LEAN MANUFACTURING IMPLEMENTATION FOR REDUCTION OF PRODUCTION TIMES AND QUALITY ISSUES IN INDUSTRY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2021

LEAN MANUFACTURING IMPLEMENTATION FOR THE REDUCTION OF PRODUCTION TIMES AND QUALITY ISSUES IN INDUSTRY

This report is submitted in accordance with requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for Bachelor Degree of Manufacturing Engineering (Hons.)

NURHANISAH BINTI MAHYUDDIN B051710211 980715-10-5540

FACULTY OF MANUFACTURING ENGINEERING

2021

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: LEAN MANUFACTURING IMPLEMENTATION FOR THE REDUCTION OF PRODUCTION TIMES AND QUALITY ISSUES IN INDUSTRY

Sesi Pengajian: 2020/2021 Semester 2

Saya NURHANISAH BINTI MAHYUDDIN (980715-10-5540)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan
Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD

D (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Alamat Tetap: No 5 Jalan RP 8/8, Taman Rawang Perdana,

48000 Rawang Selangor

Tarikh: 9 September 2021

Disahkan oleh:

Cop Rasmi: NOR AKRAMIN BIN MOHAMAD Senior Lecturer Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka Tarikh: <u>10.9.2021</u>

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Lean Manufacturing Implementation for Reduction of Production Times and Quality Issues in Industry" is the result of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow:

ABSTRAK

Kajian ini telah dilakukan di kilang proses pengeluaran ayam untuk mengenal pasti sumber masalah yang menyebabkan kelewatan pengeluaran dan masalah kualiti di industri. Kajian ini telah melaksanakan teknik kajian masa langsung untuk mengenal pasti masa yang dihabiskan untuk setiap proses dan Peta Aliran Semasa (CSM) dibina untuk menunjukkan aliran semasa proses di kilang pengeluaran. Aktiviti tanpa nilai tambah telah dikenal pasti menggunakan rajah Ishikawa dan Analisis Kegagalan Mod dan Kesan (FMEA) dalam setiap elemen proses dan lima jenis pembaziran telah dijumpai iaitu menunggu, bergerak, pengangkutan, kecacatan dan sisa inventori. Oleh kerana tidak ada peralatan yang tepat untuk proses penyembelihan dan pengendalian mesin secara salah di kilang proses pengeluaran ayam maka ia meningkatkan masa pengeluaran dan menyebabkan masalah kualiti. Rancangan penambahbaikan yang terdiri daripada Penyangkut Unggas Automatik, 5S teknik, susun atur kemudahan ruang kerja baru dan Prosedur Operasi Piawaian (SOP) telah diusulkan kepada industri untuk mengurangkan pembaziran, memperbaiki kaedah pengeluaran semasa dan membuang unsur-unsur yang tidak perlu. Peta Aliran Masa Depan (FSM) untuk penggunaan waktu yang disemak semula dari proses yang dipulihkan telah menunjukkan peningkatan penggunaan waktu sebanyak 21%.

ABSTRACT

This study has been carried out at a chicken production process factory to identify the source of problem that caused production delays and quality issues in the industry. This study has conducted a direct time study to identify the time spent for each process and a Current Stream Map (CSM) was developed to show the flows of the process in current production plant. The non-value-added activities have been identified using Ishikawa diagram and Failure Modes and Effects Analysis (FMEA) in each element of the process and five types of waste has been found which are waiting, motion, transportation, defects, and inventory waste. As there are no proper equipment for slaughtering process and handling machine wrongly in chicken production process factory increased the production time and led to quality issues. An improvement plan which consists of Automatic Poultry Hanger, 5S pillars, new facility layout and Standard Operating Procedure (SOP) has been proposed to the industry to reduce the waste, improve the current production method, and remove the unnecessary elements. A Future State Map (FSM) of the revised time utilization of the process were developed which shows an improvement of time utilization by 21%.

DEDICATION

To my beloved family, who always giving me a moral support and encouragement.

To my supervisor, who always give me support, guidance, and motivation in completing my final year project (FYP).

To all my friends, who always lending your hands and support me whenever I

ACKNOWLEDGEMENT

In the name of Allah and all praises to The Almighty, for blessing me with the endless blessings, health, knowledge, patience throughout this semester to finish my projects. Firstly, my great thank to my respectful supervisor, Mr. Nor Akramin Bin Mohamad for his patience, supervision, encouragement, and uncountable guidance throughout my final year project.

Also, a special thank for all my friends who always give their time to support and help me with their love and knowledge when I need it. Last but not least, I would like to thank my beloved parents that provide me emotional and physical support throughout the completion of my project. The current situation has given a big impact to me but without all the support, this project will not be complete.

> اونيۈم سيتي تيڪنيڪل مليسيا ملاك UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

Abstr	ak		i
Abstr	act		ii
Dedic	cation		iii
Ackn	owledge	ement	iv
Table	of Con	tents	v-ix
List c	of Tables	8	x-xi
List c	of Figure	25	xii-xiii
List c	of Abbre	viations	xiv
List c	of Symbo	ols MALATSIA 4	XV
СНА	PTER 1	I: INTRODUCTION	
1.1	Resea	rch Background	1-2
1.2	Proble	em Statement	2-3
1.3	Objec	tives	3
1.4	Resea	اويو مسيى بيكيني مسيما مسيني م	3
1.5	Signif	ficance of the Study EKNIKAL MALAYSIA MELAKA	4
1.6	Organ	nization of Report	4
СНА	PTER	2: LITERATURE REVIEW	
2.1	Introd	luction	5
2.2	Defin	ition of Lean Manufacturing	5-6
2.3	The H	listory of Lean Manufacturing	6
	2.3.1	"Mass Production System" by Henry Ford	6-7
	2.3.2	Toyota Production System (TPS)	7
	2.3.3	"Lean Production" Term by John Krafcik	7-8
2.4	Waste	es	8
	2.4.1	Muda, Mura and Muri	8-10
	2.4.2	Seven Wastes of Lean	10-12
2.5	Non-V	Value-Added Activities	12

2.6	Princi	ples of Lean N	Ianufacturing	13
	2.6.1	The Five Lea	an Manufacturing	13-14
2.7	Lean l	Manufacturing (LM) Tools and Technique		
2.8	Produ	ction Times		16
2.9	Value	Stream Mapp	ing (VSM)	16
	2.9.1	Commonly U	Used Value Stream Mapping Symbol	17
	2.9.2	Current State	e Map (CSM)	17-18
	2.9.3	Future State	Map (FSM)	18-19
	2.9.4	Benefits of V	Value Stream Mapping	19-20
2.10	Produ	ct Design Ana	lysis	20
	2.10.1	Critical to Q	uality (CTQ)	20
	2.10.2	Planning Ma	ıtrix	21
	2.10.3	Quality Fund	ction Deployment (QFD)	21
	2.10.4	Morphologic	cal Chart	21-22
	2.10.5	Screening an	nd Scoring Concept	22
2.11	Fundamental of Engineering Analysis			23
	2.11.1	Finite Eleme	ent Analysis (FEA)	23-24
2.12	Qualit	y y Allen		24
	2.12.1	Standard Ope	erating Procedure (SOP)	25
2.15	Summ	ary of Literatu	اويوم سيني بيڪيد	25
СПУ	DTED 2	JNIVERSI	TI TEKNIKAL MALAYSIA MELAKA	
СПА. 2 1	Contt	Chart of Over	all Drojost	26
5.1 2.2	Ganu	Least of Ducies		20
5.2 2.2	Flowe	hart of Project		27
3.3	A 2 1 Decline in one Study			
	3.3.1	Preliminary	Study	28
		3.3.1.1		28
		3.3.1.2	Site Visit and Interview	28
	3.3.2	Objective 1:	To apply direct time study technique on the	
		production li	ine of the chicken production process	29
		3.3.2.1	Analysis of the production line	29
		3.3.2.2	Data Collection	29-30
	3.3.3	Objective 2:	To develop Current State Map (CSM) technique	
		of chicken p	roduction process	31

	3.3.4	Objective 3: To evaluate the waste in current chicken production			
		process usi	ng root ca	use analysis	31
		3.3.4.1	Identit	fy waste	31
		3.3.4.2	Analy	sis of waste	32
	3.3.4	Objective 4	: To deve	lop Future State Map (FSM) with proposal	
		solution for	the chick	en production process	32
		3.3.5.1	Propos	se a solution	32
		3.3.	5.1.1	Designing a poultry hanger	32-33
		3.3.	5.1.2	Propose the 5S pillars	33
		3.3.	5.1.3	Planning a new facility layout	33
		3.3.	5.1.4	Developing a Standard Operating Procedure	re
				(SOP)	34
		3.3.5.2	Devel	op Future State Map (FSM)	34
3.5	Summ	nary MALAY	SIA MA		34
			1 PA		
CHA	PTER 4	: RESULTS	S AND DI	SCUSSION	
4.1	Introd	uction			35-36
4.2	Critica	al to Quality	(CTQ) Tr	ee	36
4.3	Projec	et Charter	1 1	((_* * * · · ·)	37
4.4	Proces	ss flow of ch	icken proc	ويور سيبي بي الم	38
	4.4.1	Process Ele	ments	NIKAL MALAYSIA MELAKA	39
		4.4.1.1	Eleme	nts in Process 1- Slaughtering the chicken	39-40
		4.4.1.2	Eleme	nts in Process 2- Scalding the chicken	40-41
		4.4.1.3	Eleme	nts in Process 3- Plucking the feather	42-43
		4.4.1.4	Eleme	nts in Process 4- Cutting the chicken	43-44
		4.4.1.5	Eleme	nts in Process 5- Weighing the chicken	44
		4.4.1.6	Eleme	nts in Process 6- Packing the chicken	45
4.5	Data (Collection			46
	4.5.1	Cycle time	(C/T) of p	production line	46-50
	4.5.2	Changeove	r time (C/	O) of production line	50
	4.5.3	Uptime (U/	T) calcula	tion	50
	4.5.4	TAKT time	e calculation	on	51
	4.5.5	Inventory			51-52
4.6	Devel	opment of C	urrent Stat	e Map (CSM)	52-54

	4.6.1	Analysis o	on value ad	ded, and non-value added	55
4.7	Analysis of wastes				56-58
	4.7.1	Wastes ro	ot cause an	alysis	59
		4.7.1.1	Devel	opment of Ishikawa diagram	59
		4.7	7.1.1.1	Ishikawa diagram for waiting waste	59-61
		4.7	7.1.1.2	Ishikawa diagram for motion waste	61-63
		4.7	7.1.1.3	Ishikawa diagram for defects waste	63-64
		4.7	7.1.1.4	Ishikawa diagram for transportation waste	64
		4.7	7.1.1.5	Ishikawa diagram for inventory waste	65
		4.7.1.2 W	aste analysi	s using Failure Modes and Effects (FMEA)	66
		4.7	7.1.2.1	FMEA for waiting waste	66-67
		4.7	7.1.2.2	FMEA for motion wastes	67
		4.7	7.1.2.3	FMEA for defects wastes	68
		MALA 4.7	7.1.2.3	FMEA for transportation wastes	68
4.8	Sugge	stion for im	provement		69
	4.8.1	Improvem	ent of wast	e at Process 1-Slaughtering the chicken	69
		4.8.1.1. W	aiting wast	e improvement plan	69-80
		4.8.1.2. M	otion waste	e improvement plan	80-82
	 4.8.2. Improvement plan for transportation waste at Process 2- Scalding the chicken 4.8.3. Improvement plan for defects waste at Process 3- Plucking 				83-84
	the feather				85-88
4.9	Appro	val of the in	mprovemer	ıt plan proposal	89
4.10	Failur	e Mode and	Effects Ar	alysis (FMEA) after the improvement	90-93
4.11	Analy	sis of impac	et from the	improvement	94
	4.11.1	Impact of	improveme	ent at Process 1- Slaughtering the chicken	94
	4.11.2 Impact of improvement at Process 2- Scalding the chicken				
	4.11.3 Impact of improvement at Process 3- Plucking the feather				
	4.11.4 Time utilization improvement calculation				
	4.11.5. Return of investment calculation				
4.12	Devel	opment of I	Future State	e Map (FSM)	99-100

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	101-103
5.2	Recommendations	104
5.3	Sustainability Element	104
5.4	Lifelong Learning Element	104
5.5.	Complexity Element	105

REFERENCES

106-115

APPENDICES

А	Gantt Chart	116
В	Facility Layout	117
С	Voice of Customer Table	118
D	FMEA Rubric	119


```
UNIVERSITI TEKNIKAL MALAYSIA MELAKA
```

LIST OF TABLES

2.1	Lean manufacturing tools and technique	15
2.2	Application of VSM in different environments	20
4.1	The Project Charter	37
4.2	Cycle times of Process 1	47
4.3	Cycle times of Process 2	47
4.4	Cycle times of Process 3	48
4.5	Cycle times of Process 4	48
4.6	Cycle times of Process 5	49
4.7	Cycle times of Process 6	49
4.8	Summary of the cycle time and the longest elements in all processes	50
4.9	The wastes occurred in the current six processes	56
4.10	The inventory waste occurs in the between of the six processes	56
4.11	The wastes that not occurred in all the six processes	57
4.12	FMEA for waiting waste	66
4.13	UThe FMEA for motion waste L MALAYSIA MELAKA	67
4.14	The FMEA for defects waste	68
4.15	The FMEA for transportation waste	68
4.16	Details of the Automatic Poultry Machine	71
4.17	Planning Matrix of Customer Requirement form	73
4.18	Morphological chart	75
4.19	Screening concept	76
4.20	Scoring concept	76
4.21	Scoring scale	76
4.22	Results of the comparison of the material properties	77
4.23	The old method elements	81
4.24	The unnecessary elements for Process 1	81

4.25	Elements that were removed and replaced to reduce the motion	81
	waste	
4.26	The process elements and the worker in charge	82
4.27	The FMEA for waiting waste after the improvement	91
4.28	FMEA for motion waste after the improvement	92
4.29	FMEA for transportation waste after improvement	93
4.30	FMEA for defects waste after the improvement	93
4.31	The cycle time at Process 1 after the implementation	94
4.32	The cycle time at Process 2 after the implementation	95
4.33	The cycle time at Process 3 after the implementation	96
4.34	Details of elements for calculation of profit	97
4.35	Details of elements for calculation	97

LIST OF FIGURES

2.1	Illustration of Muda, Mura and Muri	9
2.2	The segregation of waste according to categories	10
2.3	Five principles of lean	13
2.4	Common symbol to draw a value stream map	17
2.5	Current State Map (CSM) (Shweta and Sunith, 2015)	18
2.6	Future State Map (FSM) (Shweta and Sunith, 2015)	19
3.1	Flowchart of the steps carried out in this study	27
4.1	Critical to Quality (CTQ) Tree based on customer's complaints	36
4.2	The process flows of the chicken production process	38
4.3	The process flow of the elements in process 1- Slaughtering the chicken	39
4.4	Normal and manual way the chicken was slaughtered by the workers	40
4.5	The method of the chicken was placed in the machine	40
4.6	The process flow of the elements in process 2- Scalding the chicken	41
4.7	The current machine used in the industry	41
4.8	The process flow of the elements in process 3- Plucking the feather	42
4.9	The plucking machine used in the industry LAYSIA MELAKA	42
4.10	The worker manually plucks off the feather	43
4.11	The cutting process of clean chicken before distributed to customer	43
4.12	The process flow of the elements in process 4- Cutting the chicken	44
4.13	The process flow of the elements in process 5- Weighing the chicken	44
4.14	The process flow of the elements in process 6- Packing the chicken	45
4.15	The Current State Map (CSM) of the chicken production process	54
4.16	All the waste occurred in the current chicken production process	58
4.17	The Ishikawa diagram for Process 1- Slaughtering the chicken	60
4.18	The Ishikawa diagram for Process 2- Scalding the chicken	60
4.19	The Ishikawa diagram for Process 3- Plucking the feather	61
4.20	The Ishikawa diagram in Process 1- Slaughtering the chicken	61
4.21	The Ishikawa diagram in Process 2- Scalding the chicken	62
4.22	The Ishikawa diagram in Process 3- Plucking the feather	62

The Ishikawa diagram for Process 4- Cutting the chicken	63
The Ishikawa diagram for Process 1- Slaughtering the chicken	63
The Ishikawa diagram for Process 3- Plucking the feather	64
The Ishikawa diagram for transportation waste in Process 2-	
Scalding the chicken	64
The Ishikawa diagram between Process 1 and Process 2	65
The Ishikawa diagram between Process 3 and Process 4	65
The concept of the conveyer system	70
The technical drawing of the poultry hanger	72
The 3-D image of the poultry hanger	73
Quality Function Deployment (QFD)	74
Static Nodal Stress Plot	78
Static-Displacement Plot	79
Static-Strain Plot	80
The concept of the conveyer system between Process 1 and Process 2	83
The new facility layout of the factory	84
Common condition of chicken with feather still attached	85
The rubber is exhausted and bent	85
The Standard Operating Procedure (SOP) to handle the machine	87
Plucking finger rubber tools check sheet	88
The approval form of the improvement plan	89
Future State Map (FSM)	100
	The Ishikawa diagram for Process 4- Cutting the chicken The Ishikawa diagram for Process 1- Slaughtering the chicken The Ishikawa diagram for Process 3- Plucking the feather The Ishikawa diagram for transportation waste in Process 2- Scalding the chicken The Ishikawa diagram between Process 1 and Process 2 The Ishikawa diagram between Process 3 and Process 4 The concept of the conveyer system The technical drawing of the poultry hanger The 3-D image of the poultry hanger Quality Function Deployment (QFD) Static Nodal Stress Plot Static-Displacement Plot Static-Displacement Plot Static-Strain Plot The concept of the conveyer system between Process 1 and Process 2 The new facility layout of the factory Common condition of chicken with feather still attached The rubber is exhausted and bent The Standard Operating Procedure (SOP) to handle the machine Plucking finger rubber tools check sheet The approval form of the improvement plan Future State Map (FSM)

LIST OF ABBREVIATIONS

C/O	-	Changeover Time
C/T	-	Cycle Time
CSM	-	Current State Map
CTQ	-	Critical to Quality
ESTRN	-	Equivalent Strain
FEA	ALAYS	Finite Element Analysis
FMEA	a shire and	Failure Modes and Effects Analysis
FSM	No.	Future State Map
JIT		Just in Time
LM	The H	Lean Manufacturing
NVA	- SAINO	Non-Value Added
QFD	Al alt	Quality Function Deployment
SMEs		Small and Medium Enterprise
SOP	UNIVERSI	Standard Operating Procedure A MELAKA
TPS	-	Toyota Production System
U/T	-	Uptime
URES	-	Resultant Displacement
VA	-	Value Added
VOC	-	Voice of Customer
VSM	-	Value stream mapping
WIP	-	Work in Progress

LIST OF SYMBOLS

CHAPTER 1 INTRODUCTION

This chapter consists of the overall research analysis, including the background of the study, the statement of problems and objectives. The scope and significance of the research are also explained in this chapter.

1.1 Research Background

Manufacturing industries company must be ready to face challenges and competition in marketplace to be able to meet the market needs. The examples of the challenges are to operate with high productivity and produce high quality of products. An improvement plan must be construct so that industries company able to provide solutions to the problems. Other than that, manufacturers should be more creative and innovative to apply advanced manufacturing technique and skills to plan a better system of production. One of the methods is to merge the improvement activities with the quality. In order to obtain a competitive advantage for most manufacturing industries, productivity and quality improvement are combined intentionally (Soufhwee et al., 2017).

A Japanese automotive company, Toyota, proposed the idea of Lean Manufacturing (LM) during the 1950s, which was well known before as the Toyota Production System (TPS) (Jafri and Seyed. 2015). Lean manufacturing tools is a good approach to solve the problems by the industry practitioner since it provides tools and strategies that can review and identify the problem and reach the objectives of the manufacturing industries company. Since customer always require fast production with the best quality so to response to these requirements, LM has been applied because it reduces waste without additional resource requirements (Jaiprakash and Kuldip, 2014). Waste is an activity along the value stream

that does not provide value added in the process. One of the most important requirements for obtaining maximum outputs with minimum inputs in all processes is to remove waste elements.

There are 7 types of waste in lean manufacturing listed by Toyota which are overproduction, inventory, transport, defects, processing, motion, and waiting (Seher and Hatice, 2015). This waste has been reviewed as the problems that usually donate to high time usage in production and quality issues. According to Soufhwee et al. (2017) by implementing a lean manufacturing tool, we can identify the root problems and plan a solution. Therefore, by implementing LM tools, it helps to reduce the production times and quality issues experienced by the industry. Industry will become more reliable since the productivity and quality issue has been resolved.

1.2 Problem Statement

The manufacturer practitioner in industrial sector is required to be more innovative, effective, and adaptive. Standardization is important to overcome the gap between competitors in terms of production speed or efficiency, improve product quality and lowering the average failure. To fulfil the customer demand, industry must be able to commit and complete the customer order on time. Study by Rekha et al. (2017) and Lopes et al. (2015) has identified issues such as unnecessary movements of man and material on work area, less time utilization and non- value-added activities that somehow slowed down the production rate. Any excess beyond the requirement for equipment, materials, parts, and working time is generally referred as the waste (Prakash and Mothilal, 2018). Hence. waste production time to manufacture the product must be reduced to increase productivity. Another essential goal of the manufacturing process is to produce product with good quality but to be efficient in speed for production may cause lots of quality issues. A case study by Jimenez et al. (2019) experienced increase index on the products returned in the year 2015. Non-conforming products has been identified to not meeting the required specifications caused by lack quality controls. Another study of quality by Soufhwee et al. (2017) has also identify lack of training and not following the instructions. This measure reflects the company's high costs and the key triggers of returns, as it is related with noncompliance with consumer specifications and product quality issues.

This study has been conducted at Mohamed Akbar Enterprise which is a chicken processing factory that mainly process and distributes chicken in Rawang area. The company also known as a Small and Medium Enterprise (SMEs) company. Based on internal and external customer's complaints, there are several problems the company faces in producing the good products to satisfy their customers in the production process. A highly demand of chicken that need to be distributes give the problem to the company as they cannot provide the required number of chickens needed due to the slower production process. In addition, some of the chicken feather appear on the skin of the chicken. The inconsistency on the appearance lead to customer complaints. Issues that arise can be categorized as waste, therefore the suitable solution to remove the waste need to be identify in order to solve the problems. A systematic approach such as production line analysis, data collection, and using technical approach need to be consider in solving the problems.

1.3 Objectives

The objectives of this study are:

- 1. To apply direct time study technique on the production line of the chicken production process
- 2. To develop Current State Map (CSM) for the chicken production process
- 3. To evaluate the waste in current chicken production process using root cause analysis
- 4. To develop Future State Map (FSM) with proposal solution for the chicken production process

1.4 Research Scope

This project will focus on doing an analysis on the production line using direct time study for all six processes in chicken production process. This study also will concentrate on conducting waste analysis only on the first three processes. Lastly, this study will focus on reducing the production times and quality issues using lean tools by proposing a solution.