# TRUCK CRASHWORTHINESS SIMULATION USING

ANSYS



#### TRUCK CRASHWORTHINESS SIMULATION USING

ANSYS

### MOHD SHAZLI AMER



**Faculty of Mechanical Engineering** 

#### **DECLARATION**

I declare that this project report entitled "Truck Crashworthiness Simulation Using ANSYS" is the result of my work except as cited in the references



#### **APPROVAL**

I hereby declare that I have read this project report, and in my opinion, this report is sufficient in terms of scope and quality for the award of Bachelor of Mechanical Engineering.



#### **DEDICATION**

My dissertation is dedicated to my family and lots of friends. An extraordinary sense of thanks goes out to my devoted parents, Sakka bin Matta and Raminah binti Kybe. Their words of support and prodding for persistence still ring in my ears. My siblings and friends have never left me and are exceptional.



#### ABSTRACT

Hundreds of people die in collisions between vehicles and large trucks each year. The greatest danger in the event of a collision between a car and a heavy vehicle is the invasion of the passengers' compartment under the heavy truck's rear underride, which might result in a fatal injury to passengers. The purpose of this paper is to examine, simulate, and analyse a Rear Under Run Protection (RUPD) system in a crashing state. The primary goal of creating the RUPD is to increase the vehicle's safety and occupants. This research aims to improve crashworthiness by creating a new rear underride protection device (RUPD) following FMVSS 223/224 rules. The material selection and structural design are the two primary determinants of impact energy absorption during a crash. This research focuses on the RUPD and the three factors that influence it: type of beam, angle of support, and material. Finite element simulation is utilised for performance analysis of the RUPD in ANSYS by static structural analysis and explicit dynamic analysis with different load distributions at various locations on the RUPD. The legal requirements for an RUPD are specified in regulation FMVSS 223/224 in the United States of America, CMVSS 223 in Canada, and ECE R 58 in Europe, which establishes stringent requirements for the device's design and behaviour under load that the device must meet in order to be approved for commercial vehicles. The results showed that the new RUPD design enhanced the energy absorption and was able to fulfil the standard requirement of crashworthiness.

#### ABSTRAK

Beratus-ratus orang maut dalam perlanggaran antara kenderaan dan trak besar setiap tahun. Implikasi sekiranya berlaku perlanggaran antara kereta dan kenderaan berat ialah pencerobohan ruang penumpang di bawah bahagian bawah belakang trak berat, yang mungkin mengakibatkan kecederaan maut kepada penumpang. Tujuan kajian ini adalah untuk meneliti, mensimulasikan dan menganalisis sistem Rear Underrun Protection Device (RUPD) berdasarkan situasi pelanggaran. Matlamat utama mewujudkan RUPD adalah untuk meningkatkan keselamatan dan penghuni kenderaan. Penyelidikan ini bertujuan untuk mencipta peranti perlindungan (RUPD) baharu mengikut peraturan FMVSS 223/224 untuk meningkatkan kelayakan kemalangan. Pemilihan bahan dan reka bentuk struktur ialah dua penentu utama penyerapan tenaga hentaman semasa kemalangan. Penyelidikan ini memberi tumpuan kepada tiga faktor yang mempengaruhinya: jenis rasuk, sudut sokongan dan bahan. Simulasi digunakan untuk analisis prestasi RUPD dalam ANSYS oleh analisis struktur statik dan analisis dinamik eksplisit dengan beban yang berbeza-beza di pelbagai lokasi pada RUPD. Keperluan undang-undang untuk RUPD dinyatakan dalam peraturan FMVSS 223/224 di Amerika Syarikat, CMVSS 223 di Kanada dan ECE R 58 di Eropah, yang menetapkan keperluan ketat untuk reka bentuk dan tindak balas RUPD terhadap hentakan yang mesti dipenuhi oleh peranti untuk diluluskan bagi kenderaan komersial. Keputusan menunjukkan bahawa reka bentuk RUPD baharu telah meningkatkan penyerapan tenaga dan mampu memenuhi keperluan piawai pelanggaran.

#### ACKNOWLEDGEMENTS

First, I want to express my gratitude and thankfulness to God, the Almighty, for His showers of blessings during my project work, which allowed me to finish the project successfully. I want to convey my profound gratitude to my research supervisor, Dr Shamsul Anuar Bin Shamsudin, Senior Lecturer in the Faculty of Mechanical at Universiti Teknikal Malaysia Melaka (UTeM) for allowing me to work on this project and offering vital advice during its completion. His vigour, vision, sincerity, and drive have all made a profound impression on me. He demonstrated how to perform the research and provide the data in the most straightforward manner possible. It was an incredible joy and honour to work and learn under his leadership. I owe him all he has given me. Additionally, I want to convey my appreciation for his friendship, compassion, and fantastic sense of humour.

Additionally, I want to express my deepest gratitude to my examiners, Ir. Dr Mohd Shukri Bin Yob and Dr Mohd Nizam Bin Sudin for their helpful comments and viewpoints on completing this study. I am grateful to my parents for their love, prayers, worry, and sacrifices in teaching and preparing me for the future. I owe a debt of gratitude to my family and friends for their love, understanding, prayers, and unwavering support as I work to accomplish this research endeavour.

Finally, I want to convey my appreciation to everyone who assisted me, directly or indirectly, in finishing the research job. KAL MALAYSIA MELAKA

# TABLE OF CONTENTS

| CONT   | TENTS                                                            | PAGE |
|--------|------------------------------------------------------------------|------|
| ABST   | RACT                                                             | i    |
| ABSTI  | RAK                                                              | ii   |
| ACKN   | IOWLEDGEMENTS                                                    | iii  |
| TABL   | E OF CONTENTS                                                    | iv   |
| LIST ( | OF TABLES                                                        | vi   |
| LIST ( | OF FIGURES                                                       | vii  |
| СНАР   | TER 1                                                            |      |
| INTRO  | ODUCTION                                                         | 1    |
| 1.1    | Background                                                       | 1    |
| 1.2    | Problem Statement                                                | 5    |
| 1.3    | Objectives                                                       | 8    |
| 1.4    | Scope of Project                                                 | 8    |
|        | A SALING                                                         |      |
| СНАР   | TER 2                                                            |      |
| LITEF  | ويوم سيني بيڪنيڪل ملي RATURE REVIEW                              | 10   |
| 2.1    | Introduction of Under-ride Protection Device (UPD)               | 10   |
| 2.2    | Rear Under-ride Protection Device (RUPD) AY SIA MELAKA           | 12   |
| 2.2    | 2.1 Design Regulation                                            | 12   |
| 2.2    | 2.2 Dimension of RUPD                                            | 13   |
| 2.2    | 2.3 Material Details and Element Criteria                        | 16   |
| 2.2    | 2.4 Effect of support structure angle                            | 17   |
| 2.2    | 2.5 Effect of the separation distance between support structures | 18   |
| 2.2    | 2.6 Simulation Condition                                         | 20   |
| СНАР   | TER 3                                                            |      |
| METH   | IODOLOGY                                                         | 25   |
| 3.1    | Overview of Methodology                                          | 25   |
| 3.2    | Specification of Research                                        | 25   |
| 3.2    | 2.1 Type of Heavy Truck                                          | 25   |
| 3.2    | 2.2 Dimension of RUPD                                            | 27   |
|        |                                                                  |      |

| 3.2.3 Analysis Condition of RUPD                     | 27  |
|------------------------------------------------------|-----|
| 3.3 Flow Chart                                       | 28  |
| 3.3.1 Research study                                 | 29  |
| 3.3.2 Concept Design                                 | 29  |
| 3.3.3 Drawing using software CATIA                   | 30  |
| 3.3.4 Material Selection                             | 30  |
| 3.3.5 Analysis and Validation                        | 30  |
| 3.3.6 Detail Drawing                                 | 31  |
| 3.4 Design Process                                   | 31  |
| 3.4.1 House of Quality                               | 31  |
| 3.4.2 Morphological Chart                            | 33  |
| 3.4.3 Design Concept                                 | 34  |
| 3.4.4 Concept Selection                              | 34  |
| 3.4.5 Modelling of UPD                               | 34  |
| CHAPTER 4                                            |     |
| RESULTS AND DISCUSSION                               | 35  |
| 4.0 Analysis of RUPD                                 | 35  |
| 4.1 Static Structural Analysis                       | 35  |
| 4.1.1 Beams Impact Analysis                          | 36  |
| 4.1.2 Angle of Support Analysis                      | 67  |
| 4.1.3 Analysis Type of Beams Used for Support UPD    | 90  |
| 4.2 Explicit Dynamic Analysis NIKAL MALAT SIA MELAKA | 100 |
| 4.2.1 Analysis Material of UPD                       | 100 |
| 4.2.2 Discussion on Material Analysis                | 105 |
| 4.3 Final Design                                     | 106 |

# **CHAPTER 5**

| CONCLUSION AND RECOMMENDATION |                 | 108 |
|-------------------------------|-----------------|-----|
| 5.1                           | Conclusion      | 108 |
| 5.2                           | Recommendations | 109 |
|                               |                 |     |

| REFERENCES | 110 |
|------------|-----|
| APPENDICES | 116 |

# LIST OF TABLES

| TABLE         | TITLE                                                        | PAGE |
|---------------|--------------------------------------------------------------|------|
| Table 1.1. 1  | Disease burden (DALYs lost) for ten leading causes by (Smart | 2    |
|               | Driving Research Center (SDRC))                              |      |
| Table 1.2. 1  | Total motor vehicles involved in road accidents by type of   | 6    |
|               | vehicle, Malaysia 2009-2018                                  |      |
| Table 1.2.1   | Morphological Chart of RUPD                                  | 33   |
| Table 4.1. 1  | Type of forces on impact beams.                              | 40   |
| Table 4.1. 2  | Static Structural Analysis Data for Types of Beams           | 62   |
| Table 4.1. 3  | Static Structural Analysis Data for Types of Beams           | 63   |
| Table 4.1. 4  | Data Analysis of Support Structure by Using Circular Hollow  | 86   |
|               | Beam                                                         |      |
| Table 4.1. 5  | Data Analysis of Support Structure by Using W-Beam           | 86   |
| Table 4.1. 6  | Data Analysis of Support Structure by Using Rectangular      |      |
| UN            | Hollow Beam EKNIKAL MALAYSIA MELAKA                          | 87   |
| Table 4.1. 7  | Data Analysis of Support Structure by Using Square Hollow    | 87   |
|               | Beam                                                         |      |
| Table 4.1. 8  | Comparison of total deformation type of beam used for RUPD   | 98   |
| Table 4.1. 9  | Comparison data of maximum stress von Mises for the type of  |      |
|               | beam used for RUPD                                           | 99   |
| Table 4.1. 10 | Comparison data of maximum stress von Mises for the type of  |      |
|               | beam used for RUPD                                           | 99   |

# LIST OF FIGURES

| TABLE          | TITLE                                                              | PAGE |
|----------------|--------------------------------------------------------------------|------|
| Figure 1.1. 1  | Number of fatal road accidents and death involving HGV by          |      |
|                | Polis Diraja Malaysia 2016 Royal Malaysia Police Annual            |      |
|                | Report, 2016 (Kuala Lumpur, Malaysia: PDRM                         | 3    |
| Figure 1.1. 2  | A protection device that is being studied.                         | 5    |
| Figure 1.2. 1  | Rear impact without RnSUPD                                         | 7    |
| Figure 1.2. 2  | Side impact without RnSUPD                                         | 7    |
| Figure 2.1. 1  | Simulation rear impact without RUPD                                | 11   |
| Figure 2.1. 2  | Distribution of points of impact                                   | 12   |
| Figure 2.2. 1  | Dimensional limit of an RUPD (49 CFR § 571.224 - Standard          |      |
|                | No. 224; Rear impact protection)                                   | 14   |
| Figure 2.2. 2  | Configuration requirements for underride guard (FMVSS 224).        | 14   |
| Figure 2.2. 3  | Design and Mountings of RUPD Model                                 | 15   |
| Figure 2.2. 4  | Rear views of the device (Belair, 2014). SIA MELAKA                | 16   |
| Figure 2.2. 5  | (a) Internal energy for 15, 30, 45, 60 degree, (b) Internal energy |      |
|                | for 15, 20, 25, 30 degree.                                         | 18   |
| Figure 2.2. 6  | (a) Internal energy for 15, 30, 45, 60 degree, (b) Internal energy |      |
|                | for 15, 20, 25, 30 degree.                                         | 18   |
| Figure 2.2. 7  | The distance between support structures of (a) legal separation    |      |
|                | (b) wide separation.                                               | 19   |
| Figure 2.2. 8  | Demonstrate RUPD Different Angle                                   | 19   |
| Figure 2.2. 9  | Strength test and energy absorption test locations (FMVSS          | 21   |
|                | 223).                                                              |      |
| Figure 2.2. 10 | Indian Standard of RUPD (IS 14812-2005)                            | 23   |
| Figure 2.2. 11 | Loading Device Mechanisms                                          | 24   |
| Figure 3.2. 1  | FUSO 16 000kg trucks.                                              | 26   |

| Figure 3.2. 2  | Dimension FUSO truck.                                     | 26 |
|----------------|-----------------------------------------------------------|----|
| Figure 3.2. 3  | Dimension of RUPD based on the FUSO truck.                | 27 |
| Figure 3.3. 1  | Flow Chart of Project                                     | 29 |
| Figure 3.4. 1  | House of Quality                                          | 32 |
| Figure 4.0. 1  | Condition of simulation RUPD (a) Material properties (b)  |    |
|                | Impact loading condition                                  | 35 |
| Figure 4.1. 1  | Condition of Analysis of Impact Beam                      | 40 |
| Figure 4.1. 2  | Cylindrical hollow beam properties                        | 41 |
| Figure 4.1. 3  | FBD for P1 at Cylindrical Hollow Beam                     | 42 |
| Figure 4.1. 4  | FBD for P2 at Cylindrical Hollow Beam                     | 43 |
| Figure 4.1. 5  | FBD for P3 at Cylindrical Hollow Beam                     | 45 |
| Figure 4.1. 6  | Properties of Rectangular Hollow Beam                     | 47 |
| Figure 4.1. 7  | FBD for P1 at Rectangular Hollow Beam                     | 48 |
| Figure 4.1. 8  | FBD for P2 at Rectangular Hollow Beam                     | 49 |
| Figure 4.1. 9  | FBD for P3 at Rectangular Hollow Beam                     | 51 |
| Figure 4.1. 10 | Properties of Square Hollow Beam                          | 52 |
| Figure 4.1. 11 | FBD for P1 at Square Hollow Beam                          | 53 |
| Figure 4.1. 12 | FBD for P2 at Square Hollow Beam                          | 54 |
| Figure 4.1. 13 | FBD for P3 at Square Hollow Beam                          | 56 |
| Figure 4.1. 14 | Properties of W-Beam                                      | 57 |
| Figure 4.1. 15 | FBD for P1 at W-Beam                                      | 58 |
| Figure 4.1. 16 | FBD for P2 at W-Beam                                      | 59 |
| Figure 4.1. 17 | FBD for P3 at W-Beam                                      | 61 |
| Figure 4.1. 18 | Graph Comparison ANSYS and Manual Stress Von Mises of     |    |
|                | Cylindrical Hollow Beam                                   | 63 |
| Figure 4.1. 19 | Graph Comparison ANSYS and Manual Stress Von Mises of     |    |
|                | Rectangular Hollow Beam                                   | 64 |
| Figure 4.1. 20 | Comparison ANSYS and Manual Stress Von Mises of Square    |    |
|                | Hollow Beam                                               | 64 |
| Figure 4.1. 21 | Graph Comparison ANSYS and Manual Stress Von Mises of     |    |
|                | W-shaped Beam                                             | 65 |
| Figure 4.1. 22 | Graph Comparison Manual Stress Von Mises of Four Types of | 65 |
|                | Beams                                                     |    |

| Figure 4.1. 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Graph Comparison ANSYS Von Mises of Four Types of Beams      | 66 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----|
| Figure 4.1. 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Graph Comparison Total deformation of ANSYS for Four         | 66 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Types of Beams                                               |    |
| Figure 4.1. 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis P1 of Circular beam with 15-degree angles (a) Total |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deformation (b) Maximum Stress Von Mises (c) Strain Energy   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) Factor of Safety                                         | 68 |
| Figure 4.1. 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis P2 of Circular beam with 15-degree angles (a) Total |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deformation (b) Maximum Stress Von Mises (c) Strain Energy   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) Factor of Safety                                         | 68 |
| Figure 4.1. 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis P3 of Circular beam with 15-degree angle (a) Total  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deformation (b) Maximum Stress Von Mises (c) Strain Energy   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) Factor of Safety                                         | 69 |
| Figure 4.1. 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis P1 of Circular beam with 25-degree angles (a) Total |    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Deformation (b) Maximum Stress Von Mises (c) Strain Energy   |    |
| and the second sec | (d) Factor of Safety                                         | 69 |
| Figure 4.1. 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis P2 of Circular beam with 25-degree angle (a) Total  |    |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Deformation (b) Maximum Stress Von Mises (c) Strain Energy   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) Factor of Safety                                         | 70 |
| Figure 4.1. 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis P3 of Circular beam with 25-degree angle (a) Total  |    |
| <u>ر</u> ت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deformation (b) Maximum Stress Von Mises (c) Strain Energy   |    |
| LIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) Factor of Safety                                         | 70 |
| Figure 4.1. 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis P1 of Circular beam with 45-degree angle (a) Total  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deformation (b) Maximum Stress Von Mises (c) Strain Energy   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) Factor of Safety                                         | 71 |
| Figure 4.1. 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis P2 of Circular beam with 45-degree angle (a) Total  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deformation (b) Maximum Stress Von Mises (c) Strain Energy   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) Factor of Safety                                         | 71 |
| Figure 4.1. 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis P3 of Circular beam with 45-degree angle (a) Total  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deformation (b) Maximum Stress Von Mises (c) Strain Energy   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) Factor of Safety                                         | 72 |
| Figure 4.1. 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis P1 of W-beam with 15-degree angle (a) Total         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deformation (b) Maximum Stress Von Mises (c) Strain Energy   | 72 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) Factor of Safety                                         |    |

- Figure 4.1. 35 Analysis P2 of W-beam with 15-degree angle (a) Total
  Deformation (b) Maximum Stress Von Mises (c) Strain Energy 73
  (d) Factor of Safety
- Figure 4.1. 36 Analysis P3 of W-beam with 15-degree angle (a) Total
  Deformation (b) Maximum Stress Von Mises (c) Strain Energy 73
  (d) Factor of Safety
- Figure 4.1. 37 Analysis P1 of W-beam with 25-degree angle (a) Total
  Deformation (b) Maximum Stress Von Mises (c) Strain Energy 74
  (d) Factor of Safety
- Figure 4.1. 38 Analysis P2 of W-beam with 25-degree angle (a) Total
  Deformation (b) Maximum Stress Von Mises (c) Strain Energy 74
  (d) Factor of Safety
- Figure 4.1. 39 Analysis P3 of W-beam with 25-degree angle (a) Total Deformation (b) Maximum Stress Von Mises (c) Strain Energy 75 (d) Factor of Safety
- Figure 4.1. 40 Analysis P1 of W-beam with 45-degree angle (a) Total Deformation (b) Maximum Stress Von Mises (c) Strain Energy 75 (d) Factor of Safety
- Figure 4.1. 41Analysis P2 of W-beam with 45-degree angle (a) TotalDeformation (b) Maximum Stress Von Mises (c) Strain Energy76

(d) Factor of Safety IKAL MALAYSIA MELAKA

- Figure 4.1. 42 Analysis P3 of W-beam with 45-degree angle (a) Total
  Deformation (b) Maximum Stress Von Mises (c) Strain Energy 76
  (d) Factor of Safety
- Figure 4.1. 43 Analysis P1 of Rectangular Hollow beam with 15-degree angle(a) Total Deformation (b) Maximum Stress Von Mises (c)Strain Energy (d) Factor of Safety

77

- Figure 4.1. 44 Analysis P2 of Rectangular Hollow beam with 15-degree angle (a) Total Deformation (b) Maximum Stress Von Mises (c) Strain Energy (d) Factor of Safety 77
- Figure 4.1. 45 Analysis P3 of Rectangular Hollow beam with 15-degree angle
  (a) Total Deformation (b) Maximum Stress Von Mises (c)
  Strain Energy (d) Factor of Safety 78

| Figure 4.1. 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P1 of Rectangular Hollow beam with 25-degree angle |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) Total Deformation (b) Maximum Stress Von Mises (c)      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Strain Energy (d) Factor of Safety                          | 78 |
| Figure 4.1. 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P2 of Rectangular Hollow beam with 25-degree angle |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) Total Deformation (b) Maximum Stress Von Mises (c)      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Strain Energy (d) Factor of Safety                          | 79 |
| Figure 4.1. 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P3 of Rectangular Hollow beam with 25-degree angle |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) Total Deformation (b) Maximum Stress Von Mises (c)      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Strain Energy (d) Factor of Safety                          | 79 |
| Figure 4.1. 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P1 of Rectangular Hollow beam with 45-degree angle |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) Total Deformation (b) Maximum Stress Von Mises (c)      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Strain Energy (d) Factor of Safety                          | 80 |
| Figure 4.1. 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P2 of Rectangular Hollow beam with 45-degree angle |    |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (a) Total Deformation (b) Maximum Stress Von Mises (c)      |    |
| and the second se | Strain Energy (d) Factor of Safety                          | 80 |
| Figure 4.1. 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P3 of Rectangular Hollow beam with 45-degree angle |    |
| E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (a) Total Deformation (b) Maximum Stress Von Mises (c)      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Strain Energy (d) Factor of Safety                          | 81 |
| Figure 4.1. 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P1 of Square Hollow beam with 15-degree angle (a)  |    |
| <u>ر</u> ت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Deformation (b) Maximum Stress Von Mises (c) Strain   |    |
| LIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Energy (d) Factor of Safety                                 | 81 |
| Figure 4.1. 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P2 of Square Hollow beam with 15-degree angle (a)  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Deformation (b) Maximum Stress Von Mises (c) Strain   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy (d) Factor of Safety                                 | 82 |
| Figure 4.1. 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P3 of Square Hollow beam with 15-degree angle (a)  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Deformation (b) Maximum Stress Von Mises (c) Strain   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy (d) Factor of Safety                                 | 82 |
| Figure 4.1. 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P1 of Square Hollow beam with 25-degree angle (a)  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Deformation (b) Maximum Stress Von Mises (c) Strain   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy (d) Factor of Safety                                 | 83 |
| Figure 4.1. 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analysis P2 of Square Hollow beam with 25-degree angle (a)  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Total Deformation (b) Maximum Stress Von Mises (c) Strain   |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Energy (d) Factor of Safety                                 | 83 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |    |

| Figure 4.1. 57 | Analysis P3 of Square Hollow beam with 25-degree angle (a)       |    |
|----------------|------------------------------------------------------------------|----|
|                | Total Deformation (b) Maximum Stress Von Mises (c) Strain        |    |
|                | Energy (d) Factor of Safety                                      | 84 |
| Figure 4.1. 58 | Analysis P1 of Square Hollow beam with 45-degree angle (a)       |    |
|                | Total Deformation (b) Maximum Stress Von Mises (c) Strain        |    |
|                | Energy (d) Factor of Safety                                      | 84 |
| Figure 4.1. 59 | Analysis P2 of Square Hollow beam with 45-degree angle (a)       |    |
|                | Total Deformation (b) Maximum Stress Von Mises (c) Strain        |    |
|                | Energy (d) Factor of Safety                                      | 85 |
| Figure 4.1. 60 | Analysis P3 of Square Hollow beam with 45-degree angle (a)       |    |
|                | Total Deformation (b) Maximum Stress Von Mises (c) Strain        |    |
|                | Energy (d) Factor of Safety                                      | 85 |
| Figure 4.1. 61 | Graph comparison total deformation vs angle of the support       |    |
|                | structure by using (a) Circular Hollow Beam (b) W-Beam (c)       |    |
| MIR            | Rectangular Hollow Beam (d) Square Hollow Beam                   | 88 |
| Figure 4.1. 62 | Graph comparison strain energy vs angle of the support           |    |
| E              | structure by using (a) Circular Hollow Beam (b) W-Beam (c)       |    |
|                | Rectangular Hollow Beam (d) Square Hollow Beam                   | 89 |
| Figure 4.1. 63 | Support structure using circular hollow beam                     | 90 |
| Figure 4.1. 64 | P1 analysis angle of support structure using the circular hollow | 91 |
| LIN            | IDEAM, SITI TEKNIKAL MALAYSIA MELAKA                             |    |
| Figure 4.1. 65 | P2 analysis angle of support structure using the circular hollow | 91 |
|                | beam.                                                            |    |
| Figure 4.1. 66 | P3 analysis angle of support structure using the circular hollow | 92 |
|                | beam.                                                            |    |
| Figure 4.1. 67 | Support structure using W-beam.                                  | 92 |
| Figure 4.1. 68 | P1 analysis angle of support structure using W-beam.             | 93 |
| Figure 4.1. 69 | P2 analysis angle of support structure using W-beam.             | 93 |
| Figure 4.1. 70 | P3 analysis angle of support structure using W-beam              | 94 |
| Figure 4.1. 71 | Support structure using the rectangular hollow beam.             | 94 |
| Figure 4.1. 72 | P1 analysis angle of support structure using the rectangular     |    |
|                | hollow beam.                                                     | 95 |

| Figure 4.1. 73 | P2 analysis angle of support structure using the rectangular               |     |
|----------------|----------------------------------------------------------------------------|-----|
|                | hollow beam.                                                               | 95  |
| Figure 4.1. 74 | P3 analysis angle of support structure using the rectangular               |     |
|                | hollow beam.                                                               | 96  |
| Figure 4.1. 75 | Support structure using the square hollow beam.                            | 96  |
| Figure 4.1. 76 | P1 analysis angle of support structure using the square hollow             | 97  |
|                | beam.                                                                      |     |
| Figure 4.1. 77 | P2 analysis angle of support structure using the square hollow             | 97  |
|                | beam.                                                                      |     |
| Figure 4.1. 78 | P3 analysis angle of support structure using the square hollow             | 98  |
|                | beam.                                                                      |     |
| Figure 4.1. 79 | Graph comparison of total deformation vs force for type of                 |     |
|                | beam used for RUPD.                                                        | 98  |
| Figure 4.1. 80 | Graph comparison of stress von Mises vs force for type of beam             |     |
|                | used for RUPD.                                                             | 99  |
| Figure 4.1. 81 | Graph comparison of strain energy vs force for type of beam                |     |
| E              | used for RUPD.                                                             | 99  |
| Figure 4.2. 1  | Condition of RUPD for explicit dynamic analysis.                           | 101 |
| Figure 4.2. 2  | Analysis results of RUPD for steel material (a) Total                      |     |
|                | Deformation (b) Directional Deformation (c) Equivalent Elastic             |     |
| UN             | Strain (d) Equivalent Stress (e) Energy Conservation (f) Energy<br>Summary | 102 |
| Figure 4.2. 3  | Analysis results of RUPD for aluminium material (a) Total                  |     |
|                | Deformation (b) Directional Deformation (c) Equivalent Elastic             |     |
|                | Strain (d) Equivalent Stress (e) Energy Conservation (f) Energy            | 103 |
|                | Summary                                                                    |     |
| Figure 4.2. 4  | Analysis results of RUPD for magnesium material (a) Total                  |     |
|                | Deformation (b) Directional Deformation (c) Equivalent Elastic             |     |
|                | Strain (d) Equivalent Stress (e) Energy Conservation (f) Energy            | 104 |
|                | Summary                                                                    |     |
| Figure 4.2. 5  | Analysis results of RUPD for polyethylene material (a) Total               |     |
|                | Deformation (b) Directional Deformation (c) Equivalent Elastic             |     |

|               | Strain (d) Equivalent Stress (e) Energy Conservation (f) Energy |     |
|---------------|-----------------------------------------------------------------|-----|
|               | Summary                                                         |     |
| Figure 4.3. 1 | Final Design of RUPD Structure                                  | 107 |
| Figure 4.3. 2 | Final Design of RUPD Structure on Lorry                         | 107 |



#### LIST OF ABBREVIATION

- FMVSS Federal Motor Vehicle Safety Standards
- CMVSS Canada Motor Vehicle Safety Standard
- ECE Economic Commission for Europe of the United Nations
- UTeM Universiti Teknikal Malaysia Melaka
- DALYs Disability-Adjusted Life Years
- SDRC Smart Driving Research Center
- HGV Heavy Good Vehicles
- RTA Roads and Transport Authority
- WHO World Health Organization
- DOSM Department of Statistic, Malaysia
- HVNL Heavy Vehicle National Law
- GVM Gross Vehicle Mass
- ATM Aggregate Trailer Mass
- PDRM Polis Diraja Malaysia NIKAL MALAYSIA MELAKA
- EMR Eastern Mediterranean Region
- RnSUPD Rear and Side Underride Protection Device
- RUPD Rear Underride Protection Device
- UPD Underride Protection Device
- CAD Computer-Aided Design
- HOQ House Of Quality
- FBD Free Body Diagram
- P1 Force at Point 1
- P2 Force at Point 2
- P3 Force at Pointe 3

#### LIST OF SYMBOL



#### **CHAPTER 1**

#### **INTRODUCTION**

#### 1.1 Background

Among all traffic accidents, road traffic accidents take the most lives and are the most severe issue worldwide. The number of people killed in traffic collisions worldwide has increased dramatically (RTA), with 1.24 million deaths predicted each year. Road traffic fatalities are the leading cause of death for young people and the eighth leading cause of death worldwide (Elvik, 2013; Kaygisiz et al., 2015). Developing countries account for roughly 85% of all deaths. Males, especially those between the ages of 15 and 44, are disproportionately affected by traffic accidents. Countries spend 1 to 2 per cent of their gross national product on traffic incidents (Elvik, 2013). Although developing countries account for only 52 per cent of all vehicles on the road, they are responsible for 80% of all traffic fatalities. (WHO, 2013). In reality, as shown in Table 1.1.1, road traffic Disability-Adjusted Life Years (DALYs) loss will change from the ninth essential cause of DALYs in 1999 to the third necessary cause by 2020, as predicted by the WHO (Mohammed et al., 2019).

| S.No | 1998 Disease or Injury                | 2020 Disease or Injury                |
|------|---------------------------------------|---------------------------------------|
| 1    | Lower respiratory contaminations      | Ischaemic heart disease               |
| 2    | HIV/AIDS                              | Unipolar major depression             |
| 3    | Perinatal conditions                  | Road traffic injuries                 |
| 4    | Diarrhoeal diseases                   | Cerebrovascular disease               |
| 5    | Unipolar major depression             | Chronic obstructive pulmonary disease |
| 6    | Ischaemic heart disease               | Lower respiratory infections          |
| 7    | Cerebrovascular disease               | Tuberculosis                          |
| 8    | Malaria                               | War                                   |
| 9    | Road traffic injuries                 | Diarrheal diseases                    |
| 10   | Chronic obstructive pulmonary disease | HIV/AIDS                              |

Table 1.1. 1: Disease burden (DALYs lost) for ten leading causes by (Smart Driving Research Center (SDRC)).

According to the Department of Statistics, Malaysia (DOSM), in 2018, new registrations of motor vehicles increased by 8.2% to 1,218,662 compared to 1,125,900 in 2017. Public transportation (48.0%), commercial vehicles (15.3%), and motorcycles (15.3%) all contributed to the rise (11.5 per cent). This study will be focused on commercial vehicles crash with a heavy vehicle type. A heavy vehicle is defined by the Heavy Vehicle National Law (HVNL) as one that has a gross vehicle mass (GVM) or aggregate trailer mass (ATM) of greater than 4.5 tonnes. Heavy vehicles include semi-trailers, B-double freight trucks, road trains, commuter buses, vehicle carriers, livestock and agricultural equipment, mobile cranes, and other specialised vehicles. By comparison, heavy goods vehicles (HGVs) are huge trucks used to transport products across the land. In Malaysia, HGVs are classified as trailers (articulated lorries), rigid lorries (two or more axles with a gross weight higher than 2.5 tonnes), and tiny trucks (2 axles small lorry or pick-up with gross weight less than 2.5 tonnes).

The Malaysian HGV fleet consists of nearly a million units (data from 2016), covering a total of 200 kilometres of travel per day and an average annual VKT (AAKT) of about 70,000 kilometres (Jamaluddin et al., 2021). The distance travelled by HGV is

expected to increase with the growth of Malaysia's e-commerce industry. In Malaysia, the evolution of HGV incidents has shown a consistent up-and-down pattern. Figure 1.1.1 (sources of Polis Diraja Malaysia 2016 Royal Malaysia Police Annual Report, 2016 (Kuala Lumpur, Malaysia: PDRM) depicts the five-year way of HGV-related road accidents in Malaysia. Even though HGVs account for a small percentage of traffic, accidents involving HGVs result in over 1000 deaths per year in Malaysia. The involvement of an HGV in an accident is responsible for more than 80% of second-vehicle fatalities. It demonstrates that HGV accidents significantly affect other road users' welfare (Hamidun et al., 2019).



Figure 1.1. 1: Number of fatal road accidents and death involving HGV by Polis Diraja Malaysia 2016 Royal Malaysia Police Annual Report, 2016 (Kuala Lumpur, Malaysia: PDRM.

Over a year, medico-legal autopsies were done on 950 instances of fatal road traffic accidents at the SRN Hospital, MLN Medical College, Allahabad. The male to female ratio was 3:1, and 33.68 per cent of patients were between the ages of 25 and 44 (Kual et al., 2005). The most vulnerable were pedestrians, who accounted for 35.79 per cent of all deaths, followed by motorised two-wheelers, which accounted for 30.53 per cent. Heavy vehicles were found to be involved in 58.52 per cent of incidents, with highways accounting for 83.05 per cent of all collisions. In most cases, multiple injuries were suffered for heavy vehicles.