

THE EFFECT OF ABRASIVE WATER JET TURNING PARAMETER OF INCONEL 718 ALLOY DIMENSIONAL ACCURACY AND SURFACE ROUGHNESS

ALAYS

UNIVERSITI TEKNIKAbyMALAYSIA MELAKA

AINAA SHAMIRA BINTI JEFRI B051720014 970627-04-5358

FACULTY OF MANUFACTURING ENGINEERING

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: THE EFFECT OF ABRASIVE WATER JET TURNING PARAMETER **OF INCONEL 718 ALLOY DIMENSIONAL ACCURACY AND** SURFACE ROUGHNESS.

Sesi Pengajian: 2020/2021 Semester 1

Saya AINAA SHAMIRA BINTI JEFRI (970627-04-5358)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- *Sila tandakan ($\sqrt{}$) 4.

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) UNIVE NIKAL MALAYSIA MELAKA

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ TERHAD badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Alamat Tetap: Batu 20 1/4. Kampung Sri Jeram, 78300 Masjid Tanah, Melaka.

Tarikh: 08/02/2021

Disahkan oleh:

Cop Rasmi: al Malaysia M

Tarikh: _10/2/2021__

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "The Effect of Abrasive Water Jet Turning Parameter of Inconel 718 Alloy Dimensional Accuracy and Surface Roughness" is the result of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow:

ABSTRAK

Mesin konvensional mempunyai banyak masalah, terutamanya dari segi jangka hayat alat, produktiviti, dan kemasan permukaan. Abrasive Water Jet Turning (AWJT) adalah alternatif untuk pemesinan konvensional. AWJT adalah sejenis proses pemesinan yang tidak konvensional yang menggunakan jet air bertekanan tinggi yang dicampurkan bersama-sama dengan zarah kasar. Ia sangat sesuai untuk bahan yang paling sukar dan bahan kerja silinder. Inconel 718 Alloy adalah bahan yang akan digunakan untuk projek ini. Aloi Inconel 718 dikenali sebagai bahan paling sukar dan sangat sukar untuk mesin menggunakan kaedah konvensional. Inconel 718 Alloy mempunyai kombinasi ketahanan kakisan, ketahanan pengoksidaan dan ketahanan merayap yang sangat baik. Bahan jenis ini biasanya terdapat di industri kapal terbang.

Penyediaan bahan, menjalankan mesin, pengumpulan data, dan analisis data adalah empat tahap dalam penyelesaian projek ini. 8 sampel dengan diameter 16 mm dan panjang 50 mm akan dimesin menggunakan mesin AWJT. Reka bentuk full factorial terlibat dalam projek ini untuk memastikan bahawa eksperimen dijalankan secara sistematik dan cekap. Semua data dikumpulkan dengan menggunakan mesin kekasaran permukaan dan mesin penguji kebulatan. Data dianalisis dengan mengunakan ANOVA dan untuk mengenal pasti kesan signifikan parameter dioptimumkan atau tidak.

ABSTRACT

Conventional machines have a lot of problems, particularly in terms of tool life, productivity, and surface finishing. Abrasive Water Jet Turn (AWJT) is an alternative to conventional machining. AWJT is a type of unconventional machining process that uses a high-pressure water jet that is mixed together with abrasive particles. It is very suitable for the hardest material and cylindrical workpieces. Inconel 718 Alloy is the material that will be used for this project. Inconel 718 alloy is known as the hardest material and is very difficult to machine using conventional methods. Inconel 718 Alloy has an excellent combination of corrosion resistance, oxidation resistance and creep resistance. This type of material is usually found in the aircraft industry.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The preparation, experimentation, data collection, and data analysis are four stages in the completion of this project. 8 samples with a diameter of 16 mm and a length of 50 mm will be machined using the AWJT machine. A full factorial design is involved in this project to ensure that the experiment is carried out in a systematic and efficient manner. All the data is collected by using a surface roughness machine and a roundness tester machine. The data is analyzed by using ANOVA and to identify the significant effect of the parameter is optimized or not.

DEDICATION

To my beloved father, Jefri bin Muhamad,

my appreciated mother, Norliza binti Yaacob,

my adored sister and brother, Efi, Emy and Ernie,

for giving me moral support, money, cooperation, encouragement, and also understandings

Thank You So Much & Love You All Forever

My Supervisor,

PM Dr. Mohd Shahir bin Kasim,

for guiding me through the whole research project

My friends and technician especially Mr. Syafiq,

The Water Jet lab technician who is involved in this study and project,

May Allah ease our journey and bless all of us. InshaAllah.

ACKNOWLEDGMENT

By The Name of Allah the Most Merciful and Gracious

My highest gratitude and praise to Allah S.W.T for the blessing that I can finish my final year project. Through this subject, I learned a lot of experience in the engineering field. First of all, thanks to my lovely parents for giving encouragement, enthusiasm, and invaluable assistance to me. Without all this, I might not be able to complete his final year project properly. Second, I would like to express my deepest appreciation to all those who provided me the possibility to complete this report. A special gratitude I give to my supervisor PM Dr. Shahir bin Kasim for her advice, guidance, constant supervision as well as exposing me to meaningful experiences throughout the study. I am truly grateful for his unwavering support throughout the whole period of this final year project. Taught all the manufacturing knowledge, share the experience with me, and taught me how to generate an excellent format report.

Furthermore, I would also like to acknowledge with much appreciation the crucial role of the staff of the Faculty of Manufacturing Engineering (FKP) and Faculty of Mechanical and Manufacturing Engineering Technology (FTKMP), who permitted to use all required equipment and the necessary materials to complete the study. Last but not least, I want to thank all lecturers, staff, and my friends who had to help me going through this study and for all knowledge and experiences that I have gained which lead to the completion of my study.

TABLE OF CONTENTS

Abs	trak	i
Abs	tract	ii
Ded	ication	Iii
Ack	nowledgment	iv
Tabl	le of contents	v
List	of tables	ix
List	of figures	xi
List	of abbreviations, symbols, and nomenclatures	XV
CH	APTER 1 (INTRODUCTION)	1
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Objectives NIVERSITI TEKNIKAL MALAYSIA MELAKA	4
1.4	Scopes of Research	4
CH	APTER 2 (LITERATURE REVIEW)	5
2.1	Abrasive water jet	5
2.2	Inconel 718 alloy material	6
2.3	AWJT parameter	6
	2.3.1 The effect of depth of cut	6
	2.3.2 The effect of rotational speed	9
	2.3.3 The effect of flow rate/ traverse speed	11
	2.3.4 The effect of standoff distance	14
2.4	Surface roughness	17

2.5	Dimen	sional Accuracy	23
	2.5.1	Roundness	23
	2.5.2	Eccentricity	24

CHA	CHAPTER 3 (METHODOLOGY)			26
3.1	Resear	ch Methodology Structure 2		
3.2	Prepara	Preparation Tools		28
	3.2.1	Electrical D	ischarge Machining (EDM) wire cut	28
		3.2.1.1 Pro	ocedures of EDM wire cut machine	29
		3.2.1.2 Sa	fety precaution	29
	3.2.2	Ultrasonic c	leaning process	30
		3.2.1.1 Pr	ocedures of ultrasonic cleaning	31
3.3	Experi	mentation		33
	3.3.1	Abrasive W	ater Jet Turning (AWJT) machine	33
		3.3.1.1 Pro	ocedures of AWJT machine	34
		347,3,3	3.1.1.1 Machine procedure	34
		AN 3.3	3.1.1.2 Installing jig	35
		3.3	3.1.1.3 Dial Test Indicator (DTI)	36
		UNIVER	3.1.1.4 Zeroing and positioning SIA MELAKA	38
		3.3.1.2 Pa	rameters of AWJT machine	39
		3.3.1.3 At	prasive particles- Garnet mesh size 80	39
		3.3	3.1.3.1 Physical characteristics	40
		3.3	3.1.3.2 Chemical analysis	41
	3.3.2	Inconel 718	alloy	41
		3.3.2.1 Me	echanical properties	42
		3.3.2.2 Th	ermal properties	43
	3.3.3	Nozzle size		43
	3.3.4	Pilot testing		45
	3.3.5	Fixed and v	ariable parameters	46
	3.3.6 Parameter process			47

		3.3.6.1 Design of Experiment (DoE) method- RSM	47	
		3.3.6.1.1 Procedure of DoE	48	
		3.3.6.1.2 The combination of input variable	50	
3.4	Calcul	ation	51	
	3.4.1	Calculation of DOC	52	
3.5	Measu	rement tools	53	
	3.5.1	Surface roughness machine	53	
		3.5.1.1 Procedures of surface roughness machine	54	
	3.5.2	CNC roundness measuring machine	56	
		3.5.2.1 Procedures of CNC roundness measuring machine	56	
	3.5.3	Optical microscope	58	
3.6	Data a	nalysis- ANOVA	59	
	3.6.1	Procedure of data analysis- Three-way ANOVA	59	
	3.6.2	Analysis of three-way ANOVA	61	
CHA	APTER	4 (RESULTS AND DISCUSSION)	62	
4.1	Results and discussion 6			
		sis parameter by using ANOVA 6		
4.2	Analys	sis parameter by using ANOVA	67	
4.2	Analys 4.2.1	sis parameter by using ANOVA Analysis of parameter effect on surface roughness	67 67	
4.2	Analys 4.2.1 4.2.2	sis parameter by using ANOVA Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness	67 67 68	
4.2	Analys 4.2.1 4.2.2 4.2.3	sis parameter by using ANOVA Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness Analysis of parameter effect on eccentricity	67 67 68 70	
4.2	Analys 4.2.1 4.2.2 4.2.3 4.2.4	sis parameter by using ANOVA Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness Analysis of parameter effect on eccentricity Analysis of parameter effect on diameter error	67 67 68 70 71	
4.2	Analys 4.2.1 4.2.2 4.2.3 4.2.4 Model	sis parameter by using ANOVA Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness Analysis of parameter effect on eccentricity Analysis of parameter effect on diameter error development in term of actual factors	67 67 68 70 71 72	
4.24.34.4	Analys 4.2.1 4.2.2 4.2.3 4.2.4 Model Compa	Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness Analysis of parameter effect on eccentricity Analysis of parameter effect on diameter error development in term of actual factors arison between model and experiment	67 67 68 70 71 72 74	
4.24.34.4	Analys 4.2.1 4.2.2 4.2.3 4.2.4 Model Compa 4.4.1	sis parameter by using ANOVA Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness Analysis of parameter effect on eccentricity Analysis of parameter effect on diameter error development in term of actual factors arison between model and experiment The diagnostic plot for surface roughness	67 67 68 70 71 72 74 74	
4.24.34.4	Analys 4.2.1 4.2.2 4.2.3 4.2.4 Model Compa 4.4.1 4.4.2	sis parameter by using ANOVA Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness Analysis of parameter effect on eccentricity Analysis of parameter effect on diameter error development in term of actual factors arison between model and experiment The diagnostic plot for surface roughness The diagnostic plot for roundness	67 67 68 70 71 72 74 74 74 76	
4.24.34.4	Analys 4.2.1 4.2.2 4.2.3 4.2.4 Model Compa 4.4.1 4.4.2 4.4.3	sis parameter by using ANOVA Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness Analysis of parameter effect on eccentricity Analysis of parameter effect on diameter error development in term of actual factors arison between model and experiment The diagnostic plot for surface roughness The diagnostic plot for roundness The diagnostic plot for roundness	67 67 68 70 71 72 74 74 74 76 78	
4.24.34.4	Analys 4.2.1 4.2.2 4.2.3 4.2.4 Model Compa 4.4.1 4.4.2 4.4.3 4.4.4	sis parameter by using ANOVA Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness Analysis of parameter effect on eccentricity Analysis of parameter effect on diameter error development in term of actual factors arison between model and experiment The diagnostic plot for surface roughness The diagnostic plot for roundness The diagnostic plot for eccentricity The diagnostic plot for diameter error	67 68 70 71 72 74 74 74 76 78 80	
4.24.34.44.5	Analys 4.2.1 4.2.2 4.2.3 4.2.4 Model Compa 4.4.1 4.4.2 4.4.3 4.4.4 Effect	sis parameter by using ANOVA Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness Analysis of parameter effect on eccentricity Analysis of parameter effect on diameter error development in term of actual factors arison between model and experiment The diagnostic plot for surface roughness The diagnostic plot for roundness The diagnostic plot for eccentricity The diagnostic plot for diameter error of parameter into the response	67 68 70 71 72 74 74 76 78 80 82	
4.24.34.44.5	Analys 4.2.1 4.2.2 4.2.3 4.2.4 Model Compa 4.4.1 4.4.2 4.4.3 4.4.4 Effect 4.4.1	sis parameter by using ANOVA Analysis of parameter effect on surface roughness Analysis of parameter effect on roundness Analysis of parameter effect on eccentricity Analysis of parameter effect on diameter error development in term of actual factors arison between model and experiment The diagnostic plot for surface roughness The diagnostic plot for roundness The diagnostic plot for eccentricity The diagnostic plot for diameter error of parameter into the response Effect of parameter into surface roughness	67 68 70 71 72 74 74 74 76 78 80 82 82	

	4.4.3	Effect of parameter into eccentricity	86
	4.4.4	Effect of parameter into diameter error	88
4.6	Parame	eter optimization by using full factorial method	89
4.7	Optimi	zation of combination parameter	90
CHA	PTER	5 (CONCLUSION AND RECOMMENDATION)	91
5.1	Conclu	ision	91
	5.1.1	Sustainable design and development	92
	5.1.2	Complexity	92
	5.1.3	Life Long Learning (LLL)	93
5.2	Recom	mendation	93
REF	EREN	CES THALAYSIA	94
APP	ENDIC	اونيونر سيتي تيكنيكل مليسيا ملاك	100

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

2.1	The compilation depth of cut parameter of AWJT from literature		
2.2	The compilation rotational speed parameter of AWJT from literature		
2.3	The compilation feed rate parameter of AWJT from literature.	12	
2.4	The compilation standoff distance parameter of AWJT from literature	17	
	NALAYSIA ME		
3.1	Specification of AWJT machine	39	
3.2	Physical characteristic of garnet sand mesh size 80	41	
3.3	Chemical analysis of garnet sand mesh size 80	41	
3.4	Mechanical properties of Inconel 718 alloy	42	
3.5	Thermal properties of Inconel 718 alloy MALAYSIA MELAKA	43	
3.6	The example of pilot studies	46	
3.7	Fixed and variable parameter of AWJT machine	47	
3.8	The combination of input variable (Feed rate, Rotational Speed and DOC) for 8 samples		
3.9	Zeroing value of AWJT machine	52	
3.10	New value for the position of the x-axis, y-axis, and z-axis	53	
3.11	Three-way ANOVA table	60	
3.12	Analysis of three-way ANOVA	61	

4.1	Result of the new coordinate for the position of the x-axis, y-axis, and z-axis		
4.2	Experimental result from surface roughness testing		
4.3	The results of surface roughness picture by using the optical microscope		
4.4	The experimental result from average surface roughness testing, roundness testing, eccentricity testing, and percentage of diameter error		
4.5	The results of ANOVA for surface roughness	68	
4.6	Data analysis for surface roughness (R-Squared)	68	
4.7	The results of ANOVA for roundness		
4.8	Data analysis for roundness (R-Squared)	69	
4.9	The results of ANOVA for eccentricity	70	
4.10	Data analysis for eccentricity (R-Squared)	71	
4.11	The results of ANOVA for the percentage of diameter error	72	
4.12	Data analysis for the percentage of diameter error (R-Squared)	72	
4.13	Characteristic target for optimum responses	89	
4.14	Selection of the optimum combination of parameter	90	

LIST OF FIGURES

2.1	Schematic diagram of AWJT radial-mode turning (Liu et al.,2014)		
2.2	Residual stresses Vs depth from machined surface (Srivastava et al.,2017) 7		
2.3	Micro hardness Vs depth from machined surface (Srivastava et al.,2017) 8		
2.4	Effect of spindle speed on the surface roughness(Fuat et al. (2016)	10	
2.5	Surface Roughness in μm Vs Nozzle Feed Rate in mm/min (Fuat et al., 2016)	12	
2.6	Percentage of reduction in diameter Vs Traverse Speed (Srivastava et al.,2017)	13	
2.7	Material Removal Rate (MRR) Vs Traverse Speed (Srivastava et al., 2017)	13	
2.8	Experimental result (Tarek et al.,2018)	15	
2.9	SEM imaged of unpeened samples(a), Peened sample by stand-off distance	16	
	10mm and nozzle angle 30°(b), peened sample by stand-off distance 10mm and		
	nozzle angle 45°(c), magnified view of peened sample by stand-off distance		
	10mm and nozzle angle 45°(d), strebgthened zone of peened sample by stand-		
	off distance 10mm and nozzle angle 30° (Balamurugan et al.,2018)		
2.10	Scanning Electron Microscope(SEM) diagram of three different traverse	18	
	speed(Vivek et al.,2019)		
2.11	The average roughness in terms of longitudinal and transversal average	18	
	roughness(A. Alberdi et al.,2017).		
2.12	The effect of workpiece when the rotational direction against the direction of	19	
	water stream (Libor Sitek and Petr Hlavacek, 2016)		

2.13	The difference between two different rotations directional and the occurrence of surface waviness (Hashish,2016)	
2.14	Effect of abrasive flow rate on the surface roughness (Fuat et al. (2016)	21
2.15	Effect of abrasive flow rate on DOC (Weiyi et al.,2013)	22
2.16	Difference between material removal rate and roughness of specimens (Eckart et al.,2012)	23
2.17	The model of roundness and eccentricity (H. H. Tian et al., 2020)	24
3.1	Flow chart of process methodology	27
3.2	Electrical Discharge Machining (EDM) Wire Cut	28
3.3	Ultrasonic Cleaning	30
3.4	Machine setup	33
3.5	AWJT machine او نبون سبخ بنکنک ملسیا مارد	34
3.6	Leveling using water level	35
3.7	Installing jig	36
3.8	Digital Dial Indicator Gauge	37
3.9	Dial tester indicator	37
3.10	Zero position of Y-axis by using an electronic edge finder	38
3.11	Zero position of the workpiece	39
3.12	Abrasive garnet mesh size 80	40
3.13	Inconel 718 alloy	42
3.14	Nozzle	44

3.15	Schematic diagram of the nozzle 4		
3.16	Design Expert Software		
3.17	Coordinate system of 3 axis water jet machine	51	
3.18	Stand-off diagram (a) Schematic diagram of stand-off distance (b) The position of the nozzle with stand-off 8mm	52	
3.19	Schematic diagram for the variable of DOC with fixed stand-off distance	53	
3.20	Surface Roughness machine	54	
3.21	Z-axis position of roundness tester	57	
3.22	CNC Roundness Measuring Machine	57	
3.23	Optical microscope	58	
4.1	Length of surface roughness measurement	63	
4.2	No feed mark appear on the specimen at a feed rate of 3 mm/min	64	
4.3	Length of roundness testing from the machining surface of the specimen	66	
4.4	The results of roundness testing and eccentricity testing for specimen no 2 $(DOC= 0.1 \text{mm}, \text{Feed rate} = 3 \text{mm/min}, \text{ and Rotational speed} = 60 \text{rpm})$	67	
4.5	Normal plot of residuals (Surface Roughness)	75	
4.6	Cook's distance (Surface Roughness)	75	
4.7	Box-cox plot for power transforms (Surface Roughness)	76	
4.8	Normal plot of residuals (Roundness)	77	
4.9	Cook's distance (Roundness)	77	
4.10	Box-cox plot for power transforms (Roundness)	78	

4.11	Normal plot of residuals (Eccentricity)		
4.12	Cook's distance (Eccentricity)		
4.13	Box-cox plot for power transforms (Eccentricity)	80	
4.14	Normal plot of residuals (Diameter Error)	81	
4.15	Cook's distance (Diameter Error)	81	
4.16	Box-cox plot for power transforms (Diameter Error)	82	
4.17	Interaction graph for surface roughness; DOC vs Feed rate	83	
4.18	Interaction graph for surface roughness; DOC vs Rotational Speed	83	
4.19	Interaction graph for surface roughness; Feed rate vs Rotational speed	84	
4.20	One-factor plot graph for roundness; DOC	85	
4.21	One-factor plot a graph for roundness; Feed rate	85	
4.22	One-factor plot graph for roundness; Rotational speed	86	
4.23	One-factor plot graph of eccentricity; DOC	87	
4.24	Interaction graph for eccentricity; Feed rate vs Rotational speed AKA	87	
4.25	One-factor plot graph for dimension error; Rotational speed	88	
4.26	Interaction graph for dimension error; DOC vs Feed rate	89	
4.27	Generation of optimum responses from the ideal combination of parameter	90	

LIST OF ABBREVIATIONS, SYMBOLS, AND NOMENCLATURES

AWJ	-	Abrasive Water Jet
AWJT	-	Abrasive Water Jet Turning
AWJM	-	Abrasive Water Jet Milling
NNS	ALA	Net Near Shape
3D	- Alt Ma	Three dimension
MRR	EK	Material Removal Rate
SEM	E	Scanning Electron Microscope
DoE	- Staning	Design of Experiment
DOC	3/06	Depth Of Cut
CNC	- *	Computer Numerical Control
CCD	UNIVERS	Central Composite Design
CAD	-	Computer-Aided Design
CAM	-	Computer-Aided Manufacturing
ANOVA	-	Analysis of Variance
DF	-	Degree of Freedom
SS	-	Sum of Square
MS	-	Mean Square
LLL	-	Life Long Learning
DTI	-	Dial Tester Indicator

R	-	Roundness
f	-	Feed rate
Ν	-	Rotational Speed
Ra	-	Surface Roughness
Dim _e	-	Diameter Error
А	-	Area
р	-	Perimeter
e	MALAY	Eccentricity
b	and a	Minor axis
a	and a second	Major axis
%	- PARAINO	Percent
mm	سيا ملاك	اونيۇىرسىيتى تېكنىھMillimetre
μm	UNIVERS	Micrometer KAL MALAYSIA MELAKA
°C	-	Degree Celsius
MPa	-	Mega Pascal
mm/min	-	Millimetre per minute
m/min	-	Meter per minute
cm/min	-	Centimeter per minute
rpm	-	Revolution per minute
Hz	-	Hertz

g/s -	Gram per second
-------	-----------------

mm/s - Milimeter per second

CHAPTER 1

INTRODUCTION

1.1 Background of Study

The majority of the technological advances need a new era of advanced material applications in various engineering fields. However, most of these materials have specific characteristics that cannot be machined using traditional manufacturing methods. Different machining technologies have been developed in the last few decades for processing several shapes of components.

Unfortunately, each of these technologies has its limitations for giving excellent efficiency and accuracy. Meanwhile, Abrasive Water Jet (AWJ) machining has been proven to cut various material shapes without any excessive force or thermal damage. AWJ machining often finds work cutting hardened steels, Ti- alloys, aerospace alloys, and other materials that are difficult to machine using conventional methods.

Water jet technology is one of the fastest-growing major machine tool processes globally because of its flexibility and simple operation. The garnet abrasive is used in the water jet stream. Without the abrasive, it can cut soft material only. Abrasive water jet can cut any thickness from smallest to most significant in high or low volume. There are two types of AWJ machining: Abrasive Water Jet Turning (AWJT) and Abrasive Water Jet Milling (AWJM).

AWJT is usually used to reduce the diameter of a cylindrical workpiece. The main difference between AWJT and AWJM is that the part that will be machined will rotate for turning operation, while for milling operation, the tools will rotate. AWJT is a technology that uses a high-pressure water jet that combines with abrasive particles. This technology is very suitable for the most challenging material that is very difficult to remove the unwanted shape. AWJT technology is also ideal for turning near net shape (NNS) and profiling grinding wheels.

In this research, AWJT will be discussed due to their ability to machine more rigid material such as Inconel 718 alloy with a cylindrical shape. Inconel 718 alloy is usually used on aircraft turbine engines for the aerospace industry. The modern aircraft turbine engines offer more reliability than the existing aircraft turbine engines. The most important factors to react to the higher reliability for the turbine engines are that the engineering teams must ensure these engines can be maintained, used for several years, and have excellent efficiency.

Inconel 718 alloy, also known as super alloys where the material can be machined at a temperature exceeding 1300°F. It is also one of the materials that are very difficult to machine. In the aircraft industry, the Inconel 718 alloy is the perfect material to withstand various higher temperature corrosions and stress conditions that can occur in the turbine engine. Inconel 718 alloy also has an excellent combination of high-temperature corrosion resistance, oxidation resistance, and creep resistance. During machining Inconel 718 alloys, there will be several challenges such as generates more heat at the tooltip, causing excessive tool wear, and others. The other application for Inconel 718 alloy is 3D printing technology, die casting, oil and gas industries, saltwater applications, and others.

1.2 Problem Statement

Inconel 718 Alloy's material has become one of the commonly used in the aerospace industry, chemical industry, and others. Nowadays, this material has been frequently used in gas turbine engines because Inconel 718 alloy has excellent tensile strength, ductility, fracture toughness, creep resistance, and fatigue resistance. Vrushali and Dalu (2017) states that it is difficult to machine the Inconel 718 Alloy material by using a conventional method due to Inconel 718 alloy produces poor results during the machining process Inconel 718 alloy tends to react with cutting tool material at the highest temperature.

Conventional machining has been used widely in the field of metal processing. When it comes to machining the material, the most important of traditional machining is physical contact between the tool and the workpiece. Thus, it can lead to tool wear since physical contact is required to perform the work. Friction is one factor of tool wear where the amount of heat is generated during the machining process. Anthony *et al.*(2017) conducted a study about the tool wear during machining Inconel 718 alloy concluded that in machining the Inconel 718 alloy material, the tool wear is influenced by thermal softening, adhesion, diffusion, notching, and thermal cracking. Thus, it can conclude that several factors were influenced during machining Inconel 718 alloy using conventional machining.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

During the metal cutting using the conventional method, the metal will absorb the heat that transmits away from the cutting, and it will cause the heat-affected zone on the workpiece. It occurs when the material of the workpiece, which is Inconel 718 alloy, is harder than the tool's material. Heat affected zone is also known as a non-melted area of metal and directly affects the surface roughness of the workpiece.

Abrasive Water Jet Turning (AWJT) is the best solution to overcome these problems. Unfortunately, the study of surface roughness of the Inconel 718 alloy and productivity is questionable. The research about the parameter of AWJT is very important to overcome all the problem occurs in conventional lathe machine and to increase the knowledge of the appropriate parameter to produce the highest quality of the product by using AWJT.