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ABSTRACT 

 

 

Hundreds of people die in collisions between vehicles and large trucks each year. 

The greatest danger in the event of a collision between a car and a heavy vehicle is the 

invasion of the passengers’ compartment under the heavy truck’s rear underride, which 

might result in a fatal injury to passengers. The purpose of this paper is to examine, simulate, 

and analyse a Rear Under Run Protection (RUPD) system in a crashing state. The primary 

goal of creating the RUPD is to increase the vehicle’s safety and occupants. This research 

aims to improve crashworthiness by creating a new rear underride protection device (RUPD) 

following FMVSS 223/224 rules. The material selection and structural design are the two 

primary determinants of impact energy absorption during a crash. This research focuses on 

the RUPD and the three factors that influence it: type of beam, angle of support, and material. 

Finite element simulation is utilised for performance analysis of the RUPD in ANSYS by 

static structural analysis and explicit dynamic analysis with different load distributions at 

various locations on the RUPD. The legal requirements for an RUPD are specified in 

regulation FMVSS 223/224 in the United States of America, CMVSS 223 in Canada, and 

ECE R 58 in Europe, which establishes stringent requirements for the device’s design and 

behaviour under load that the device must meet in order to be approved for commercial 

vehicles. The results showed that the new RUPD design enhanced the energy absorption and 

was able to fulfil the standard requirement of crashworthiness. 
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ABSTRAK 

 

 

Beratus-ratus orang maut dalam perlanggaran antara kenderaan dan trak besar 

setiap tahun. Implikasi sekiranya berlaku perlanggaran antara kereta dan kenderaan berat 

ialah pencerobohan ruang penumpang di bawah bahagian bawah belakang trak berat, yang 

mungkin mengakibatkan kecederaan maut kepada penumpang. Tujuan kajian ini adalah 

untuk meneliti, mensimulasikan dan menganalisis sistem Rear Underrun Protection Device 

(RUPD) berdasarkan situasi pelanggaran. Matlamat utama mewujudkan RUPD adalah 

untuk meningkatkan keselamatan dan penghuni kenderaan. Penyelidikan ini bertujuan 

untuk mencipta peranti perlindungan (RUPD) baharu mengikut peraturan FMVSS 223/224 

untuk meningkatkan kelayakan kemalangan. Pemilihan bahan dan reka bentuk struktur 

ialah dua penentu utama penyerapan tenaga hentaman semasa kemalangan. Penyelidikan 

ini memberi tumpuan kepada tiga faktor yang mempengaruhinya: jenis rasuk, sudut 

sokongan dan bahan. Simulasi digunakan untuk analisis prestasi RUPD dalam ANSYS oleh 

analisis struktur statik dan analisis dinamik eksplisit dengan beban yang berbeza-beza di 

pelbagai lokasi pada RUPD. Keperluan undang-undang untuk RUPD dinyatakan dalam 

peraturan FMVSS 223/224 di Amerika Syarikat, CMVSS 223 di Kanada dan ECE R 58 di 

Eropah, yang menetapkan keperluan ketat untuk reka bentuk dan tindak balas RUPD 

terhadap hentakan yang mesti dipenuhi oleh peranti untuk diluluskan bagi kenderaan 

komersial. Keputusan menunjukkan bahawa reka bentuk RUPD baharu telah meningkatkan 

penyerapan tenaga dan mampu memenuhi keperluan piawai pelanggaran. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Among all traffic accidents, road traffic accidents take the most lives and are the 

most severe issue worldwide. The number of people killed in traffic collisions worldwide 

has increased dramatically (RTA), with 1.24 million deaths predicted each year. Road traffic 

fatalities are the leading cause of death for young people and the eighth leading cause of 

death worldwide (Elvik, 2013; Kaygisiz et al., 2015). Developing countries account for 

roughly 85% of all deaths. Males, especially those between the ages of 15 and 44, are 

disproportionately affected by traffic accidents. Countries spend 1 to 2 per cent of their gross 

national product on traffic incidents (Elvik, 2013). Although developing countries account 

for only 52 per cent of all vehicles on the road, they are responsible for 80% of all traffic 

fatalities. (WHO, 2013). In reality, as shown in Table 1.1.1, road traffic Disability-Adjusted 

Life Years (DALYs) loss will change from the ninth essential cause of DALYs in 1999 to 

the third necessary cause by 2020, as predicted by the WHO (Mohammed et al., 2019). 



 

2 

 

Table 1.1. 1: Disease burden (DALYs lost) for ten leading causes by (Smart Driving 

Research Center (SDRC)). 

 

 

According to the Department of Statistics, Malaysia (DOSM), in 2018, new 

registrations of motor vehicles increased by 8.2% to 1,218,662 compared to 1,125,900 in 

2017. Public transportation (48.0%), commercial vehicles (15.3%), and motorcycles (15.3%) 

all contributed to the rise (11.5 per cent). This study will be focused on commercial vehicles 

crash with a heavy vehicle type. A heavy vehicle is defined by the Heavy Vehicle National 

Law (HVNL) as one that has a gross vehicle mass (GVM) or aggregate trailer mass (ATM) 

of greater than 4.5 tonnes. Heavy vehicles include semi-trailers, B-double freight trucks, 

road trains, commuter buses, vehicle carriers, livestock and agricultural equipment, mobile 

cranes, and other specialised vehicles. By comparison, heavy goods vehicles (HGVs) are 

huge trucks used to transport products across the land. In Malaysia, HGVs are classified as 

trailers (articulated lorries), rigid lorries (two or more axles with a gross weight higher than 

2.5 tonnes), and tiny trucks (2 axles small lorry or pick-up with gross weight less than 2.5 

tones). 

The Malaysian HGV fleet consists of nearly a million units (data from 2016), 

covering a total of 200 kilometres of travel per day and an average annual VKT (AAKT) of 

about 70,000 kilometres (Jamaluddin et al., 2021). The distance travelled by HGV is 
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expected to increase with the growth of Malaysia’s e-commerce industry. In Malaysia, the 

evolution of HGV incidents has shown a consistent up-and-down pattern. Figure 1.1.1 

(sources of Polis Diraja Malaysia 2016 Royal Malaysia Police Annual Report, 2016 (Kuala 

Lumpur, Malaysia: PDRM) depicts the five-year way of HGV-related road accidents in 

Malaysia. Even though HGVs account for a small percentage of traffic, accidents involving 

HGVs result in over 1000 deaths per year in Malaysia. The involvement of an HGV in an 

accident is responsible for more than 80% of second-vehicle fatalities. It demonstrates that 

HGV accidents significantly affect other road users’ welfare (Hamidun et al., 2019). 

 

 

Figure 1.1. 1: Number of fatal road accidents and death involving HGV by Polis Diraja 

Malaysia 2016 Royal Malaysia Police Annual Report, 2016 (Kuala Lumpur, Malaysia: 

PDRM. 

 

Over a year, medico-legal autopsies were done on 950 instances of fatal road traffic 

accidents at the SRN Hospital, MLN Medical College, Allahabad. The male to female ratio 

was 3:1, and 33.68 per cent of patients were between the ages of 25 and 44 (Kual et al., 

2005). The most vulnerable were pedestrians, who accounted for 35.79 per cent of all deaths, 

followed by motorised two-wheelers, which accounted for 30.53 per cent. Heavy vehicles 

were found to be involved in 58.52 per cent of incidents, with highways accounting for 83.05 

per cent of all collisions. In most cases, multiple injuries were suffered for heavy vehicles. 
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