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ABSTRACT 

 

 

System identification is an approach of constructing mathematical model of a dynamical 

system using the instrumentation signal of input and output of the system. Among the 

choices of model in system identification is process model. Within the model, the presence 

of pole, zero, delay, and integrator may easily be incorporated. This project investigates the 

significance of these components in the transfer function of process model by analysing the 

result of process model estimation of 3 simulated systems to grasp a better understanding of 

their respective influence before moving on into analysis of process model result of a real 

industrial data of air compression system. The proposed methodology of this project involves 

the data import and pre-processing until the end of simulation and validation stages. The 

outcome of the simulation would undergo analysis and discussion to determine the 

significance of pole, zero, delay, and integrator in systems based on simulated and real 

industrial data. As results, the order of a system is indirectly reflected by the number of poles 

within a model, while zero affects the stability and step response of a system. Significance 

of delay is dependent on the nature of the system whereby a time lag exhibits to reach an 

optimum operating level. Lastly, integrator contributes in trend prediction of a system by 

restricting the range of model estimation from going out of track.   
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ABSTRAK 

 

 

Identifikasi sistem merupakan sebuah pendekatan untuk membina model matematik 

daripada sistem dinamik dengan menggunakan isyarat instrumentasi input dan output 

daripada sistem tersebut. Antara pilihan model dalam identifikasi sistem ialah model proses. 

Dalam model, terdapat kutub, sifar, penunda, dan penyepadu yang bekerjasama antara satu 

sama lain. Projek ini bertujuan untuk menyiasat kepentingan komponen ini dalam fungsi 

pemindahan model proses dengan menganalisis hasil anggaran model proses 3 sistem 

simulasi untuk pemahaman yang lebih lanjut atas pengaruh masing-masing sebelum beralih 

ke analisa hasil model proses data industri sebenar, iaitu sistem pemampatan udara. 

Metodologi yang dicadangkan bagi projek ini melibatkan pengimportan data dan pra-

proses sehingga tamat peringkat simulasi dan pengesahan. Hasil simulasi akan melalui 

analisa dan perbincangan untuk menentukan kepentingan kutub, sifar, penunda, dan 

penyepadu dalam sistem berdasarkan data simulasi dan data industri yang benar. Sebagai 

hasil, susunan sistem secara tidak langsung dicerminkan oleh bilangan kutub dalam model, 

manakala sifar mempengaruhi kestabilan dan tindak balas langkah sistem. Kepentingan 

penunda bergantung pada sifat sistem yang mempunyai ketinggalan masa untuk mencapai 

tahap operasi yang optimum. Akhir sekali, penyepadu menyumbang dalam ramalan arah 

aliran sistem dengan mengehadkan julat anggaran model daripada keluar dari landasan.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

System identification is the construction of mathematical models from observed data 

of a dynamic system. A dynamic system is a system with memory which reacts with inputs 

of what is done previously. Mathematical roles are having increasingly important roles in 

the science and engineering of today, whereby among the solution of tasks involved 

simulation, control design and proper signal processing. It is important to master various 

techniques for model building and there are two general ways to model a dynamic system. 

First-principles modelling is by using the knowledge of physics or math behind a problem 

to form a model, whereas the data-driven modelling is by using measured data from a system 

to construct a model.  

System Identification (SI) falls into the category of data-driven modelling. A system, 

for example, is a real thing like an indoor cooling system with input signals via thermostat 

and temperature sensors and outputs to be humidity and room temperature, whereby it is 

influenced by error, disturbance and outer environment. A model is an object where a real 

system is replaced with mathematical expressions. These expressions create an approximate 

relationship between the input signals and the output signals. Within the expressions 

representing the model, there are uncertainties in parameters. Hence, a wide variety of model 
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structure is covered by SI in order to acquire a higher accuracy of system estimation. The 

model structure which this project is covering will focus on process modelling.  

A continuous-time transfer function is the structure of a process model which defines 

the linear system dynamics in terms such as static gain, time constants, process zero, time 

delay, and enforced integration. Many industries are using process models to describe system 

dynamics as it could be applied to a wide variety of production environment due to its 

simplicity, transport delay estimation support, and easy interpretation of poles and zeros 

coefficients on the model. Different model structures could be created by altering the number 

of poles and zeros, and the participation of delay and integrator. 

A modelling approach involves finding of known constants and fixed parameters 

following from equipment dimensions, constant physical and chemical properties and so on 

(Mikles and Fikar, 2007). This include the determination of significance of the delay and 

overshoot of a system. Most if not all of the dynamic systems encountered will have amount 

of time delay inherent to it. A significant amount of delay will either degrade the 

performance or make the system to be unstable, as the delay is subjected as old information 

to determine the current output of the controller. Meanwhile, not all process in the industry 

is suitable with the occurrence of overshoot. For example, an overshoot in temperature 

output of a chemical process causes disruption or reaction between molecular particles. 

Integrator serves as an output block with respect to time to prevent the values of output from 

exceeding specifiable levels. Accuracy of the model is improved via integrator when the 

range of overshoot data is limited down to a desirable range of data levels. Thus, old 

information taken into account during determination of current output has a lower tendency 

of disturbance or being unstable in the future. Hence, the goal of this project is to determine 

the influence of poles, zeros, delay and integrator on the search to obtain the best fit model 

suited for the system according to the data set given.  

https://en.my1lib.org/g/Miroslav%20Fikar
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1.2 Problem Statement 

Problems raised during predictive and preventive control of a dynamical system are 

commonly solved via System Identification. Preferred outputs with the characteristics 

needed to be embedded within a system could be predicted using the best fit mathematical 

model. In process modelling, the number of poles and zeros, and the existence of delay and 

integrator which may easily be incorporated are determined by the user. To achieve the best 

fit model, it is crucial for users to know the effects of each parameters. Therefore, the ability 

to understand the significance of these components in the transfer function to obtain the best 

fit process model is essential for the industrial system.  

 

1.3 Objective 

 The objectives of this project are as follows: 

i. To perform system identification using process model. 

ii. To investigate the effect of different number of poles in process model. 

iii. To investigate the significance of zero, delay and integrator in process model. 

 

1.4 Scope of Project 

 The scopes of this project are: 

i. This project will focus on the method of applying process model for system 

identification. 

ii. This project requires utilisation of MATLAB software as simulation tool. 

iii. This project aims to solve a single input - single output (SISO) system. 
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iv. Analysis on the behaviour of dynamical system and the mathematical 

modelling will be carried out based on best-fit index, final prediction error, 

and mean squared error. 

 

1.5 General Methodology 

 The actions to be taken to obtain the objectives in this project are as below: 

1. Literature Review 

Journals, articles, or any related informative materials regarding this project 

are reviewed to achieve adequate knowledge and understanding. 

2. Trial Run with MATLAB’s Toolbox 

A transfer function of process model is built from a sample data set. 

Performance of the transfer function of process model will be analysed. 

3. Data Acquisition 

An industrial real-time data is needed to create a robust mathematical model. 

Data is provided by supervisor after the succession of trial run on SI using 

sample data of MATLAB. 

4. Simulation of SI using Process Model 

Data set is replaced with real-time industrial data provided by supervisor via 

skillsets of mathematical model technique obtained from past trial run. 

5. Analysis and Discussion 

Analysis are presented by analysing and validating the performance and 

quality of the mathematical model derived from simulation. 

6. End Reporting 

A project report is written after the analysis of project is completed. 
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The methodology of this study is summarised in the flow chart as shown in Figure 1.1. 

 

Figure 1.1: Flow chart of general methodology 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction 

 This literature review will focus on the discussion of three keywords regarding the 

research title: Process Model, Transfer Function and System Identification. This chapter 

serves as foundation of knowledge for the upcoming chapters of methodology and analysis 

of project report. References related to the research topic and field are summarised in this 

chapter. 

 

2.2 System Identification 

Systems are usually referred as mechanism that generates an output by taking in input, 

whereby system response is the relationship of the output related to the input. The 

relationship between the system input and the system output could be modelled using 

mathematical equation, which is the transfer function in this case of study. 
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2.2.1 Mathematical Model 

 Ljung (1987) stated that relationships between system variables using mathematical 

descriptions could be described via mathematical models. Mathematical descriptions used 

such as differential equations could be further explained through different aspects such as 

linear or non-linear, continuous-time or discrete-time.  

 Mathematical models could be generated through construction of block diagram 

using first principles. The alternative way to generate mathematical models is through 

graphical models which are experimental based, which is also known to be system 

identification. Observation of data is needed using this method to obtain the input and output 

signals before carrying out data analysis to form a model. 

 

2.2.2 Definition of Dynamical System 

 A system is defined as an object with variables interacting with each other to produce 

output signals. Disturbances are variables which could not be controlled and it could be 

classified as either a measurable disturbance, or an unmeasurable disturbance which could 

only be noticed via its influence on the system’s output. Other than that, inputs are variables 

which could be controlled. On the other hand, a dynamical system is a system which consists 

of time-domain variables and output. Therefore, the system is dependent on previous values 

of output, and not dependent on variables (Ljung, 1987). 
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2.2.3 Definition of System Identification 

 A model could be developed through experimental data and variables by observing 

under specific duration using proven method to obtain data which suits the description of the 

mathematical model, whereby input-output of the system could be distinguished (Bittanti, 

2019). The black-box model is a mathematical model which provides only logical definition 

of its input-output relationship, whereas the white-box model is classical model defined by 

the knowledge of physics and mathematical laws. Models tend to contain uncertain and 

unknown parameters and variables. Therefore, parameter could be estimated via 

experimentation analysis on the behaviour of the system under specific condition. Thus, 

system identification problems estimate unmeasurable variables from data of observed 

variables. The science term of identification refers to the designation of model based on 

experimentation groundworks. 

 

2.2.4 Purpose of System Identification 

 Traditionally, mathematical models are acquired by describing input and output 

using applicable mathematical laws which are complicated and time consuming. 

Mathematical model obtained through this method may consists numerous complex 

equations, making it unpractical in real life. Accuracy of model may not be achieved 

mathematically as relationship between variables might not be reliable due to their unknown 

values, or analytic description. As actual system varies from the mathematical model, 

connection should not be made between real system with its mathematical description, 

whereas it is better to compare and relate specific features. Idealisation should dominate 

implementation as models should be accepted for its practicability. Hence, by using system 

identification method, the properties of models could be better understood. (Bittanti, 2019). 
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2.2.5 System Identification Process  

 System Identification process consists of four fundamental building blocks described 

by Ljung (1986). 

• Data acquisition: Data of input and output are acquired throughout a time interval 

from a system in order to ensure data is informative and controllable. However, 

human or system errors might produce wrong data (outliers) and should be replaced 

with a logical value. 

• Modelling: Model which may reproduce the measured data is selected prior to 

engineering knowledge and understanding after the construction of multiple models 

based on fundamental physical laws and other correlation. 

• Validation: The selected model is then tested for their performance to ensure its 

capability for a sustainable description which meets the requirement of desired 

behaviour of system’s output. 

• Revision: Procedure loop is revised if the validation step is not passed. A weak model 

is usually due to insufficient informative data, inappropriate model set, or wrongly 

selecting the criterion of model. 

 

2.2.6 Black-Box Models  

 Autoregressive (AR) model is a commonly used linear prediction model where 

outputs are dependent on previous output only. Inputs and disturbance variables do not 

exhibit in this model. Furthermore, due to its simplicity, the model is restricted in problem-

solving (Bittanti, 2019). 

 Bittanti (2019) also stated that Autoregressive with Exogenous input (ARX) model 

includes stimulus signal, increasing its efficiency in polynomial estimation as linear 
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regression could be solved under diagnostic form. ARX model suits higher model order 

system as its solution fulfils the absolute minimum of a loss function. However, disturbance 

is included within its system dynamics. White noise may interfere the estimation of ARX 

model as the transfer function used by the model shares similar poles between its 

deterministic and stochastic parts.  

 Autoregressive-Moving Average with Exogenous input (ARMAX) model has 

flexibility in handling disturbance exist in early process due to its disturbance dynamics 

structure. White noise could be cancelled out due to the existence of moving average within 

the ARMAX model equation (Bittanti, 2019). 

 

2.3 Process Model 

2.3.1 Definition of Model and Process Model 

Bequette (1998) stated that a process model is a set of equations included with the 

essential input data to solve the equations to allow the prediction on the behaviour of a 

process system. Meanwhile, a mathematical or physical system which obeys certain 

specified conditions, whose behaviour is used to understand a physical, biological, or social 

system to which it is analogous in some way is considered to be as what being defined as a 

model (McGraw-Hill, 2002). Models could be classified into two groups: fundamental or 

first-principles, and empirical. First-principles models are based on known physical-

chemical relationships such as conservation of mass and energy, kinetics reaction, transport 

phenomena, and thermodynamic relationships. Fundamental model which is too complex in 

formulation or numerical solution is considered as empirical, such as least squares fit of an 

equation to experimental data. The main differences between fundamental and empirical 

model is that fundamental models are generally accurate over a larger range of conditions 
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whereas empirical models are limited to the range of conditions used for the fit of the data. 

It is also important to understand that a model represents an approximation of an actual 

process only. 

 

2.3.2 Application of Process Model 

Improving and understanding process operation as objective in developing a dynamic 

process model varies according to their respective aspects or field. 

• Control System Design: Feedback control systems are used to maintain process 

variables at desirable values (Bequette, 1998). For example, a control system adjusts 

the flowrate as input to ensure desirable temperature is achieved as an output. 

However, control system design is based on process model for a complex system 

with many inputs and outputs, whereas the model is tested via simulating the 

expected performance using computer simulation before being implemented on a 

process. 

• Operator Training: A dynamic process model is capable in performing simulations 

to train process operators. For example, airplane pilots are trained using flight 

simulators. Proper response could be learnt during the encounter of upset conditions 

before having to experience them on the actual process. 

• Process Design: Chemical reactor model is used to determine the appropriate size of 

reactor for the production of product under satisfactory rate. Thus, desired production 

rate could be achieved by designing a proper dynamic process model. 

• Safety: Process models are commonly used to design safety system such as 

determining the time needed for a critical pressure to be achieved when a valve failed 

within a system. 
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2.3.3 Characteristic of Process Model 

Hangos (2001) stated that characteristic of model has an impact on the solution 

techniques and its area of application. Criterion of the respective classifications is discussed 

in this section. 

• Mechanistic model: This type of model appears in design and optimisation 

applications and is referred as a phenomenological model due to its derivation from 

mass, heat, and momentum transfer. Mechanisms are evident in the model 

description and is commonly known as the white box model. 

• Empirical model: Knowledge of basic principles and mechanisms are not relied in 

this type of model as it is based on result of experiment and observation. Equation 

fitting is employed where parameters have little or no physical meaning due to the 

unknown underlying phenomena. Little is known upon the real mechanisms of the 

process, making it being called as the black box model. 

• Grey box model: This type of model has combination of empirical and mechanistic 

models, and it is the most commonly used model in process engineering. 

• Stochastic model: Involves indescribable phenomena in terms of cause and effect in 

this type of model. Probability distributions are often associated in the description of 

this model. 

• Deterministic model: This type of model has distinct cause and effect relationship. 

 

2.3.4 Statistical Methods of Model Building 

 Heckert (2002) stated that there is often more than one statistical tool that could be 

used on a given modelling application. There is a wider opportunity for effective and 

efficient solutions due to the varieties of methods applicable to modelling problems. Under 
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a few competing statistical methods, the best method is likely to be selected based on the 

end goal of the analysis and nature of the data. 

 

2.3.4.1 Linear Least Square Regression 

 This method is widely used due to its widely adaptive range of circumstances outside 

its direct scope. Linear least square regression could be used directly with appropriate data 

set into a function. 

Linear Least Square Regression Equation, 

𝑓(�⃗�; 𝛽) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯                                                               (2.1) 

Respective explanatory variable in the function is multiplied by an unknown 

parameter, while at most one unknown parameter will have no explanatory variable. The 

final function value is the result of the summation of all respective terms. The function is not 

necessarily be a straight line even though the term is referred as linear as unknown 

parameters are considered as variables, while explanatory variables as known coefficients. 

Hence, linear equation is able to solve for the values of the unknown parameters, making it 

overdetermined in most cases. 

Linear least squares regression is considered to be the primary tool for process 

modelling in science and engineering due to its completeness and effectiveness as most 

processes are inherently linear, or could be well-approximated by a linear model. Good result 

could be produced using small data sets. However, linear least squares have limitations in 

shape and produces poor extrapolation properties along with a high outlier sensitivity 

(Heckert, 2002).  
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2.3.4.2 Nonlinear Least Squares Regression 

 This method is an extension of linear least squares regression with a larger general 

class of functions. Nonlinear least square regression has very little limitations on the 

implementation of parameters. Function which has least squares criterion used to acquire the 

parameter are more suited with this method. 

The Nonlinear Least Squares Regression Equation is, 

𝑦 = 𝑓(�⃗�; 𝛽) + 𝜀                                                                                                (2.2) 

whereby, the functional part is not linear with respect to unknown parameters, β. 

 Nonlinear models have the advantage for asymptotic behaviour processes as it could 

increase or decrease at a declining rate as the explanatory variables go to the extremes. 

Furthermore, this method uses data efficiently and produces good estimates of the unknown 

parameters using small data sets. However, this method is also very sensitive with the 

presence of outlier and may result in a defective nonlinear analysis (Heckert, 2002). 

 

2.3.4.3 Weighted Least Squares Regression 

 Heckert (2002) stated that certain models have fluctuating standard deviation of error 

term over the variables, which makes linear and nonlinear least squares regression unsuitable 

to be applied. Weighted least squares regression maximises efficiency of parameter 

estimation by giving each data point a suitable amount of influence over the parameter, 

producing less precisely measure points more influence while decreasing influence on highly 

precise points.  

 This method is not associated with specific function used as relationship description 

of process variables, whereas it reflects on the behaviour of random errors in a model. Thus, 
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it could be used in both linear or nonlinear parameters by incorporating extra nonnegative 

constants or weights associated with each data point as its fitting criterion. Size of weight 

must be precisely informed through associated observation as weight estimated based on a 

small number of replicated observations may worsen the results of an analysis. Furthermore, 

this method is also sensitive to the effects of outliers.  

 

2.3.4.4 Locally Estimated Scatterplot Smoothing (LOESS) 

 LOESS combines the simplicity and flexibility of linear and nonlinear least squares 

regression respectively by computationally applying simple models to localised subsets of 

data to produce a function that reflects the deterministic part of the variation in data. A 

specific degree of polynomial is fitted into a subset of data, while response of variables near 

the point are estimated. Subsets used for weighted least squares fit in LOESS are determined 

by the nearest neighbouring algorithm.  

 This method does not require the specification of a function to fit a model to every 

data within a sample as it only needs smoothing parameter value and the degree of local 

polynomial. On the other hand, a densely sampled data sets are needed to produce a good 

model as this method needs high quality empirical information on the local structure of the 

process to perform local fitting. Furthermore, it is difficult to transfer result of analysis to 

another as LOESS does not produce a regression function which could be easily represented 

using mathematical formula (Heckert, 2002).  
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2.3.5 Steps on Effective Process Model Development 

 The basic steps of model development consist of model selection, model fitting, and 

model validation. A given problem statement is analysed to understand its fundamental 

questions clearly. Plots of data along with process knowledge and assumption are the initial 

key to select the form of model to be fitted to the data. By using the selected model, model 

fitting is conducted to estimate the unknown parameters before being assessed to validate 

the assumptions being made. Modelling process is repeated using the information gained 

through validation step to select, change, or improve the model if the validation had proven 

the assumptions to be implausible. The flow chart shown in Figure 2.1 illustrates the basic 

model development process.
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Start 

Model selection based on data plots, 

process knowledge and assumptions 

Model describes 

the data well? 

Fit model using parameter estimation 

method, data and process knowledge 

Validate model to assess the 

plausibility of assumptions 

End 

YES 

NO 

Figure 2.1: Flow chart of basic model development process. 

Analyse the problem 
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2.4 Transfer Function 

 MATLAB’s System Identification (SI) performs process modelling which generates 

algebraical models represented using transfer function by inserting only the input and output 

of a system. Although the process of obtaining transfer function is done computationally, it 

is important to understand the fundamentals and reasoning on the implementation of transfer 

function instead of differential equation.  

 

2.4.1 Definition of Transfer Function 

Whitworth (2019) stated that a transfer function is the ratio of the output of a system 

to the input of a system under zero initial conditions and equilibrium point of its Laplace 

domain (Figure 2.2). 

 

Figure 2.2: Block diagram of a transfer function 

 

Transfer Function Equation, 

𝐺(𝑠) =
𝐶(𝑠)

𝑅(𝑠)
                                                                                                     (2.3) 

whereby, 𝑅(𝑠) as input function, 𝐶(𝑠) as output function, and 𝐺(𝑠) as transfer function. 

 

  

𝐺(𝑠) 
𝑅(𝑠) 𝐶(𝑠) 
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2.4.2 Using Transfer Function as Mathematical Representation 

Nise (2015) mentioned that a mathematical representation such as that shown in 

Figure 2.2 is preferred, where both input and output, and system are in separated distinct 

parts. Although differential equation could also describe the relationship between both input 

and output of a system, it produces an unsatisfying representation from a system perspective. 

Transfer function however, is an established viable definition for a function whereby 

system’s output to its input are algebraically related, yet allowing separation of the input, 

output, and system into three separate and distinct parts. Furthermore, Nyquist and Bode 

plots can be drawn from the open loop transfer function as they show the stability of the 

system when the loop is closed. Unknown time-invariant parameters could also be deduced 

via Laplace transform which further simplify the function to be represented in the model. 

A General nth-order, Linear, Time-invariant Differential Equation is, 

𝑎𝑛

𝑑𝑛𝑐(𝑡)

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑐(𝑡)

𝑑𝑡𝑛−1
+ ⋯ + 𝑎0𝑐(𝑡) = 𝑏𝑛

𝑑𝑚𝑟(𝑡)

𝑑𝑡𝑚
+ 

𝑏𝑚−1

𝑑𝑚−1𝑟(𝑡)

𝑑𝑡𝑚−1
+ ⋯ + 𝑏0𝑟(𝑡)                                                                       (2.4) 

where 𝑐(𝑡) represents the output, 𝑟(𝑡) is the input, and the 𝑎𝑖’s, 𝑏𝑖’s, along with the form of 

differential equation are regarded as the system. By extracting the Laplace transform of both 

sides, 

𝑎𝑛𝑠𝑛𝐶(𝑠) + 𝑎𝑛−1𝑠𝑛−1𝐶(𝑠) + ⋯ + 𝑎0𝐶(𝑠) + 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

𝑡𝑒𝑟𝑚𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔 𝑐(𝑡)  

= 𝑏𝑚𝑠𝑚𝑅(𝑠) + 𝑏𝑚−1𝑠𝑚−1𝑅(𝑠) + ⋯ + 𝑏0𝑅(𝑠) + 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛  

        𝑡𝑒𝑟𝑚𝑠 𝑖𝑛𝑣𝑜𝑙𝑣𝑖𝑛𝑔 𝑐(𝑡) 

                                      (2.5) 
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By assuming all initial conditions to be zero, Eq. (2.5) reduces to 

(𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0)𝐶(𝑠) = (𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0)𝑅(𝑠) 

                                                                                                                               (2.6) 

A ratio between output transform, 𝐶(𝑠) and input transform, 𝑅(𝑠) could then be formed as 

follows: 

𝐺(𝑠) =
𝐶(𝑠)

𝑅(𝑠)
=

(𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0)

(𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0)
                                     (2.7) 

Referring to Eq. (2.7), the output,  𝐶(𝑠), input, 𝑅(𝑠), and the system represented by the ratio 

of polynomials with 𝑠 on the right are distinctively separated, whereby the ratio, 𝐺(𝑠), is the 

transfer function evaluated with zero initial conditions. Hence, a transfer function could 

hereby represent any physical system which could be separated by a linear, time-invariant 

differential equation. 

 

2.4.3 Poles, Zeros, and System Response 

 Forced and natural response are the output response of a system. System is able to 

be described using qualitative attributes such as poles and zeros and their relationship to time 

response to avoid laborious and time-consuming techniques such as inversing a Laplace 

transform, or by solving a differential equation (Nise, 2015). 

 Poles are defined as the values of Laplace transform variable, s, which cause the 

transfer function to be infinite. It could also be referred as any roots of the denominator of 

the transfer function which are common to the roots of the numerator. Factor of the 

denominator could be crossed out by the same factor in the numerator. This will result in the 

root of this factor to be unable to cause the transfer function to be infinite.  
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𝑅(𝑠) =
1

𝑠
 𝐶(𝑠) 

𝜎 

−5 −2 

× ∘ 

 Zeros are defined as the values of Laplace transform variable, s, which cause the 

transfer function to be zero. It could also be referred as any roots of the numerator of the 

transfer function which are common to the roots of the denominator. Factor of the numerator 

could be crossed out by the same factor in the denominator. This will result in the root of 

this factor to be unable to cause the transfer function to be zero. 

By referring to an example of transfer function, 𝐺(𝑠) shown in Figure 2.3, a single 

pole and zero exists at 𝑠 = −5 and 𝑠 = −2, respectively. These values are then plotted on 

the complex s-plane as shown in Figure 2.4. 

𝐺(𝑠) 

 

 

Figure 2.3: A system showing input and output 

 

𝑗𝜔 

 

 

 

 

 

Figure 2.4: Pole-zero plot of the system 

  

𝑠 + 2

𝑠 + 5
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Unit step response of the system could be found by multiplying the transfer function of 

Figure 2.3 by a step function to show the properties of the poles and zeros: 

𝐶(𝑠) =
(𝑠 + 2)

𝑠(𝑠 + 5)
=

𝐴

𝑠
+

𝐵

𝑠 + 5
=

2/5

𝑠
+

3/5

𝑠 + 5
                                          (2.8) 

where 

𝐴 =
(𝑠 + 2)

(𝑠 + 5)
|

𝑠→0

=
2

5
                                                                                       (2.9) 

𝐵 =
(𝑠 + 2)

𝑠
|

𝑠→−5
=

3

5
                                                                                  (2.10) 

Therefore, 

𝑐(𝑡) =
2

5
+

3

5
𝑒−5𝑡                                                                                           (2.11) 

After going through the evolution of a system response as shown in Figure 2.5 and by going 

through Eq. (2.8) until Eq. (2.11), it could be concluded that the forced response is generated 

by the pole of the input function, whereas the natural response is generated by the pole of 

the transfer function. The pole on the real axis represents an exponential response of the form 

𝑒−𝛼𝑡 , whereby −𝛼  represents the pole location on the real axis. Exponential transient 

response will react quicker during its decay to zero if the pole is further to the left on the 

negative real axis. Both poles and zeros are also the amplitudes of forced and natural 

responses as shown through Eq. (2.9) and Eq. (2.10) respectively.  
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Input pole System zero System pole 

𝜎 𝜎 𝜎 

1

𝑠
 

𝑠 + 2 1

𝑠 + 5
 

𝑗𝜔 𝑗𝜔 𝑗𝜔 

s-plane s-plane s-plane 

× × 

−5  
×  

−2  
×  

∘ 

𝐶(𝑠) 

 

 

 

 

 

 

 

 

                                        𝑂𝑢𝑡𝑝𝑢𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚          𝐶(𝑠) =
2/5

𝑠
+

3/5

𝑠 + 5
 

                                    𝑂𝑢𝑡𝑝𝑢𝑡 𝑡𝑖𝑚𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒       𝑐(𝑡) =
2

5
+

3

5
𝑒−5𝑡 

 

 

Figure 2.5: Evolution of a system response 

 

2.4.4 Influence of Poles in First-Order Systems 

 A first-order system without zeros as shown in Figure 2.6 is used throughout in this 

subsection to proof the influence of pole in first-order system. 

𝑎

𝑠 + 𝑎
 

Figure 2.6: First-order system  

Forced response Natural response 

𝑅(𝑠) 
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By letting the input as a unit step, whereby 𝑅(𝑠) = 1/𝑠 , the Laplace transform of step 

response could be denoted as: 

𝐶(𝑠) = 𝑅(𝑠)𝐺(𝑠) =
𝑎

𝑠(𝑠 + 𝑎)
                                                                    (2.12) 

whereby the inverse transform is: 

𝑐(𝑡) = 𝑐𝑓(𝑡) + 𝑐𝑛(𝑡) = 1 − 𝑒−𝑎𝑡                                                               (2.13) 

where input pole generates forced response 𝑐𝑓(𝑡) = 1 , whereas the system pole, −𝑎 

generates the natural response 𝑐𝑛(𝑡) = −𝑒−𝑎𝑡 . Let us simplify the natural response to 

distinguish the significance of parameter a by letting 𝑡 = 1/𝑎. 

𝑒−𝑎𝑡|𝑡=1/𝑎 = 𝑒−1 = 0.37                                                                             (2.14) 

From Eq. (2.14), the 1/𝑎 is referred as time constant of the response, whereby is the time 

for 𝑒−𝑎𝑡 to decay to 37% of its initial state. Time constant could be labelled as a transient 

response for first-order system as it relates to the speed at which a system responds to a step 

input. Therefore, the pole at −𝑎 of the transfer function is located at the reciprocal of time 

constant. Hence, transient response is faster when the pole gets further away from the 

imaginary axis (Nise, 2015).  

 

2.4.5 Influence of Poles in Second-Order Systems 

 Nise (2015) states that second-order systems exhibit a wide range of responses 

compared to the simplicity of first-order systems. While first-order system’s parameter 

generally influences the speed of the response, second-order systems change the form of the 

response. Two finite poles and no zeros will be based as foundation throughout this 

subsection.  
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 The influence of poles in second-order systems could generally be categorised into 

four different responses as shown in Figure 2.7. 

 

Figure 2.7: Step responses for second-order system damping cases 

 

2.4.5.1 Overdamped Response 

Assume a system response by the function where the block diagram of a second-order 

overdamped system is shown in Figure 2.8. 

𝐶(𝑠) =
9

𝑠(𝑠2 + 9𝑠 + 9)
=

9

𝑠(𝑠 + 7.854)(𝑠 + 1.146)
                           (2.15) 

 

Figure 2.8: Second-order overdamped system 

9

𝑠2 + 9𝑠 + 9
 

𝐺(𝑠) 
𝑅(𝑠) =

1

𝑠
 

𝐶(𝑠) 



 
 

26 
 

Pole at origin that refers to the unit step input and two real poles of the system in the function 

is shown in Figure 2.9. Input pole at origin causes constant forced response, while each 

respective pole from both system on the real axis causes a similar exponential frequency of 

exponential natural response to the pole location. 

 

Figure 2.9: Second-order overdamped system’s pole plot  

 

2.4.5.2 Underdamped Response 

Assume a system response by the function where block diagram of a second-order 

underdamped system is shown in Figure 2.10. 

𝐶(𝑠) =
9

𝑠(𝑠2 + 2𝑠 + 9)
                                                                                (2.16) 

 

Figure 2.10: Second-order underdamped system 

 

× × × 

𝑗𝜔 

𝜎 

𝑠 − 𝑝𝑙𝑎𝑛𝑒 

−1.146 −7.854 

9

𝑠2 + 2𝑠 + 9
 

𝐺(𝑠) 
𝑅(𝑠) =

1

𝑠
 

𝐶(𝑠) 
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Two complex poles from the system while a pole at the origin is present in this function as 

shown in Figure 2.11. For underdamped condition, real part of pole generally matches the 

frequency of exponential decay of the sinusoid’s amplitude, whereas imaginary part of poles 

matches the frequency of sinusoidal oscillation. Meanwhile, the input pole located at the 

origin generates the steady-state response. 

 

Figure 2.11: Second-order underdamped system’s pole plot 

 

2.4.5.3 Undamped Response 

Assume a system response by the function where block diagram of a second-order undamped 

system is shown in Figure 2.12. 

𝐶(𝑠) =
9

𝑠(𝑠2 + 9)
                                                                                          (2.17) 

 

Figure 2.12: Second-order undamped system 

 

× 

× 

× 

𝑗𝜔 

𝜎 

𝑠 − 𝑝𝑙𝑎𝑛𝑒 

−1 

𝑗ξ8 

−𝑗ξ8 

9
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𝐺(𝑠) 
𝑅(𝑠) =

1

𝑠
 

𝐶(𝑠) 
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× 

The pole at origin is retrieved from the unit step input, and two imaginary poles are based 

from the system as shown in Figure 2.13, whereby input pole generates the constant forced 

response, and a sinusoidal natural response with an equal frequency to the location of 

imaginary poles are generated by the two system poles. The term, undamped implies that 

exponential does not decay due to the absence of real pole. 

 

Figure 2.13: Second-order undamped system’s pole plot 

 

2.4.5.4 Critically Damped Response 

Assume a system response by the function where block diagram of a second-order critically 

damped system is shown in Figure 2.14. 

𝐶(𝑠) =
9

𝑠(𝑠2 + 6𝑠 + 9)
=

9

𝑠(𝑠 + 3)2
                                                        (2.18) 

 

Figure 2.14: Second-order critically damped system 
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× 
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𝑠
 

𝐶(𝑠) 



 
 

29 
 

 

 

 

 

 

Figure 2.15: Second-order critically damped system’s pole plot 

 

Figure 2.15 illustrated a pole at origin generated by unit step input, while two multiple real 

poles generated from the system. Input pole provides constant forced response, whereas the 

two poles at real axis of −3 generate the natural response. Natural response in this case 

consist of an exponential multiplied by time. This means that the location of real poles is 

equal to the exponential frequency. This response is the fastest among all responses, along 

with its absence of overshoot. 

 

2.4.6 Location of Poles 

 Nise (2015) classified movement of poles into constant real part, constant imaginary 

part, and constant damping ratio. During constant real part movement, poles move in vertical 

direction as shown in Figure 2.16(a), whereby envelope remains during increment of 

frequency as the real part of the pole is unchanged. Sinusoidal response increases in 

frequency when the poles move further away from zero. Settling time is maintained under 

all frequencies as all curves fit under the same exponential decay curve. This is also due to 

the increase in overshoot, which causes rise time to decrease. 

× × 

𝑗𝜔 

𝜎 

𝑠 − 𝑝𝑙𝑎𝑛𝑒 

−3 
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 As poles move to the left as shown in Figure 2.16(b), response damps out faster while 

maintaining the same frequency and peak time. This is due to the effect of constant imaginary 

part. Moving on, poles with constant radial line movement affect the speed of overshoot, but 

not the amplitude as shown in Figure 2.16(c).  

 

Figure 2.16: Step responses of second-order underdamped systems as poles move 
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2.4.7 Influence of Zeros 

 Notice that throughout till now, the sections within Chapter 2 showed no significant 

influence of zeros towards a system. It is hereby clarified that most of the influences on the 

behaviour of the system are due to the poles. As for now, zeros are only known as a guide in 

providing the value of amplitude, or as a gain factor (Nise, 2015). The upcoming subsection 

which review about the addition of poles and zeros will show the influence of zero in 

transient step response. A system could have no zeros, but it must have the presence of pole 

(Scherbaum, 2001). 

 

2.4.8 Addition of Poles and Zeros 

Whitworth (2019) stated that addition of poles to transfer function has the effect of 

pulling the root locus to the right, making the system less stable. However, the best fit index 

increases with the increment of number of poles under MATLAB’s SI. As the increment of 

number of poles basically increases the order of the system, a more accurate description of 

the system is provided. This is due to the fact that real system is usually found to be more 

complex and difficult to predict. 

Meanwhile, addition of zeros to transfer function will pull the root locus to the left, 

making the system more stable. Statement made by Nise (2015) also supports the increase 

in stability via addition of zeros as adding a left-half-plane (LHP) zero to transfer function 

increase step response. Rise and peak time will decrease as overshoot increases. However, 

adding a right-half-plane (RHP) zero to transfer function will decelerate the step response as 

undershoot may take place.  
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2.4.9 Delay  

Ljung (2003) gave an example of a most commonly used process model: 

𝐺(𝑠) =
𝐾

1 + 𝑠𝑇𝑝1
𝑒−𝑠𝑇𝑑                                                                                  (2.19) 

whereas a model without delay (𝑇𝑑 = 0): 

𝐺(𝑠) =
𝐾

1 + 𝑠𝑇𝑝1
                                                                                            (2.20) 

Therefore, delay could be represented to be 𝑒−𝑠𝑇𝑑  under mathematical expression. This 

statement could be defended as Nise (2015) defined time delay as the delay between the 

commanded response and the start of the output response. By having an example of a system 

with an input, 𝑅(𝑠), to a system, 𝐺(𝑠), yields an output, 𝐶(𝑠); while another system, 𝐺′(𝑠), 

delays the output by 𝑇𝑑  seconds, has an output response of 𝑐(𝑡 − 𝑇) . By Laplace 

transforming 𝑐(𝑡 − 𝑇), 𝑒−𝑠𝑇𝑑𝐶(𝑠) is obtained. Thus, it could be concluded that: 

System without delay: 

𝐶(𝑠) = 𝑅(𝑠)𝐺(𝑠)                                                                                           (2.21) 

System with delay: 

𝑒−𝑠𝑇𝑑𝐶(𝑠) = 𝑅(𝑠)𝐺′(𝑠)                                                                                (2.22) 

By dividing Eq. (2.22) with Eq. (2.21): 

𝐺′(𝑠)

𝐺(𝑠)
= 𝑒−𝑠𝑇𝑑                                                                                                   (2.23) 

Thus, system with time delay could be represented in terms of an equivalent system 

without time delay as follow: 

𝐺′(𝑠) = 𝑒−𝑠𝑇𝑑𝐺(𝑠)                                                                                        (2.24)  
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Effect of adding time delay also reduces the phase shift and margin. By using second-order 

approximation, reduction in phase margin eventually reduce damping ratio of the system, 

and causes more oscillatory response. Along with a reduced gain-margin due to the reduction 

of phase, the system moves closer to instability due to the increase percent of overshoot.  

 

2.4.10 Integrator 

Ljung (2003) gave an example of a most commonly used process model as shown 

previously in Eq. (2.19), whereas a model with enforced integration (self-regulating process) 

is: 

𝐺(𝑠) =
𝐾

𝑠(1 + 𝑠𝑇𝑝1)
𝑒−𝑠𝑇𝑑                                                                            (2.25) 

Notice that the enforcement of integration has increased the order of the system by the higher 

power of the s variable. As the order of the system is now higher, accuracy of model is 

increased during prediction as the model description suits better based on real cases. Event 

of overshoot could be eliminated with integration as the model reacts more accurately as 

denoted by the best fit index.  
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2.5 Summary of Literature Review 

 The summary of the influence of pole, zero, delay, and integrator from the findings 

of literature review is shown in Table 2.1. 

Table 2.1: Summary of influence of pole, zero, delay, and integrator 

 Influence 

Pole - The higher the number of pole, the higher the order of the system 

- Location of pole determines the damping speed of the response of 

system 

Zero - Provides guidance on the value of amplitude or gain factor 

- Location of zero affects the stability of the system 

Delay - Reduces phase shift or margin 

- Reduces damping ratio in second-order approximation 

Integrator - Avoids overshoot of system 

- Increases the order of system 

- Reacts more accurately in trend 
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2.6 Current Studies of Transfer Function 

2.6.1 Development of Transfer Functions Relating Solid Oxide Fuel Cell Degradation 

to Operating Conditions 

A research by Polverino (2021) tends to present an innovative model-based approach 

for the development of mathematical transfer functions to be applied on operating conditions 

by correlating Solid Oxide Fuel Cells (SOFCs) degradation rate. The transfer function is 

used for fuel cell lifetime prediction and Accelerated Stress Test (AST) protocols design. 

Evaluation of key operating variables, accelerating voltage decay over time is relied on 

multiscale modelling methodology and links local degradation to high level performance 

models. Thorough simulation analysis was conducted to convey the correlation among 

operating variables and degradation rate into the mathematical transfer functions. Case study 

of nickel agglomeration was conducted as well to better illustrate the overall design and 

application process of such functions. Multiscale modelling framework is applied to 

correlate microscale such as particles size change of nickel, and macroscale such as SOFC 

voltage reduction levels through the most affected mesoscale parameters. Voltage decay 

over time and link degradation rates are then simulated using the model towards the applied 

operating conditions. Investigation on the influence exerted by each operating variable on 

the degradation rate was conducted via parametric analysis to derive the transfer functions. 

𝜉(𝑇, 𝐽𝑁) = 𝑎1𝑒𝑎2𝑇(𝑒𝑎3𝐽𝑁 − 𝑒𝑎4𝐽𝑁)                                                       (2.26) 
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2.6.2 Estimation of Non-Point-Source Solute Travel Times using Transfer Function 

Model 

Research conducted by Bancheri (2021) had presented a new suitable fast and 

reliable transfer function model capable of simulating the spatiotemporal distribution of non-

point-source solutes along the unsaturated zone for large scales usage within a web-based 

Decision Support System. The model uses transfer functions of travel time probability 

density functions derived from the unsaturated hydraulic conductivity curve. The output 

concentration of solute is the convolution of transfer functions with the input concentrations 

to the system. Model sensitivity analysis carried out showed that saturated water content and 

the tortuosity parameter were the parameters that affected the mean travel time. Validation 

was made against the concentration experiments carried out on four large soil columns. The 

result of the comparisons produced a high correlation coefficient shows that the model is 

feasible for the groundwater vulnerability assessment. 

−
𝑧 [1 − (1 − 𝑠𝑒

1/𝑚
)

𝑚
]

𝑡2𝑠𝑒−1 [𝜏 + 2𝑠𝑒
1/𝑚

(1 − 𝑠𝑒
1/𝑚

)
𝑚−1

− 𝜏(1 − 𝑠𝑒
1/𝑚

)
𝑚

]

𝜃𝑠 − 𝜃𝑟

                                           (2.27) 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Introduction 

This chapter reveals the methodology for building a best-fit process model based on 

the influence of poles, zeros, delay, and integrator via MATLAB Toolbox. Flow chart of the 

process is provided in Figure 3.1. During the early stage of this project, the SI Toolbox 

Graphical User Interface (GUI) was explored and familiarised to figure out its related terms 

(best-fit, final prediction error, and mean square error) for future analysis and reporting in 

Chapter 4 and its operating procedures which is what Chapter 3 is focused on. Next, trial run 

was conducted for the process model estimation based on sample data as an exercise for 

familiarisation. The resulting process models are differentiated by the influence of poles, 

zeros, delay and integrator. The process model estimation is retrained with different 

specifications to achieve a best-fitted result of process model. The similar methodology 

would be repeated using different data set for the comparison and validation of the influence 

of poles, zeros, delay, and integrator, in order to prove that their influences are the same 

throughout all data sets. However, the methodology will only be shown via sample data set 

of dryer obtained from MATLAB SI Toolbox, as similar steps would be followed by other 

data set.  
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Figure 3.1: Flow chart of detailed methodology  
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3.2 GUI of MATLAB for System Identification 

In this section, the GUI is separated into 3 parts consisting of data import, data pre-

processing and the model estimation as shown in the Figure 3.2 and will be discussed 

accordingly. 

 

Figure 3.2: Separation of GUI into different parts 

 

  

Data import 

Data pre-

processing 

Model estimation 
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3.2.1 Data Import 

There are 4 types of data which could be imported into the GUI, which are the time-

domain data, frequency-domain data, data object, and example data as shown in Figure 3.3. 

 

Figure 3.3: Types of data available to be imported 

 

• Time-domain data        : Data with one or more input variables, with one or 

more output variables, sampled as a function of time. 

• Frequency-domain data: Data with transformed input and output time-domain 

signals or system frequency-response sampled as a 

function of the independent variable frequency. 
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• Data object: SI iddata data with time-domain data or frequency-domain data, and 

has several properties that specify the time or frequency values; 

idfrd data with frequency-response data over a range of frequency 

values. 

• Example     : Sample data of dryer stored in MATLAB. 

The imported data is displayed on the frame, while data view of time plot, data spectra, and 

frequency function of imported data are available to be viewed by users as shown in Figure 

3.4. Comparison between different data sets could also be done by users by clicking on the 

frame. 

 

Figure 3.4: Displayed imported data and the available data views 
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Once data is imported, the data could be used as either working data or validation data by 

dragging into their respective frame as shown in Figure 3.5. Working data is the data used 

for pre-process and estimation purposes, while validation data is the data used for 

comparison with the data generated via model estimation to obtain its best-fit index. 

 

Figure 3.5: Working data and validation data frame 

 

3.2.2 Data Pre-Processing 

Potential restrictions on the accuracy of model could be avoided by pre-processing 

the data. Among the pre-processing features available in the GUI of SI include: channel 

selection, experiment selection, merging of experiment, range selection, removing of means, 

removing of trends, filter, resample, data transformation, and quick start as shown in Figure 

3.6. 
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Figure 3.6: Types of pre-process available 

 

• Channel selection            : Subsets of input and output channels are extracted from 

an exisitng data set. 

• Experiment selection     : Specific experiment is extracted from a multi-

experiment data set into a new data set. 

• Merging of experiment: Multiple data sets are combined as one. 

• Range selection                : The beginning and the end of the value of data set are 

specified according to selection. 

• Removing of means       : Mean values from each input and output data signal are 

removed. 

• Removing of trend          : Linear trend is removed. 
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• Filter                         : Time-domain data is filtered using a fifth-order Butterworth 

filter by enhancing or selecting specific passbands. 

• Resample                  : Antialisaing (lowpass) finite impulse response (FIR) filter is 

added to the data to change the sampling rate of the signal 

by decimation or interpolation. 

• Data transformation : Data domain is transformed into another data domain 

according to the prerference of user. 

• Quick start                : Shorcut of preprocess which perfrom substraction of mean 

value from each channel, and splittling of data into two parts 

whereby the first part is being set as working data, while the 

second part as validation data. 

Data which had undergone pre-processing will be displayed as a new imported data on frame 

as shown in Figure 3.7. 

 

Figure 3.7: Data after being pre-processed 
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3.2.3 Model Estimation 

Among the available model estimation of the GUI for SI are: 

• Transfer function model 

• State space model 

• Process model 

• Polynomial model 

• Nonlinear ARX model 

• Hammerstein-Wiener model 

• Spectral model 

• Correlation model 

However, in this project, the focus will be on process model estimation only. Selection 

of estimation of model could be found in the GUI as shown in Figure 3.8. 

 

Figure 3.8: Model estimation selection in GUI of SI  
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The estimated process model is displayed on the frame, while model view of transient 

response, frequency response, zeros and poles, noise spectrum, nonlinear ARX, Hamm-

Wiener, model output, and model residues of the estimated model are available to be viewed 

by users as shown in Figure 3.9. Comparison between different estimated models could also 

be done by users by clicking on the frame. 

 

Figure 3.9: Displayed estimated model and the available model views 

 

3.3 Implementation of SI 

The steps on implementation of SI in this project will be listed in this section. Section 

is divided into 3 parts, which are the data import and pre-process, process model estimation, 

and the obtained result of process model. Note that, in this section, demonstration of 

implementation of SI is based on the MATLAB sample data of dryer. The same 

implementation will be conducted on other data sets for the analysis of result and discussion 

on the upcoming Chapter 4 during PSM 2.  
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3.3.1 Data Import and Pre-Process 

MATLAB sample data of dryer along with its default settings was imported into the 

GUI as shown in Figure 3.10. 

 

Figure 3.10: Settings of MATLAB sample data of dryer 

 

The working data of dryer was pre-processed by removing the means in order to remove the 

constant levels in the data sequence. A new data set will appear after the pre-process of 

means removal was conducted. The new data was then dragged into the working data frame 

as shown in Figure 3.11.   
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Figure 3.11: Update on working data after pre-process of means removal 

 

By using the updated working data, further pre-process was carried out by extracting the 

initial 70% range of the data under range selection as shown in Figure 3.12. 

 

Figure 3.12: Initial 70% range selection of working data 
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The remaining 30% range of the working data was again extracted using range selection as 

well. The new data sets due to pre-process of initial 70% range selection and remaining 30% 

selection were dragged to the working data and validation data frames respectively as shown 

in Figure 3.13. 

 

Figure 3.13: Update on working and validation data after pre-process of range selection 

 

3.3.2 Process Model Estimation 

In process model estimation, the main focus will be on the number of poles, along 

with the presence of zero, delay and integrator. The settings of remaining features available 

under process model estimation will be remained as default. Meanwhile, poles are set to be 

all real throughout the entire process model estimation of this project. Features of process 

model estimation under the concern of alteration by user are shown in Figure 3.14. 
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Figure 3.14: Concerned features of process model estimation 

 

Steps on process model estimation, starting with 1 number of poles: 

1. The process model without the presence of zero, delay, and integrator was estimated. 

2. The process model with the presence of zero only was estimated. 

3. The process model with the presence of delay only was estimated. 

4. The process model with the presence of integrator only was estimated. 

5. The process model with the presence of zero and delay was estimated. 

6. The process model with the presence of zero and integrator was estimated. 

7. The process model with the presence of delay and integrator was estimated. 
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Steps 1 to 7 were repeated by increasing the number of poles by 1, until the maximum 

number of poles of 3 capped by the GUI of SI was achieved. Each process model estimation 

was named accordingly as shown in Figure 3.15 under default by the following sequence:  

P(#)DIZ 

whereby, P represents poles; Z represents zeros; D represents delay; I represents integrator; 

and # represents the number of poles.  

 

Figure 3.15: Default naming sequence of process model estimation 
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3.3.3 Obtained Result of Process Model 

Estimated process models based on working data will be displayed at the model 

frame as shown in Figure 3.16. 

 

Figure 3.16: Displayed estimated process models based on working data 

 

In this project, the best-fit index, final prediction error (FPE), and mean squared error (MSE) 

were retrieved for future analysis on the influence of poles, zeros, delay, and integrator 

towards building a process model. The FPE and MSE value as shown in Figure 3.17 were 

obtained by double clicking the displayed figure on the model frame. A lower value of FPE 

and MSE are preferred as they indicate a better measure of model quality respectively, and 

a closer estimate or forecast of the actual value respectively. 
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Figure 3.17: FPE and MSE value of an estimated process model 

 

Meanwhile, best-fit index could be viewed as shown in Figure 3.18 by checking the ‘model 

output’ box under the model views selection list. Best-fit index represents the accuracy of a 

process model in estimating its value when being compared towards the actual value of the 

original model. Therefore, a process model with higher best-fit index will be preferred. 

 

Figure 3.18: Best-fit index of respective process model  
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CHAPTER 4 

 

RESULT AND DISCUSSION 

 

4.1 Introduction 

 A program with 3 different transfer function were written which simulates 500 data 

of system according to its respective function. The system also includes random disturbances 

of 1% to replicate the imperfection of system in real life. The inputs are randomized discrete 

values, that may be considered as steps, from the range [-1, 1]. All 3 systems with different 

transfer function were labelled as System A, System B, and System C respectively, while 

process model estimation was carried out separately to compare the understanding on its 

influence of poles, zero, delay, and integrator. A real industrial data of an air compression 

system is then being tested out via process modelling to discuss and relate the significance 

of pole, zero, delay and integrator with the general understanding of how the system works.  
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System A, 

𝑦(𝑡) = 5 [1 − exp (−
𝑡

5
)]                                                                                     (4.1) 

𝑌(𝑠) = (
5

𝑠
−

5

(𝑠 + 0.2)
) 𝑈(𝑠)                                                                               (4.2) 

System B, 

𝑦(𝑡) = 5[1 − exp(−5𝑡)]                                                                                       (4.3) 

𝑌(𝑠) = (
5

𝑠
−

5

(𝑠 + 5)
) 𝑈(𝑠)                                                                                  (4.4) 

System C, 

𝑦(𝑡) = 5[1 − 1.005 exp(−0.01𝑡) sin (0.1𝑡 − 1.471)]                                  (4.5) 

𝑌(𝑠) = (
5.129𝑠2 − 0.40101𝑠 + 0.0505

𝑠(𝑠2 + 0.02𝑠 + 0.0101)
) 𝑈(𝑠)                                              (4.6)
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4.2 System A 

4.2.1 Process Model Estimation with 1 Pole 

Table 4.1: Summary of findings of process model estimation with 1 pole of System A 

Name of 

Model 

Transfer Function Best Fit Index 

(%) 

FPE MSE 

P1 
𝐺(𝑠) =

−0.24442

1 + 0.048035𝑠
 

0.3126 8.908 8.807 

P1Z 
𝐺(𝑠) = 4.9463 +

1 + 1.0014𝑠

1 + 1.038𝑠
 

95.33 0.05567 0.05472 

P1D 
𝐺(𝑠) =

0.53164

1 + 0.045356𝑠
× exp (−0.3144𝑠) 

-1.178 8.918 8.766 

P1I 
𝐺(𝑠) =

−7.3031

𝑠(1 + 77.254𝑠)
 

0.0666 8.795 8.695 

P1DZ 
𝐺(𝑠) = 0.75028 ×

1 + 0.20714𝑠

1 + 0.058917𝑠
× exp (−0𝑠) 

47.82 2.637 2.577 

P1DI 
𝐺(𝑠) =

−1683.9

𝑠(1 + 9559.4𝑠)
× exp (−0𝑠) 

0.1191 8.806 8.657 
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Table 4.1, continued 

Name of 

Model 

Transfer Function Best Fit Index 

(%) 

FPE MSE 

P1IZ 
𝐺(𝑠) = −1.3992 ×

1 + 0.98511𝑠

𝑠(1 + 34.227𝑠)
 

0.06191 8.906 8.755 

P1DIZ 
𝐺(𝑠) = −1951.2 ×

1 − 0.46304𝑠

𝑠(1 + 10000𝑠)
× exp (−0.16𝑠) 

0.05695 8.861 8.661 

 

A model of P1, which represents a model of 1 pole without any inclusion of zero, delay, and integrator will be the initial baseline of 

estimation, as it represents the most basic structure of the model in first order. Based on Table 4.1, it is shown that P1 has a best fit index of 

0.3126%. Therefore, any other models with best fit index which is lower than 0.3126% will be disqualified as the quality of the model had been 

degraded. 

There are only 2 models having a higher best fit index than P1, which are the P1Z representing a model of 1 pole with zero, and the P1DZ 

representing a model of 1 pole with delay and zero. Both P1Z and P1DZ have a best fit index of 95.33% and 47.82% respectively. Further analysis 

and discussion will be focused on P1Z and P1DZ for better understanding. All of the model output best fit index with 1 pole were shown in Figure 

4.1.  
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Figure 4.1: Model output of all models with 1 pole for System A
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4.2.2 Discussion on the Addition of Zero 

 Since both addition of zero via P1Z and P1DZ had increased the value of best fit 

index, this section hereby aims to prove the statements made by Nise (2015) to be correct. It 

was mentioned that addition of LHP zeros to transfer function increases step response and 

stability. Thus, contributing towards a higher best fit index compared to P1 alone. Similarly, 

both P1Z and P1DZ models are proven to have zeros in the LHP as shown in Figure 4.2. 

 

Figure 4.2: Location of zeros of P1Z (green) and P1DZ (purple) in plane 
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4.2.3 Discussion on the Addition of Delay 

As the best fit index of output model of a single pole with zero was decreased 

significantly after a delay was being included, attention was given to find out rational 

reasoning behind it. From the program simulating the data for process model estimation, it 

is known that there is no delay as it is not a data acquired from real life, such as the data of 

a combustion chamber, which requires a certain amount of time to heat up towards its ideal 

temperature. Hence, to prove that delay will downgrade the best fit index of the model, the 

bode diagram of both P1Z and P1DZ are compared as shown in Figure 4.3 and Figure 4.4. 

From both figures, results were distinguished as the magnitude in the model P1Z never hits 

zero. Meanwhile, the magnitude in the model P1DZ hits zero, the closed-loop stability is 

unknown.  

 

Figure 4.3: Bode diagram of P1Z for System A 
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Figure 4.4: Bode diagram of P1DZ for System A 

 

 Furthermore, based on the comparison of step response of P1Z and P1DZ as shown 

in Figure 4.5 and Figure 4.6 respectively, the original amplitude of 5 based on transfer 

function of the system was severely altered away in the case of P1Z with delay when 

compared with the amplitude of P1Z without delay. As the system originally has no delayed 

response due to the nature of the program, adding a delay will cause the input of process 

modelling estimation to be based on a wrongly guided past data according to its timeframe. 

Thus, the accuracy of process model estimation P1DZ was significantly lowered as 

compared to P1Z. 
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Figure 4.5: Step response of P1Z for System A 

 

 

Figure 4.6: Step response of P1DZ for System A



 
 

63 
 

4.2.4 Process Model Estimation with 2 Poles 

Table 4.2: Summary of findings of process model estimation with 2 poles of System A 

Name of 

Model 

Transfer Function Best Fit 

Index (%) 

FPE MSE 

P2 
𝐺(𝑠) =

−0.29247

(1 + 0.031351𝑠)(1 + 0.031351𝑠)
 

0.906 8.957 8.804 

P2Z 
𝐺(𝑠) = −0.2034 +

1 − 0.097749𝑠

(1 + 0.043724𝑠)(1 + 0.0098879𝑠)
 

0.6417 9.012 8.809 

P2D 
𝐺(𝑠) =

1.7594

(1 + 1.0245𝑠)(1 + 1.528𝑒−5𝑠)
× exp (−2.1202𝑠) 

-0.4269 8.978 8.775 

P2I 
𝐺(𝑠) =

−1761.6

𝑠(1 + 0.00038125𝑠)(1 + 10000𝑠)
 

0.1287 8.806 8.657 

P2DZ 
𝐺(𝑠) = 0.56487 ×

1 − 0.27718𝑠

(1 + 0.14024𝑠)(1 + 0.0041998𝑠)

× exp (−0.07912𝑠) 

-0.4025 8.952 8.7 
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Table 4.2, continued 

Name of 

Model 

Transfer Function Best Fit 

Index (%) 

FPE MSE 

P2DI 
𝐺(𝑠) =

−2560.4

𝑠(1 + 2.7241𝑒−5𝑠)(1 + 10000𝑠)
× exp (−0𝑠) 

0.1747 8.902 8.701 

P2IZ 
𝐺(𝑠) = −16.506 ×

1 + 323.59𝑠

𝑠(1 + 10000𝑠)(1 + 0.010645𝑠)
 

0.4164 8.972 8.769 

P2DIZ 
𝐺(𝑠) = −1493.1 ×

1 + 3.3859𝑠

𝑠(1 + 7.3779𝑒−7𝑠)(1 + 9546.6𝑠)

× exp (−3.2𝑠) 

-0.131 8.903 8.652 

 

 Best fit index of all models with 2 poles were observed to be unacceptable as none of them scored a best fit index of 90% and above as 

shown in Table 4.2. Thus, addition in the number of poles outside the environment of an ideal case does not always increase in accuracy as the 

number of orders increase. As the quality of the model had already been degraded when the number of poles was added to 2, models with higher 

order of 3 poles will no longer be experimented. All of the model output best fit index with 2 poles were shown in Figure 4.7. 
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Figure 4.7: Model output of all models with 2 poles for System A
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4.2.5 Discussion on the Addition of Poles 

 Both P1Z and P2Z are compared with the transfer function of System A. From 

mathematical aspect, comparison could be made by converting the s-domain transfer 

function into t-domain transfer function. The result of the conversion of P1Z and P2Z yield 

the following transfer function respectively: 

P1Z, 

         𝑦(𝑡) = 4.77189 … 𝛿(𝑡) + 0.16802 … 𝑒−0.96339…𝑡                                          (4.4) 

P2Z, 

𝑦(𝑡) = −0.2034𝛿(𝑡) + 95.62542 … 𝑒−22.87073…𝑡 − 321.71907 … 𝑒−101.1337…𝑡 

                                                                                                                                 (4.5) 

By comparing both Eq. (4.4) and Eq. (4.5) with Eq. (4.1), results were distinct 

whereby Eq. (4.4) yields an approximately close equation with Eq. (4.1), whereas Eq. (4.5) 

was a lot different from Eq. (4.1).   

Comparison of zeros and poles plot between P1Z and P2Z as shown in Figure 4.8 

also proved that the addition of pole had caused the response to damp out within 0.3 seconds 

(Figure 4.9) and become the main reason contributing towards instability of the model. The 

instability was then further amplified as the zero plot was located in the RHP which further 

contributes towards a larger downgrade towards the model. 
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Figure 4.8: Pole-zero plot of P2Z for System A 

 

 

Figure 4.9: Step response of P1Z and P2Z for System A 

  

P1Z Step Response P2Z Step Response 
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4.3 System B 

The goal of process model estimation for System B is to validate the discussions 

made based on System A. As the difference between transfer function of System A and 

System B is mainly on the natural response being amplified by 25 times while maintaining 

the same forced response, the simulated data of System B should prove to yield a higher best 

fit model of 1 pole with zero via process model estimation of SI. The model P1Z must also 

be the best out of all other output models to prove the discussions being made upon the 

influence of zero and delay in the previous section.
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Table 4.3: Summary of findings of process model estimation with 1 pole of System B 

Name of 

Model 

Transfer Function Best Fit Index 

(%) 

FPE MSE 

P1 
𝐺(𝑠) =

−0.12731

1 + 0.010092𝑠
 

-0.5157 8.24 8.146 

P1Z 
𝐺(𝑠) = 4.9864 +

1 + 2.1246𝑠

1 + 2.119𝑠
 

99.79 3.516e-05 3.456e-05 

P1D 
𝐺(𝑠) =

−2223.1

1 + 10000𝑠
× exp (−0𝑠) 

0.05082 8.289 8.148 

P1I 
𝐺(𝑠) =

28.764

𝑠(1 + 7054.6𝑠)
 

0.2495 8.14 8.048 

P1DZ 
𝐺(𝑠) = −8544.8 ×

1 − 4.0935𝑠

1 + 9595.6𝑠
× exp (−0𝑠) 

72.65 0.6611 0.6461 

P1DI 
𝐺(𝑠) =

−98.665

𝑠(1 + 10000𝑠)
× exp (−0𝑠) 

0.2451 8.194 8.054 

P1IZ 
𝐺(𝑠) = 6.0869 ×

1 − 6.5362𝑠

𝑠(1 + 7.7352𝑠)
 

1.916 7.883 7.749 

P1DIZ 
𝐺(𝑠) = −93.596 ×

1 − 6.092𝑠

𝑠(1 + 8891.2𝑠)
× exp (−0𝑠) 

0.2073 8.223 8.037 
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Based on the findings as shown in Table 4.3, results were within expectations as the 

model P1Z ranks highest with a best fit index of 99.79%, followed by the model P1DZ with 

a best fit index of 72.65%. Hence, discussions being made based on System A were validated 

via the data being simulated from an amplified natural response version of System B. All of 

the model output best fit index with 1 pole were shown in Figure 4.10. 

 

Figure 4.10: Model output of all models with 1 pole for System B 

 

4.4 System C  

The transfer function embedded in System C is a second-order transfer function 

which aims to analyse and discuss whether the influence of poles directly reflects upon the 

number of orders of the transfer function of a system. Process model estimation of 1 and 2 

poles were carried out for the analysis and discussion of this subtopic.
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Table 4.4: Summary of findings of process model estimation with 1 pole of System C 

Name of 

Model 

Transfer Function Best Fit Index 

(%) 

FPE MSE 

P1 
𝐺(𝑠) =

2.933

1 + 1.7989𝑠
 

-0.8636 8.667 8.568 

P1Z 
𝐺(𝑠) = 5.3332 +

1 + 0.053819𝑠

1 + 0.056633𝑠
 

95.22 0.57 0.5603 

P1D 
𝐺(𝑠) =

0.78785

1 + 0.077399𝑠
× exp (−0.0384𝑠) 

-0.6823 8.757 8.608 

P1I 
𝐺(𝑠) =

0.065715

𝑠(1 + 13.157𝑠)
 

-0.9817 8.643 8.447 

P1DZ 
𝐺(𝑠) = 0.79126 ×

1 + 0.0062911𝑠

1 + 0.07764𝑠
× exp (−0.04488𝑠) 

-0.6832 8.807 8.608 

P1DI 
𝐺(𝑠) =

−3562.6

𝑠(1 + 10000𝑠)
× exp (−0𝑠) 

-1.523 8.534 8.294 

P1IZ 
𝐺(𝑠) = −0.79163 ×

1 − 24.166𝑠

𝑠(1 + 1828𝑠)
 

-0.9777 8.683 8.438 

P1DIZ 
𝐺(𝑠) = −3547.4 ×

1 + 5.499𝑠

𝑠(1 + 9826.2𝑠)
× exp (−0.15776𝑠) 

-6.379 8.413 8.129 
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Table 4.5: Summary of findings of process model estimation with 2 poles of System C 

Name of Model Transfer Function Best Fit Index (%) FPE MSE 

P2 
𝐺(𝑠) =

2.9387

(1 + 1.8092𝑠)(1 + 5.5561𝑒−11𝑠)
 

-0.07726 8.716 8.568 

P2Z 
𝐺(𝑠) = 2.9636 +

1 + 0.35011𝑠

(1 + 2.4296𝑠)(1 + 0.09452𝑠)
 

0.4694 8.753 8.555 

P2D 
𝐺(𝑠) =

−253.36

(1 + 1.8604𝑒−6𝑠)(1 + 10000𝑠)
× exp (−0.32𝑠) 

0.9177 8.878 8.677 

P2I 
𝐺(𝑠) =

−526.32

𝑠(1 + 0.00010055𝑠)(1 + 10000𝑠)
 

1.652 8.796 8.646 

P2DZ 
𝐺(𝑠) = 0.053887 ×

1 + 13253𝑠

(1 + 1662.4𝑠)(1 + 1.0384𝑒−8𝑠)
× exp (−3.2𝑠) 

0.1704 8.873 8.623 

P2DI 
𝐺(𝑠) =

−1183.2

𝑠(1 + 0.0092673𝑠)(1 + 10000𝑠)
× exp (−0𝑠) 

1.666 8.52 8.186 

P2IZ 
𝐺(𝑠) = 3.8461 +

1 − 31.97𝑠

𝑠(1 + 6524.9𝑠)(1 + 51.549𝑠)
 

0.9487 8.861 8.661 

P2DIZ 
𝐺(𝑠) = −0.49127 +

1 + 12321𝑠

𝑠(1 + 10000𝑠)(1 + 0.00028816𝑠)
× exp (−3.2𝑠) 

1.546 8.659 8.272 
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 Based on the comparison of results as shown in Table 4.4 and Table 4.5, the increase 

of number of poles did not contribute towards a higher best-fit index. The rationale behind 

this occurrence is due to the fixed input, 𝑢(𝑡) of the system. Due to the narrow range of the 

input [-1,1], the second-order transfer function do not have sufficient range to stage its nature 

of oscillation within its time plot as shown in Figure 4.11. 

 

Figure 4.11: Input and output signals of System C 

 

 Therefore, due to the insufficient range for oscillation, the nature of the output had 

been decreased as if it was fast-forwarded towards the end stage of the output whereby the 

data had already begun to be stabilised. Thus, the best-fit index result of P1Z is higher than 

P2Z (Figure 4.12 and Figure 4.13) due to the oscillation of data was no longer distinguished 

enough to be taken into account by the process model estimation.
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Figure 4.12: Model output of all models with 1 pole for System C 
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Figure 4.13: Model output for all models with 2 poles for System C
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4.5 Real Industrial Data of Air Compression System 

An air compression system consists of two-lines, whereby the supply is labelled in 

red segment, while demand is labelled in blue segment as shown in Figure 4.14. The supply-

line consists of components such as compressors and air treatment systems which include 

air dryers and filters. Meanwhile, the demand-line consists of secondary tank, end-user 

facility, and distribution system such as piping. 

 

Figure 4.14: Typical air compression system block scheme 
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Based on the data given, the input consists of the rate of electricity usage of the 

compressed dry air plant, while the output consists of the manufacturing plant compressed 

air usage. Both input and output were average value of continuous 24-hours data from the 

Supervisory Control and Data Acquisition (SCADA) system. The data acquisition period 

lasted from January 2018 to December 2018 (363 days) as shown in Figure 4.15. 

 

Figure 4.15: Input and output of an air compression system 

 

4.5.1 Process Model Estimation 

Due to the unknown number of orders within the transfer function of the air 

compression system, process model estimation was carried out from 1 pole to 3 poles. 

Addition of zero, delay, and integrator were tested out for all number of poles for the analysis 

and discussion of their significance in comparison with the general behaviour of an air 

compression system.
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Table 4.6: Summary of findings of process model estimation with 1 pole of air compression system 

Name of Model Transfer Function Best Fit Index (%) FPE MSE 

P1 
𝐺(𝑠) =

−1.4315

1 + 75.662𝑠
 

-1.452 257.8 251.8 

P1Z 
𝐺(𝑠) = −0.16189 +

1 + 1.6545𝑠

1 + 1.2263𝑠
 

-19.84 121.4 117.7 

P1D 
𝐺(𝑠) =

−0.043218

1 + 2.7836𝑠
× exp (−3.9054𝑠) 

-17.25 126.4 122.5 

P1I 
𝐺(𝑠) =

0.012644

𝑠(1 + 2.0461𝑠)
 

15.18 116.8 113.2 

P1DZ 
𝐺(𝑠) = −1.6919 ×

1 − 1.3427𝑠

(1 + 2.259𝑠)
× exp (−0𝑠) 

-14.74 104.5 100.5 

P1DI 
𝐺(𝑠) =

−0.94314

𝑠(1 + 0.005859𝑠)
× exp (−2.7725𝑠) 

5.323 195.2 187.7 

P1IZ 
𝐺(𝑠) = −6.0884 +

1 + 38.753𝑠

𝑠(1 + 2876.9𝑠)
 

25.03 214.9 206.6 

P1DIZ 
𝐺(𝑠) = −1.1024 +

1 − 0.076359𝑠

𝑠(1 + 0.048049𝑠)
× exp (−2.4845𝑠) 

6.069 190.7 181.9 
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Table 4.7: Summary of findings of process model estimation with 2 poles of air compression system 

Name of Model Transfer Function Best Fit Index (%) FPE MSE 

P2 
𝐺(𝑠) =

1172.5

(1 + 10000𝑠)(1 + 3710.2𝑠)
 

25.13 207.4 199.4 

P2Z 
𝐺(𝑠) = −2.9019 +

1 − 1.1558𝑠

(1 + 1.5322𝑠)(1 + 0.40732𝑠)
 

-19.01 101.9 97.18 

P2D 
𝐺(𝑠) =

7.2006

(1 + 1.9483𝑒−6𝑠)(1 + 0.19309𝑠)
× exp (−0𝑠) 

15.73 175.9 170.5 

P2I 
𝐺(𝑠) =

6.3729

𝑠(1 + 0.025954𝑠)(1 + 10000𝑠)
 

25.4 223 212.7 

P2DZ 
𝐺(𝑠) = 107.15 ×

1 + 146.68𝑠

(1 + 3629.4𝑠)(1 + 1.8066𝑒−7𝑠)
× exp (−0.0736𝑠) 

23.7 210.5 202.4 

P2DI 
𝐺(𝑠) =

−1.1493

𝑠(1 + 0.0068089𝑠)(1 + 0.0068065𝑠)
× exp (−2.2811𝑠) 

5.615 188 177.9 

P2IZ 
𝐺(𝑠) = 0.051653 +

1 − 118.18𝑠

𝑠(1 + 6.2517𝑠)(1 + 0.67996𝑠)
 

24.27 115.9 109.7 

P2DIZ 
𝐺(𝑠) = 6.8149 +

1 + 461.58𝑠

𝑠(1 + 10000𝑠)(1 + 8894.6𝑠)
× exp (−9.0989𝑠) 

25.76 153.4 144.1 
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Table 4.8: Summary of findings of process model estimation with 3 poles of air compression system 

Name of 

Model 

Transfer Function Best Fit 

Index (%) 

FPE MSE 

P3 
𝐺(𝑠) =

−14.545

(1 + 0.011757𝑠)(1 + 0.26042𝑠)(1 + 9534.1𝑠)
 

2.172 213.1 201.8 

P3Z 
𝐺(𝑠) = −81.719 +

1 − 100.09𝑠

(1 + 10000𝑠)(1 + 0.0043482𝑠)(1 + 3677.6𝑠)
 

25.37 208.3 195.6 

P3D 
𝐺(𝑠) =

1.3138

(1 + 1.1539𝑠)(1 + 1.4113𝑠)(1 + 4.0835𝑠)
× exp (−1.8294𝑠) 

8.833 114 107.1 

P3I 
𝐺(𝑠) =

2.0251

𝑠(1 + 169.15𝑠)(1 + 0.049136𝑠)(1 + 0.25164𝑠)
 

25.75 185.1 173.8 

P3DZ 
𝐺(𝑠) = 1.0566 ×

1 + 0.12177𝑠

(1 + 0.048324𝑠)(1 + 0.25919𝑠)(1 + 6.6697𝑠)
× exp (−3.0895𝑠) 

-10.84 168.5 157 

P3DI 
𝐺(𝑠) =

9323.5

𝑠(1 + 10000𝑠)(1 + 10000𝑠)(1 + 10000𝑠)
× exp (−9.652𝑠) 

27.24 132.2 123.2 
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Table 4.8, continued 

Name of 

Model 

Transfer Function Best Fit 

Index (%) 

FPE MSE 

P3IZ 
𝐺(𝑠) = −8.7926 +

1 + 1062.8𝑠

𝑠(1 + 0.0029452𝑠)(1 + 4046.8𝑠)(1 + 9921.9𝑠)
 

25.87 153.4 143 

P3DIZ 
𝐺(𝑠) = 3.7464 +

1 + 158.96𝑠

𝑠(1 + 10000𝑠)(1 + 0.0061174𝑠)(1 + 10000𝑠)
× exp (−9.9015𝑠) 

25.87 154.7 143 

 

Based on the results of Table 4.6, Table 4.7, and Table 4.8, the top 5 best fit index models placed in bold were P2DIZ, P3I, P3DI, P3IZ, 

and P3PIZ as shown in Figure 4.16. Discussion on the rationale of the models having a higher best fit index compared to the others is carried out 

on the upcoming subtopic.   
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Figure 4.16: Model output for the top 5 models for air compression system 
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4.5.2 Discussion on the Top 5 Process Model Estimation Results 

 The data used for the process model estimation based on a real industrial air 

compression data is considered complex due to the occurrence of random disturbance of the 

environment. Thus, complexity of the system will contribute to a higher order of transfer 

function model as shown by the result of P2DIZ and P3DIZ, whereby the best fit index 

increases along with the number of poles from a best fit index of 25.76% to 25.87%. 

 As for the influence of delay in the top best fit model of P3DI (27.24%), the air 

compression system consists the component of air dryer which takes time to be heated up 

towards its optimum operational temperature. Inclusion of delay contributed towards a better 

process model estimation of the initial start-up of the system which took time for the air 

dryer to reach its optimum operational temperature, whereby a higher amount of rate of 

electricity and compressed air were used as shown in Figure 4.17. 

 

Figure 4.17: Input and output signals of air compression system 
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The top 5 models also possessed a similarity of the inclusion of integrator. As the 

data is based on discrete real time value of both input and output of the air compression 

system, process model estimation will be better in predicting the trend instead of its future 

discrete value based on past data. By achieving a best fit based on the trend instead of its 

discrete value, the model will serve better purpose in ensuring the estimation is not altered 

away from the wanted output or the purpose of the air compression system. 

 The exclusion of zero from a 3 poles model with delay and integrator contributed 

towards a higher best fit index as the zero is not located at the LHP as shown in Figure 4.18. 

The argument also aligns with the statement made by Nise (2015), whereby he mentioned 

that addition of LHP zeros to transfer function increases step response and stability. 

Therefore, the addition of zero in the case of P3DIZ did not significantly contributed towards 

a higher best fit index compared to the model P3DI without zero. 

 

Figure 4.18: Location of zero of P3DIZ in plane 
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4.6 Summary of Result and Discussion 

4.6.1 Poles 

The order of a system is indirectly reflected by the number of poles within a model. 

However, effects such as response damping may be caused by the addition of poles, 

depending on the location of plot of the added pole. In real life system, increasing the number 

of order or poles do not always increase the best fit index of a model. 

 

4.6.2 Zeros 

Zeros are proved to be a guide in providing the value of amplitude, or as a gain factor. 

Stability and step response of a system are also increased when zero was added on a LHP of 

the transfer function. However, adding a right-half-plane (RHP) zero to transfer function 

will decelerate the step response as undershoot may take place. Inverse response might 

exhibit in such cases as well. 

 

4.6.3 Delays 

Understanding of a system is needed before deciding on the inclusion of delay, as 

effects such as phase shift and margin reduction may cause a reduction in damping ratio of 

a system. This will provoke more oscillatory response along with reduced gain-margin, 

leading the system to move closer to instability. Such example was proven on the case of 

System A analysis as the system originally has no delayed response due to the nature of the 

program, adding a delay will cause the input of process modelling estimation to be based on 

a wrongly guided past data according to its timeframe. 
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4.6.4 Integrators 

As overshoot was not included within all the tested systems, results shown that 

integrators being added will degrade the best fit index of the model. The reasoning behind 

the degradation is similar with delay, as process model estimation is based on previous data, 

adding an integrator into a system which does not undergo overshoot will only cause the 

input of process modelling estimation to be based on a wrongly guided past data according 

to its timeframe. Thus, the accuracy of process model estimation was significantly lowered.  

However, in the case of real industrial data of air compression system, integrators do 

contribute in trend prediction even though overshoot did not exhibit. The nature description 

of integrator is somehow similar with the effect of having a damper, whereby it restricts the 

range of model estimation from going out of track, thus ensuring that the trend curve is kept 

within the desired range and direction of the system as shown previously in Figure 4.16.  
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH 

 

 In this project, system identification was performed using process model estimation 

to investigate the significance of different number of poles, zero, delay, and integrator in 

process model. Analysis on the behaviour of simulated data of System A, B, and C were 

carried out to grasp a better understanding on the aspects in effects of pole, zero, delay, and 

integrator before leaping into a real industrial data of air compression system to analyse and 

discuss whether the significance of aspects remain the same in the process model estimation 

of real world condition. The order of a system is indirectly reflected by the number of poles 

within a model, while zero affects the stability and step response of a system. Delay is 

dependent on the nature of the system whereby a time lag exhibits to reach an optimum 

operating level, whereas integrator contributes in trend prediction of a system by restricting 

the range of model estimation from going out of track. An overall understanding of the real 

system will indeed be needed to relate the rationale behind the significance of pole, zero, 

delay, and integrator in order to understand its contribution towards a better prediction model. 

Furthermore, best fit index may not always be that satisfying due to the 70:30 settings of 

working and validation data, as the validation data extracted from the system may have 

unwanted condition such as disturbance. Lastly, recommendation of research in estimated 

process model via SI could be tried out in the real world to test whether the estimated range 

of model is able to alert whenever a process began to go off track from the trend of the 
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process model to ensure its purposed functionality is preserved for a better reliability of a 

system.   
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APPENDICES 

 

APPENDIX A: Gantt Chart for PSM 1 

Week 

PSM 1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Literature 

Review 

               

MATLAB’s 

Toolbox 

Familiarisation 

               

Trial Run in 

MATLAB 

               

Discussion on 

Trial Run 

Result 
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APPENDIX B: Gantt Chart for PSM 2 

Week 

PSM 2 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Data Acquisition               

Simulation of System 

Identification using 

Process Model 

              

Analysis and 

Discussion 

              

Conclusion and 

Recommendation  
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APPENDIX C: Input Data Set of System A (By Rows) 

  

0.4897 -0.5148 -0.5499 -0.4258 -0.8974 -0.6742 -0.6649 0.9987 -0.9058 -0.2043

-0.5408 0.3664 -0.1241 -0.9883 0.6022 0.8649 0.6529 0.5852 -0.5531 0.169

-0.4191 0.7241 0.9824 0.6544 -0.5021 -0.2018 0.601 0.6429 -0.291 0.1445

0.4849 -0.2217 0.9127 0.6994 0.2446 0.9269 0.001 -0.8197 0.7688 0.5634

0.2396 -0.1087 -0.6076 -0.0334 0.597 -0.6819 0.4045 0.9474 0.2874 -0.1962

0.9705 0.8672 -0.0319 0.7753 -0.2093 -0.1953 0.8027 0.3063 -0.9278 0.1343

0.4922 0.0466 0.924 -0.9395 0.0394 0.7801 -0.5406 -0.3782 0.304 -0.4491

0.7601 0.5118 0.5665 0.9571 -0.8987 -0.3487 -0.5394 0.2063 -0.1031 0.0276

-0.7839 -0.0982 0.6108 0.7445 -0.5606 0.9171 -0.0963 -0.8818 0.0136 -0.1456

0.5034 0.8836 0.6581 0.0775 0.4533 0.7551 -0.4114 0.8526 0.1622 0.3025

-0.8881 0.0578 -0.5752 0.405 -0.1109 -0.8853 0.5924 -0.3094 0.0404 -0.8528

0.5501 0.5651 -0.6963 0.5697 -0.5444 0.6591 0.1414 -0.428 0.5925 -0.1076

-0.4419 0.8073 0.4944 0.3793 -0.753 -0.7085 -0.8533 0.4458 -0.0147 0.7802

-0.4356 -0.9271 0.946 -0.3817 0.8315 -0.3358 -0.0007 0.1663 -0.9413 -0.9359

-0.32 -0.5079 0.8754 -0.892 0.363 -0.7719 0.2357 -0.8614 0.5778 -0.5243

-0.7904 0.3964 0.3011 -0.3472 -0.7649 -0.9605 0.9407 -0.0652 -0.4196 0.1162

-0.4656 0.7968 -0.1863 -0.4891 0.9095 -0.4998 -0.8628 0.1832 0.2718 0.0034

0.5919 0.2017 0.0315 0.8416 -0.4448 0.8346 0.9484 -0.7776 -0.2072 -0.377

-0.8163 -0.4096 -0.7889 -0.4345 -0.9987 0.1016 -0.9155 -0.7381 0.6009 -0.7254

-0.1901 0.1504 -0.5711 0.9784 0.3897 -0.9304 0.6029 -0.8334 -0.2663 0.0495

0.6338 -0.7526 0.2758 0.7919 0.089 0.5209 -0.2343 0.4677 0.6795 0.6564

-0.741 -0.9118 0.4675 -0.2403 -0.202 -0.6864 -0.3719 -0.506 -0.1823 -0.7127

-0.8337 -0.9392 0.4001 0.3598 0.7014 0.8035 -0.2837 -0.4881 -0.0665 -0.1376

-0.1953 0.7125 -0.2528 -0.562 -0.1332 -0.8591 0.3598 0.7168 0.2147 -0.6754

0.543 -0.1579 0.1715 0.4572 -0.4939 0.5164 -0.8624 0.4741 0.554 -0.149

0.7115 0.0472 0.4079 0.1354 0.6859 0.878 -0.9973 -0.8251 -0.9544 -0.3179

0.8523 -0.3238 -0.319 0.0156 -0.2314 0.2558 -0.0528 -0.833 -0.106 0.7553

-0.1252 -0.0642 -0.067 -0.0251 -0.8289 0.7768 0.7232 0.7456 -0.7206 0.9611

0.7928 -0.9718 -0.5378 0.45 0.1767 -0.5117 -0.9796 0.916 -0.9288 -0.5061

0.6298 0.7597 -0.2949 0.1704 0.2961 -0.7205 -0.5164 0.7147 0.9442 0.6708

-0.9003 0.8863 0.6129 0.5792 -0.9009 0.3069 0.9457 0.1357 -0.4878 -0.1064

-0.8033 -0.9447 0.7999 -0.7596 0.4122 -0.9303 0.9142 0.2765 -0.5671 0.4462

0.1649 -0.8159 -0.0177 -0.3205 -0.6582 0.3953 0.3327 -0.1334 -0.6136 -0.462

0.8896 0.3584 0.5507 0.896 -0.4626 0.5444 0.3618 -0.2397 -0.2341 -0.0554

0.9517 0.6926 -0.076 0.9824 0.8509 0.1349 0.649 0.2927 -0.0469 -0.9703

-0.0569 -0.8806 0.7793 -0.1245 0.9705 -0.4925 0.09 0.674 -0.5926 0.7499

0.7127 -0.5643 -0.0516 -0.0612 0.0055 -0.7354 0.2059 0.7296 -0.0845 -0.322

0.054 0.5567 -0.4424 0.7293 -0.5202 -0.0412 0.8694 0.4178 0.7994 -0.3282

0.6562 -0.2677 0.0697 -0.8633 -0.8633 -0.7532 0.7979 -0.7596 0.7501 -0.9162

-0.8468 -0.0869 0.3985 0.2574 0.3247 -0.065 -0.8637 -0.384 0.3048 0.4302

-0.024 0.872 -0.7657 0.3698 0.9403 0.5207 -0.1941 -0.0087 0.4874 -0.8208

-0.2208 -0.6413 0.8103 0.9996 -0.9262 0.9952 0.747 0.9751 0.1285 -0.3243

-0.9727 0.8454 -0.0522 -0.3821 0.964 0.9852 -0.1479 -0.6135 0.4533 0.6582

0.1039 0.1756 -0.8956 0.2171 -0.1874 0.1106 -0.6616 -0.1637 -0.6803 -0.9642

0.9043 -0.9382 0.7254 0.6685 0.2579 -0.2406 0.3607 0.2639 0.1428 0.6994

0.3649 0.9739 -0.4994 -0.8312 0.6012 -0.7167 -0.2992 0.1748 0.8107 -0.6741

0.8632 0.3714 -0.4794 -0.5025 0.8216 0.5892 -0.6423 0.254 0.3279 0.48

0.2007 0.8447 0.054 -0.2397 -0.5118 0.4253 -0.5022 0.5345 0.3706 0.4934

-0.2322 0.7549 -0.0778 0.1285 0.0634 -0.3704 0.0315 -0.591 -0.895 0.3571

-0.8169 0.0199 -0.3679 0.7012 -0.259 0.9951 0.981 -0.204 -0.8707 -0.1592
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APPENDIX D: Output Data Set of System A (By Rows) 

  

0.4517 -0.856 -1.2435 -1.1639 -2.8344 -2.3489 -2.5046 3.9823 -3.7863 -0.8867

-2.3956 1.6749 -0.5654 -4.6389 2.8555 4.1537 3.157 2.8425 -2.7073 0.8364

-2.0659 3.5784 4.8566 3.2487 -2.4941 -1.0017 2.9838 3.2094 -1.4519 0.7246

2.4249 -1.1083 4.5587 3.4889 1.2239 4.6229 0.0054 -4.0882 3.8411 2.8093

1.193 -0.5364 -3.0413 -0.1703 2.9942 -3.4144 2.0197 4.7462 1.4441 -0.9785

4.8534 4.3402 -0.1568 3.8703 -1.0365 -0.9733 4.0233 1.5238 -4.6365 0.6807

2.4643 0.2283 4.6207 -4.6934 0.1883 3.897 -2.7107 -1.8962 1.5113 -2.25

3.7995 2.5612 2.8249 4.7926 -4.4942 -1.7409 -2.6954 1.0336 -0.525 0.1363

-3.9203 -0.4901 3.0581 3.7134 -2.804 4.5911 -0.4846 -4.4042 0.0619 -0.7347

2.5143 4.4085 3.2931 0.3905 2.2582 3.766 -2.0634 4.2543 0.8137 1.52

-4.4341 0.2931 -2.8751 2.0343 -0.5629 -4.424 2.9656 -1.538 0.211 -4.2699

2.7586 2.8214 -3.4746 2.844 -2.7255 3.3021 0.7083 -2.1358 2.9614 -0.5385

-2.2061 4.0448 2.4672 1.889 -3.7712 -3.541 -4.2599 2.2375 -0.0705 3.902

-2.1684 -4.6392 4.7274 -1.9161 4.1504 -1.6709 -0.0012 0.8353 -4.7061 -4.6727

-1.5932 -2.5377 4.3677 -4.4698 1.8168 -3.8538 1.1699 -4.3145 2.8808 -2.6264

-3.9446 1.9867 1.5056 -1.7329 -3.8314 -4.7931 4.6962 -0.3228 -2.0931 0.5797

-2.323 3.9883 -0.9229 -2.4451 4.5429 -2.4906 -4.3182 0.9099 1.3648 0.02

2.9542 1.0006 0.1644 4.2079 -2.2208 4.1732 4.7359 -3.8922 -1.0374 -1.8814

-4.0832 -2.0521 -3.9425 -2.1796 -4.9977 0.5155 -4.5694 -3.6836 3.013 -3.6269

-0.9569 0.754 -2.8551 4.8917 1.947 -4.6564 3.0113 -4.1666 -1.3269 0.2535

3.1629 -3.7566 1.3693 3.9599 0.4473 2.6115 -1.1796 2.3354 3.3949 3.2757

-3.6972 -4.5555 2.3365 -1.192 -1.0113 -3.4354 -1.8515 -2.5335 -0.9072 -3.5562

-4.1692 -4.691 1.9947 1.8002 3.508 4.0161 -1.4189 -2.4318 -0.3374 -0.6838

-0.9831 3.5642 -1.2698 -2.8096 -0.6609 -4.2886 1.7915 3.578 1.0743 -3.3866

2.7201 -0.7982 0.851 2.2868 -2.461 2.5897 -4.3183 2.3747 2.77 -0.7428

3.5611 0.2319 2.0373 0.6846 3.4375 4.3963 -4.9964 -4.1301 -4.7735 -1.5885

4.2577 -1.612 -1.6025 0.0851 -1.153 1.278 -0.2548 -4.1694 -0.5282 3.7757

-0.6209 -0.3137 -0.3349 -0.1311 -4.1531 3.8786 3.6202 3.7369 -3.6052 4.8085

3.9637 -4.8566 -2.6885 2.2521 0.8823 -2.5597 -4.896 4.5717 -4.6364 -2.5404

3.142 3.7906 -1.4725 0.8552 1.4789 -3.5974 -2.5791 3.5654 4.7115 3.3608

-4.5005 4.4281 3.0667 2.9022 -4.5087 1.5344 4.7335 0.6744 -2.4312 -0.5257

-4.0094 -4.7157 3.9998 -3.8044 2.0677 -4.6465 4.568 1.3793 -2.8296 2.2265

0.8227 -4.0888 -0.093 -1.6067 -3.293 1.9706 1.6621 -0.6735 -3.0656 -2.3087

4.4521 1.8014 2.7555 4.4712 -2.3031 2.7216 1.8073 -1.2042 -1.18 -0.2801

4.7596 3.4612 -0.3733 4.9125 4.2591 0.6837 3.2542 1.4611 -0.226 -4.8583

-0.2835 -4.3999 3.8885 -0.6267 4.8546 -2.4699 0.4566 3.3767 -2.962 3.7418

3.5715 -2.8298 -0.2511 -0.3078 0.02 -3.6697 1.0248 3.6392 -0.418 -1.612

0.2777 2.775 -2.2146 3.6451 -2.5993 -0.198 4.3535 2.094 3.9884 -1.6508

3.2811 -1.3438 0.3441 -4.3246 -4.3184 -3.7673 3.9865 -3.7968 3.7473 -4.5879

-4.2293 -0.4314 1.9939 1.2945 1.631 -0.332 -4.3144 -1.9167 1.5248 2.1512

-0.12 4.3575 -3.8337 1.8559 4.6957 2.6051 -0.9703 -0.0405 2.4331 -4.0974

-1.0986 -3.2141 4.0591 5.0052 -4.6303 4.9764 3.7265 4.8838 0.6412 -1.6171

-4.866 4.2278 -0.2612 -1.9013 4.8202 4.925 -0.7453 -3.0609 2.267 3.291

0.5139 0.8711 -4.4741 1.08 -0.9346 0.5456 -3.318 -0.8186 -3.398 -4.8284

4.5308 -4.691 3.6221 3.349 1.2798 -1.1947 1.8011 1.3144 0.7238 3.4925

1.8217 4.8609 -2.4907 -4.1551 3.011 -3.5846 -1.4966 0.867 4.0561 -3.3693

4.3218 1.8562 -2.3954 -2.5159 4.1157 2.9544 -3.2112 1.2783 1.6375 2.4064

0.9951 4.2147 0.2626 -1.1923 -2.5514 2.124 -2.5157 2.6634 1.8553 2.4764

-1.1657 3.7808 -0.397 0.6364 0.314 -1.8476 0.1635 -2.9515 -4.4691 1.7946

-4.0762 0.1018 -1.8477 3.499 -1.2927 4.9759 4.8996 -1.016 -4.3486 -0.7898



 
 

95 
 

APPENDIX E: Input Data Set of System B (By Rows) 

  

-0.4756 0.7567 -0.1182 0.1265 0.5361 0.1747 0.722 -0.2922 -0.4926 -0.4036

-0.2774 0.4118 -0.9875 0.803 0.1942 -0.75 0.6354 0.724 -0.3246 -0.3644

0.0965 0.6837 0.8062 0.4902 0.4349 -0.1084 0.061 0.3554 0.0625 -0.8666

-0.4367 0.3697 0.2163 0.7617 -0.7952 -0.6942 -0.6889 -0.0912 0.6626 0.4254

0.4172 0.0116 0.5796 -0.5314 0.2388 -0.7548 -0.4311 -0.1774 0.8702 -0.8956

0.4953 -0.0141 0.8785 0.08 -0.8081 0.639 -0.6086 0.3686 0.9808 -0.1515

0.167 0.3203 0.1137 -0.0242 -0.5724 -0.2387 -0.245 -0.5174 0.0459 -0.5644

0.722 0.2308 0.9097 -0.2304 0.5935 -0.6824 0.6955 0.1724 0.1502 0.6188

-0.0402 -0.4838 -0.5453 -0.6615 -0.6042 0.6474 0.6045 0.7188 -0.5924 -0.8128

-0.5696 -0.3206 0.0137 -0.2108 0.2131 -0.1969 0.841 -0.4288 -0.7145 0.2214

-0.2333 0.7746 -0.7236 -0.1565 0.9183 0.962 -0.8075 0.0005 0.9533 -0.1982

-0.478 0.9285 -0.4017 -0.9971 -0.1912 0.9012 -0.4247 0.1644 -0.8538 -0.426

0.4496 -0.3042 0.9071 0.5365 0.8378 0.4043 -0.2298 -0.9265 0.2901 0.0357

-0.405 0.7828 -0.5802 0.7758 0.9336 -0.6693 0.3114 -0.4973 -0.5332 0.2669

-0.5857 0.7727 -0.6822 -0.047 0.7514 -0.8054 -0.93 0.9771 -0.2466 0.527

0.4519 -0.0822 -0.3218 -0.2016 -0.5479 -0.3509 0.0253 0.8092 -0.234 0.3834

0.8491 -0.0347 -0.4942 -0.6074 0.0874 -0.2359 0.6784 -0.1662 -0.5718 0.3504

-0.3074 -0.657 -0.0147 0.5501 0.6897 0.6925 -0.2335 -0.0722 0.3906 0.0926

0.1418 0.7275 -0.6426 0.5036 0.9659 -0.6491 0.8188 0.1412 -0.6467 0.0969

-0.0122 -0.6024 -0.9474 0.066 0.2044 -0.7302 0.2811 0.3507 0.6844 -0.6963

0.642 -0.34 0.6126 0.9995 -0.149 -0.1994 -0.1514 0.9761 -0.2918 -0.417

-0.9543 -0.5127 0.0572 0.9479 -0.762 0.1871 -0.151 -0.8585 0.2842 0.4005

-0.8302 -0.5024 0.406 0.0946 0.2611 0.2686 0.8184 -0.3292 -0.1202 0.4405

-0.5745 -0.451 0.1187 -0.1394 0.3078 -0.678 0.0102 -0.0393 0.5543 0.4231

0.4584 0.0345 -0.5636 -0.8346 -0.9561 -0.6416 -0.6368 -0.5725 0.5367 0.8189

-0.1265 0.1301 -0.7478 -0.9958 0.5326 -0.7223 -0.6973 0.6173 0.3768 0.4586

0.2539 0.1466 0.8121 -0.3229 -0.0495 0.0616 0.419 0.3162 -0.5414 -0.6673

-0.5945 -0.9682 -0.9486 -0.4048 0.7247 -0.622 0.8825 -0.7841 0.4931 -0.8574

0.6998 -0.9912 0.7227 0.6907 0.4924 0.018 0.6622 -0.661 -0.2243 -0.4571

0.483 0.4193 -0.6518 0.2819 0.7067 -0.769 -0.2791 -0.5708 0.3094 0.5716

-0.0154 -0.7373 0.8515 -0.4812 0.0446 -0.0418 0.209 -0.0191 0.5453 -0.1142

-0.8244 0.3112 0.1141 -0.7792 0.622 0.7638 -0.9745 -0.6644 -0.7967 0.8665

-0.2781 -0.8641 -0.9208 -0.6998 -0.1459 0.4485 0.0805 -0.9899 0.8537 0.6493

0.9943 0.8391 -0.7894 0.5277 -0.7915 -0.5619 -0.3594 -0.4803 -0.6235 -0.9366

0.1337 -0.5749 -0.7091 -0.9743 -0.0295 -0.7179 0.3821 -0.0223 -0.7751 0.2771

-0.0028 -0.147 -0.4188 0.2667 0.9555 0.3235 -0.0524 -0.0488 0.9193 0.5955

0.8244 -0.4134 0.0083 -0.434 -0.3374 0.4748 -0.235 0.9305 -0.7359 -0.234

-0.4263 0.0704 0.3789 -0.6311 0.7701 -0.7637 -0.7595 0.8988 0.9797 -0.583

0.9467 -0.8729 -0.6675 -0.8956 0.5866 0.6641 0.2437 -0.2814 -0.3166 -0.0789

0.027 -0.8056 0.1796 0.2227 0.1515 -0.0005 -0.7019 0.5133 -0.4129 -0.2498

0.6836 0.9203 -0.7746 -0.0384 0.7955 0.5426 -0.4751 -0.7328 -0.2301 0.3058

-0.4 0.8379 -0.115 0.8906 0.7648 -0.3165 -0.3144 -0.094 0.1982 0.2988

-0.0134 0.7756 -0.8033 0.5281 -0.7494 0.3525 0.7269 -0.7331 -0.5948 0.5023

-0.9995 -0.4523 0.2025 -0.4314 0.8075 0.0106 0.4385 0.1499 -0.1549 -0.9547

0.8479 -0.2664 -0.6973 -0.2984 0.5681 -0.0704 0.7728 0.6703 0.9678 -0.4997

0.4565 0.6997 -0.7517 -0.6941 0.0213 -0.3788 0.6305 -0.1033 0.6068 0.7044

0.9414 -0.8429 0.6351 -0.0674 0.93 0.1491 -0.0091 -0.348 0.1166 -0.862

0.8949 0.4209 0.9969 -0.6998 0.0609 -0.3764 0.6695 0.2804 -0.5097 -0.4737

-0.0326 -0.2374 -0.1589 -0.9036 -0.5216 0.4046 0.2218 -0.5021 -0.3594 0.0711

0.7669 0.6955 0.614 0.4209 -0.3581 0.7464 0.0008 0.8086 0.9661 0.6813
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APPENDIX F: Output Data Set of System B (By Rows) 

  

-2.3602 3.7743 -0.5995 0.6332 2.6752 0.8728 3.613 -1.4643 -2.4538 -2.0248

-1.3822 2.063 -4.9403 4.0113 0.9668 -3.7521 3.1865 3.6116 -1.6282 -1.8123

0.4875 3.4119 4.0231 2.4555 2.1674 -0.5419 0.3121 1.7834 0.3215 -4.3324

-2.1838 1.8428 1.0781 3.8011 -3.9667 -3.4779 -3.4527 -0.4524 3.3188 2.1266

2.095 0.0539 2.8928 -2.6577 1.1962 -3.7813 -2.1507 -0.8803 4.3491 -4.4765

2.4731 -0.0762 4.3924 0.3944 -4.0493 3.2005 -3.0351 1.8461 4.8945 -0.7577

0.8267 1.5926 0.5725 -0.1185 -2.8593 -1.2015 -1.2296 -2.5847 0.2275 -2.8149

3.6058 1.1595 4.5569 -1.1586 2.9598 -3.4146 3.4792 0.8703 0.741 3.0959

-0.2055 -2.4194 -2.7356 -3.3124 -3.0188 3.2432 3.0265 3.5994 -2.9522 -4.0607

-2.8534 -1.6092 0.0773 -1.0522 1.0697 -0.9775 4.2099 -2.1381 -3.5723 1.111

-1.162 3.864 -3.6106 -0.7843 4.5964 4.8046 -4.04 0.0041 4.7662 -0.9813

-2.3867 4.646 -2.0076 -4.9777 -0.9601 4.505 -2.1318 0.8149 -4.2674 -2.1326

2.2554 -1.5116 4.5298 2.6848 4.1913 2.0263 -1.1539 -4.633 1.4463 0.1735

-2.0219 3.9212 -2.9029 3.874 4.6704 -3.34 1.5579 -2.4959 -2.669 1.3443

-2.9233 3.8627 -3.4046 -0.2426 3.7599 -4.019 -4.659 4.8894 -1.233 2.6259

2.2633 -0.4094 -1.6157 -0.9997 -2.7423 -1.7627 0.1333 4.0506 -1.1741 1.9247

4.2371 -0.1807 -2.4632 -3.0448 0.4332 -1.1738 3.3954 -0.8279 -2.8568 1.7539

-1.5396 -3.2793 -0.0762 2.7453 3.4547 3.4597 -1.1605 -0.3595 1.9623 0.4659

0.7175 3.6311 -3.2181 2.5118 4.8336 -3.2385 4.1033 0.7073 -3.2331 0.478

-0.0604 -3.0095 -4.7405 0.3265 1.0191 -3.6425 1.4088 1.7582 3.4221 -3.4837

3.2036 -1.6909 3.0574 4.989 -0.7471 -1.0048 -0.7546 4.875 -1.4639 -2.0913

-4.7724 -2.5562 0.2944 4.741 -3.8017 0.9433 -0.7531 -4.2839 1.4129 2.0002

-4.1567 -2.5175 2.0351 0.4739 1.3154 1.3448 4.0933 -1.6367 -0.5987 2.2062

-2.8808 -2.2479 0.5929 -0.6915 1.5424 -3.3911 0.0484 -0.1994 2.7691 2.1152

2.3006 0.1806 -2.8106 -4.1738 -4.7745 -3.2146 -3.1801 -2.8664 2.6834 4.0858

-0.631 0.6571 -3.743 -4.9698 2.668 -3.6144 -3.4867 3.0892 1.8868 2.3004

1.2632 0.7263 4.0521 -1.613 -0.2415 0.3023 2.0878 1.5838 -2.7133 -3.3435

-2.9634 -4.8318 -4.7337 -2.0235 3.6313 -3.1067 4.4218 -3.9271 2.4565 -4.2874

3.5089 -4.9552 3.6217 3.4611 2.4542 0.0836 3.3197 -3.2975 -1.1237 -2.2781

2.414 2.1053 -3.2639 1.4155 3.5317 -3.8535 -1.3887 -2.8481 1.5374 2.8662

-0.0702 -3.6813 4.264 -2.4117 0.2211 -0.199 1.0537 -0.0968 2.7314 -0.5799

-4.1158 1.5465 0.5751 -3.9016 3.103 3.8275 -4.8749 -3.3211 -3.9926 4.3417

-1.3878 -4.3264 -4.6046 -3.4892 -0.7203 2.2441 0.4067 -4.9441 4.2588 3.2516

4.9659 4.1983 -3.9514 2.6445 -3.9581 -2.8009 -1.7896 -2.394 -3.1121 -4.6803

0.6662 -2.8687 -3.5458 -4.8778 -0.1409 -3.5848 1.9014 -0.102 -3.8706 1.3873

-0.0124 -0.7434 -2.0929 1.342 4.7696 1.6194 -0.2647 -0.2408 4.5882 2.9792

4.114 -2.076 0.0466 -2.1756 -1.688 2.374 -1.1667 4.6551 -3.6773 -1.16

-2.1276 0.3459 1.8854 -3.1647 3.8572 -3.8202 -3.7963 4.489 4.8957 -2.9115

4.7359 -4.3672 -3.3429 -4.4699 2.9304 3.3256 1.2165 -1.4154 -1.5823 -0.3916

0.1415 -4.0289 0.8919 1.1043 0.7641 -0.004 -3.5189 2.5726 -2.0721 -1.2425

3.4211 4.6103 -3.87 -0.2006 3.9777 2.7042 -2.3724 -3.6612 -1.1453 1.5268

-2.003 4.1884 -0.5759 4.4472 3.8144 -1.577 -1.5696 -0.4796 0.9928 1.491

-0.063 3.8691 -4.0134 2.6505 -3.7495 1.7598 3.6304 -3.6618 -2.9668 2.51

-5.0047 -2.2542 1.0089 -2.1584 4.0461 0.0555 2.1831 0.7403 -0.7753 -4.7824

4.2402 -1.3348 -3.4933 -1.4953 2.84 -0.3594 3.8674 3.3547 4.8488 -2.496

2.2824 3.4921 -3.7685 -3.4698 0.104 -1.904 3.1552 -0.5217 3.0403 3.5213

4.7138 -4.2198 3.1738 -0.3278 4.6554 0.7537 -0.0524 -1.7441 0.5743 -4.3169

4.4806 2.114 4.994 -3.49 0.2961 -1.8739 3.3377 1.4082 -2.5574 -2.3765

-0.1644 -1.1794 -0.7987 -4.5238 -2.6177 2.0133 1.1074 -2.5075 -1.8052 0.3489

3.8377 3.4827 3.0728 2.108 -1.7899 3.723 0.0027 4.0454 4.8321 3.4057



 
 

97 
 

APPENDIX G: Input Data Set of System C (By Rows) 

  

-0.8414 -0.2754 0.0493 0.778 -0.2674 0.7724 -0.7157 -0.0814 0.4072 -0.9482

-0.1418 -0.6798 0.0954 0.7906 -0.342 -0.6079 -0.6453 0.6019 -0.8339 0.108

-0.6705 -0.2347 -0.3639 0.3638 -0.5893 0.8897 -0.3861 0.1951 0.2258 -0.2891

0.1687 0.3402 0.8396 0.6202 -0.7863 -0.3827 0.9513 -0.6355 -0.5079 0.9776

0.1243 -0.8937 0.8596 0.4033 -0.967 -0.046 0.5179 -0.1927 -0.5961 0.3159

-0.9685 -0.9502 -0.3972 -0.0137 0.4281 0.4358 0.4064 -0.9827 -0.8136 -0.968

-0.8617 -0.8457 -0.7081 -0.0818 -0.3527 -0.6841 -0.5301 0.5685 0.4851 -0.3914

0.0886 -0.5505 -0.8243 -0.891 -0.6204 -0.782 0.3149 0.8244 -0.0855 -0.0249

0.8054 0.7306 -0.2974 -0.658 -0.0226 -0.4453 0.5108 -0.0327 -0.2427 0.5354

0.2852 -0.1749 0.436 -0.2268 -0.858 0.2712 -0.5437 -0.9259 -0.7633 0.4483

0.3317 0.328 -0.8995 -0.7114 -0.4443 -0.4684 -0.4635 0.4208 -0.5307 -0.6906

0.1204 -0.6419 -0.3807 -0.3799 -0.8319 -0.7653 0.0939 0.3516 -0.0684 0.2431

0.4821 0.3542 -0.8066 -0.8915 -0.6285 -0.8394 -0.6783 0.9402 0.6075 0.7619

-0.6885 0.2314 0.5422 0.9503 -0.1406 -0.8845 -0.5273 0.0238 -0.7262 0.4367

-0.6771 -0.7586 -0.4549 0.3536 -0.0342 -0.1868 0.7497 0.1695 0.4945 -0.6316

0.7462 -0.4079 0.1751 -0.6438 -0.2911 0.1467 -0.0425 0.1723 -0.2153 0.9205

-0.3505 -0.2069 0.2139 -0.498 0.5181 -0.8307 0.5597 0.629 -0.001 -0.7507

-0.4649 0.7332 -0.3174 -0.7874 0.0244 0.1695 -0.5918 -0.029 -0.8733 -0.5153

0.094 0.4582 -0.4625 0.5281 -0.7699 -0.167 -0.7505 -0.2733 0.3479 -0.6986

-0.4851 0.7004 -0.1741 0.0954 -0.2734 -0.1025 0.6163 -0.4023 0.4083 -0.2461

0.4666 0.1057 0.3688 0.8401 0.5137 0.7763 0.2991 0.7279 0.8134 0.2737

-0.1919 0.2341 0.4392 0.7064 -0.2763 0.0305 0.4015 -0.5804 0.6014 -0.8016

0.7955 0.5271 -0.6872 -0.2908 -0.8548 0.7172 -0.7901 -0.1574 0.8306 0.1833

0.7228 0.1765 0.4758 -0.5665 0.1924 -0.9803 -0.6261 -0.8181 0.8495 0.2575

-0.8228 0.7987 0.6286 -0.7234 0.7474 -0.6578 -0.0658 0.9725 0.2742 0.8051

0.1105 0.8261 0.5667 -0.5053 0.0693 0.6 0.3952 0.1111 -0.2316 0.3597

-0.8566 -0.3572 0.5797 -0.1996 0.7048 0.361 -0.6983 -0.5636 -0.3536 0.2062

0.2112 0.9936 -0.457 0.7212 0.6352 -0.0052 0.4212 0.263 0.9669 -0.7054

-0.5716 0.1167 -0.9027 -0.1109 0.7193 -0.2913 -0.1867 -0.5553 0.446 -0.406

0.5229 -0.028 0.001 -0.4132 0.4058 -0.6846 0.7163 0.384 0.8371 0.2674

-0.8184 -0.8318 -0.0762 0.4946 -0.1035 0.199 -0.3756 0.4379 0.1066 -0.8707

0.2507 0.9634 -0.3939 -0.3038 0.0262 -0.0467 -0.2538 -0.9319 -0.335 0.2987

0.1684 0.0438 0.08 0.3604 -0.7305 -0.7525 -0.354 0.6607 -0.5256 0.6588

-0.9051 0.7962 -0.805 0.7886 0.6489 0.2608 -0.084 -0.8288 0.6144 -0.4425

-0.2123 -0.5477 -0.8218 0.2139 0.7972 0.661 -0.2074 0.4429 0.1089 0.5075

-0.9584 -0.4808 -0.5027 0.3867 -0.4779 0.6803 0.4408 -0.6996 -0.1966 0.0987

-0.0925 -0.1711 0.8161 0.4103 0.6183 0.3736 -0.8126 0.5402 0.2342 0.1211

0.4549 -0.8934 -0.8356 -0.908 -0.3976 0.9172 -0.012 0.6816 -0.9848 -0.552

0.5562 0.0937 -0.8877 -0.3809 0.7118 -0.5739 -0.3262 0.9106 0.4233 -0.68

0.942 0.3104 -0.7467 -0.5151 0.6629 0.0343 -0.7098 0.3977 -0.6954 -0.8079

0.0309 0.4917 -0.6846 0.7279 -0.466 0.214 0.6711 0.5002 -0.786 0.6392

0.9977 0.9815 -0.2096 0.1278 -0.1129 -0.6076 0.3823 -0.6195 -0.4061 0.9819

-0.3059 0.2613 -0.1482 -0.4431 0.605 0.5009 0.9977 0.0822 0.9398 -0.1005

0.8129 -0.4858 -0.6237 -0.6524 0.2532 -0.8122 0.0583 -0.7888 0.2081 -0.0624

-0.5656 0.8846 0.0064 0.552 -0.4639 0.6828 0.8808 0.2282 -0.2376 0.3623

-0.492 -0.6357 -0.3575 0.5543 -0.2152 -0.4063 0.6814 0.2448 0.914 0.6875

0.2038 0.3639 0.8378 -0.5345 -0.6537 -0.8491 -0.4901 -0.6191 0.5765 0.9673

0.623 0.8399 0.2146 -0.8438 0.8329 0.7743 0.9537 0.9355 0.4 -0.2135

0.2985 -0.4082 0.4156 0.7975 -0.472 0.8635 -0.7457 -0.3542 -0.634 0.9115

-0.3005 -0.2086 0.2 -0.8151 0.0754 0.0842 0.9725 0.8988 0.8993 -0.5967
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APPENDIX H: Output Data Set of System C (By Rows) 

  

-8.301 -2.6655 0.4668 7.1844 -2.3974 6.6558 -5.9086 -0.6464 3.0458 -6.7012

-0.945 -4.2039 0.5449 4.1955 -1.6646 -2.7081 -2.6063 2.1921 -2.7266 0.3065

-1.7373 -0.5427 -0.7478 0.6638 -0.9673 1.325 -0.5302 0.2471 0.2834 -0.3798

0.2145 0.4766 1.2609 1.0162 -1.4284 -0.7838 2.139 -1.5849 -1.4179 2.9937

0.4151 -3.295 3.4327 1.75 -4.4915 -0.2268 2.7266 -1.0837 -3.493 1.9461

-6.2178 -6.3184 -2.7318 -0.1059 3.0932 3.2221 3.0605 -7.4823 -6.2381 -7.4578

-6.6589 -6.5094 -5.4247 -0.6266 -2.6333 -5.0406 -3.8296 4.0281 3.3393 -2.6263

0.5744 -3.464 -4.9989 -5.1859 -3.477 -4.1835 1.6218 4.0258 -0.4005 -0.1028

3.4193 2.9592 -1.1543 -2.4407 -0.0804 -1.5123 1.678 -0.1067 -0.757 1.638

0.8597 -0.5345 1.3163 -0.69 -2.6463 0.8507 -1.7576 -3.0831 -2.6166 1.5845

1.2339 1.2493 -3.5937 -2.9591 -1.9108 -2.1061 -2.1567 2.0403 -2.6589 -3.5826

0.6402 -3.519 -2.1462 -2.1869 -4.9118 -4.6028 0.5842 2.1805 -0.4267 1.536

3.0923 2.2819 -5.2036 -5.7455 -4.0503 -5.3762 -4.3172 5.9399 3.7928 4.7077

-4.1911 1.3901 3.1907 5.4947 -0.797 -4.9071 -2.8656 0.1286 -3.76 2.2039

-3.3365 -3.6394 -2.1287 1.6141 -0.1535 -0.8104 3.2129 0.7198 2.041 -2.5819

3.0061 -1.6292 0.6981 -2.5328 -1.1388 0.5776 -0.1636 0.6908 -0.8576 3.7411

-1.4514 -0.8591 0.9119 -2.1579 2.2823 -3.7141 2.5603 2.9287 -0.003 -3.6249

-2.2856 3.6862 -1.6269 -4.0831 0.1278 0.9035 -3.2083 -0.1674 -4.8455 -2.8855

0.5368 2.6105 -2.6513 3.0377 -4.4373 -0.9654 -4.3361 -1.5738 1.9947 -4.0092

-2.774 3.9709 -0.9861 0.5378 -1.5104 -0.5561 3.327 -2.1406 2.1541 -1.2868

2.4026 0.5296 1.8445 4.1493 2.5083 3.7515 1.4349 3.4284 3.7868 1.2713

-0.8695 1.0533 1.971 3.1548 -1.2246 0.1374 1.7888 -2.5761 2.6686 -3.5665

3.5414 2.3711 -3.0874 -1.3141 -3.9056 3.2994 -3.667 -0.7317 3.9313 0.8755

3.4836 0.8511 2.3395 -2.8221 0.9581 -4.9589 -3.2083 -4.2114 4.4057 1.3541

-4.3449 4.2332 3.3582 -3.8796 4.0126 -3.5386 -0.3549 5.2529 1.4768 4.3657

0.5938 4.4587 3.0468 -2.7223 0.3703 3.1999 2.0928 0.5868 -1.2094 1.8764

-4.4425 -1.83 2.9648 -1.0034 3.5478 1.8047 -3.4734 -2.7784 -1.7423 1.0049

1.0222 4.7794 -2.1948 3.4311 3.0238 -0.0172 1.9904 1.2471 4.5508 -3.324

-2.6889 0.5467 -4.2478 -0.5265 3.3993 -1.3886 -0.8884 -2.658 2.1311 -1.9522

2.535 -0.1367 0.0101 -2.0226 1.9932 -3.394 3.5711 1.935 4.2185 1.3513

-4.168 -4.2389 -0.3856 2.5447 -0.5284 1.029 -1.9534 2.2813 0.5629 -4.5331

1.2995 5.0371 -2.055 -1.5874 0.1428 -0.2334 -1.3115 -4.8265 -1.7376 1.5505

0.8733 0.2228 0.4043 1.8332 -3.7048 -3.7947 -1.7782 3.3057 -2.6245 3.284

-4.4865 3.9274 -3.9691 3.8776 3.1859 1.2757 -0.4106 -4.0411 2.9872 -2.152

-1.026 -2.6607 -3.9803 1.0339 3.8595 3.2018 -1.0114 2.1474 0.5323 2.4704

-4.683 -2.3511 -2.4614 1.9054 -2.3608 3.3555 2.1859 -3.4744 -0.9829 0.5002

-0.4663 -0.8632 4.1185 2.0628 3.1234 1.9026 -4.1315 2.7493 1.1859 0.627

2.3318 -4.5626 -4.2696 -4.6444 -2.0366 4.6873 -0.0697 3.4876 -5.0219 -2.8227

2.845 0.469 -4.5179 -1.927 3.5992 -2.9119 -1.6428 4.5783 2.1228 -3.4067

4.7141 1.5548 -3.7144 -2.5632 3.2973 0.1683 -3.52 1.965 -3.4274 -3.977

0.1457 2.419 -3.3761 3.5844 -2.2945 1.0425 3.3073 2.4671 -3.8565 3.1472

4.9056 4.826 -1.0322 0.6302 -0.5639 -3.0001 1.8919 -3.0791 -2.0104 4.8786

-1.533 1.2993 -0.7407 -2.2174 3.0258 2.5144 5.0146 0.4055 4.7373 -0.4985

4.0958 -2.452 -3.1577 -3.2995 1.2794 -4.1142 0.3048 -3.9908 1.0588 -0.3228

-2.8541 4.4662 0.0282 2.7928 -2.3364 3.4418 4.4287 1.1419 -1.1967 1.8183

-2.4643 -3.1773 -1.7981 2.7823 -1.072 -2.0337 3.3959 1.2258 4.55 3.4205

1.0117 1.8105 4.1605 -2.6585 -3.2362 -4.2172 -2.4354 -3.0645 2.8461 4.7824

3.0793 4.1531 1.0684 -4.1803 4.1365 3.8455 4.7432 4.6481 1.9917 -1.0701

1.488 -2.0434 2.0657 3.9725 -2.3665 4.3079 -3.7216 -1.7832 -3.1828 4.5638

-1.4996 -1.0398 1.0051 -4.0876 0.3852 0.4274 4.8849 4.5138 4.52 -3.0068
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APPENDIX I: Input Data Set of Industrial Air Compression System 

  

70.928 68.041 67.896 69.969 68.66 69.218 69.746 68.367 68.489 68.418

68.196 69.28 68.289 68.147 66.908 68.162 66.8888 68.339 67.634 67.88

67.905 67.842 66.276 66.243 65.49 64.441 62.942 65.106 63.993 63.327

63.369 64.02 63.851 65.041 63.935 64.636 64.759 64.177 62.641 64.7

62.7988 63.773 63.848 62.594 63.48 63.023 63.161 62.569 63.221 62.859

62.001 66.017 62.315 63.801 63.899 63.329 64.562 62.889 63.152 63.593

63.666 63.961 64.128 63.947 63.2 62.985 63.756 63.359 63.64 63.819

63.733 62.661 63.929 62.907 62.833 46.628 63.181 62.972 63.635 62.899

63.048 62.828 63.82 62.613 65.822 61.372 65.364 64.318 63.856 63.18

64.36 63.315 63.868 64.203 65.266 62.019 64.597 62.57 62.437 63.736

63.77 63.182 64.356 64.141 64.242 64.803 64.726 63.409 63.898 64.673

64.3369 64.204 64.132 64.491 63.32 63.635 63.908 63.219 64.806 64.346

64.472 64.712 64.216 65.779 64.577 63.914 64.141 63.672 63.791 63.616

64.451 63.99 65.228 64.48 64.252 64.641 64.176 64.395 63.515 65.461

64.299 64.887 64.174 59.343 64.318 64.443 65.251 66.335 66.876 64.993

64.689 64.571 64.053 64.065 64.884 63.743 64.933 65.824 64.247 65.2822

64.4448 64.827 64.488 64.293 65.822 57.808 58.428 65.66 63.815 62.468

65.61 65.508 64.614 63.935 64.439 63.308 65.444 63.814 64.686 63.769

61.547 63.697 62.745 64.847 63.741 62.906 65.533 64.965 65.507 63.648

66.056 63.734 63.272 66.051 64.701 64.49 64.128 64.03 63.252 64.606

64.354 64.96 65.404 64.935 65.468 64.033 65.499 66.243 64.194 64.237

65.224 64.864 64.887 64.871 64.462 64.157 65.313 64.766 64.694 65.11

68.027 61.039 64.809 64.335 64.647 65.271 65.09 63.98 64.569 64.0611

64.4419 63.792 64.9524 64.1792 63.532 64.732 63.399 64.822 63.789 66.794

64.556 63.742 65.651 64.647 64.874 64.208 64.325 63.377 64.753 65.017

65.35 65.099 64.655 64.981 64.093 64.908 66.909 64.718 64.866 64.467

64.166 63.736 65.024 65.377 65.426 64.37 65.505 66.606 66.713 65.43

65.545 65.266 65.75 64.323 64.914 65.294 66.769 63.923 66.171 66.787

66.222 68.409 65.826 65.053 65.053 66.288 64.684 66.36 64.609 55.8

63.916 64.241 64.904 64.346 64.728 64.121 64.521 65.544 64.862 65.908

65.066 66.047 64.225 66.431 65.436 65.572 65.257 64.812 65.629 65.865

65.999 65.351 65.89 65.35 64.773 64.8327 65.888 64.685 63.559 60.135

61.947 61.772 62.101 60.613 61.574 61.246 61.909 60.379 60.743 60.834

59.996 60.087 60.6 59.283 59.69 60.397 60.374 60.997 60.748 61.453

61.59 61.431 61.425 60.73 61.635 62.177 61.79 62.35 62.558 62.55

62.77 64.539 64.534 64.363 62.407 61.912 62.609 62.085 62.952 61.9424

62.318 61.4062 57.0936
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APPENDIX J: Output Data Set of Industrial Air Compression System 

 

587.507 583.991 583.814 584.886 590.239 590.811 595.028 591.226 587.934 582.165

580.161 584.276 584.402 585.013 578.155 575.616 581.4494 581.449 585.016 582.387

583.405 578.521 562.618 551.198 552.25 550.345 544.026 540.434 538.052 535.514

538.259 543.772 542.603 545.094 548.77 545.6245 545.456 545.92 542.724 543.105

543.6766 543.054 540.018 543.494 541.633 540.269 542.068 541.01 543.084 540.707

540.774 540.669 536.597 545.084 545.141 542.87 543.286 535.027 538.261 544.089

538.8 545.4 540.791 541.709 535.923 535.729 542.05 544.628 546.231 546.1

546.417 543.793 543.145 539.772 536.217 539.631 543.061 540.609 543.706 541.555

538.461 542.286 541.174 542.027 541.378 545.613 547.056 545.661 544.27 543.85

545.699 543.429 546.679 543.337 543.603 538.652 542.61 545.987 540.102 543.64

544.967 542.601 547.298 548.739 544.46 549.891 541.946 467.112 540.44 545.021

539.4787 535.458 538.864 539.416 534.644 534.425 538.806 540.05 542.953 542.953

545.734 542.09 537.608 544.589 539.721 537.092 539.625 537.276 533.172 528.474

542.698 542.34 540.504 538.181 536.624 536.291 535.004 539.056 542.005 541.517

541.517 544.871 542.94 542.94 537.583 536.583 539.136 537.041 542.346 544.798

537.683 538.182 536.739 534.903 538.876 538.212 540.815 532.641 539.274 545.2563

542.9712 543.121 543.122 541.804 541.796 445.961 472.258 498.86 528.911 537.163

539.217 537.683 538.873 537.096 535.333 536.674 535.652 538.418 535.246 534.007

531.871 536.507 533.335 534.378 532.513 536.616 538.154 539.659 542.725 542.15

544.244 542.086 539.29 541.4 540.945 542.7 537.661 535.479 532.931 539.42

540.384 541.231 543.182 541.344 540.754 541.832 545.275 540.397 540.3216 543.343

540.188 540.506 542.043 541.681 537.762 543.009 541.755 540.794 543.916 540.742

538.292 539.156 541.613 543.388 543.544 541.206 542.523 540.01 540.553 539.3315

540.4162 539.738 536.33 533.0067 533.477 540.023 543.22 547.562 539.48 543.534

546.922 536.362 543.94 535.34 543.16 536.799 529.825 532.946 527.789 534.352

539.043 535.508 538.749 543.7 536.442 536.257 545.246 542.992 542.942 545.272

545.258 543.503 527.033 541.878 548.644 547.887 544.166 542.725 539.572 541.358

543.347 543.008 547.702 536.566 535.466 541.318 542.521 498.696 543.844 546.292

544.85 542.793 541.115 542.386 547.162 544.751 543.199 546.12 535.964 444.422

519.015 511.191 538.42 541.568 541.282 541.908 542.086 544.278 541.067 543.234

538.305 539.882 532.523 542.857 539.889 546.329 546.145 543.007 544.249 552.198

550.298 546.21 544.504 533.973 527.648 529.8894 526.991 526.746 506.194 513.568

518.854 516.347 516.517 516.808 514.976 514.198 513.958 510.889 510.221 510.907

506.768 502.081 506.683 495.836 495.927 502.438 504.996 506.909 509.839 506.478

510.386 506.167 502.694 510.326 511.383 511.948 514.99 514.6 514.938 514.355

515.889 511.811 512.95 510.958 511.355 515.434 515.652 513.639 520.124 517.8907

516.1002 511.3384 467.8173


