhancement can be done to this project so it can be operated with a better performance in the future.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

REFERENCES

- [1] Dalibor Dobrilovic, Vladimir Brtka, Zeljko Stojanov, Gordana Jotanovic, Dragan
 Perakovic and Goran Jausevac. (2021). A Model for Working Environment Monitoring
 in Smart Manufacturing
- [2] Ahmad Nizar Harun, Norliza Mohamed, Robiah Ahmad, Abd Rahman Abdul Rahim, Nurul Najwa Ani. (2019). Improved Internet of Things (IoT) monitoring system for growth optimization of Brassica chinensis
- [3] V. Pasquali, G. D'Alessandro, R. Gualtieri, F. Leccese. (2017). A new data logger based on Raspberry-Pi for Arctic Notostraca locomotion investigations
- [4] A.P. Montoya, F.A. Obando, J.A. Osorio, J.G. Morales, M. Kacira. (2020). Design and implementation of a low-cost sensor network to monitor environmental and agronomic variables in a plant factory
- [5] Andrew Carre, Terence Williamson. (2018). Design and validation of a low cost indoor environment quality data logger
- [6] Mani Dheeraj Mudaliar, N. Sivakumar. (2020). IoT based real time energy monitoring system using Raspberry Pi
- [7] Ricardo Toro, Jorge E. Correa and Placid M. Ferreira. (2018). A Cloud-Monitoring Service for Manufacturing Environments
- [8] B. Guragai, T. Hashimoto, K. Oguma, S. Takizawa. (2018). Data logger-based measurement of household water consumption and micro-component analysis of an intermittent water supply system
- [9] Victoria Jayne Mawson, Ben Richard Hughes. (2020). Deep learning techniques for energy forecasting and condition monitoring in the manufacturing sector
- [10] Wei Chen. (2020). Intelligent manufacturing production line data monitoring system for industrial internet of things

APPENDICES

CHAPTER 6 TESTING

Implementation of System Usability Scale (SUS)

