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ABSTRAK 

Dengan kemudahan teknologi pada masa kini, sistem pengawasan telah 

ditingkatkan untuk melakukan pekerjaan mengumpulkan informasi untuk tujuan analisis, 

mengesan dan mengklasifikasikan objek untuk pengurusan lalu lintas dan bukan hanya 

untuk tujuan keselamatan. Walau bagaimanapun, kamera litar tertutup konvensional 

(CCTV) tidak disertakan dengan pemprosesan lebih lanjut pada video yang menyebabkan 

ketidakmampuan melakukan analisis statistik pada kenderaan. Selanjutnya, adalah tidak 

produktif untuk mengklasifikasikan kenderaan dengan menggunakan tenaga manusia 

secara manual. Tujuan projek ini adalah untuk mencipta algoritma untuk pengesanan dan 

pngelasan kenderaan melalui teknik pemprosesan gambar. Sistem yang dicipta 

merangkumi sistem perkakasan dan perisian yang berkompromi dengan kamera, komputer 

riba dan MATLAB. Teknik pemprosesan gambar yang akan digunakan adalah 

pembelajaran mendalam iaitu rangkaian saraf konvolusional (CNN) yang dibina dengan 

menggunakan MATLAB. Dua jenis model CNN yang telah dilatih diadopsi dalam projek 

ini adalah SqueezeNet dan GoogleNet. Jenis klasifikasi kenderaan adalah Sedan, SUV dan 

MPV. Sistem yang dibangunkan akan disahkan dari segi ketepatan, penarikan dan 

ketepatan. Hasil dari projek tersebut ialah sistem yang dibangunkan dapat melakukan 

pengesanan dan klasifikasi kenderaan dengan ketepatan keseluruhan 86.7% untuk 

SqueezeNet dan 97.5% untuk GoogleNet.  Masa pengiraan setiap gambar adalah 0.092s  

untuk SqueezeNet dan 0.194s untuk GoogleNet.
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ABSTRACT 

With the ease of technology nowadays, the surveillance system has been upgraded to 

do such works of gather information for analysis purpose, detect for tracking and 

classification of object and traffic management despite only for safety purpose. However, 

the conventional closed-circuit television (CCTV) is not embedded with the further 

processing on the video were cause to the inability to conduct the vehicle statistics analysis. 

Furthermore, it is non-productive to classify the vehicle by manually using the manpower. 

This project aims to develop an algorithm for vehicle detection and classification through 

the image processing technique. The developed system includes the hardware and software 

system which compromise of a camera, laptop and MATLAB. The image processing 

technique that will be used is a deep learning convolutional neural network (CNN) which 

is constructing by using the MATLAB. Two types of pre-trained CNN models are adopted 

in this project are the SqueezeNet and GoogleNet. Types of classification of the vehicle are 

Sedan, SUV and MPV. The developed system will be validated in terms of the accuracy, 

recall and precision. The result of the project is the developed system can perform the 

detection and classification of a vehicle with an overall accuracy of 86.7% for SqueezeNet 

and 97.5% for GoogleNet. The computational time per image is 0.092s for SqueezeNet and 

0.194s for GoogleNet.  
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CHAPTER 1 

INTRODUCTION 

1.0 Background of Study 

A surveillance system is a system that consists of a camera connected to a computer 

device or IP network for observing purpose in that area. Many of the surveillance systems 

are installed on the traffic light, home, parking lot, highway and corridor. In traditional, it 

was used for monitoring safety. With the ease of technology nowadays, the surveillance 

system has been upgraded to do such works of gather information for analysis purpose, 

detect for tracking and classification of object and traffic management despite only for 

safety purpose. 

Vehicle detection and classification plays an important role in helping the surveillance 

system for further application of traffic monitoring, traffic management, vehicle tracking, 

vehicle statistics analysis, parking system monitoring and many more. The vehicle 

detection means to provide information by localization of the vehicle. The vehicle 

classification will later separate the recognise vehicle belongs to which category. The 

conventional method for vehicle detection and classification was done by using the 

instalment of sensor laid out under the road to collect data and analyse the needed 

information (Wang et al., 2019). Later with the development of the computer vision 

technology, where the surveillance system was able to embed with the machine vision. The 

image processing techniques were then being implemented to detect and classify the 

vehicle. The image processing technique is to perform some operation on the image as 
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input and extract certain useful information needed as output from the image. There are 

two types of image processing which are the analogue image processing like hardcopies 

for printouts and photographs and digital image processing which manipulate the image by 

using the computer. 

 

The traditional method for vehicle detection and classification in surveillance system 

through image processing are such as using the scale-invariant feature transform (SIFT) 

feature matching and extraction, gaussian mixture model, histogram of oriented gradient 

(HOG) and support vector machine (SVM). However, with the rapid upgrade of digital 

technology, the conventional methods are unable to meet the requirement for accurate 

precision for detection and classification. Therefore, the intelligence system with the deep 

learning algorithm has been introduced to process vehicle detection and classification. 

Deep learning is significantly proved from previous research that it shows a robust increase 

in performance for image recognition and classification field due to the recent 

advancement in the Graphics Processing Unit (Farag, 2018). 

 

In this study, the Convolution Neural Network (CNN) which is a kind of deep learning 

from artificial intelligence will be implemented into the image processing for the detection 

and classification of the vehicle in the surveillance system. 

 

 

1.1 Problem Statement 

 

Surveillance system places an important role in controlling the management and safety 

of the traffic. In conjunction with the increase in the population of the human being in a 

country, a huge volume of vehicles has also been increased on road. In related to the safety 

management on road, the conventional closed-circuit television (CCTV) is not efficiently 

to track on the vehicle on the road since it is not embedded with the further processing on 

the video. So, when there is a crime happen in the traffic area. It is unable to filter, classify 

and track the vehicle efficiently. Furthermore, the detection and classification of the 
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vehicle are also very important in the automated car parking system.  The current car 

parking system is not intelligent to guide the consumer to find free space for parking. This 

lead to problems of time-consuming when the consumer has to traverse through multi-

storeyed and multi parking slots to find free space (Bonde et al., 2014). The situation is 

worsened when consumer keeps on find space but the parking slots already filled. The 

management in the car parking system is hard to achieve. It is also non-productive to 

classify the vehicle by manually using the manpower. Thus, by implementing the 

technology of deep learning in image processing of the video surveillance system will 

significantly help in improving all the problem statement listed above. 

 

 

1.2 Objective 

 

The objectives of this study are: 

 

1. To develop an algorithm for vehicle detection and classification through an image 

processing technique. 

2. To validate the developed system for vehicle detection and classification in terms 

of accuracy. 

 

 

1.3 Scope 

 

To archive the objective of the study, the scopes are as shown below: 

 

1. The types of classification are Sedan, SUV and MPV. 

2. The image processing of the detection and classification of a vehicle is using 

Convolutional Neural Network algorithm. 

3. The software used to conduct the experiment is by using MATLAB. 
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Figure 1. 1:Types of the vehicle to be classified: Sedan, SUV, MPV.
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CHAPTER 2 

 LITERATURE REVIEW 

 

 

 

2.0 Literature Review 

 

 In this chapter, the topic discussed the information in detail for the traditional 

method and advanced artificial intelligence method related to the detection and 

classification of the vehicle from past research. The details are such as the explanation of 

types, the different of architecture and several parameters needed to affect the accuracy, 

precision and recall of the result. 

 

 

2.1 Conventional Digital Image Processing Method  

 

 Based on Chen et al. (2018), there are two categories of vision-based vehicle 

detection algorithms for the conventional method. These two categories are motion-based 

approaches and hand-crafted feature-based approaches.  

 

 The motion-based approaches are such as the optical flow, frame subtraction and 

background subtraction. Optical flow is time-consuming since it is complex in tracking the 

computed motion vector of each pixel of the image. Frame subtraction detects the moving 

object by subtracting or calculate the differences of two consecutive frames. Frame 

subtraction is not suitable to detect motion that is too slow or too fast. Background 
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subtractions use the technique of modelling the distribution of background and foreground 

to detect the vehicle. However, background subtraction that based on Derman and Salah, 

(2018) stated that it is low performance and does not improve vehicle detection since it 

required more work for the machine. 

  

 While the hand-crafted featured based approaches are such as SIFT (Scale-invariant 

feature transform) and Histogram of Oriented Gradients (HOG). SIFT approach is among 

the best method in feature detector as it is applicable for multiscale images. Neeru and 

Kaur (2016) stated that the SIFT algorithm locates the points in an image which are invariant to 

scale and shift through the representation of orientation invariant feature vector. SIFT is 

invariance to image rotation, scaling, transition, illumination changes and 3D camera view. 

HOG define the image as a group of local histograms. HOG is used in computer vision to 

extract feature from the image for object detection. HOG focus on the structure of the 

object by calculating the gradient and orientation of the edge of the localized regions of an 

image (Kaplan and Şaykol, 2018). However, both the two traditional methods have low 

feature representation. 

 

 Huang and Zhang (2017) applied SVM to classify the different sub-categories that 

describe the attribute of a part of the vehicle model. Support Vector Machine is a 

supervised learning technique to perform the classification task. It finds the hyperplane that 

maximizes the margin between two classes to perform the classification task. The 

algorithm of SVM starts to define the optimal hyperplane through maximum margin. Then, 

it extends the optimal hyperplane for non-linearly separable problems to minimizes the 

misclassification. Lastly, it maps data to high dimensional space for the easiness to classify 

with linear decision surfaces (Bassma et al., 2018).  

 

 Research had been done by Kaplan and Şaykol (2018) to compare the effectiveness 

and accuracy of the conventional method versus the deep learning method. The two-

algorithm selected to be compared were The SVM based with Histogram Oriented 

Gradients (HOG) versus deep learning-based YOLO implementation. The experiment 

result showed that YOLO algorithm is more accurate than the SVM algorithm with an 
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accuracy of 81.9% over 57.8%. This means deep learning has higher accuracy over the 

conventional method. 

 

 

2.2 Artificial Intelligence, Machine Learning, Deep Learning 

 

 Artificial intelligence by mean is the ability of the machine to behave like a human 

mind in learning and problem-solving. The programmed machine is based on the principle 

of human intelligence. It can carry task range from simple to more complex and human-

like (Frankenfield, 2021). Examples of AI that integrated into our daily lives are such as 

Siri, Alexa, Google assistant etc. The limitation in human in the acquisition of large data is 

the time constraints. The process of learning requires knowledge and experience along 

many years. With the implementation of the AI, the machine can learn the needed 

knowledge in a significantly shorter amount of time than human (Mintz and Brodie, 2019). 

 

 Machine learning is a subset of artificial intelligence. It improves the performance 

from experience its learn. The working principle for machine learning in image processing 

there is a need to manually extract the features of the vehicle such as wheels and lights. 

This combination of attributes then be learned and to predict the image given.  The 

downside of machine learning is the programmer need to know the of the vehicle very well 

so that the label made is correct. This labelling process of features also very time 

consuming when there are lots of attributes and image dataset (Bini, 2018). 

 

 Deep learning introduced automatic feature extraction to solve for the problem in 

machine learning algorithms. This means in deep learning, the neural network will decide 

itself the characteristics of vehicle can be used to represent the class reliably (Gibson, 

2017).  Convolution neural network is a type of deep learning in image processing. It is 

modified from the artificial neural network. Figure 2.1 shows the relationship between 

Artificial Intelligence, Machine Learning and Deep Learning. 
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Figure 2. 1: Relationship of AI, ML, DL (Gibson, 2017). 

 

 

2.2.1 Artificial neural network 

 

 Artificial Neural Network is an information processing algorithm inspired by the 

biological nervous system. It acts like a brain to solve specific problems through a large 

number of highly interconnected neurons. The neuron is a processing element that has 

many input and output and each input and overall bias in has a weight. The changes in 

output depending on the changes of weight and bias (Sladojevic et al., 2016).  

 

 

 

Figure 2. 2: Each neuron from the input is connected to the output (Srdjan Sladojevic et al., 

2016). 
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2.2.2 Disadvantage of ANN 

 

The low performance of ANN is due to the fully connected layer where all the 

neurons from the input are connected to the hidden layer and then connected to the output. 

This will increase the weighted connected to be trained. Hence, the risk of overfitting can 

occur, and it required a large amount of data and computational sources.  Moreover, it 

doesn’t have a local correlation between the pixels in the divergent region in an image 

(Niessner et al., 2017). Thus, an advance development from Artificial Neural Network to 

Convolutional Neural Network has been introduced to decrease the weight parameters and 

biases. 

 

 

2.3 Deep Learning - Convolution Neural Network (CNN) 

 

 Convolutional Neural Network is a deep learning algorithm that processes the input 

image through several layers by given importance weights and biases in various aspects to 

differentiate one from others. The machine must learn the image features through the 

process of training to do the task of detection and classification. When compared with the 

traditional method, CNN can counter the environmental change since it requires no manual 

feature selection like SVM (Huang and Zhang, 2017). Furthermore, CNN can effectively 

do the task of detection and classification of the object simultaneously. This means that the 

CNN system is capable to meet the criteria of fast and accurate in detect and recognize the 

fast-moving vehicle on the road (Derman and Salah, 2018).  

 

 

2.3.1 History of Convolution Neural Network (CNN) 

 

Convolutional Neural Network was inspired by the biological theory of virtual 

Cortex. According to Guo et al., (2017), David Hubel and Torsen Wiesel proposed the 

visual structure model based on cat visual cortex in 1962 for the first time using the 
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concept of the receptive field. Hubel and Wiesel implemented the basic visual cell types 

which were the simple cells and complex cells in creating a cascading model to fulfil 

pattern recognition tasks. Later in 1980, DR Fukushima proposed the first hierarchical 

structure Neocognition which consists of two consecutive layers called “S-cells” and “C-

cells” for image processing. The Neocognitron model used the terms of “simple-to-

complex” by using mathematical operations as a computational model for visual pattern 

recognition. The first work using the CNN model was introduced by YanLeCun for 

handwriting recognition by introduced a multi-layer artificial neural network called LeNet-

5. However, LeNet-5 has low performance on a large scale- image and video classification. 

In recent years, many types of CNN architecture have been introduced to improve the 

performance of CNN on image processing. 

 

 

2.3.2 Related CNN implement on vehicle detection  

 

 Tarmizi and Aziz (2018) in their research use CNN for detecting vehicle for 

autonomous vehicles under various weather condition. The dataset is getting from 

MATLAB, KITTI Vision and Intercity Roads where it's then being separate into the 

training set and testing set with the ratio of 177:118. The CNN network consists of 

convolution layer, ReLu layer, Max pooling layer, fully connected layer, softmax layer and 

a classification layer. The result shows that the CNN algorithm can detect the vehicles in 

bad weather such as poor light condition. The accuracy of the vehicle detection for sunny 

weather is 97.3%, for night weather is 61.4%, for snowy weathers are 73.4% and 98.7%. 

 

 

2.4 Basic Structure of Convolutional Neural Network (CNN) 

 

 The basic structure of CNN consists of convolutional layers, pooling layers and 

fully connected layer. Normally, the architecture consists of a repetitive stack of several 

convolution layers, pooling layers and lastly with one or more fully connected layer. It is 

called a forward propagation when input data transformed into output through these layers.  
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Figure 2. 3: Basic structure of CNN (Phung and Rhee, 2019). 

 

 

2.4.1 Convolutional layer 

 

Convolution layer is layer consists of a set of learnable filters which is small in size. 

The filters will move across the whole input image and convolved an output named feature 

map. The filter is also called kernel or feature detector. The feature map then becomes the 

input for the next layer. The size of the feature maps is depending on the number of the 

kernels and number of shifting steps of the filter (Farag, 2018). The figure below shows the 

connection of neurons to the region called the receptive field. The whole image shares the 

calculated weight matrices from each neuron. The filter or kernel is the calculated weight 

matrix and the result is n feature maps. The n is the depth of the following data volume. 

The formula is as below where the Win is the weight matrix for channel i and neuron n, xi is 

the input value, bn is a bias and the output, ok is feature map (Niessner et al., 2017). 

 

 

 

Figure 2. 4: Connection of neurons to the reception field and feature map formula (Niessner 

et al., 2017). 
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Based on the result from Bautista et al. (2016), The filter size and number of filter 

show no significant improves on the accuracy of vehicle detection in the low-resolution 

input image. It shows that feature information from an image is finite. Adding more 

detector no provide additional information. Besides, the experiment also shows that more 

number of stages means deeper the model is will increase the accuracy. This is due to the 

result in high order features such as corner and edges. However, the accuracy may drop 

due to too much pooling.  

 

 

2.4.2 Pooling layer 

 

The next layer is the pooling layer. Pooling layer is used by a given threshold to 

check whether the feature map has important information or not. There are several types of 

pooling layer based on research from the previous journal. The types of pooling layer are 

such as max pool layer, average pooling layer, global average pooling layer and global 

max pooling layer. Max-Pooling layer is the most famous use of pooling layer. Max -

pooling layer means taking the maximum value from each neuron at the previous layer to 

reduce dimensionality reduction and parameter of an input image. 

 

 
 

Figure 2. 5: Example of max pooling and average pooling (Yani et al., 2019). 
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According to Zhang et al. (2018), global average pooling makes full use of the 

features in the intermediate layer so that more important information can be provided to 

final global features. The research put the global average pooling operation at feature map 

from third convolutional layer to output an average value. It is equivalent to dimensionality 

reduction operation.  It can increase the efficiency in describing the characteristics of 

vehicle image by fasten the parameter learning process and improve the recognition 

accuracy by avoiding the risk of overfitting. Pooling action can lower down computational 

complexity, accelerate convergence rate and reduce the dimensionality of the feature map. 

However, based on Solovyev et al. (2019), the global max pooling is much simpler as 

finding the maximum value is easier then compute a mean value from the mathematical 

point of view. Both efficiencies are approximately the same, the different is just in term of 

hardware complexity. 

 

 

2.4.3 Fully connected layer 

 

The fully connected layer is also called a dense layer. It is a layer where each input 

from feature maps are connected to each output through the learnable weight. When the 

feature extraction is done from convolution layers, the feature map is downsampled by a 

pooling layer. They are later mapped to a fully connected layer to output for the 

classification task. Usually, the number of class to be classified is same as the number of 

output nodes in a fully connected layer (Patil and Rane, 2021). 

 

 

2.4.4 Activation function  

 

An activation function is important in the design of the network as it can affect the 

convergence speed of the network model. Therefore, the selection of the activation 

function need to be considered appropriately. Based on Zhang et al. (2018), the common 
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type of activation function is Sigmoid, Tanh and ReLU. However, the traditional method 

Sigmoid and Tanh produce not sparse output and both face the problem of produce 

gradient disappearance. While ReLu can solve the gradient disappearance problem and 

train network in a supervised way. 

 

Rectified Linear Unit (ReLu) is the nonlinear activation function which is useful for 

interactions and non-linearity in the network. Interaction is the output prediction is 

dependent by another variable while non-linearity means the output is not dependent on the 

input. ReLu is used to speed up the training and reduce gradient computation to give a 

better prediction. This is because ReLu only updated the positive portion during the 

training process. ReLu is represented by function of F(x) = max(0,x). The layer gives value 

X when receives positive input and give value 0 when receives negatives input (Tarmizi 

and Aziz, 2018). 

 

 

Figure 2. 6 : ReLu (Tarmizi and Aziz, 2018). 

  

 

2.4.5 Softmax layer 

 

 Softmax layer is applied after fully connected layer for multi-class classification. 

Softmax layer help in differentiating and train the data more easily. Hsu et al. (2018) use 

the softmax layer to differentiate the vehicle object from the background. It is widely used 

in recognition class such as digit recognition and character recognition and many more in 

the machine learning system. However, the hardware mapping of Softmax layer involved 

much exponential and division which may cause the occurrence of overflow thus affect the 

computation accuracy (Hu et al., 2019). The softmax layer is implemented to determine the 
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anchors belong to the foreground or background. Later, the classification layer classifies 

the category of the object (Zhang et al., 2019).  

 

 

2.5 Type of Pretrained Network   

 

 The design of the layer of the network can be different according to the situation of 

the task. Normally, the more depth the network is, the more accurate the detection and 

classification. However, when the network is too deep, it will increase the weight to the 

network which may decrease the performance of the task. Therefore, the consideration of 

the network depth, number of convolution layer, number of feature maps and size of 

pooling layer has to be done appropriately to suit to the situation of data (Pelt and Sethian, 

2017). Some of the common widely used network been used for the system in related to 

vehicle detection and classification such as YOLO, AlexNet, VGG, GoogleNet, 

SqueezeNet and many more. 

 

 

2.5.1 YOLO V3 

 

Based on Roy and Rahman (2019), YOLO V3 is the fastest model used in object 

detection algorithm. It consists of several layers of detection combined with 53 layers of 

neural network for classification into a total of 106 layers deep. It can process 45 images 

per second with a good processor in a computer. Yolo-V3 finds the probability of an object 

in each bounding boxes which predict from the reframing of the input image into fixed 

grids. Hence, Yolo-V3 does not require complex pipelining which may increase the work 

to the system. Thus, the detection performance can be optimized. 

 

 

2.5.2 VGG-16 
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While VGG-16 is another set of deep convolutional neural network which is simple 

and practicable. VGG-16 network consists of 13 convolution layers, 5 maximum pooling 

layers, 3 fully connected layers and a softmax layer. The recognition accuracy can be 

improved by stack the convolution kernel and maximum pooling layer repeatedly (Zhang 

et al., 2019). The researchers use VGG-16 to recognise the colour of the vehicle and it is 

shown that the average recognition is 92.68%. It is proofed that by using VGG-16 with 

some parameter adjusting, the accuracy recognition can be high, and the average 

processing time of a picture is 0.008ms which is considered faster. The hyperparameter 

they used are 256 batch size, an initial learning rate of 0.01 with a dropout rate of 0.5 and 

the maximum number of iterations is 2240000. 

 

 

2.5.3 AlexNet 

 

AlexNet is created to classify the large ImageNet dataset. AlexNet is consists of 5 

convolution layers, 2 normalization layers, 3 pooling layers and 3 fully- connected layer. 

The normalization layer is used to moderate the neighbour of excited neurons (Molina-

Cabello et al., 2018). 

 

 Based on Seng et al. (2018), VGG16 network shows a great performance for 

detection and classification of the vehicle with accuracy up to 97.6% in the complex 

background image. While by using the AlexNet network, the accuracy is about 93%. 

(Sheng et al., 2018) in their experiment tested the classification of the vehicle into brand 

categories such as BMW, Ford, Audi, Chevrolet, Mercedes -Benz and Volkswagen. The 

dataset is augmented with a mirroring technique to increase the training pictures. The 

dataset then being tested with AlexNet, VGGnet-16, Vggnet-19, GoogleNet, ResNet50 and 

ResNet101. The result showed that the resnet101 and VGGnet-19 reach the best accuracy 

among other networks. While AlextNet has the lowest accuracy. ResNet101 and VGG19 

have a deeper network and smaller convolution kernels. Therefore, they both are good in 

feature extraction on images and thus can performances image recognition better. 

 



17 
 

 

2.5.4 SqueezeNet 

 

 Based on Muhammad et al. (2019), the different distance of the camera from an 

object and the vary in size of the object of a dataset can increase the challenges for object 

detection algorithm. The experiment compared on two pre-trained neural networks which 

were the AlexNet and SqueezeNet. The research showed that both accuracies showed 

similarly but SqueezeNet is more suitable to be implemented in CCTV due to its model 

size of 3MB compared to 238MB of model size for AlexNet. SqueezeNet also has a lesser 

rate of false. Lee et al. (2019) stated that deep learning model SqueezeNet requires less 

than 5MB of space thus is good to be implemented for real-time applications. The size of 

SqueezeNet is 11 times smaller than Googlenet and 53 times smaller than AlexNet. The 

result showed the time of processing was 108.8ms per image for SqueezeNet model. Tsang 

(2019) stated that smaller model brings advantages of such as required less communication 

during training, required less bandwidth to export new model from the cloud and the third 

advantage is more feasible to deploy on hardware with limited memory. 

 

 

2.5.5 GoogleNet 

 

GoogleNet architecture comes from Inception module which consists of 

convolutional layers, max pooling layers, concatenating layers, dropout layers, fully 

connected layer and a softmax layer. GoogleNet using the Inception Module to improve 

computational efficiency (Seo and Shin, 2019). 

 

Guo et al. (2017) in their research used GoogleNet as a base network to classify the 

type of vehicle in a 720P video dataset. The result showed that the performance by using 

the GoogleNet network with an input size of 256 can get 94.99%. They then experiment 

with random resized/burred data to increase performance. The accuracy of input size 256 

with burred data for the performance has increased to 98.37%. Figure 2.11 shows the result 

of the experiment. 
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Figure 2. 7: Result of the proposed method (Guo et al. 2017). 

 

 Seo and Shin (2019) in their research used CNN to categories the electric vehicle 

types for electric vehicle parking and charging system. They used GoogleNet as the main 

network and perform the transfer learning technique. They remove the last fully connected 

layer and pretrained the network with large-scale ImageNet dataset. They then fine-tuned 

the last fully connected layer with their electric vehicle dataset. They divided the dataset 

into the training set, validation set and test set with the ratio of 6:3:1. The result shows that 

the overall accuracy of training is 0.912, validation is 0.776 and test is 0.776. The accuracy 

improved with the increasing step. 

 

Derman and Salah (2018) in their research used the network model of SVM to 

compare with CNN, Tiny -YOLO to do the vehicle detection and classification. The Tiny-

Yolo network is a Darknet-19 model that consists of 9 convolution layers, 6 max polling 

layers, one average pooling layer and one softmax layer. Tiny- YOLO is simple and 

required small GPU resources. They tested with BIT-Vehicle dataset and TPS dataset. The 

result showed that Tiny -Yolo performed well in BIT dataset and SVM worked well in 

TPS dataset. The reason was due to the acquired dataset was imbalanced which may be 

caused to overfitting that affected the result. 

 

 

2.6 Type of Dataset 

 

 Dataset is another important point in training object detection and classification. 

Learning (2020) Stated that preparing dataset needed a lot of work. The first step is to 
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decide what task that the model needed to solve. The second is what type of data should be 

gathered. The dataset must properly represent the task in different situation and condition. 

If not, the model can wrongly predict the wrong features as important information and 

learned it. Another intense work for preparing dataset was the labelling of the dataset. It 

was difficult to automate and needed to be done by a human. In the research showed that 

jpg and png do not show significant differences in clinical actual performance. It is 

suggested not to use large PNG images to train model because JPG images are smaller in 

size thus model generation is faster and reduce the requirement for high storage (Jones et 

al., 2019). 

 

 The dataset will be separated into the training set and testing set. The general ratio 

for the slip of dataset for training and testing are such as 9:1, 8:2,7:3 and 6:4. According to 

Pajaziti et al. (2019), the classifier will be more accurate when the number of the dataset is 

large. However, the greater number of a dataset means longer training time will be taken. 

There are two types of images in the dataset which are positive and negative images. 

Positive images mean the images contain an object to be detected while negative images 

mean the images do not contain the object to be detected. Espinosa et al. (2017) prepared 

the dataset with another class for the urban environment related object means the other 

possible object detected other than the vehicle. All the images were collected from 

different perspectives and angle. There are many large numbers of dataset there are 

normally used in training vehicle detection and classification. The dataset can be either 

downloaded from the internet or personal capture the images through video frames.  

 

 Based on Roecker et al. (2018), BIT- Vehicle dataset consists of 9850 vehicle 

images which are wide range in changes of scale, surface colour, illumination and position 

of the vehicle. All images are in high resolution which is 1600 x 1200px and 1920 x 

1080px. The vehicle in the images may contain more than one, thus, some data pre-

processing action such as cropping has to take before entering the training process.  

 

 KITTI is a large vehicle dataset that contains various scales of the vehicle in 

various scenes. It contains a total of 14999 vehicle images for training and testing. The 
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dataset divides the sample into three difficulty level which is easy, moderate and hard 

according to occlusion, size and truncation. The minimum height of 40x for easy level, a 

minimum height of 25px for moderate and approximately corresponds to object within 

47m for hard level (Li, 2017). 

  

  PASCAL VOC is a popular dataset that using for training data for detection, 

classification and segmentation. PASCAL VOC dataset focuses on compact objects like 

human, animals, vehicle and door object. Another dataset which is COCO created by 

Microsoft has more classes than PASCAL VOC also widely for general purpose (Pan and 

Ogai, 2019). 

 

 Zhang et al. (2017) in the research used VeRi and VehicleID dataset which was 

getting from real-word surveillance videos. VeRi dataset had 619 vehicles captures by 

using 20 surveillance cameras in a traffic scene. The vehicle was captured at different point 

of view, different illuminations and different resolution. While VehicleID contained 20267 

vehicles in a total of 221763 images. The images were captured from the front or back. 

 

 Some research created their dataset for training and testing of the vehicle on 

detection and classification. LSVH is one of the examples for own constructed data set in 

the highway. It consisted of 16 videos with various in time, weather, scenes and resolution 

(Hu et al., 2019). Based on Huttunen et al. (2016), they self-created two types of dataset. 

One type of dataset captured by one camera where the background was static. The dataset 

was collected over a long period in a day thus the dataset had significant changes in 

environmental conditions. Another dataset was created by two cameras in different point 

thus resulting in different background and different angle and direction of the vehicle. This 

dataset can be used to evaluate the network to learn the appearance of background or actual 

vehicle. 

 

 Munich Vehicle dataset contains 20 original large-scale aerial images with different 

types of vehicle such as car, bus, truck, etc. Deng et al. (2017) separate the dataset to half 
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for training and training and undergo data pre-processing technique such as augmentation 

for increase the data to avoid overfitting. 

 

 San et al. (2019) disclaimed that separating classes of vehicles into the sedan, SUV, 

crossover etc require more quality images to extract more features to divide into more 

detailed manner. Kannojia and Jaiswal (2018) stated that the reduction in the resolution of 

the dataset had decreased the performance score of CNN in terms of accuracy, precision 

and F1 score. 

 

 

2.7 Data Pre-processing 

  

 Data pre-processing is an operation where the input images are being enhanced or 

suppress some unwanted distortion before a move to further process. Han et al. (2018) 

stated that the input data must undergo data reprocessing such as sizing and normalization 

before entering the training and testing phase. However, CNN demand less pre-processing 

operation than other neural networks just for eliminating unconcerned differences 

 

 Hashemi (2019) stated that in CNN, image resizing will be very important when the 

input images are not in a fixed size. In research, two types of image scaling method which 

were scaling up using interpolation and zero paddings had been used to do a comparison. 

The result showed that zero padding did not affect the accuracy of classification however it 

can reduce the training time due to the neighbouring zero input units. Thus, the synaptic 

weights from input units will not need to be updated. Therefore, the corresponding 

convolutional unit will not be activated in the next layer. 
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Figure 2. 8: Zero padding and scales up (Hashemi, 2019). 

 

 Data augmentation is a necessary step when working with the vehicle classification 

based on deep learning neural network. It can improve the performances of the automatic 

learning model. The data augmentation techniques are such as random rotations, flips, 

cropping, etc (Hicham et al., 2018). Data augmentation is useful when training data size is 

not large. Kim and Lim (2017) augmented the original image through the aspect ratio 

keeping without stretching the original images through the rotate and flip technique. The 

research stated that there was no significant performance difference between stretched 

images and aspect ratio keeping images.  

 

 

 

Figure 2. 9: Example type of augmentation technique (Kim and Lim, 2017). 

 

 Other data pre-processing such as convert the RGB colour space image to YCrCB 

colour space image through the standard conversion formula. YCrBr is consists of three 
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components which are the Y is computed from nonlinear RGB, Cr is storing a difference 

between red and luma component, and Cb is storing a difference between blue and luma 

component. Therefore, YCrBr colour space is luminance independent which makes it more 

attractive to colour image segmentation and feature extraction and hence give better 

performance (Awang et al., 2020). 

 

 Hicham et al. (2018) in their research used deep learning CNN and data 

augmentation to test the vehicle detection and classification. There were four categories of 

the vehicle which were school bus, ambulance, police car and Moroccan transport 

Company which were total of 2400 samples images. The data augmentation technique had 

been used were such as flip, random rotation and cropping. The CNN architectural 

consisted of 6 convolution layer, 4 pooling layers and one softmax layer. The experiment 

showed a good result that the precision of the classification of the vehicle was about 0.88 

to 0.90 and the recall was about 0.83. 

 

 Xin and Wang (2019) stated that all possible changes in the same image can extend 

the effective size of training data. This will then change the result of the image training as 

it helps the network to deal with all problem occur in the real use of classifiers. Chen (2019) 

in the research used five different image enhancement algorithms which were the contrast 

limited adaptive histogram equalization (CLAHE), the successive means of the 

quantization transform (SMQT), the adaptive gamma correction, the wavelet transform, 

and the Laplace operator to explore the effect of image enhancement algorithms on the 

performance of CNN models in deep learning and transfer learning. The results showed 

image-enhancing algorithm may improve the performance for the complete CNN model 

but not suitable for transfer learning. It can reduce the performance of transfer learning-

based pre-trained CNN model. The reason may be due to the pre-trained CNN model was 

trained on natural images. Therefore the parameter was suitable for extracting features 

from natural images.   
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Conclude, data preprocessing such as resizing, data augmentation are necessary 

steps in CNN while image-enhancing may seem to has a negative impact on transfer 

learning on CNN. 

 

 

2.8 Training Method 

 

 Training is a process of finding kernels in convolutional layers and weights in the 

fully connected layer. Two processes will be needed in training a network are forward 

propagation and backward propagation. Forward propagation using loss function to find 

the model performance under kernels and weights. The loss function is used to measure the 

compatibility between output predictions of the network. Example of the loss function is 

cross-entropy. While backpropagation and gradient descent are used to update the loss 

value of kernels and weight. Gradient descent is an optimization algorithm that keeps 

updates the parameter of kernel and weight to minimize the loss. The learnable parameter 

is updated in the negative direction of the gradient with an arbitrary step size determined 

based on a hyperparameter called the learning rate. The formula of update of the learnable 

parameter is as w:=w−α∗(∂L/∂w), where w is the learnable parameter, α is learning rate, L 

is loss function (Patil and Rane, 2021). 

 

 

Figure 2. 10: Loss function vs learnable parameter (Patil and Rane, 2021). 
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2.8.1 Transfer learning 

 

Transfer learning is introduced to optimize the save of time and achieve better 

performance. It is used to improve the learning skills in the target task by given knowledge 

from source-task. Transfer learning also means by using a trained model for one task as a 

starting point to train for the second task. Therefore, the knowledge from the previously 

learned task can be pass to the next related task (Shu, 2019).  

 

Transfer learning has two methods which are feature extraction and fine-tuning. 

Common methods in fine-tuning are frozen some layers and fine-tune the remaining layers. 

Feature extraction is keeping the weights of the pre-trained model intact. Feature extraction 

trains the new classifier on target dataset by using the embedding it produces. While fine-

tuning initial the weights of a pre-trained model to train on target dataset. The choosing of 

both techniques is based on proximity between both source and target dataset and the size 

of the dataset. The overfitting may occur when training the small dataset in a large number 

of layers (Boulent et al., 2019). 

 

Zhuo et al. (2017) in their experiment used AlexNet and GoogleNet as the based 

network to test the accuracy of training with or without fine-tune. The dataset comes from 

VehicleDataset and it was separated into training and test samples. The result showed that 

with the employed of fine-tuning, the average of 2% higher classification can be obtained 

if compared to without fine-tuning. GoogleNet network with fine-tuning achieved better 

accuracy if compared with AlexNet. 

 

 

2.8.2 Training from scratch 

 

 Training from scratch means the network weight is randomly initialized rather than 

inherited from the previous model. It has a higher risk in overfitting as the input weight is 

defined from input data. Furthermore, it required a larger training dataset. However, this 
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approach can handle the more specific task of object detection and classification and thus 

can improve the performance (Boulent et al., 2019). 

 

 

2.8.3 Training Time - GPU 

 

 Nithiyaraj and Arivazhagan (2020) stated that CPUs is hard to handle for large 

dataset when training using a deep learning algorithm. There is a need for graphics 

processors GPUs such as Titan, GeForce and NVIDIA’s Tesla to reduce the training time 

typically faster in 10 to 30 times when compared to CPUs. The models of the GPUs are 

such as NVIDIA GeForce GTX 1080, NVIDIA Titan Z, and NVIDIA Tesla V100 GPU 

which are powerful in processing.  

 

Chung and Sohn (2018) stated that the graphical processing unit (GPU) is needed 

to learn a CNN model. Without GPU, it is unable to compute matrices of weight 

parameters in parallel. This research used NVIDIA Quadro K5200 as GPU to conduct the 

experiment. The result showed that the GPU took 42 seconds to run a single epoch. The 

maximum number of epochs was set at 5000. Therefore, the computing time can be done 

within two days. The GPU can affect the training time of the network. 

 

 

2.9 Hyperparameter Optimization  

 

 Hyperparameter is a parameter that can be adjusted to has a direct impact on the 

machine training of CNN. It is usually set before the learning process begins. The 

examples of the hyperparameter are such as batch size, epoch, learning rate, weight and 

momentum (Do et al., 2020). 

 

 



27 

2.9.1 Learning rate 

 Learning rate hyper-parameter is adjusting the weights of the network to loss 

gradient. Learning Rate will initially start with a value and the value will decrease as the 

optimization progresses. The learning rate can be represented as lr (1 + γ k)−α, where lr is 

the learning rate, parameter k is the current iteration,γ and α are the parameters to compute 

learning rate (Zhou et al., 2016). 

2.9.2 Epoch, batch and iteration 

 Based on (Do et al., 2020), the entire large dataset needed to be divided to pass into 

the neural network. Epoch is the forward pass and backwards pass of all training data 

through the network. Batch is the size constant number of the dataset in a 

forward/backward pass which is normally determined by the total size of the dataset, 

number of weights and memory space of GPU. The batch size can be range from 1 to 128 

where the higher the batch size, the required memory space of GPU will be larger. While 

iterations are the total number of passes. Below shows the example of the epoch, batch size 

and iteration. 



28 
 

 

 

Figure 2. 11: Example of epoch, batch and iteration (Do et al., 2020). 

 

 

2.9.3 Related setting on hyperparameter in training CNN  

 

 Huttunen et al. (2016) in their research did the comparison between the CNN 

network and SVM with SIFT on detecting and classifying the vehicle. The dataset was as 

explained in subtopic dataset and it was then split into the training set and test set in a ratio 

of 9:1. The CNN architectural consisted of 2 convolution layer, two fully connected layers 

and one output layer. Each convolution layer has one max pool layer. Then ReLu and 

Dropout regularized was added between each layer. The hyperparameter was as the figure 

below. The learning rate was set to very small. The result showed that CNN is better than 

SVM with SIFT in term of accuracy with about 97% and littler error in recognition of 

vehicle. This may due to the high-level feature of CNN. 
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Figure 2. 12: Hyperparameter of the system network (Huttunen et al., 2016). 

 

 Guo et al.(2017) in their research discussed the learning rate method and different 

algorithm in solving the optimal parameters during the training. The result showed that the 

recognition rate of each algorithm improved with the increase of the number of iterations. 

Multistep is the best among the other algorithm in learning rate set. The multistep adjust 

the value of step value for basic learning rate while the fixed method keeps the basic 

learning rate constant and has universal applicability. The experiment also showed that 

stochastic gradient descent (SGD) with momentum is better than original SGD and NAG. 

However, it is gradient descends slowly in early-stage and before stable with the increase 

of the number of iterations.  

 

 Roecker et al. (2018) in their research proposed a new CNN architecture to classify 

vehicle into bus, microbus, minivan, SUV, sedan and truck. The CNN architectural 

consisted of 4 convolution layers, 2 spatial pooling layers, 3 fully-connected layers and one 

softmax layer. The model is tested on BIT vehicle dataset. The network training was from 

scratch start with the multinomial logistic regression and follows with the data 

augmentation and dropout method for regularized to prevent overfitting. The 

hyperparameter optimization approaches were using the mini-bath gradient descent with 

Adam Algorithm. The batch size was 128 while the exponential decay rate for beta1 is 0.9 

and beta2 is 0.999. The learning rate was 10^-3 and will stop the training process after 64 

epochs. The accuracy of the test was 93.90% and this was due to the data augmentation, 

depth of network and regularization that prevented the model to overfit which had 

decreased the error. 

 

 He (2018) in the research set the learning rate started at 0.001 for the first 

100Kiteration. It will then drop to 50% after every 30K iterations. The total iterations were 
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200K and the batch size was 16 using SGD. Each convolution will be applied a batch 

normalization. The result showed that the average precision is 67.25% with a detection rate 

of 28 frames per second with a moderate GPU which is suitable for real-time 

implementation. 

  

 Rangarajan et al. (2018) in their research adopted Alexnet and VGG16 these two 

pre-trained deep learning algorithms to perform for the classification of tomato crop 

disease. They fine-tuned the hyperparameters such as weight and bias learning rate and 

mini-batch size and be analyzed in term of classification accuracy and execution time. The 

size of dataset was set small size with a total of 373 images and train in 10 epochs. The 

mini-batch size was set with 2, 12, 22 and 32. The result showed that for VGG16 model, 

the execution time was increased when the mini-batch size increased. While AlexNet 

decreased in time for the execution time when mini-batch size increased. The reason was 

stated to be the time taken for processing in VGG16 was affected by the depth of the 

model. While for accuracy, increased of mini-batch size decreased the accuracy of VGG16 

model whereas for Alexnet did not shows the clear correlation of accuracy. For the fine-

tuned in weight and bias for learning rate, the accuracy for VGG16 was decreased with 

increased weight and bias for learning rate. Therefore, VGG 16 performed better with 

small mini-batch size and small weight and bias for learning rate. While AlexNet was good 

in minimum execution time and provided good accuracy that slightly low to VGG16. 

 

 From the review of past journals, there is no significant best value of epoch and 

mini-batch size that can be implemented to achieve high accuracy of the task. This dataset 

and CNN models may work fine with this hyperparameter value while others may not. The 

general concept is smaller batch size means more gradient updates per epoch thus longer 

training time. Most of the setting of value for learning rate and momentum is 0.0001 and 

0.09. While foregoing stated that more training epochs will cause CNN tends to memorize 

the images and loses the generalization of the characteristics learned from the image. 
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2.10 Overfitting 

 

Overfitting happens when the model train the data too well where it memorizes all the 

details in data including the noise on training data. This phenomenon has a negative effect 

on the performance of the model on testing data where the model difficult in coping with 

information from testing data. The overfitting happens when there is a presence of noise, 

the limited size of the training set and the complexity of classifiers (Ying, 2019). 

 

Shorten and Khoshgoftaar (2019) stated plotting the training and validation accuracy 

at each epoch during training can discover the overfitting problem. The plot at the left 

shows the sign of overfitting when the validation error starts to increase as the training rate 

continue to decrease. While the graph at right shows the desired relationship between 

training and testing error where the validation error is continuing to decrease with training 

error.  

 

 

 

Figure 2. 13: Accuracy over epoch graph (Shorten and Khoshgoftaar, 2019). 

 

 Past research showed that overfitting can be reduced through the solutions of 

reducing the model complexity, early stop before convergence in training, weight decay by 

constraining parameter using ℓ2-regularization. The several regularizations have been 

introduced such as data augmentation, dropout, dropConnect, stochastic pooling and 

disturblabel. Data augmentation is randomly generated more data as discussed in subtopic 

2.7. While dropout updates only remaining weights in each batch iteration by discarding 

the hidden neurons. DropConnect updates randomly selected subset weight. Stochastic 
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pooling changes the deterministic pooling operation and it then chooses one input as 

pooling result in probability (Xie et al., 2016.).  

 

 

2.11 Measurement of Performance 

 

 The performance of object detection and classification in CNN is defined as 

accuracy, recall and precision. Accuracy is all the proportion of data is classified correctly. 

The recall is the proportion of data classified positive among all real positive data. 

Precision is the percentage of data that are real positive among all classified positive in the 

CNN network. The formula for accuracy, recall and precision are as below. The TP is True 

positive means the number of real positive object, TN is True Negative means the number 

of real negative object, FP is false Positive means number of real negative among predicted 

positives, while FN is False Negative means number of real positive among predicted 

negative (Wang et al, 2019). 

 

 
 

Figure 2. 14: Formula of accuracy, recall and precision (Wang et al, 2019). 

 

 The recall and precision both are very important and sometimes a tradeoff between 

these two has to be made to suit for the situation. For example, the medical field always 

aims for high recall over high precision. This is because the system needs to ensure that 

least missed out of patient that got the disease. In this case, the proportion of correctly 

identified in all disease case is call recall rate. For the situation of high precision over 

recall is when the system is more important to do the task of for example the proportion of 

true salmon to all fish which are considered as salmon. For situation precision and recall 
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are same, The F1 score is calculated to represent the standard for performance 

measurement (Chen, 2019). 

 

 

2.12 Summary 

 

 As a summary, this chapter shows the study of past research on vehicle detection 

and classification. The review shows that CNN is proved can do the detection and 

classification vehicle with robust accuracy if compared to the conventional digital image 

processing method. Most of the researches are done in detect the vehicle and classified 

them according to brand, colour, volume and separate between truck, motorcycle taxi and 

ambulances. For this project, the CNN algorithm will be implemented to detect and 

classify the vehicle between Sedan, SUV and MPV. Other reviews are such as the 

construct of the structure of the CNN, selection of dataset, data pre-processing, training 

method, hyperparameter and calculation of accuracy, recall and precision will be taken into 

considering and implement into this project in the next chapter. 
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CHAPTER 3 

METHODOLOGY 

 

 

 

3.0 Introduction 

 

 The methodology section is about to provide an overview of the flow of the project 

and the process of data collection and method in conducting a specific experiment to 

achieve the objective of the project. This chapter will focus on the first objective of this 

project which is to develop an algorithm for vehicle detection and classification through an 

image processing technique. A proses flow chart is created to represent each sequence for a 

visual guide. Each of the processes for fulfilling the objective number 1 for this project will 

be discussed further in this chapter. 

 

 

3.1 Overview Of Methodology 

 

 The process flow chart shows the overall processes to be carried out during the 

whole project in these 15 weeks of a semester. The flow chart is created to graphically 

represent the sequence of whole processes from beginning to end. It is used to visualize 

and understand how this project works and what steps to be done before proceeding to the 

next step to fulfil the objective of this project. Figure 3.1 shows the process flow chart of 

this project. 
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Figure 3. 1: Process flow chart. 

 

 

3.2 Literature Review 

 

 The literature review is important as the first step to carry out this project to help in 

better understanding of the topic. It provides the foundation on the topic from previous 

study and research to serve as a guideline and reference. The source of journals for creates 

this literature review normally gets from various of the verified and trustable website such 

as IEEE, Science Direct and Google Scholar to ensure the source is legit. The journals are 

downloaded from the internet website and stored in a folder in the laptop with numbering 

from one onward for easiness of organized. Important data have been extracted from those 

journals such as the definition, method to conduct the experiment, result and discussion or 

finding from their study. The data then be analysed and sorted based on the parameter to 

write in different sub tittle in the literature review. The main data from the literature review 

are the dataset for this project need to collect manually through google and video recording, 

the CNN algorithm need to adopt pre-trained neural networks that are small in size, 
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parameter and depth for a suit to the small dataset. The data are documented by using 

Microsoft Words. The detail of the literature review is explained more in chapter 2 of this 

report. The list of journals is stated at the end of this report in Reference with correct APA 

format of citation.  

3.3 Project Planning 

Project planning is a process on managing the project through establish of scope in 

related to define the objective to attain them. It is the heart of the project life cycle to act as 

a guideline to organize the process to focus on objectives and scopes so that it will not fall 

out of track progression.  

To attain the objectives, this project is developed by a combination of hardware and 

software system. This system will be explained in detail in next subtopic regarding the 

connection and how its interface in between. In related to scopes which listed in chapter 1, 

the preparation of dataset collection for two types of datasets will be conducted through the 

collection of images from Google for training and validation dataset. While a camera is 

used to collect data set for the testing of the algorithm. The testing dataset will be collected 

by taking a video from the roadside. The images of vehicles are then cut from the frame 

and cropped out the desired region of interest. Four types of categories are Detect No 

Vehicle, MPV, SUV and Sedan. Dataset pre-processing such as dataset separation, dataset 

augmentation and dataset resizing is done before continuing to image processing process. 

The image processing algorithm will be conducted by using MATLAB software to execute 

the first objective of the project. Only Convolution Neural Network (CNN) algorithm will 

be implemented to do the image processing on detection and classification of vehicle. The 

technique of transfer learning and fine-tune on pre-trained CNN will be adopted. The 

algorithm will be trained and tested several times until the output result shows the expected 

percentage of accuracy. An analysis will be done between the result on validation dataset 

and result on test dataset to execute the second objective. 
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3.4 System Development 

 

 The system for this project is made by the combination of hardware with software 

to achieve the first objective. Hardware is physical components such as the computer 

device and camera. While the software system used in this project is MATLAB which 

mainly use for designing the algorithm for vehicle detection and classification. The 

relationship between the hardware system and software system is as below: 

 

 
 

Figure 3. 2: System development relationship. 

 

 

3.4.1 Hardware system 

 

 The hardware of this project is made up of a camera and computer device. These 

two components perform different tasks. The camera used to capture images for the 

collection of the test dataset. While the computer device is acting as an interface between 

the camera and software system to prepare the dataset, develop the programming for image 

processing and display the output. Table 3.1 shows the hardware components model and 

Table 3.2 shows its description.  
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Table 3. 1: List of components for hardware with their functions. 

Component Model Function 

Camera 

DJI Osmo Action 

To capture video clips containing 

vehicles. 

Laptop 

Asus A53S 

To interface between the camera and 

software system to prepare the dataset, 

develop the programming for image 

processing and display the output. 

Table 3. 2: Specification of the hardware component. 

DJI Osmo Action 

Sensor 1/2.3 CMOS 

Lens FOV:145⁰ f/2.8 

Max Image Size 4000 x 3000 pixels 

Storage MicroSD – 64GB 

Video 720P to 4K 

Video Format MOV, MP4 

Battery 1300 mAh LiPo 

Asus A53S 

Processor Intel® Core™ i5-2410M 

CPU 2.3GHz 

GPU NVIDIA GEFORCE GT 540M CUDA 2GB 

RAM 8GB 

Storage 299GB 

Operating System Windows 10 Home, 64-bit operating system 

LAN Speed 65.0 Mbps 



39 
 

 Further research and troubleshoot will be conducted to ensure the hardware are 

synced to each other smoothly by referring to the website platform of YouTube and 

MATLAB official website for visual guidance on installation. 

 

 

3.4.2 Software system 

 

 MATLAB is the main software that will be used in this project in designing the 

algorithm for vehicle detection and classification. MATLAB is developed by MathWorks 

from 1984. It is a high-performance language for technical computing by using familiar 

mathematical notation. MATLAB has been utilized to many functions such as math 

computation, algorithm development, modelling, simulation, prototyping, data analysis, 

visualization, scientific and engineering graphics, Graphical User Interface building and 

many more. It is a trustable software that been used by many industries for research 

development and analysis. It is also be used in university as a standard instructional tool 

for mathematics, science and engineering base. In MATLAB there is an application-

specific solution called toolboxes to solve different problems. The examples of toolboxes 

are such as signal processing and communication toolbox, image processing and computer 

vision toolbox, test and measurement toolbox, code generation toolbox, machine learning 

and deep learning toolbox, control system design and analysis toolbox, etc.  These 

toolboxes help automatically generate a MATLAB program to automate the work once we 

get the results with a suitable algorithm with our data. The MATLAB algorithms can be 

converted to other programming languages such as C++, HDL, CUDA, Python to run on 

an embedded processor. The toolbox involved in this project is machine learning and deep 

learning toolbox with the Deep Network Designer apps. 
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Figure 3. 3: MATLAB software. 

 

 

3.5 Procedure for System Development 

 

 This section will show the interfacing between the hardware and software to sync 

to each other so that the system can receive the data and perform the image processing task 

without errors. 

 

 

3.5.1 Hardware setup 

 

 The hardware setup is the step to prepare the hardware to be in a ready state before 

continuing to the development of programming and algorithm. The hardware including the 

setup of the camera to take the video clips of vehicles from the roadside and the insert of 

video clips to the laptop for further process.  

 

The steps of camera setup are as below: 
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Figure 3. 4: Procedure for setup of camera. 

 

The steps of transfer video clips into the laptop: 

 

 

 
 

Figure 3. 5: Procedure to transfer video clips into laptop. 
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The video clips are now saved in the laptop and are ready for the next process of 

dataset preparation. 

3.5.2 Software installation 

MATLAB software can be downloaded from its website link at 

http://www.mathworks.com. This software is offered for industry, university and personal 

use and has to pay for the software. However, since UTeM has the MATLAB Campus-

Wide License, the student can access freely by creating an account using student email 

UTeM. 

Step 1: Follow the instruction to create MathWorks account by using student UTeM email 

address. 

Figure 3. 6: Create account. 

Step 2: Sign in to download the MATLAB latest version in GET MATLAB. Version for 

this project is using R2020a. Clicks installer for Windows. 

http://www.mathworks.com/
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Figure 3. 7: Download the MATLAB latest version R2020a. 

 

 

 

Figure 3. 8: Choose the Windows for the installer. 

 

Step 3: Open the downloaded file and install the MATLAB software in the laptop by 

following the instruction. 
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Figure 3. 9: Accept the license agreement. 

Figure 3. 10: Follow the instruction from licensing to confirmation. 
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Figure 3. 11: Select all product. Make sure the needed apps and toolbox are downloaded. 

 

 

 

Figure 3. 12: Click install at confirmation. 
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Figure 3. 13: Start installing the MATLAB software. 

 

 

 After done the installation, the MATLAB icon will appear on the desktop. 

 

 

3.6 Programming Development 

 

 Programming development is a process where designing the algorithm for image 

processing on vehicle detection and classification. This process will be carried out in 

MATLAB software. A draft of the sequence is first generated and tested to make sure the 

flow of the sequence is smooth and simplify to achieve the objective of this project. The 

sequence of the image processing flow is in Figure 3.14. It starts with collect the dataset 

then followed by image processing using the pre-trained neural network which is done in 

MATLAB and lastly testing the trained neural network in terms of accuracy for detection 

and classification types of vehicle. 
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Figure 3. 14: Flow chart for image processing. 
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3.6.1 Dataset preparation and pre-processing 

 

 The input data for developing the image processing of vehicle is called dataset. The 

dataset must contain the images with non-vehicle to train the model to differentiate 

between the condition that contains no vehicle or contain the three types of the vehicle. 

The size of the dataset is set to be in between hundreds. The angle of the vehicle to be 

trained and classified is limited to three angles which are 45⁰ from the front view of the 

vehicle, side view of the vehicle and 45⁰from back view of the vehicle. 

 

 There are two datasets for this project. The training and validation dataset for train 

the CNN model while the testing dataset for test the developed algorithm. To ensure the 

collection of the dataset for training and validation is correct in term of the categories of 

the vehicle into MPV, SUV and Sedan, a survey on the model of the vehicle correspond to 

the MPV, SUV and Sedan has been made. Five top brands of vehicles sales in 2019 which 

are the Perodua, Proton, Toyota, Honda and Nissan are the most popular car brand that 

Malaysia people will choose when purchasing a new car. 

 

 
 

Figure 3. 15: Top five most sales brand of car in 2019. 

(https://www.statista.com/statistics/516276/passenger-vehicle-sales-in-malaysia-by-brand/) 

 

 From the top five brands of vehicle, the models of MPV, SUV and Sedan have 

extracted out according to the CarBase.my website. CarBase.my is a website in Malaysia 

that provides a comprehensive database of the vehicle that currently sale in Malaysia. The 

database including the prices, specifications, body types, brands and images of vehicles. 

https://www.statista.com/statistics/516276/passenger-vehicle-sales-in-malaysia-by-brand/
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The list of the vehicle model for Sedan, SUV and MPV for the top five brands is tabulated 

in Table 3.3. 

 

Table 3. 3: List of Vehicle Model. 

 

Brand Sedan SUV MPV 

Perodua 

 Bezza Aruz Alza 

Proton 

 Saga X50 Ertiga* 

 Persona X70 Exora 

 Perdana*   

 Inspira*   

 Preve   

Toyota 

 Vios Rush Avanza 

 Corolla Altis C-HR Innova 

 Camry Fortuner Vellfire 

  RAV4 Alphard 

  Harrier Previa* 

Honda 

 City BR-V Odyssey 

 Civic HR-V Stream* 

 Accord CR-V  

Nissan 

 Almera X-Trail Serena S-Hybrid 

 Teana Murano* Grand Livina* 

 Sylphy*  Elgrand* 

 Latio sedan*   

 

 The collection of vehicle images is according to the model listed above. The images 

are either downloaded from CarBase.my or downloaded from google search. The 

background of images most probably contains a real-life situation. The images for category 

Detect No Vehicle are all downloaded from google and most probably are images of the 

roadside. Total of 396 images is collected for 4 classes for training and validation dataset. 
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Figure 3. 16: Detect No Vehicle category. 

 

 
 

Figure 3. 17: MPV category. 

 

 
 

Figure 3. 18: SUV category. 

 

 
 

Figure 3. 19: Sedan category. 

 

 The testing dataset is collected by using the camera to record video clips at the 

roadside in the housing area. The dataset collection will be done at the day time to ensure 

the lighting is sufficient to produce clear and good condition dataset. After that, manually 
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snapshot of the frame that contains the images for non-vehicle and image that contain the 

vehicle for MPV, SUV and Sedan. Then the region of interest is cropped out. 

 

 

 
 

Figure 3. 20: Example of testing dataset. 

 

 Total of 120 images is collected for testing dataset. The images for three categories 

of the vehicle are saved in three subfolders in one main folder. The name of subfolder is 

the four categories of the vehicle which are Detect No Vehicle, MPV, SUV and Sedan. 

This is same as both training and validation dataset and testing dataset. 

 

 This whole training and validation dataset is loaded to MATLAB and be separated 

into a training dataset and validation dataset with the ratio of 8:2 to train and validate the 

algorithm. Total of images 317 are used for training and the rest of 79 images are used for 

validation. The testing dataset is loaded into MATLAB during the testing of the algorithm. 

Both datasets are balanced in amount for each category. 

 

Table 3. 4: Dataset amount for each dataset. 

 

Categories 
From Google From offline video 

Training Dataset Validation Dataset Testing Dataset 

Detect No Vehicle 79 20 30 

MPV 79 20 30 

SUV 79 20 30 

Sedan 79 20 30 
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 Data augmentation is a process to improve the network accuracy by adding more 

variety to training data through techniques of such as flipping, rotation and many more 

mention in chapter 2. Thus, data augmentation is saving time and can increase accuracy at 

the same time. The data augmentation is done for training data only. In this project, only 

the reflection of training data in x-axis which is flipping in left or right is adopted because 

not all technique will be suitable for a different type of dataset. Some can cause a decrease 

in the accuracy of the result. Since the collected datasets are all various in size, therefore, 

both the training dataset and validation dataset are then resized to image size that required 

by the input layer from CNN architectural. 

 

 

3.6.2 Create CNN algorithm 

 

 Pretrained neural network is selected to be adopted in this project. As mention in 

chapter 2, there are two types of training which are training from scratch and through 

transfer learning. Both types of training have an advantage and disadvantage. It depends on 

the situation. In this project, due to time constraint and hardware limitation, the dataset 

used is on the range of hundreds. In this case, the transfer learning will well suit if 

compared to training from scratch since transfer learning required a smaller number of 

training images while training from scratch required for thousand or million number of 

training images. Transfer learning is referred to use of the pre-trained network that been 

trained on a large image dataset and then transfer the learnt rich feature to learn on a new 

task. The pre-trained neural networks that been chosen for this project are SqueezeNet and 

GoogleNet. Both pre-trained neural networks are very well known and its functionality can 

be proved from past research. 

 

 

3.6.2.1 SqueezeNet 

 

 SqueezeNet was proposed by Iandola et al. (2017). It is a small CNN architecture 

that was a total of 18 depth. This CNN model can achieve the same accuracy as AlexNet 

with 50 x lesser parameter. The size of SqueezeNet is 0.5 MB which is 510x smaller than 

AlexNet. The input size for SqueezeNet is 227 x227 x 3. Three strategies had been 
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introduced by the author to reduce the CNN parameter while maintaining accuracy. The 

first strategy is to use 1 x 1 filter for most of the convolutional layers as this filter size has 

9X fewer parameter. The second strategy is to decrease the number of input channels to 

filter size of 3 x 3 through the Squeeze layer. The third strategy is having large activations 

maps through the technique of downsampling late such as maintain the stride in the 

network to increase the classification accuracy. Fire module is a combination of squeeze 

convolution layer with 1 x1 filter that feeds into the expand layer that consists of 1 x1 filter 

size and 3 x 3 filter size of convolution layer. The fire module introduces the small filter 

size and limits the number of input channels to filter size of 3 x 3. There are 8 fire modules 

in SqueezeNet that serve as the basic building block for SqueezeNet model. Figure 3.21 

shows the fire module.  

Figure 3. 21: Fire module. 

In this project, the parameters of all layers of SqueezeNet are frozen, and all the 

parameters of the last convolution layer and the classification layer are removed. Then new 

convolution layer with the filter size of 1 x 1 and the number of filters of 4 is replaced. The 

weight and bias learn rate are both set to 10 times greater so that the new layers learn faster 

than the transferred layers. The new classification layer is replaced to make sure the output 



54 
 

size equal to the number of class to be classified. The detail of SqueezeNet architecture is 

attached in Appendix B. 

 

 

3.6.2.2 GoogleNet 

 

 GoogleNet is introduced by Christian Szegedy et al. (2015) and had won the 

ILSVRC at 2014. . GoogleNet has a depth of 22 layers for convolution, size of 27MB and 

7M parameters. GoogleNet is faster and less parameter but with better accuracy compared 

to AlexNet. The main bone in GoogleNet is inception layer. GoogleNet uses the concept of 

inception layer to cover the bigger area but at the same time maintains fine resolution for 

small information images. In the inception layer, the previous layer will be convolved in 

parallel with different sizes of the filter from small to bigger such as 1 x 1, 3 x 3 and 5 x 5. 

The max pooling layer and 1 x1 convolution layer are added to reduce the dimension of 

images and thus reduce the parameter. A concatenated layer is added at the end of 

inception layer to stack the output. There are 9 inception modules in GoogleNet followed 

with global average pooling at the near end of the network to average the feature map to 1 

x 1 from 7 x 7. There is a dropout layer with 0.4 to reduce the overfitting. 

 

 
 

Figure 3. 22: Inception module in GoogleNet. 

. 
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 In this project, the parameters of all layers of GoogleNet are frozen, and all the 

parameters of the last fully connected layer and the classification layer are removed. Then 

new fully connected layer is replaced and the output size is set to 4 which are the number 

of classes to be classified. The weight and bias learn rate are both set to 10 times greater so 

that the new layers learn faster than in the transferred layers. The new classification layer is 

replaced to make sure the output size equal to number of class to be classified. The detail 

of GoogleNet architecture is attached in Appendix C. 

 

 

3.6.3 Experimental setup for training options 

 

 Fine-tune of the pre-trained network in terms of hyperparameter is needed so that 

the model can well suit to the dataset to obtain the highest accuracy. The hyperparameter 

such as initial learning rate, max epochs and minibatch size is mainly focused on the tuning. 

Table 3.5 shows the range for hyperparameter to be tuned. The range is selected from the 

initial value given from MATLAB and adjusted the value of these three hyperparameter 

according to the theory from past research. The final chosen hyperparameter value for 

initial learning rate is 0.0001, the max epoch is 25, and minibatch size is 32. The other 

training options are tabulated in table 3.5.   

 

Table 3. 5: Training options. 

 

Training Options Value 

Solver sdgm 

Execution Environment CPU 

Initial Learn Rate 0.0001 

Max Epochs 25 

Mini Batch Size 32 

Momentum 0.9 

L2Regularization 0.0001 

Shuffle Every epoch 

Validation Frequency 5 

Validation Data augimdsValidation 

Plots Training Progress 
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3.6.4 Output result  

 

 The output result is displayed through the plot of the confusion matrix. The 

confusion matrix is a table that displays the performance of the CNN model. It is easy to 

understand because it makes the direct comparison of true positive, false positive, true 

negative and false negative to be visualized. It also outputs the precision, recall and overall 

accuracy in percentage.  

 

 In the confusion matrix table, the rows are the output class which is also call 

predicted class. The columns are the target class which is also called the true class. The 

diagonal in green colour shows the number of images that been correctly classified in that 

category. The off-diagonal in pink colour shows the incorrectly classified observation. The 

column on the far right of the table shows the positive predictive value and false discovery 

rate in percentages of all the prediction belong to each category is correctly and incorrectly 

classified. It is also called precision. The row on the bottom of the table shows the true 

positive rate and false-negative rate in percentages of all the images belong to each 

category is correctly and incorrectly classified. It is also called the recall. The overall 

accuracy is showed on the most right below grey colour box. Figure 3.23 shows the 

example plot of confusion matrix in MATLAB (Jadhav et al., 2020). 
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Figure 3. 23: Plot of confusion matrix from MATLAB. (Jadhav et al., 2020) 

 

 

3.7 Testing 

 

 After done the training process, the trained CNN is further test on the testing 

dataset to validate the performance. The performance is measured by using the plot of 

confusion matrix to show the ability of the trained CNN to find all the relevant vehicle and 

perform correct classification in real-life static vehicle picture. The testing dataset consists 

of total 120images. Each of the images contains one vehicle. Each category consists of 30 

images. This test dataset is passed through the trained CNN one time per one image to 

collect the result and time taken for processing one image. The result is recorded in a table 

and is tabulated through the plot of a confusion matrix manually. Table 3.6 shows the 

example of the confusion matrix that interpret on class Detect No Vehicle. The precision, 

recall and overall accuracy are calculated using the formula stated in Figure 3.24. The TP 

is True Positive means the number of real positive image of Detect No Vehicle, FP is False 

Positive means the actual target is false but the output prediction is positive, while FN is 

False Negative means the actual target is true but the output prediction is false.   
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Figure 3. 24: Formula for accuracy, recall and precision. 

 

Table 3. 6: Example of confusion matrix – Interpret on Detect No Vehicle class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.8 Data Analysis and Validation 

 

 The data analysis is done by comparing the result collected from the validation 

dataset and testing dataset between the two pre-trained CNN models. The comparison and 

analysis are made in term of performance measurement such as precision, recall and 

Example 

Target Class 

Precision 

(%) Detect No 

Vehicle 
MPV SUV Sedan 

Output 

Class 

Detect No 

Vehicle 
TP FP FP FP 

Precision 

Detect No 

Vehicle 

MPV FN    
Precision 

MPV 

SUV FN    
Precision 

SUV 

Sedan FN    
Precision 

Sedan 

Recall (%) 

Recall 

Detect No 

Vehicle 

Recall 

MPV 

Recall 

SUV 

Recall 

Sedan 

Accuracy 

(%) 
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overall accuracy. The training time for both pre-trained CNN models are also been 

compared and analysed based on the plot of the graph during training progress. The 

average computational time per image is calculated to compare between two pre-trained 

CNN models on how much time has been used to process one image. The comparison and 

analysis of results are aimed to find out which pre-trained CNN model is performed better 

and stable in terms of the performance measurement and computational time to judge for 

the reliability and suitability of the algorithm developed to be implemented for application 

in a surveillance system. 

 

 

3.9 Programming Code  

 

 Programming is the core of the software developing. The programming code for 

this project is divided into eight parts. The eight parts are consist of the load initial 

parameter, import dataset, set training options, create the CNN algorithm, train CNN 

models, create confusion matrix, load net and test CNN models with the testing dataset. 

The Deep Network Designer apps in Machine Learning and Deep Learning toolbox is used 

in this project. The upload of training and validation dataset, the modification of CNN 

models, the set of hyperparameter and the initial training of models are done in this app. 

The MATLAB programming code can be auto-generated after the first training in the app. 

The programming code then saved and ran in the live editor in MATLAB for ease of 

editing and displaying the result. The complete programming code for this project is 

attached in the Appendix D and Appendix E  
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Figure 3. 25: Import training and validation dataset. 

Figure 3. 26: Modify the convolution layer and classification layer. 
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Figure 3. 27: Change the hyperparameter. 

 

 

 

Figure 3. 28: Example of training in progress. 
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Table 3. 7: Explanation of programming code for each part. 

 

No Part Function Code 

1 Load Initial 

Parameter 

trainingSetup = load("C:\Users\Asus\Documents\MATLAB\PSM 

2\trainingSetup_2021_01_06__21_22_07.mat"); 

 

The trainingSetup is used to load the parameters of the initial pre-trained network for 

transfer learning. It is downloaded and saved in computer file when downloaded of 

the pre-trained network.  

 

2 Import Data imdsTrain = imageDatastore("D:\MATLAB\PSM 

2\new","IncludeSubfolders",true,"LabelSource","foldernames"); 

[imdsTrain, imdsValidation] = splitEachLabel(imdsTrain,0.8); 

 

imageAugmenter = imageDataAugmenter( ... 

      'RandXReflection',true); 

 

augimdsTrain = augmentedImageDatastore([227 227 

3],imdsTrain,"DataAugmentation",imageAugmenter); 

augimdsValidation = augmentedImageDatastore([227 227 3],imdsValidation); 

 

The dataset of vehicles that prepared in the folder is imported into by using the 

imageDatastore function. This function is used to create an object to manage the 

collection of images dataset. The splitEachLabel function is used to split the 

imgaeDatastore into train image datastore and validation image datastore with the 

ratio of 8:2 randomly. The imageDataAugmenter function is used to augment the 

training image datastore to increase the images of training images through the 

reflection of images on X-axis. The augmentedImageDatastore function is used to 

create an object for storing the resize of training dataset and validation dataset. Both 

datasets are resized according to the input size of the CNN model. The object 

augimdsTrain is used for the training dataset and object augimdsValidation is used 

for validation dataset during the training process. 

 

3 Set Training 

Options 

opts = trainingOptions("sgdm",... 

    "ExecutionEnvironment","auto",... 

    "InitialLearnRate",0.0001,... 

    "MaxEpochs",25,... 

    "MiniBatchSize",32,... 

    "Momentum", 0.9,... 

    "L2Regularization",0.0001,... 

    "Shuffle","every-epoch",... 

    "ValidationFrequency",5,... 

    "Plots","training-progress",... 
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 "ValidationData",augimdsValidation); 

The training options are set by using the trainingOptions function. All values in the 

hyperparameter are edited inside this code to fine-tune the CNN model.  

4 Create CNN 

Model 

lgraph = layerGraph(); 

tempLayers = [*linear array of layers]; 

lgraph = addLayers(lgraph,tempLayers); 

lgraph = connectLayers(lgraph,"fire2-relu_squeeze1x1","fire2-expand1x1"); 

layerGraph() is the main function to create the layer graph variable that contains all 

the network layers. Each branch is consists of a linear array of layers using the 

function tempLayers[]. Then add the branches of the network to the layer graph using 

function addLayers. Lastly, connect all the branches of the network to create the 

network graph using the connectLayers function. The full code is attached in the 

Appendix. 

5 Train Network [squeezenet, traininfo] = trainNetwork(augimdsTrain,lgraph,opts); 

save squeezenet 

The network is trained by using the trainNetwork function. The input argument for 

this function is the objects of augimdsTrain, lgraph and opts set from the previous. 

The training info is saved in name squeezenet or googlenet based on the CNN model. 

The net is saved to ensure next time open will not need to rerun the programme.  

6 Create 

Confusion 

Matrix 

YPred = classify(squeezenet, augimdsValidation); 

YTest = imdsValidation.Labels; 

figure, plotconfusion(YTest, YPred); 

confMat = confusionmat(YTest, YPred); 

confMat = bsxfun(@rdivide, confMat, sum(confMat,2)) 

accuracy = mean(diag(confMat)*100); 

disp('accuracy') 

disp(accuracy) 

The function classify is used to classify the validation dataset by using the saved net. 

YTest is the target class. Then the confusion matrix is plotted and displayed in the 

figure. The accuracy is calculated using the mean of the value in diagonal in 

confusion matrix and multiply with 100 to get the percentage. Then displayed the 

accuracy. 

7 Load Network % load squeezenet 

Load the saved squeezenet when next time opens the MATLAB. This code is an 
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option where it will only be used when needed to load the saved net into the 

workplace in MATLAB. 

 

8 Test Network I = imread('D:\MATLAB\PSM 2\DatasetTest\Sedan\30.png'); 

tic; 

I = imresize(I, [227 227],'nearest'); 

[label,scores] = classify(squeezenet,I); 

scores = max(double(scores*100)); 

time=toc; 

figure 

imshow(I) 

title(join([string(label),'',scores,'%'])) 

 

The imread function is used to read one image from the written path in laptop. 

Change the path to change to the next image for testing. The tic is used to calculate 

time start at the resizing process. The image is resized to the required input size using 

the imresize function. The classify function is used to perform the classification task 

on the resize image by using the net saved. The scores is multiplied with 100 to 

calculate for the percentage. The toc is used to stop the time calculated from tic. The 

period between the tic and toc is the processing time for one image. It then outputs 

the label and scores for the processed image using imshow(I) function. The title is 
displayed together with the scores. 

 

 

 

 

3.10 Summary 

 

 In summarize, this chapter has provided the overall flow of project planning start 

from the beginning until the end on how to achieve the objectives for this project. Each 

process has been explained and discussed deeply to has a better understanding of how it 

related to each other. With the proper plan of methodology, the project start from the 

literature review, project planning, system development, testing of the system and lastly 

with data analysis can be carried out accordingly to the schedule. This is important so that 

the project will not take longer time to finish. Lastly, the methodology is a guideline to set 

up the experiment to gather data for analysis that will be used in the next chapter. 
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CHAPTER 4 

RESULT AND DISCUSSION 

4.0 Introduction 

This chapter will discuss the results obtained from the work done according to the 

methodology in chapter 3. This chapter will be divided into two parts where the first part 

will discuss the result obtained from the training of both the CNN models which are the 

SqueezeNet and GoogleNet. While the second part will discuss the validation of result get 

from both CNN models when test with the testing dataset. 

4.1 Result for Validation Dataset 

Transfer learning technique has been implemented to train on the selected CNN 

algorithm to perform the new task on vehicle detection and classification. The two pre-

trained CNN algorithms are SqueezeNet and GoogleNet. The training progress is plotted 

and the result of the training are shown by using a confusion matrix. Many information can 

be extracted from the confusion matrix. The green colour indicates the true positive, the 

horizontal orange colour indicates the false positive while vertical orange colour indicates 

the false negatives. From the true positive, false positive and false negative, precision and 

recall can be calculated. The vertical light grey indicates the precision while the horizontal 

light grey colour indicates the recall and lastly the grey colour is the overall accuracy. 
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Figure 4.1 shows the confusion matrix of validation dataset for SqueezeNet model and 

Figure 4.2 shows the confusion matrix of validation dataset for GoogleNet.  

 

 
 

Figure 4. 1: Confusion matrix of validation dataset by SqueezeNet. 

 

 From Figure 4.1, the confusion matrix shows that 19 out of 20 images for category 

MPV vehicles are classified correctly. Only one image is classified wrongly to be SUV. 

For SUV, 19 out of 20 images of SUV vehicles are classified correctly and only one image 

is classified wrongly as MPV. For Sedan, 16 out of 20 images sedan vehicles are classified 

correctly. 3 images are classified wrong as MPV and one image is classified wrongly as 

SUV. The images for Detect No Vehicle category are all classified correctly. Table 4.1 

shows the calculation for precision and recall. This data will discuss in next subtopic for 

precision and recall. 
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Table 4. 1: Calculation of precision and recall - SqueezeeNet. 

 

Class 

True 

Positive 

(TP) 

False 

Positive 

(FP) 

False 

Negative 

(FN) 

Precision 

(TP/(TP+FP)) *100 

(%) 

Recall 

(TP/(TP+FN)) *100 

(%) 

Detect No Vehicle 20 0 0 100 100 

MPV 19 4 1 82.6 95 

SUV 19 2 1 90 95 

Sedan 16 0 4 100 80 

 

 
 

Figure 4. 2: Confusion matrix of validation dataset by GoogleNet. 

 

 From Figure 4.2, the confusion matrix shows that 19 out of 20 images for category 

MPV vehicles are classified correctly. Only one image is classified wrongly to be SUV. 

For SUV, 18 out of 20 images of SUV vehicles are classified correctly and two images are 

classified wrongly as Sedan. For Sedan, 18 out of 20 images sedan vehicles are classified 

correctly. One image is classified wrong as MPV and one image is classified wrongly as 

SUV. The images for detect no vehicle category are all classified correctly. Table 4.2 

shows the calculation for precision and recall. This data will discuss in next subtopic. 
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Table 4. 2: Calculation of precision and recall – GoogleNet. 

Class 

True 

Positive 

(TP) 

False 

Positive 

(FP) 

False 

Negative 

(FN) 

Precision 

(TP/(TP+FP)) *100 

(%) 

Recall 

(TP/(TP+FN)) *100 

(%) 

Detect No Vehicle 20 0 0 100 100 

MPV 19 1 1 95 95 

SUV 18 2 2 90 90 

Sedan 18 2 2 90 90 

4.1.1 Comparison of precision 
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Figure 4. 3: Histogram graph for comparison of precision between two CNN models. 

The precision from Table 4.1 and Table 4.2 are being transferred and compared 

using a histogram. Figure 4.3 shows the histogram for comparison of precision between 

two CNN model. Based on the histogram, the precision percentage of Detect No 

Vehicle class is 100% for both SqueezeNet and GoogleNet. The precision percentage of 

MPV class is 82.6% for SqueezeNet and 95% for GoogleNet. For SUV class, both CNN 

models scored almost same precision where SqueezeNet with 90.5% which is only 0.5% 

higher than the precision percentage for GoogleNet. Similarly, for Sedan class, the 
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SqueezeNet scored better in precision with 100% which is 10% higher than the 

precision percentage for SqueezeNet. 

  

 In precision, the higher the precision percentage, the more accurate the 

prediction, the lesser the error to classify the images wrongly. The 100% precision fall 

on Detect No Vehicle class, this is due to the images for this class are having less 

similarity among the other three class. The images are mostly the road pictures with 

grass and sky. There is not any vehicle in those images. Therefore, the precision 

percentage is high due to its easiness to recognize and differentiate between this class 

with other class that has the vehicle object. While MPV class has the lowest precision in 

SqueezeNet. This means 19/23 of the images that the predictor classifies as MPV are 

actually MPV. There are extra 4 images are classified wrongly by the predictor and 

three images come from Sedan class. This might due to there are few bad images in 

Sedan class that can make the CNN models misunderstanding on the features of images 

given. 

 

 

4.1.2 Comparison of recall 
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Figure 4. 4: Histogram graph for comparison of recall between two CNN models. 

 

 The recall from Table 4.1 and Table 4.2 are being transferred and compared 

using a histogram. Figure 4.8 shows the histogram for comparison of recall between the 

two CNN models. Based on the histogram, the recall percentage of Detect No Vehicle 
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class is 100% for both SqueezeNet and GoogleNet. Similarly, the recall percentage of 

MPV class is 95% for both SqueezeNet and GoogleNet. For SUV class, the SqueezeNet 

scored better in recall with 95% which is 5% higher than the recall percentage for 

GoogleNet. In vice versa, for Sedan class, the GoogleNet scored better in recall with 

90% which is 10% higher than the recall percentage for SqueezeNet.  

  

 For both CNN models, the Sedan class has the lowest recall over the other three 

class. An assumption made in this scenario is there are some bad images in Sedan class 

that made the classifier hard to predict it into the right class. Figure 4.5 below shows 

some of the bad images. Some reasons can cause the happening of bad images in the 

dataset. It might because during the dataset pre-processing where the resize of the 

images into the required input size of the CNN model. The images (a) may be stretched 

and caused to the important features in Sedan go different and thus result in false 

prediction. Some of the images of sedan type vehicle, (b) and (d) are not in full body 

size. Thus, the features in these images are not completed and might not be able to 

classify as Sedan class. The human mistake in sorting the front view vehicle in Sedan 

class (c). Those bad images can cause to the misunderstanding of the CNN model to 

classify those images as MPV or SUV. 

 

 
(a) Stretched image (b) No full body size 

 
(c) Front view  (d) No full body size  

 

Figure 4. 5: Example of bad images in the Sedan class. 
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4.1.3 Comparison of accuracy and training time 

 

 During the training of CNN models, the accuracy for the training dataset and 

validation dataset has been plotted out in the training progress graph. The blue colour line 

is the training accuracy while the black line with dots is the validation accuracy. From the 

training progress graph, whether the training is overfitting or not can be detected. The 

validation frequency in plotting the accuracy is per 5 iterations. Normally the accuracy of 

the model will be increased with iterations. The number of iterations is determined by max 

epoch and mini-batch size. The smaller the mini-batch size, the greater the iteration. The 

greater the max epoch, the greater the iterations. Greater iterations mean longer training 

time. In this project, the mini-batch size, max epoch and hyperparameters are set to same to 

ease to the comparison. Figure 4.6 and Figure 4.7 shows the training progress for 

SqueezeNet and GoogleNet. 

 

 
 

Figure 4. 6: Training process – SqueezeNet. 

 

 
 

Figure 4. 7: Training process - GoogleNet 
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Table 4. 3: Tabulated result of accuracy and training time. 

 

Model Training Accuracy Validation Accuracy Training Time 

SqueezeNet 100 92.5 26 mins 39 sec 

GoogleNet 100 93.8 70 mins 53 sec 

 

 Based on the data tabulated in Table 4.3, the validation accuracy for SqueezeNet is 

92.5% while for GoogleNet is 93.8%. It shows that GoogleNet has higher validation 

accuracy when compared to SqueezeNet. However, the difference is no significant where 

only 1.3% different in accuracy between both pre-trained CNN models. While for training 

time, with the same hyperparameter setting for the training option, the training time for 

SqueezeNet was 26mins 39 seconds and for GoogleNet was 70 mins 53seconds. 

GoogleNet took 44 mins 14 sec longer to complete the training. Due to the ease to compare 

the SqueezeNet and GoogleNet, the hyperparameter of the max epoch are set to be same 

therefore the GoogleNet continue to train even the maximum accuracy has been reached. 

 

 Based on the theory, the CNN model with deeper architecture results in better 

accuracy but the poor side is training time will be longer (Lee et al., 2019). The parameters 

of CNN architecture will also affect on the training time. The larger the parameters, the 

longer the training time. GoogleNet has larger parameter and greater depth when compared 

to SqueezeNet. Therefore, GoogleNet used longer time for training and better accuracy of 

the classifier is achieved (Seo & Shin, 2019). 

 

 The difference between the training accuracy and validation accuracy from the plot 

of training progress can indicate whether the training is overfitting (Shorten & 

Khoshgoftaar, 2019). For GoogleNet, this model is perfect fitting since the validation 

accuracy point for every 5 iterations is near to training accuracy. While for SqueezeNet, 

the gap between the validation accuracy and training accuracy is getting bigger when 

getting near to the end of the training. This shows that this model is having little overfitting 

where it fit nicely to training data but slightly poor on validation data.  
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4.2 Result on Testing Dataset 

 

 The trained CNN models are further tested on the testing dataset to validate the 

performance measurement. The images containing the object are snapshotted from the 

recorded video and separated into 30 images per categories. The total of images dataset to 

be 120 images. The 120 images are tested one by one manually using the programming 

code explained in Table 3.7. The results are recorded and tabulated on the confusion matrix. 

The precision, recall and accuracy are calculated using the formula stated in figure 3.24 in 

chapter 3. Table 4.4 shows the confusion matrix for testing dataset by SqueezeNet model 

and Table 4.6 shows the confusion matrix for the testing dataset by GoogleNet. 

 

Table 4. 4: Confusion matrix for testing dataset by SqueezeNet. 

 

 

 

 

  

 

 

 

 

 

 From Table 4.4, The confusion matrix shows that 26 out of 30 images for category 

Detect No Vehicle are classified correctly. Four images are classified wrongly to be MPV. 

For SUV, 18 out of 30 images of SUV vehicles are classified correctly and 12 images are 

classified wrongly as MPV. For MPV and Sedan, both categories are all classified 

SqueezeNet 

Target Class 

Precision 
Detect 

 No  

Vehicle 

MPV SUV Sedan 

Output 

Class 

Detect No 

Vehicle 
26 0 0 0 100% 

MPV 4 30 12 0 65.2% 

SUV 0 0 18 0 100% 

Sedan 0 0 0 30 100% 

Recall 86.7% 100% 60% 100% 86.7% 
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correctly. Table 4.6 shows the calculation for precision and recall for SqueezeNet in the 

testing dataset. 

 

Table 4. 5: Calculation for precision and recall – SqueezeNet (Testing Dataset). 

 

Class 

True 

Positive 

(TP) 

False 

Positive 

(FP) 

False 

Negative 

(FN) 

Precision 

(TP/(TP+FP)) *100 

(%) 

Recall 

(TP/(TP+FN)) *100 

(%) 

Detect No Vehicle 26 0 4 100 86.7 

MPV 30 16 0 65.2 100 

SUV 18 0 12 100 60 

Sedan 30 0 0 100 100 

 

Table 4. 6: Confusion matrix for testing dataset by GoogleNet. 

 

 

  

 

 

 

 

 

 

 From Table 4.6, the confusion matrix shows that 27 out of 30 images for category 

Sedan are classified correctly. Only three images are classified wrongly to be MPV. For 

categories Detect no Vehicle, MPV and Sedan, both three categories are all classified 

correctly. Table 4.7 shows the calculation for precision and recall for SqueezeNet in the 

testing dataset.  

 

GoogleNet 

Target Class 

Precision Detect 

No 

Vehicle 

MPV SUV Sedan 

Output 

Class 

Detect No Vehicle 30 0 0 0 100% 

MPV 0 30 0 3 91% 

SUV 0 0 30 0 100% 

Sedan 0 0 0 27 100% 

Recall 100% 100% 100% 90% 97.5% 
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Table 4. 7: Calculation of precision and recall – GoogleNet (Testing Dataset). 

 

Class 

True 

Positive 

(TP) 

False 

Positive 

(FP) 

False 

Negative 

(FN) 

Precision 

(TP/(TP+FP)) *100 

(%) 

Recall 

(TP/(TP+FN)) *100 

(%) 

Detect No Vehicle 30 0 0 100 100 

MPV 39 3 0 91 100 

SUV 38 0 0 100 100 

Sedan 27 0 3 100 90 

 

 The precision and recall from Table 4.5 and Table 4.7 will be discussed in next 

subtopic for the comparison between SqueezeNet and GoogleNet in the testing dataset. 

 

 

4.2.1 Precision 
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Figure 4. 8: Comparison of precision between two CNN model in testing dataset. 

 

 The precision from Table 4.5 and Table 4.7 are being transferred and compared 

using a histogram. Figure 4.8 shows the histogram for comparison of precision between 

two CNN model. Based on the histogram, the precision percentage of Detect No Vehicle 

class, SUV class and Sedan class are 100% for both SqueezeNet and GoogleNet. The 

precision percentage of MPV class is 65.2% for SqueezeNet and 91% for GoogleNet.  
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The precision for MPV class is lower than the other three classes. This is because 

all the misclassified images from other class are predicted as MPV class. This may be due 

to vehicle type for MPV is purely like rectangular. Since the rectangular shape is the basic 

shape for most vehicles, therefore, the images that are hard to detect the small features 

differences of the vehicles might be classified as MPV. The high order features such as 

edges and corner in Sedan and SUV may be hard to be detected in SqueeezeNet model 

(Bautista et al., 2016).  

4.2.2 Recall 

Figure 4. 9: Comparison of recall between two CNN models in testing dataset. 

The recalls from Table 4.5 and Table 4.7 are being transferred and compared using 

a histogram. Figure 4.9 shows the histogram for comparison of recall between the two 

CNN models. Based on the histogram, the recall percentage of Detect No Vehicle class is 

86.7% for SqueezeNet and 100% for GoogleNet. The recall percentage of MPV class is 

100% for both SqueezeNet and GoogleNet. For SUV class, the GoogleNet scored better in 

recall with 100% which is 40% higher than the recall percentage for SqueezeNet. For 

Sedan class, the SqueezeNet scored better in recall with 100% which is 10% higher than 

the recall percentage for GoogleNet.  
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 The most significant difference is at class SUV for SqueezeNet. The reason for 

SUV class has the lower recall in SqueezeNet is due to 18 images are classified correctly, 

the rest 12 images are classified wrongly as MPV. The reason may be due to SUV and 

MPV are sharing the same similarity in body type of vehicle. The different in small 

features may be hard to detect by the model. The resize of images further effect on the 

shape of the vehicle. While for Detect No Vehicle class, 4 images are classified wrong as 

MPV in SqueezeNet. Figure 4.10 shows the example of false predicted images for Detect 

No Vehicle class as MPV class. These images have a rectangular shape of an object such 

as lorry (a), sideboard (b) and rectangular white fabric (c). This can cause 

misunderstanding to the CNN models to predict it as MPV. This is because the MPV type 

of vehicle has the shape almost same to rectangular.  

 

 

(a)         (b)    (c)  

t 

Figure 4. 10: Example of false predicted images. 

 

 However, GoogleNet can classify the images for these two classes that mention 

above all correctly. The is because the GoogleNet architecture is deeper and it is using the 

inception module as base bone of the architecture. Inception module using the concept of 

convolving the output from the previous layer in parallel with different sizes of the filter 

from small to bigger to cover the bigger area and still maintaining fine resolution for small 

information images (Christian Szegedy, 2015). Therefore, GoogleNet can detect the small 

features in the images and thus can classify the vehicle correctly. 
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4.3 Comparison and Analysis on Performance Measurement Between Two 

Datasets 

 

 The result from the two types of datasets are extracted and compared using the 

histogram. This with the aim to validate the performance measurement by the algorithm 

build. The performance measurements are average precision, average recall and accuracy 

for both CNN models. The average of precision and recall are calculated by finding the 

mean between the 4 classes. Figure 4.11, Figure 4.12 and Figure 4.13 show the histogram 

for comparison of average precision, average recall and overall accuracy between two 

CNN models and two datasets. 

 

 
 

Figure 4. 11: Comparison of average precision between two CNN models and two datasets. 

 

 Figure 4.11 shows the average precision for SqueezeNet and GoogleNet on 

validation dataset and testing dataset. From the histogram, the average precision for 

SqueezeNet is 94.4% for validation dataset and 91.3% for testing dataset. There is a drop 

of 3.1% in average precision for SqueezeNet. In contrast, the average precision for 

GoogleNet is 93.75% for validation dataset and 97.8% for testing dataset. GoogleNet has 

increased by 4.05% of average precision. 
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Figure 4. 12: Comparison of average recall between two CNN models and two datasets. 

 

 Figure 4.12 shows the average recall for SqueezeNet and GoogleNet on validation 

dataset and testing dataset. From the histogram, the average recall for SqueezeNet is 92.5% 

for validation dataset and 86.7% for testing dataset. There is a drop of 5.8% in average 

recall for SqueezeNet. In contrast, the average recall for GoogleNet is 93.8% for validation 

dataset and 97.5% for testing dataset. GoogleNet has increased by 3.7% of average recall. 

 

 
 

Figure 4. 13: Comparison the accuracy for two models on validation dataset and test dataset. 

 

 Figure 4.13 shows the accuracy for SqueezeNet and GoogleNet on validation 

dataset and testing dataset. From the histogram, the accuracy for SqueezeNet is 92.5% for 

validation dataset and 86.7% for testing dataset. There is a drop of 5.8% in accuracy for 

SqueezeNet. In contrast, the accuracy for GoogleNet is 93.8% for validation dataset and 

97.5% for testing dataset. GoogleNet has increased by 3.7% of accuracy. 
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 The significant drop in average performance measurement for SqueezeNet can be 

caused by the overfitting issue that been discussed in sub-topic 4.1.3. The SqueezeNet 

model undergoing some overfitting where the model memorizes too much detail including 

the noise on the training dataset. This causes the model unable to generalize and work well 

on the new images given. The reasons for overfitting might be due to the presence of noise, 

the limited size of the training set and the complexity of CNN models. While the 

GoogleNet doesn’t have this issue since it is perfectly fit thus the results are close between 

validation dataset and testing dataset and it can work well for new images given (Ying, 

2019). 

 

 

4.4 Computational Time Per Image 

 

 10 images per each class are tested on the two CNN models to further validated on 

the computation time for processing on an image. The mean of computation time for each 

class is calculated and overall mean for processing one image is calculated. The data is 

tabulated in Table 4.8 For SqueezeNet and Table 4.9 For GoogleNet. 

 

Table 4. 8: Data collection for the time taken per image in SqueezeNet. 

 

No No Vehicle Detected (s) MPV (s) SUV (s) Sedan (s) 

1 0.079 0.287 0.061 0.062 

2 0.086 0.088 0.078 0.070 

3 0.117 0.174 0.093 0.062 

4 0.107 0.140 0.076 0.065 

5 0.121 0.074 0.098 0.083 

6 0.117 0.076 0.069 0.100 

7 0.095 0.064 0.065 0.089 

8 0.063 0.073 0.103 0.071 

9 0.126 0.072 0.129 0.094 

10 0.045 0.094 0.067 0.058 

Mean 0.095 0.114 0.084 0.075 

Overall Mean 0.092 
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Table 4. 9: Data collection for time taken per image in GoogleNet. 

No No Vehicle Detected(s) MPV(s) SUV (s) Sedan (s) 

1 0.116 0.129 0.120 0.140 

2 0.231 0.228 0.274 0.120 

3 0.184 0.182 0.173 0.062 

4 0.182 0.140 0.172 0.166 

5 0.220 0.165 0.168 0.204 

6 0.301 0.166 0.172 0.166 

7 0.131 0.189 0.395 0.186 

8 0.212 0.161 0.278 0.267 

9 0.179 0.264 0.364 0.170 

10 0.178 0.224 0.209 0.161 

Mean 0.193 0.185 0.232 0.164 

Overall Mean 0.194 

Figure 4. 14: Comparison the computational time per image for SqueezeNet and GoogleNet. 

From both Table 4.8 and Table 4.9, there is no significant difference in the 

computational time for the four classes. The object in images has no significant effect on 

the computational time. From the overall mean, Figure 4.14 shows the computational time 

per image for SqueezeNet is 0.092s and GoogleNet is 0.194s. The difference is very 

obvious where GoogleNet needs an average of longer time to complete one processing on 

an image if compare to SqueezeNet. The reason is that SqueezeNet has less depth, less 

parameter and less size when compared to GoogleNet. SqueezeNet is built with aims to 

reduce the parameter and size of model architecture to make this model faster and can fit 

into hardware with limited memory. Wang et al. (2019) stated that actual traffic flow for 
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passage time per vehicle is 0.89s. Therefore, it is believed if there is a GPU embedded for 

the processing of the image, the computational time of the two models will be faster and 

thus can be coped with real-time vehicle detection and classification in the surveillance 

system in either traffic flow or automatic car parking system (Nithiyaraj and Arivazhagan, 

2020). 

 

 

4.5 Summary 

 

 The programming code can be developed and the first objective can be achieved 

where the algorithm of vehicle detection and classification can be built with the use of the 

pre-trained neural network. In terms of result, both developed algorithms can generate high 

accuracy for both training dataset and validation dataset. The result is further tested on new 

image dataset. It is proved again that the developed code can detect and classify the vehicle 

into Sedan, SUV and MPV. It can also differentiate between the situation with no vehicle 

and has the vehicle. GoogleNet model is done better than SqueezeNet in terms of 

performances measurement in this project. GoogleNet can achieve high recall and high 

precision and high accuracy when testing with a new dataset. The computational time per 

image is 0.194 with no GPU. This means with better GPU it is applicable to be 

implemented in the real-time surveillance system for managing of vehicle application. 

Thus, the second objective of this project has been achieved. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

 

 

5.0 Conclusion 

 

 Vehicle detection and classification plays an important role in a part of the 

surveillance system. It can be further implemented in the automatic parking lot system for 

ease of counting, analysis and management on the vehicles. It is essential in providing the 

benefits of reducing the disadvantages of manpower which had been outlined in chapter 2. 

The detection and classification of vehicles can be done continuously without the need for 

rest as compared to manpower. So the performance of the system will be constant where 

the manpower might be reduced with the increase of time. The good accuracy that been 

achieved from this project has indicated that the machine vision system can replace human 

vision in term of a long duration of the working hour. 

 

 The first objective is to develop an algorithm for vehicle detection and 

classification through an image processing technique. MATLAB is used to develop the 

script and run the programming code for detection and classification of vehicle. The image 

processing technique used is to focus on CNN deep learning. The pre-trained neural 

network SqueezeNet and GoogleNet are modified and used to train on the new task for this 

project by using self-collected image dataset. This objective is successfully achieved. 

 

 The second objective is to validate the developed system for vehicle detection and 

classification in terms of accuracy. Both pre-trained CNN shows the result of high 
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accuracy for the training dataset and validation dataset. During the testing phase, 

GoogleNet can detect and classify the vehicle with an overall accuracy of 97.5% which is 

higher than SqueezeNet which is 86.7%. The developed system can detect and classify the 

vehicle into Sedan, SUV and MPV with good accuracy for GoogleNet. Thus, the second 

objective is achieved. 

 

In conclusion for this project, the image processing technique of CNN can be 

implemented to machine vision system to replace human vision to perform the task of 

vehicle detection and classification. The objectives and scopes are fully accomplished. 

The following part in this chapter will briefly outline the financial implication, 

sustainable design and development, complexity, long-life learning (LLL) and basic 

entrepreneurship (BE) as well as limitations for this vision system project and 

recommendations and suggestions to minimize the limitation to continually enhance this 

system.  

  

 

5.1 Financial Implication 

 

 A summary of the bill of material on Table 5.1 shows the overall price to carry 

out this research. This bill of material is only for reference because the price of the part 

is varied depends on the method of buying, such as online purchasing or on shop buying. 

All of the device and material are self-owned. 

  

Table 5. 1: Bill of material (BOM). 

 

Number Part Quantity Price (RM) 

1 Laptop 1 2500.00 

2 Camera (DJI Osmo Action) 1 1400.00 

3 Tripod 1 10.00 

4 Micro SD card (64 gb) 1 35.00 

5 Universal memory card reader 1 16.00 

Total 3691 
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5.2 Sustainability 

 

 The sustainability index for this project is all the material and device used to 

conduct this whole experiment and study are using the already self-own product. There is 

no extra money that been used to do this project. Furthermore, the materials and devices 

used for this project can be used for other tasks in image processing. With proper setup and 

connection, it can be implemented in the real-time surveillance system. Apart from that, 

since this project is programming based, therefore there is no need for the cost for the 

manufacturing of a product. The scopes and methodology for this project are designed to 

be used fewer components to achieve for the two main objectives of this project. The 

component such as raspberry pi, camera module, extra keyboard and extra USB cable can 

be eliminated. The energy consumption mainly used to complete this project is electricity. 

The electricity is mainly generated by using the natural resource of water and solar. 

Moreover, if this developed system is deployed for the application, it will not generate the 

harmful toxic substances that can cause to air pollution, water pollution or other types of 

negative impact on the environment. Thus, this project is economic friendly achieving 

sustainable index without comprising the objectives. 

 

 

5.3 Complexity 

 

 The complexity of this project can be categories into three parts. The first part is the 

complexity of preparation of the dataset. The nature of the dataset will eventually affect the 

training result of CNN. The size of the images, angle of the vehicles, the ratio of the 

vehicle to the image size, the resolution of the images, the volume of the dataset and the 

lighting on the images, the resizing technique are needed to be considered appropriate to 

output the desired accuracy. The previous research shows no significant discussion on how 

the dataset impact during the application especially for the ratio of the vehicle to the image 

size and the resizing technique. Since the training of deep learning, CNN largely depends 

on the dataset. The second part is the construction of the programming for this project 

required technical knowledge of programming. Although MATLAB has the machine 

learning and deep learning toolbox to construct the CNN training and can generate the 
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code automatically after done the training on Deep designer Network apps. There is still a 

need to understand the generated MATLAB script to do the troubleshooting and adding the 

script for testing phrase. The third part is troubleshooting the problem occur on how to 

improve the accuracy of the algorithm. There are so many possibilities for the cause of low 

accuracies such as dataset, CNN layer parameter and hyperparameter. It requires critical 

thinking, analysis, research and patient to justify the problem and create a solution to solve 

for the problem. This consumes a lot of time as a lot of testing need to be done. These 

significant findings for the result encompass and accomplish the complex problem solving, 

complex engineering problems and knowledge profile on the background of techniques 

used. 

5.4 Long Life Learning (LLL) 

This project promotes long life learning (LLL) because it requires self-study to 

develop the complete algorithm. Long-life learning takes time for personal development 

because MATLAB programming knowledge is very wide without a border and it can be 

very complex as well as competitiveness. The application of deep learning in artificial 

intelligence for image processing is very huge. The image processing technique can be 

integrated into our daily life in many aspects. It provides long-life learning for the 

individual to learn deeper into the field. The created algorithm can be deployed to become 

a stand-alone device and used to perform other tasks. This will need further learning for the 

application. To enhance the system, the idea of improving the programming should also be 

done to reduce the error and make the system more stable. 

5.5 Basic Entrepreneurship (BE) 

The application of this developed algorithm of image processing for vehicle 

detection and classification is very huge. It can be deployed to other devices to become a 
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stand-alone device. For example, it can help develop the automatic parking lot system 

where it can embed in the surveillance system in the camera to detect car and classify the 

car into different categories and guide the consumer to desire car parking lot. The 

consumer can directly drive to the parking lot to park their car with the direction given by 

the system. The management will also be easy where the counting of the vehicle can be 

done so it will help on managing the parking lot where the consumer can know that is the 

parking slot is filled or still got a slot. It creates a big potential to be commercialized and 

bring the technology more into industry 4.0. A further study is needed for its application. 

 

 

5.6 Limitation 

  

 In this project, although all the objectives are fully achieved, some limitations make 

the project become difficult and impact on the result. The limitations are as follows: 

 

1. Dataset Preparation 

Due to the time constraint in prepared the dataset, the dataset prepared is small in 

volume with total 396 of images. According to research from the past journals, the 

larger the image dataset, the higher the accuracy of the trained CNN. Although to 

minimize the problem of the small dataset, transfer learning by using a pre-trained 

neural network have been selected as the main CNN architectural to perform the 

training. The result of accuracy still being affected somehow. Another problem 

associated with dataset preparation is the ratio of the vehicle to the image size and 

the resize of the dataset can affect the result. Since the region of interest is cropped 

manually therefore, the size of the vehicle images will be different. Due to the 

resized of image dataset to be fit into the constant input layer size, the resized 

image is stretched and the shape of the vehicle has been changed slightly, this may 

affect in the result different during the real-time application. The angle of 

placement for the camera to the angle of the vehicle to be detected and classify will 

need to be considered critically. 
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2. Hardware Limitation 

The specification of the laptop device is low and unable to support for the image 

processing by using the CNN technique that usually required for high CPU, high 

GPU and large memory space to make the training time shorter and faster. 

Otherwise, the laptop device is unable to support and will crack during the training 

of the algorithm. Therefore, the dataset is set to hundreds and SqueezeNet and 

GoogleNet are selected to perform the training of CNN. The testing on images is 

used to replace the real-time testing due to this issue. 

 

 

5.7 Recommendation and Suggestion 

 

 In conjunction to the limitation as mention on above, there are many 

recommendations and suggestions for upgrading this system to become more stable and 

high-level by minimizing or eliminating the limitations to eventually provide end-line 

service to the users. 

 

1. Investigate the effect of the dataset on the result. 

 

 There is a need to investigate the ratio of the object to an image in affecting 

the result. This is because when the object is from the camera, the object will look 

small in the image. This may result in the system unable to detect and classify the 

object accurately. Furthermore, the resizing technique for the dataset with different 

image size then stretched the image making the object different from the real 

features. This may affect the result too as the system tends to remember the features 

that been stretched. Therefore, when given the unstretched image foe testing, the 

system may be unable to classified correctly. This problem is found out during the 

testing phase of this project. Due to time constraint, only the hypothesis can be 

roughly pointed out for future improvement. Further experiment will need to 

carried out to justify on this problem. 
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2. Upgrade the specification of hardware. 

  

 The CPU, GPU and SSD can be upgraded to higher spec to support for 

smoother and lower the time for image processing process. The image dataset can 

increase in its volume to cover more brand of vehicle and angle of the vehicle as 

more dataset higher the accuracy. This would further improve the accuracy of the 

system and make the vehicle detection and classification can be done at high speed 

for application on-road or traffic. 

 

3. User-friendly graphical-user-interface (GUI)  

  

 The whole system was written in the MATLAB language and run using 

MATLAB software to output the result of vehicle detection and classification. It is 

not very practical because the public who cannot read computer language cannot 

use it. Hence, it is highly recommended to build out a user-friendly screen which 

provides a graphical user interface where the language used is human-

understandable-common language.  

 

4. Open-source software 

 

 Since the MATLAB software will need for a license to excess, therefore it 

will be costly. This has limited the range of uses to excess in MATLAB software. It 

is also recommended using open-source software such as Python to perform the 

same task. This is because open-source software Python is free of charge and is 

also support for the image processing using deep learning. 
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APPENDIX A 

JOURNAL REVIEW TABLE 

No Main Topic Journals 

1 Conventional image processing method 6 

2 Artificial intelligence, machine learning 6 

3 Deep learning CNN 17 

4 Pretrained network 12 

5 Dataset 13 

6 Dataset Preprocessing 7 

7 Training 6 

8 Hyperparameter optimisation 7 

9 Performance measurement 6 

*Review of journals may be repeated for different topics.
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APPENDIX B

SQUEEZENET ARCHITECTURE 

Different colour indicates different layers. Total layers 68. 

Modified Layers 
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PARAMETERS OF EACH LAYER - SQUEEZENET 
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PARAMETERS OF EACH LAYER - SQUEEZENET 
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APPENDIX C 

 GOOGLENET ARCHITECTURE 

Different colour indicates different layers. Total of 144 layers. 

Modified layers 
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PARAMETERS OF EACH LAYER – GOOGLENET 
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PARAMETERS OF EACH LAYER – GOOGLENET 
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APPENDIX D 

SOURCE CODE SQUEEZENET 

SQUEEZENET 

Load Initial Parameters 

Load parameters for network initialization. For transfer learning, the network initialization 

parameters are the parameters of the initial pretrained network. 

trainingSetup = load("C:\Users\Asus\Documents\MATLAB\PSM 

2\trainingSetup_2021_01_06__21_22_07.mat"); 

Import Data 

Import training and validation data. 

%Import dataset from folder. 

imdsTrain = imageDatastore("D:\MATLAB\PSM 

2\new","IncludeSubfolders",true,"LabelSource","foldernames"); 

%Split dataset with ratio 8:2. 

[imdsTrain, imdsValidation] = splitEachLabel(imdsTrain,0.8); 

%Image Augmentation by reflection on X axis (flip to left/right). 

 imageAugmenter = imageDataAugmenter( ... 

'RandXReflection',true); 

% Resize the images to match the network input layer. 

augimdsTrain = augmentedImageDatastore([227 227 

3],imdsTrain,"DataAugmentation",imageAugmenter); 

augimdsValidation = augmentedImageDatastore([227 227 3],imdsValidation); 

Set Training Options 

Specify hyperparameter to use when training. 

opts = trainingOptions("sgdm",... 

    "ExecutionEnvironment","auto",... 

    "InitialLearnRate",0.0001,... 

    "MaxEpochs",25,... 

    "MiniBatchSize",32,... 

    "Momentum", 0.9,... 

    "L2Regularization",0.0001,... 
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    "Shuffle","every-epoch",... 

    "ValidationFrequency",5,... 

    "Plots","training-progress",... 

    "ValidationData",augimdsValidation); 

Create Layer Graph 

Create the layer graph variable to contain the network layers. 

lgraph = layerGraph(); 

Add Layer Branches 

Add the branches of the network to the layer graph. Each branch is a linear array of layers. 

tempLayers = [ 

    imageInputLayer([227 227 

3],"Name","data","Mean",trainingSetup.data.Mean) 

    convolution2dLayer([3 3],64,"Name","conv1","Stride",[2 

2],"Bias",trainingSetup.conv1.Bias,"Weights",trainingSetup.conv1.Weights) 

    reluLayer("Name","relu_conv1") 

    maxPooling2dLayer([3 3],"Name","pool1","Stride",[2 2]) 

    convolution2dLayer([1 1],16,"Name","fire2-

squeeze1x1","Bias",trainingSetup.fire2_squeeze1x1.Bias,"Weights",trainingSe

tup.fire2_squeeze1x1.Weights) 

    reluLayer("Name","fire2-relu_squeeze1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],64,"Name","fire2-

expand1x1","Bias",trainingSetup.fire2_expand1x1.Bias,"Weights",trainingSetu

p.fire2_expand1x1.Weights)

    reluLayer("Name","fire2-relu_expand1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([3 3],64,"Name","fire2-expand3x3","Padding",[1 1 1 

1],"Bias",trainingSetup.fire2_expand3x3.Bias,"Weights",trainingSetup.fire2_

expand3x3.Weights) 

    reluLayer("Name","fire2-relu_expand3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    depthConcatenationLayer(2,"Name","fire2-concat") 

    convolution2dLayer([1 1],16,"Name","fire3-

squeeze1x1","Bias",trainingSetup.fire3_squeeze1x1.Bias,"Weights",trainingSe

tup.fire3_squeeze1x1.Weights) 

    reluLayer("Name","fire3-relu_squeeze1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 



113 
 

tempLayers = [ 

    convolution2dLayer([3 3],64,"Name","fire3-expand3x3","Padding",[1 1 1 

1],"Bias",trainingSetup.fire3_expand3x3.Bias,"Weights",trainingSetup.fire3_

expand3x3.Weights) 

    reluLayer("Name","fire3-relu_expand3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],64,"Name","fire3-

expand1x1","Bias",trainingSetup.fire3_expand1x1.Bias,"Weights",trainingSetu

p.fire3_expand1x1.Weights) 

    reluLayer("Name","fire3-relu_expand1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    depthConcatenationLayer(2,"Name","fire3-concat") 

    maxPooling2dLayer([3 3],"Name","pool3","Padding",[0 1 0 1],"Stride",[2 

2]) 

    convolution2dLayer([1 1],32,"Name","fire4-

squeeze1x1","Bias",trainingSetup.fire4_squeeze1x1.Bias,"Weights",trainingSe

tup.fire4_squeeze1x1.Weights) 

    reluLayer("Name","fire4-relu_squeeze1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],128,"Name","fire4-

expand1x1","Bias",trainingSetup.fire4_expand1x1.Bias,"Weights",trainingSetu

p.fire4_expand1x1.Weights) 

    reluLayer("Name","fire4-relu_expand1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([3 3],128,"Name","fire4-expand3x3","Padding",[1 1 1 

1],"Bias",trainingSetup.fire4_expand3x3.Bias,"Weights",trainingSetup.fire4_

expand3x3.Weights) 

    reluLayer("Name","fire4-relu_expand3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    depthConcatenationLayer(2,"Name","fire4-concat") 

    convolution2dLayer([1 1],32,"Name","fire5-

squeeze1x1","Bias",trainingSetup.fire5_squeeze1x1.Bias,"Weights",trainingSe

tup.fire5_squeeze1x1.Weights) 

    reluLayer("Name","fire5-relu_squeeze1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([3 3],128,"Name","fire5-expand3x3","Padding",[1 1 1 

1],"Bias",trainingSetup.fire5_expand3x3.Bias,"Weights",trainingSetup.fire5_

expand3x3.Weights) 
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    reluLayer("Name","fire5-relu_expand3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],128,"Name","fire5-

expand1x1","Bias",trainingSetup.fire5_expand1x1.Bias,"Weights",trainingSetu

p.fire5_expand1x1.Weights)

    reluLayer("Name","fire5-relu_expand1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    depthConcatenationLayer(2,"Name","fire5-concat") 

    maxPooling2dLayer([3 3],"Name","pool5","Padding",[0 1 0 1],"Stride",[2 

2]) 

    convolution2dLayer([1 1],48,"Name","fire6-

squeeze1x1","Bias",trainingSetup.fire6_squeeze1x1.Bias,"Weights",trainingSe

tup.fire6_squeeze1x1.Weights) 

    reluLayer("Name","fire6-relu_squeeze1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],192,"Name","fire6-

expand1x1","Bias",trainingSetup.fire6_expand1x1.Bias,"Weights",trainingSetu

p.fire6_expand1x1.Weights)

    reluLayer("Name","fire6-relu_expand1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([3 3],192,"Name","fire6-expand3x3","Padding",[1 1 1 

1],"Bias",trainingSetup.fire6_expand3x3.Bias,"Weights",trainingSetup.fire6_

expand3x3.Weights) 

    reluLayer("Name","fire6-relu_expand3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    depthConcatenationLayer(2,"Name","fire6-concat") 

    convolution2dLayer([1 1],48,"Name","fire7-

squeeze1x1","Bias",trainingSetup.fire7_squeeze1x1.Bias,"Weights",trainingSe

tup.fire7_squeeze1x1.Weights) 

    reluLayer("Name","fire7-relu_squeeze1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],192,"Name","fire7-

expand1x1","Bias",trainingSetup.fire7_expand1x1.Bias,"Weights",trainingSetu

p.fire7_expand1x1.Weights)

    reluLayer("Name","fire7-relu_expand1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [



115 

    convolution2dLayer([3 3],192,"Name","fire7-expand3x3","Padding",[1 1 1 

1],"Bias",trainingSetup.fire7_expand3x3.Bias,"Weights",trainingSetup.fire7_

expand3x3.Weights) 

    reluLayer("Name","fire7-relu_expand3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    depthConcatenationLayer(2,"Name","fire7-concat") 

    convolution2dLayer([1 1],64,"Name","fire8-

squeeze1x1","Bias",trainingSetup.fire8_squeeze1x1.Bias,"Weights",trainingSe

tup.fire8_squeeze1x1.Weights) 

    reluLayer("Name","fire8-relu_squeeze1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([3 3],256,"Name","fire8-expand3x3","Padding",[1 1 1 

1],"Bias",trainingSetup.fire8_expand3x3.Bias,"Weights",trainingSetup.fire8_

expand3x3.Weights) 

    reluLayer("Name","fire8-relu_expand3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],256,"Name","fire8-

expand1x1","Bias",trainingSetup.fire8_expand1x1.Bias,"Weights",trainingSetu

p.fire8_expand1x1.Weights)

    reluLayer("Name","fire8-relu_expand1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    depthConcatenationLayer(2,"Name","fire8-concat") 

    convolution2dLayer([1 1],64,"Name","fire9-

squeeze1x1","Bias",trainingSetup.fire9_squeeze1x1.Bias,"Weights",trainingSe

tup.fire9_squeeze1x1.Weights) 

    reluLayer("Name","fire9-relu_squeeze1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([3 3],256,"Name","fire9-expand3x3","Padding",[1 1 1 

1],"Bias",trainingSetup.fire9_expand3x3.Bias,"Weights",trainingSetup.fire9_

expand3x3.Weights) 

    reluLayer("Name","fire9-relu_expand3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],256,"Name","fire9-

expand1x1","Bias",trainingSetup.fire9_expand1x1.Bias,"Weights",trainingSetu

p.fire9_expand1x1.Weights)

    reluLayer("Name","fire9-relu_expand1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 
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tempLayers = [ 

    depthConcatenationLayer(2,"Name","fire9-concat") 

    dropoutLayer(0.5,"Name","drop9") 

    %Modified the last convolutional layer. 

    convolution2dLayer([1 

1],4,"Name","conv","BiasLearnRateFactor",10,"Padding","same","WeightLearnRa

teFactor",10) 

    reluLayer("Name","relu_conv10") 

    globalAveragePooling2dLayer("Name","pool10") 

    softmaxLayer("Name","softmax") 

    %Modified the last classification layer. 

    classificationLayer("Name","classoutput")]; 

lgraph = addLayers(lgraph,tempLayers); 

% clean up helper variable 

clear tempLayers; 

Connect Layer Branches 

Connect all the branches of the network to create the network graph. 

lgraph = connectLayers(lgraph,"fire2-relu_squeeze1x1","fire2-expand1x1"); 

lgraph = connectLayers(lgraph,"fire2-relu_squeeze1x1","fire2-expand3x3"); 

lgraph = connectLayers(lgraph,"fire2-relu_expand3x3","fire2-concat/in2"); 

lgraph = connectLayers(lgraph,"fire2-relu_expand1x1","fire2-concat/in1"); 

lgraph = connectLayers(lgraph,"fire3-relu_squeeze1x1","fire3-expand3x3"); 

lgraph = connectLayers(lgraph,"fire3-relu_squeeze1x1","fire3-expand1x1"); 

lgraph = connectLayers(lgraph,"fire3-relu_expand1x1","fire3-concat/in1"); 

lgraph = connectLayers(lgraph,"fire3-relu_expand3x3","fire3-concat/in2"); 

lgraph = connectLayers(lgraph,"fire4-relu_squeeze1x1","fire4-expand1x1"); 

lgraph = connectLayers(lgraph,"fire4-relu_squeeze1x1","fire4-expand3x3"); 

lgraph = connectLayers(lgraph,"fire4-relu_expand1x1","fire4-concat/in1"); 

lgraph = connectLayers(lgraph,"fire4-relu_expand3x3","fire4-concat/in2"); 

lgraph = connectLayers(lgraph,"fire5-relu_squeeze1x1","fire5-expand3x3"); 

lgraph = connectLayers(lgraph,"fire5-relu_squeeze1x1","fire5-expand1x1"); 

lgraph = connectLayers(lgraph,"fire5-relu_expand3x3","fire5-concat/in2"); 

lgraph = connectLayers(lgraph,"fire5-relu_expand1x1","fire5-concat/in1"); 

lgraph = connectLayers(lgraph,"fire6-relu_squeeze1x1","fire6-expand1x1"); 

lgraph = connectLayers(lgraph,"fire6-relu_squeeze1x1","fire6-expand3x3"); 

lgraph = connectLayers(lgraph,"fire6-relu_expand3x3","fire6-concat/in2"); 

lgraph = connectLayers(lgraph,"fire6-relu_expand1x1","fire6-concat/in1"); 

lgraph = connectLayers(lgraph,"fire7-relu_squeeze1x1","fire7-expand1x1"); 

lgraph = connectLayers(lgraph,"fire7-relu_squeeze1x1","fire7-expand3x3"); 

lgraph = connectLayers(lgraph,"fire7-relu_expand1x1","fire7-concat/in1"); 

lgraph = connectLayers(lgraph,"fire7-relu_expand3x3","fire7-concat/in2"); 

lgraph = connectLayers(lgraph,"fire8-relu_squeeze1x1","fire8-expand3x3"); 

lgraph = connectLayers(lgraph,"fire8-relu_squeeze1x1","fire8-expand1x1"); 

lgraph = connectLayers(lgraph,"fire8-relu_expand3x3","fire8-concat/in2"); 
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lgraph = connectLayers(lgraph,"fire8-relu_expand1x1","fire8-concat/in1"); 

lgraph = connectLayers(lgraph,"fire9-relu_squeeze1x1","fire9-expand3x3"); 

lgraph = connectLayers(lgraph,"fire9-relu_squeeze1x1","fire9-expand1x1"); 

lgraph = connectLayers(lgraph,"fire9-relu_expand3x3","fire9-concat/in2"); 

lgraph = connectLayers(lgraph,"fire9-relu_expand1x1","fire9-concat/in1"); 

Train Network 

Train the network using the specified options and training data. 

[squeezenet, traininfo] = trainNetwork(augimdsTrain,lgraph,opts); 

save squeezenet 

Create Confusion Matrix 

Create the confusion matrix for validation dataset. 

%Classify the validation dataset using the trained squeezenet. 

YPred = classify(squeezenet, augimdsValidation); 

%Target class. 

YTest = imdsValidation.Labels; 

%Plot confusion matrix. 

figure, plotconfusion(YTest, YPred); 

confMat = confusionmat(YTest, YPred); 

confMat = bsxfun(@rdivide, confMat, sum(confMat,2)) 

%Calculate accuracy- mean of all diagonal box confusion matrix x 100%. 

accuracy = mean(diag(confMat)*100); 

disp('accuracy') 

disp(accuracy) 

Load Network 

Use when need to load the trained squeezenet into workspace. 

load squeezenet 

Testing Network 

Test the network using the testing dataset. 

%Read one image from folder. 

I = imread('D:\MATLAB\PSM 2\DatasetTest\Sedan\30.png'); 

%Initiate the timer. 

tic; 
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%Resize the image.  

I = imresize(I, [227 227],'nearest'); 

 

%Processing the image. 

[label,scores] = classify(squeezenet,I); 

 

%Calculate the score. 

scores = max(double(scores*100)); 

 

%Close timer. 

time=toc; 

 

%Display the result with title of label and score. 

figure 

imshow(I) 

title(join([string(label),'',scores,'%'])) 
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APPENDIX E 

SOURCE CODE GOOGLENET 

GOOGLENET 

Load Initial Parameters 

Load parameters for network initialization. For transfer learning, the network initialization 

parameters are the parameters of the initial pretrained network. 

trainingSetup = load("D:\MATLAB\PSM 

2\trainingSetup_2021_01_07__16_18_56.mat"); 

Import Data

Import training and validation data. 

%Import dataset from folder. 

imdsTrain = imageDatastore("D:\MATLAB\PSM 

2\new","IncludeSubfolders",true,"LabelSource","foldernames"); 

%Split dataset with ratio 8:2. 

[imdsTrain, imdsValidation] = splitEachLabel(imdsTrain,0.8); 

%Image Augmentation by reflection on X axis (flip to left/right). 

 imageAugmenter = imageDataAugmenter( ... 

'RandXReflection',true); 

 % Resize the images to match the network input layer. 

augimdsTrain = augmentedImageDatastore([224 224 

3],imdsTrain,"DataAugmentation",imageAugmenter); 

augimdsValidation = augmentedImageDatastore([224 224 3],imdsValidation); 

Set Training Options 

Specify hyperparameter to use when training. 

opts = trainingOptions("sgdm",... 

    "ExecutionEnvironment","auto",... 

    "InitialLearnRate",0.0001,... 

    "MaxEpochs",25,... 

    "MiniBatchSize",32,... 

    "Momentum", 0.9,... 

    "L2Regularization",0.0001,... 

    "Shuffle","every-epoch",... 

    "ValidationFrequency",5,... 
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    "Plots","training-progress",... 

    "ValidationData",augimdsValidation); 

Create Layer Graph 

Create the layer graph variable to contain the network layers. 

lgraph = layerGraph(); 

Add Layer Branches 

Add the branches of the network to the layer graph. Each branch is a linear array of layers. 

tempLayers = [ 

    imageInputLayer([224 224 

3],"Name","data","Mean",trainingSetup.data.Mean) 

    convolution2dLayer([7 7],64,"Name","conv1-

7x7_s2","BiasLearnRateFactor",2,"Padding",[3 3 3 3],"Stride",[2 

2],"Bias",trainingSetup.conv1_7x7_s2.Bias,"Weights",trainingSetup.conv1_7x7

_s2.Weights) 

    reluLayer("Name","conv1-relu_7x7") 

    maxPooling2dLayer([3 3],"Name","pool1-3x3_s2","Padding",[0 1 0 

1],"Stride",[2 2]) 

    crossChannelNormalizationLayer(5,"Name","pool1-norm1","K",1) 

    convolution2dLayer([1 1],64,"Name","conv2-

3x3_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.conv2_3x3_reduce.B

ias,"Weights",trainingSetup.conv2_3x3_reduce.Weights) 

    reluLayer("Name","conv2-relu_3x3_reduce") 

    convolution2dLayer([3 3],192,"Name","conv2-

3x3","BiasLearnRateFactor",2,"Padding",[1 1 1 

1],"Bias",trainingSetup.conv2_3x3.Bias,"Weights",trainingSetup.conv2_3x3.We

ights) 

    reluLayer("Name","conv2-relu_3x3") 

    crossChannelNormalizationLayer(5,"Name","conv2-norm2","K",1) 

    maxPooling2dLayer([3 3],"Name","pool2-3x3_s2","Padding",[0 1 0 

1],"Stride",[2 2])]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],64,"Name","inception_3a-

1x1","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_3a_1x1.Bias,"We

ights",trainingSetup.inception_3a_1x1.Weights) 

    reluLayer("Name","inception_3a-relu_1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],16,"Name","inception_3a-

5x5_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_3a_5x5_r

educe.Bias,"Weights",trainingSetup.inception_3a_5x5_reduce.Weights) 

    reluLayer("Name","inception_3a-relu_5x5_reduce") 
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    convolution2dLayer([5 5],32,"Name","inception_3a-

5x5","BiasLearnRateFactor",2,"Padding",[2 2 2 

2],"Bias",trainingSetup.inception_3a_5x5.Bias,"Weights",trainingSetup.incep

tion_3a_5x5.Weights) 

    reluLayer("Name","inception_3a-relu_5x5")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    maxPooling2dLayer([3 3],"Name","inception_3a-pool","Padding",[1 1 1 

1]) 

    convolution2dLayer([1 1],32,"Name","inception_3a-

pool_proj","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_3a_pool_p

roj.Bias,"Weights",trainingSetup.inception_3a_pool_proj.Weights) 

    reluLayer("Name","inception_3a-relu_pool_proj")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],96,"Name","inception_3a-

3x3_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_3a_3x3_r

educe.Bias,"Weights",trainingSetup.inception_3a_3x3_reduce.Weights) 

    reluLayer("Name","inception_3a-relu_3x3_reduce") 

    convolution2dLayer([3 3],128,"Name","inception_3a-

3x3","BiasLearnRateFactor",2,"Padding",[1 1 1 

1],"Bias",trainingSetup.inception_3a_3x3.Bias,"Weights",trainingSetup.incep

tion_3a_3x3.Weights) 

    reluLayer("Name","inception_3a-relu_3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = depthConcatenationLayer(4,"Name","inception_3a-output"); 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],128,"Name","inception_3b-

1x1","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_3b_1x1.Bias,"We

ights",trainingSetup.inception_3b_1x1.Weights) 

    reluLayer("Name","inception_3b-relu_1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    maxPooling2dLayer([3 3],"Name","inception_3b-pool","Padding",[1 1 1 

1]) 

    convolution2dLayer([1 1],64,"Name","inception_3b-

pool_proj","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_3b_pool_p

roj.Bias,"Weights",trainingSetup.inception_3b_pool_proj.Weights) 

    reluLayer("Name","inception_3b-relu_pool_proj")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [
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    convolution2dLayer([1 1],32,"Name","inception_3b-

5x5_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_3b_5x5_r

educe.Bias,"Weights",trainingSetup.inception_3b_5x5_reduce.Weights) 

    reluLayer("Name","inception_3b-relu_5x5_reduce") 

    convolution2dLayer([5 5],96,"Name","inception_3b-

5x5","BiasLearnRateFactor",2,"Padding",[2 2 2 

2],"Bias",trainingSetup.inception_3b_5x5.Bias,"Weights",trainingSetup.incep

tion_3b_5x5.Weights) 

    reluLayer("Name","inception_3b-relu_5x5")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],128,"Name","inception_3b-

3x3_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_3b_3x3_r

educe.Bias,"Weights",trainingSetup.inception_3b_3x3_reduce.Weights) 

    reluLayer("Name","inception_3b-relu_3x3_reduce") 

    convolution2dLayer([3 3],192,"Name","inception_3b-

3x3","BiasLearnRateFactor",2,"Padding",[1 1 1 

1],"Bias",trainingSetup.inception_3b_3x3.Bias,"Weights",trainingSetup.incep

tion_3b_3x3.Weights) 

    reluLayer("Name","inception_3b-relu_3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    depthConcatenationLayer(4,"Name","inception_3b-output") 

    maxPooling2dLayer([3 3],"Name","pool3-3x3_s2","Padding",[0 1 0 

1],"Stride",[2 2])]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],16,"Name","inception_4a-

5x5_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4a_5x5_r

educe.Bias,"Weights",trainingSetup.inception_4a_5x5_reduce.Weights) 

    reluLayer("Name","inception_4a-relu_5x5_reduce") 

    convolution2dLayer([5 5],48,"Name","inception_4a-

5x5","BiasLearnRateFactor",2,"Padding",[2 2 2 

2],"Bias",trainingSetup.inception_4a_5x5.Bias,"Weights",trainingSetup.incep

tion_4a_5x5.Weights) 

    reluLayer("Name","inception_4a-relu_5x5")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],192,"Name","inception_4a-

1x1","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4a_1x1.Bias,"We

ights",trainingSetup.inception_4a_1x1.Weights) 

    reluLayer("Name","inception_4a-relu_1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [
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    maxPooling2dLayer([3 3],"Name","inception_4a-pool","Padding",[1 1 1 

1]) 

    convolution2dLayer([1 1],64,"Name","inception_4a-

pool_proj","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4a_pool_p

roj.Bias,"Weights",trainingSetup.inception_4a_pool_proj.Weights) 

    reluLayer("Name","inception_4a-relu_pool_proj")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],96,"Name","inception_4a-

3x3_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4a_3x3_r

educe.Bias,"Weights",trainingSetup.inception_4a_3x3_reduce.Weights) 

    reluLayer("Name","inception_4a-relu_3x3_reduce") 

    convolution2dLayer([3 3],208,"Name","inception_4a-

3x3","BiasLearnRateFactor",2,"Padding",[1 1 1 

1],"Bias",trainingSetup.inception_4a_3x3.Bias,"Weights",trainingSetup.incep

tion_4a_3x3.Weights) 

    reluLayer("Name","inception_4a-relu_3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = depthConcatenationLayer(4,"Name","inception_4a-output"); 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],112,"Name","inception_4b-

3x3_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4b_3x3_r

educe.Bias,"Weights",trainingSetup.inception_4b_3x3_reduce.Weights) 

    reluLayer("Name","inception_4b-relu_3x3_reduce") 

    convolution2dLayer([3 3],224,"Name","inception_4b-

3x3","BiasLearnRateFactor",2,"Padding",[1 1 1 

1],"Bias",trainingSetup.inception_4b_3x3.Bias,"Weights",trainingSetup.incep

tion_4b_3x3.Weights) 

    reluLayer("Name","inception_4b-relu_3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    maxPooling2dLayer([3 3],"Name","inception_4b-pool","Padding",[1 1 1 

1]) 

    convolution2dLayer([1 1],64,"Name","inception_4b-

pool_proj","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4b_pool_p

roj.Bias,"Weights",trainingSetup.inception_4b_pool_proj.Weights) 

    reluLayer("Name","inception_4b-relu_pool_proj")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],24,"Name","inception_4b-

5x5_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4b_5x5_r

educe.Bias,"Weights",trainingSetup.inception_4b_5x5_reduce.Weights) 

    reluLayer("Name","inception_4b-relu_5x5_reduce") 
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    convolution2dLayer([5 5],64,"Name","inception_4b-

5x5","BiasLearnRateFactor",2,"Padding",[2 2 2 

2],"Bias",trainingSetup.inception_4b_5x5.Bias,"Weights",trainingSetup.incep

tion_4b_5x5.Weights) 

    reluLayer("Name","inception_4b-relu_5x5")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],160,"Name","inception_4b-

1x1","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4b_1x1.Bias,"We

ights",trainingSetup.inception_4b_1x1.Weights) 

    reluLayer("Name","inception_4b-relu_1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = depthConcatenationLayer(4,"Name","inception_4b-output"); 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    maxPooling2dLayer([3 3],"Name","inception_4c-pool","Padding",[1 1 1 

1]) 

    convolution2dLayer([1 1],64,"Name","inception_4c-

pool_proj","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4c_pool_p

roj.Bias,"Weights",trainingSetup.inception_4c_pool_proj.Weights) 

    reluLayer("Name","inception_4c-relu_pool_proj")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],24,"Name","inception_4c-

5x5_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4c_5x5_r

educe.Bias,"Weights",trainingSetup.inception_4c_5x5_reduce.Weights) 

    reluLayer("Name","inception_4c-relu_5x5_reduce") 

    convolution2dLayer([5 5],64,"Name","inception_4c-

5x5","BiasLearnRateFactor",2,"Padding",[2 2 2 

2],"Bias",trainingSetup.inception_4c_5x5.Bias,"Weights",trainingSetup.incep

tion_4c_5x5.Weights) 

    reluLayer("Name","inception_4c-relu_5x5")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],128,"Name","inception_4c-

1x1","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4c_1x1.Bias,"We

ights",trainingSetup.inception_4c_1x1.Weights) 

    reluLayer("Name","inception_4c-relu_1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],128,"Name","inception_4c-

3x3_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4c_3x3_r

educe.Bias,"Weights",trainingSetup.inception_4c_3x3_reduce.Weights) 

    reluLayer("Name","inception_4c-relu_3x3_reduce") 
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    convolution2dLayer([3 3],256,"Name","inception_4c-

3x3","BiasLearnRateFactor",2,"Padding",[1 1 1 

1],"Bias",trainingSetup.inception_4c_3x3.Bias,"Weights",trainingSetup.incep

tion_4c_3x3.Weights) 

    reluLayer("Name","inception_4c-relu_3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = depthConcatenationLayer(4,"Name","inception_4c-output"); 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],144,"Name","inception_4d-

3x3_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4d_3x3_r

educe.Bias,"Weights",trainingSetup.inception_4d_3x3_reduce.Weights) 

    reluLayer("Name","inception_4d-relu_3x3_reduce") 

    convolution2dLayer([3 3],288,"Name","inception_4d-

3x3","BiasLearnRateFactor",2,"Padding",[1 1 1 

1],"Bias",trainingSetup.inception_4d_3x3.Bias,"Weights",trainingSetup.incep

tion_4d_3x3.Weights) 

    reluLayer("Name","inception_4d-relu_3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],32,"Name","inception_4d-

5x5_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4d_5x5_r

educe.Bias,"Weights",trainingSetup.inception_4d_5x5_reduce.Weights) 

    reluLayer("Name","inception_4d-relu_5x5_reduce") 

    convolution2dLayer([5 5],64,"Name","inception_4d-

5x5","BiasLearnRateFactor",2,"Padding",[2 2 2 

2],"Bias",trainingSetup.inception_4d_5x5.Bias,"Weights",trainingSetup.incep

tion_4d_5x5.Weights) 

    reluLayer("Name","inception_4d-relu_5x5")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    maxPooling2dLayer([3 3],"Name","inception_4d-pool","Padding",[1 1 1 

1]) 

    convolution2dLayer([1 1],64,"Name","inception_4d-

pool_proj","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4d_pool_p

roj.Bias,"Weights",trainingSetup.inception_4d_pool_proj.Weights) 

    reluLayer("Name","inception_4d-relu_pool_proj")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],112,"Name","inception_4d-

1x1","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4d_1x1.Bias,"We

ights",trainingSetup.inception_4d_1x1.Weights) 

    reluLayer("Name","inception_4d-relu_1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

 



126 

tempLayers = depthConcatenationLayer(4,"Name","inception_4d-output"); 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],256,"Name","inception_4e-

1x1","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4e_1x1.Bias,"We

ights",trainingSetup.inception_4e_1x1.Weights) 

    reluLayer("Name","inception_4e-relu_1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],160,"Name","inception_4e-

3x3_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4e_3x3_r

educe.Bias,"Weights",trainingSetup.inception_4e_3x3_reduce.Weights) 

    reluLayer("Name","inception_4e-relu_3x3_reduce") 

    convolution2dLayer([3 3],320,"Name","inception_4e-

3x3","BiasLearnRateFactor",2,"Padding",[1 1 1 

1],"Bias",trainingSetup.inception_4e_3x3.Bias,"Weights",trainingSetup.incep

tion_4e_3x3.Weights) 

    reluLayer("Name","inception_4e-relu_3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    maxPooling2dLayer([3 3],"Name","inception_4e-pool","Padding",[1 1 1 

1]) 

    convolution2dLayer([1 1],128,"Name","inception_4e-

pool_proj","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4e_pool_p

roj.Bias,"Weights",trainingSetup.inception_4e_pool_proj.Weights) 

    reluLayer("Name","inception_4e-relu_pool_proj")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],32,"Name","inception_4e-

5x5_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_4e_5x5_r

educe.Bias,"Weights",trainingSetup.inception_4e_5x5_reduce.Weights) 

    reluLayer("Name","inception_4e-relu_5x5_reduce") 

    convolution2dLayer([5 5],128,"Name","inception_4e-

5x5","BiasLearnRateFactor",2,"Padding",[2 2 2 

2],"Bias",trainingSetup.inception_4e_5x5.Bias,"Weights",trainingSetup.incep

tion_4e_5x5.Weights) 

    reluLayer("Name","inception_4e-relu_5x5")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    depthConcatenationLayer(4,"Name","inception_4e-output") 

    maxPooling2dLayer([3 3],"Name","pool4-3x3_s2","Padding",[0 1 0 

1],"Stride",[2 2])]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [
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    maxPooling2dLayer([3 3],"Name","inception_5a-pool","Padding",[1 1 1 

1]) 

    convolution2dLayer([1 1],128,"Name","inception_5a-

pool_proj","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_5a_pool_p

roj.Bias,"Weights",trainingSetup.inception_5a_pool_proj.Weights) 

    reluLayer("Name","inception_5a-relu_pool_proj")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],160,"Name","inception_5a-

3x3_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_5a_3x3_r

educe.Bias,"Weights",trainingSetup.inception_5a_3x3_reduce.Weights) 

    reluLayer("Name","inception_5a-relu_3x3_reduce") 

    convolution2dLayer([3 3],320,"Name","inception_5a-

3x3","BiasLearnRateFactor",2,"Padding",[1 1 1 

1],"Bias",trainingSetup.inception_5a_3x3.Bias,"Weights",trainingSetup.incep

tion_5a_3x3.Weights) 

    reluLayer("Name","inception_5a-relu_3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],256,"Name","inception_5a-

1x1","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_5a_1x1.Bias,"We

ights",trainingSetup.inception_5a_1x1.Weights) 

    reluLayer("Name","inception_5a-relu_1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],32,"Name","inception_5a-

5x5_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_5a_5x5_r

educe.Bias,"Weights",trainingSetup.inception_5a_5x5_reduce.Weights) 

    reluLayer("Name","inception_5a-relu_5x5_reduce") 

    convolution2dLayer([5 5],128,"Name","inception_5a-

5x5","BiasLearnRateFactor",2,"Padding",[2 2 2 

2],"Bias",trainingSetup.inception_5a_5x5.Bias,"Weights",trainingSetup.incep

tion_5a_5x5.Weights) 

    reluLayer("Name","inception_5a-relu_5x5")]; 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = depthConcatenationLayer(4,"Name","inception_5a-output"); 

lgraph = addLayers(lgraph,tempLayers); 

 

tempLayers = [ 

    convolution2dLayer([1 1],192,"Name","inception_5b-

3x3_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_5b_3x3_r

educe.Bias,"Weights",trainingSetup.inception_5b_3x3_reduce.Weights) 

    reluLayer("Name","inception_5b-relu_3x3_reduce") 

    convolution2dLayer([3 3],384,"Name","inception_5b-

3x3","BiasLearnRateFactor",2,"Padding",[1 1 1 
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1],"Bias",trainingSetup.inception_5b_3x3.Bias,"Weights",trainingSetup.incep

tion_5b_3x3.Weights) 

    reluLayer("Name","inception_5b-relu_3x3")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    maxPooling2dLayer([3 3],"Name","inception_5b-pool","Padding",[1 1 1 

1]) 

    convolution2dLayer([1 1],128,"Name","inception_5b-

pool_proj","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_5b_pool_p

roj.Bias,"Weights",trainingSetup.inception_5b_pool_proj.Weights) 

    reluLayer("Name","inception_5b-relu_pool_proj")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],48,"Name","inception_5b-

5x5_reduce","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_5b_5x5_r

educe.Bias,"Weights",trainingSetup.inception_5b_5x5_reduce.Weights) 

    reluLayer("Name","inception_5b-relu_5x5_reduce") 

    convolution2dLayer([5 5],128,"Name","inception_5b-

5x5","BiasLearnRateFactor",2,"Padding",[2 2 2 

2],"Bias",trainingSetup.inception_5b_5x5.Bias,"Weights",trainingSetup.incep

tion_5b_5x5.Weights) 

    reluLayer("Name","inception_5b-relu_5x5")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    convolution2dLayer([1 1],384,"Name","inception_5b-

1x1","BiasLearnRateFactor",2,"Bias",trainingSetup.inception_5b_1x1.Bias,"We

ights",trainingSetup.inception_5b_1x1.Weights) 

    reluLayer("Name","inception_5b-relu_1x1")]; 

lgraph = addLayers(lgraph,tempLayers); 

tempLayers = [ 

    depthConcatenationLayer(4,"Name","inception_5b-output") 

    globalAveragePooling2dLayer("Name","pool5-7x7_s1") 

    dropoutLayer(0.4,"Name","pool5-drop_7x7_s1") 

    %Modified the last fully connected layer. 

fullyConnectedLayer(4,"Name","fc","BiasLearnRateFactor",10,"WeightLearnRate

Factor",10) 

   softmaxLayer("Name","prob") 

   %Modified the last classification layer. 

   classificationLayer("Name","classoutput")]; 

lgraph = addLayers(lgraph,tempLayers); 

% clean up helper variable 
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clear tempLayers; 

Connect Layer Branches 

Connect all the branches of the network to create the network graph. 

lgraph = connectLayers(lgraph,"pool2-3x3_s2","inception_3a-1x1"); 

lgraph = connectLayers(lgraph,"pool2-3x3_s2","inception_3a-5x5_reduce"); 

lgraph = connectLayers(lgraph,"pool2-3x3_s2","inception_3a-pool"); 

lgraph = connectLayers(lgraph,"pool2-3x3_s2","inception_3a-3x3_reduce"); 

lgraph = connectLayers(lgraph,"inception_3a-relu_pool_proj","inception_3a-

output/in4"); 

lgraph = connectLayers(lgraph,"inception_3a-relu_5x5","inception_3a-

output/in3"); 

lgraph = connectLayers(lgraph,"inception_3a-relu_1x1","inception_3a-

output/in1"); 

lgraph = connectLayers(lgraph,"inception_3a-relu_3x3","inception_3a-

output/in2"); 

lgraph = connectLayers(lgraph,"inception_3a-output","inception_3b-1x1"); 

lgraph = connectLayers(lgraph,"inception_3a-output","inception_3b-pool"); 

lgraph = connectLayers(lgraph,"inception_3a-output","inception_3b-

5x5_reduce"); 

lgraph = connectLayers(lgraph,"inception_3a-output","inception_3b-

3x3_reduce"); 

lgraph = connectLayers(lgraph,"inception_3b-relu_1x1","inception_3b-

output/in1"); 

lgraph = connectLayers(lgraph,"inception_3b-relu_pool_proj","inception_3b-

output/in4"); 

lgraph = connectLayers(lgraph,"inception_3b-relu_3x3","inception_3b-

output/in2"); 

lgraph = connectLayers(lgraph,"inception_3b-relu_5x5","inception_3b-

output/in3"); 

lgraph = connectLayers(lgraph,"pool3-3x3_s2","inception_4a-5x5_reduce"); 

lgraph = connectLayers(lgraph,"pool3-3x3_s2","inception_4a-1x1"); 

lgraph = connectLayers(lgraph,"pool3-3x3_s2","inception_4a-pool"); 

lgraph = connectLayers(lgraph,"pool3-3x3_s2","inception_4a-3x3_reduce"); 

lgraph = connectLayers(lgraph,"inception_4a-relu_1x1","inception_4a-

output/in1"); 

lgraph = connectLayers(lgraph,"inception_4a-relu_5x5","inception_4a-

output/in3"); 

lgraph = connectLayers(lgraph,"inception_4a-relu_pool_proj","inception_4a-

output/in4"); 

lgraph = connectLayers(lgraph,"inception_4a-relu_3x3","inception_4a-

output/in2"); 

lgraph = connectLayers(lgraph,"inception_4a-output","inception_4b-

3x3_reduce"); 

lgraph = connectLayers(lgraph,"inception_4a-output","inception_4b-pool"); 

lgraph = connectLayers(lgraph,"inception_4a-output","inception_4b-

5x5_reduce"); 

lgraph = connectLayers(lgraph,"inception_4a-output","inception_4b-1x1"); 
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lgraph = connectLayers(lgraph,"inception_4b-relu_pool_proj","inception_4b-

output/in4"); 

lgraph = connectLayers(lgraph,"inception_4b-relu_1x1","inception_4b-

output/in1"); 

lgraph = connectLayers(lgraph,"inception_4b-relu_3x3","inception_4b-

output/in2"); 

lgraph = connectLayers(lgraph,"inception_4b-relu_5x5","inception_4b-

output/in3"); 

lgraph = connectLayers(lgraph,"inception_4b-output","inception_4c-pool"); 

lgraph = connectLayers(lgraph,"inception_4b-output","inception_4c-

5x5_reduce"); 

lgraph = connectLayers(lgraph,"inception_4b-output","inception_4c-1x1"); 

lgraph = connectLayers(lgraph,"inception_4b-output","inception_4c-

3x3_reduce"); 

lgraph = connectLayers(lgraph,"inception_4c-relu_pool_proj","inception_4c-

output/in4"); 

lgraph = connectLayers(lgraph,"inception_4c-relu_5x5","inception_4c-

output/in3"); 

lgraph = connectLayers(lgraph,"inception_4c-relu_1x1","inception_4c-

output/in1"); 

lgraph = connectLayers(lgraph,"inception_4c-relu_3x3","inception_4c-

output/in2"); 

lgraph = connectLayers(lgraph,"inception_4c-output","inception_4d-

3x3_reduce"); 

lgraph = connectLayers(lgraph,"inception_4c-output","inception_4d-

5x5_reduce"); 

lgraph = connectLayers(lgraph,"inception_4c-output","inception_4d-pool"); 

lgraph = connectLayers(lgraph,"inception_4c-output","inception_4d-1x1"); 

lgraph = connectLayers(lgraph,"inception_4d-relu_3x3","inception_4d-

output/in2"); 

lgraph = connectLayers(lgraph,"inception_4d-relu_pool_proj","inception_4d-

output/in4"); 

lgraph = connectLayers(lgraph,"inception_4d-relu_5x5","inception_4d-

output/in3"); 

lgraph = connectLayers(lgraph,"inception_4d-relu_1x1","inception_4d-

output/in1"); 

lgraph = connectLayers(lgraph,"inception_4d-output","inception_4e-1x1"); 

lgraph = connectLayers(lgraph,"inception_4d-output","inception_4e-

3x3_reduce"); 

lgraph = connectLayers(lgraph,"inception_4d-output","inception_4e-pool"); 

lgraph = connectLayers(lgraph,"inception_4d-output","inception_4e-

5x5_reduce"); 

lgraph = connectLayers(lgraph,"inception_4e-relu_pool_proj","inception_4e-

output/in4"); 

lgraph = connectLayers(lgraph,"inception_4e-relu_3x3","inception_4e-

output/in2"); 

lgraph = connectLayers(lgraph,"inception_4e-relu_1x1","inception_4e-

output/in1"); 

lgraph = connectLayers(lgraph,"inception_4e-relu_5x5","inception_4e-

output/in3"); 
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lgraph = connectLayers(lgraph,"pool4-3x3_s2","inception_5a-pool"); 

lgraph = connectLayers(lgraph,"pool4-3x3_s2","inception_5a-3x3_reduce"); 

lgraph = connectLayers(lgraph,"pool4-3x3_s2","inception_5a-1x1"); 

lgraph = connectLayers(lgraph,"pool4-3x3_s2","inception_5a-5x5_reduce"); 

lgraph = connectLayers(lgraph,"inception_5a-relu_1x1","inception_5a-

output/in1"); 

lgraph = connectLayers(lgraph,"inception_5a-relu_pool_proj","inception_5a-

output/in4"); 

lgraph = connectLayers(lgraph,"inception_5a-relu_5x5","inception_5a-

output/in3"); 

lgraph = connectLayers(lgraph,"inception_5a-relu_3x3","inception_5a-

output/in2"); 

lgraph = connectLayers(lgraph,"inception_5a-output","inception_5b-

3x3_reduce"); 

lgraph = connectLayers(lgraph,"inception_5a-output","inception_5b-pool"); 

lgraph = connectLayers(lgraph,"inception_5a-output","inception_5b-

5x5_reduce"); 

lgraph = connectLayers(lgraph,"inception_5a-output","inception_5b-1x1"); 

lgraph = connectLayers(lgraph,"inception_5b-relu_1x1","inception_5b-

output/in1"); 

lgraph = connectLayers(lgraph,"inception_5b-relu_pool_proj","inception_5b-

output/in4"); 

lgraph = connectLayers(lgraph,"inception_5b-relu_5x5","inception_5b-

output/in3"); 

lgraph = connectLayers(lgraph,"inception_5b-relu_3x3","inception_5b-

output/in2"); 

Train Network 

Train the network using the specified options and training data. 

[googlenet, traininfo] = trainNetwork(augimdsTrain,lgraph,opts); 

save googlenet 

Create Confusion Matrix 

Create the confusion matrix for validation dataset. 

%Classify the validation dataset using the trained googlenet. 

YPred = classify(googlenet, augimdsValidation); 

 

%Target class. 

YTest = imdsValidation.Labels;  

 

%Plot confusion matrix. 

figure, plotconfusion(YTest, YPred); 

confMat = confusionmat(YTest, YPred); 

confMat = bsxfun(@rdivide, confMat, sum(confMat,2)) 

 

%Calculate accuracy- mean of all diagonal box confusion matrix x 100%. 



132 

accuracy = mean(diag(confMat)*100); 

disp('accuracy') 

disp(accuracy) 

Load Network 

Use when need to load the trained googlenet into workspace. 

load googlenet 

Testing Network 

Test the network using the testing dataset. 

%Read one image from folder. 

I = imread('D:\MATLAB\PSM 2\DatasetTest\Detect No Vehicle\31.png'); 

%Initiate the timer. 

tic; 

%Resize the image. 

I = imresize(I, [224 224],'nearest'); 

%Processing the image. 

[label,scores] = classify(googlenet,I); 

%Calculate the score. 

scores = max(double(scores*100)); 

%Close timer. 

time=toc; 

%Display the result with title of label and score. 

figure 

imshow(I) 

title(join([string(label),'',scores,'%'])) 




