FUNCTIONAL PROPERTIES OF STRETCHABLE CONDUCTIVE INK (SCI) WITH VARYING SUBSTRATE

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

FUNCTIONAL PROPERTIES OF STRETCHABLE CONDUCTIVE INK (SCI) WITH VARYING SUBSTRATE

MUHAMAD ASYRAF BIN MOHAMED MUSTAFA

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DECLARATION

I declare that this project report entitled "Functional Properties Of Stretchable Conductive Ink (SCI) With Varying Substrate" is the result of my own work except as cited in the references

APPROVAL

I hereby declare that I have read this project report, and in my opinion, this report is sufficient in terms of scope and quality for the award of the degree of Bachelor of Mechanical Engineering

DEDICATION

To my beloved father and mother,

Mohamed Mustafa Bin Samad & Saripah Binti Mahamad Sarip

ABSTRACT

Stretchable conductive ink (SCI) is a functional material that enables the conductive ink film to have better electronic conductivity after stretching and folding. This project aims to investigate the effect of different polymer substrates on the functional properties of SCI. First, SCI's electrical and mechanical samples with varying GNP filler loading on Polyethylene (PET) and thermoplastic (TPU) substrates were prepared and tested. More specifically, the range of GNP filler loading used in this research is 5 wt.%, 7.5 wt.%, and 10 wt.%. Before the electrical and mechanical testing, the formulated SCI with different GNP filler loading was subjected to viscosity test by using a digital viscometer (MODEL 52DV). Besides, the hydrophobicity of the formulated SCI was investigated on the asreceived PET and TPU substrate through a contact angle test using self-fabricated contact angle measuring. Then, the sample was characterised using a four-point probe to determine the SCI's sheet resistance (R_s), which refers to ASTM F390 as a guideline; meanwhile, mechanical properties were characterised through a quantitative 180° peel test using a universal testing machine. By formulating SCI using different GNP filler loading, the viscosity increases as the filler loading increases; however, low viscosity is not appropriate with the stencil printing method and affects the electrical properties of the printed SCI on the substrate. The electrical properties of SCI printed on TPU and PET substrate show a decrease in sheet resistance with increasing GNP filler loading, from 5 wt. % to 10 wt.%. However, the SCI printed on the TPU substrate exhibit better conductivity than the SCI printed on the PET substrate. There is a reduction in adhesion strength from the peel test with increasing GNP filler loading. In addition, the results suggest that the SCI exhibited higher adhesion strength when printed onto the PET substrates than on TPU substrates, possibly because of the hydrophilic nature of the polymer material. Such finding is directly correlated with the degree of wetting, based on the contact angle measured on PET, which is low and yield high adhesion strength. Overall, it can be concluded that the SCI printed on different substrates affect the functional properties of the SCI.

ABSTRAK

Dakwat konduktif boleh renggang ialah bahan berfungsi yang membolehkan filem dakwat konduktif mempunyai kekonduksian elektronik yang lebih baik selepas regangan dan lipatan Projek ini bertujuan untuk mengkaji kesan substrat polimer yang berbeza pada sifat fungsi SCI. Pertama, sampel SCI dengan muatan pengisi GNP yang berbeza pada substrat Polietilena (PET) dan termoplastik (TPU) telah disediakan dan diuji dari segi sifat elektrik dan mekanikal. Secara lebih khusus, julat muatan pengisi GNP yang digunakan dalam penyelidikan ini ialah 5 wt.%, 7.5 wt.%, dan 10 wt.%. Sebelum ujian elektrik dan mekanikal, SCI yang dirumus dengan pengisi GNP yang berbeza telah dikenakan ujian kelikatan dengan menggunakan viskometer digital (MODEL 52DV). Selain itu, sifat kehidrofobikan SCI telah dikaji pada substrat PET dan TPU dengan kondisi sedia ada melalui ujian sudut sentuhan menggunakan pengukuran sudut sentuhan buatan sendiri. Kemudian, sampel dicirikan menggunakan kuar empat mata untuk menentukan rintangan helaian SCI (R_s) , dengan merujuk kepada ASTM F390 sebagai garis panduan; sementara itu, sifat mekanikal dicirikan melalui ujian pengupasan 180° kuantitatif menggunakan mesin ujian universal. Dengan formulasi SCI menggunakan muatan pengisi GNP yang berbeza, kelikatan meningkat apabila muatan pengisi meningkat; walau bagaimanapun, kelikatan rendah tidak sesuai dengan kaedah cetakan stensil dan menjejaskan sifat elektrik SCI yang dicetak pada substrat. Sifat elektrik SCI yang dicetak pada substrat TPU dan PET menunjukkan penurunan rintangan helaian dengan peningkatan beban pengisi GNP, daripada 5 wt. % hingga 10 wt.%. Walau bagaimanapun, SCI yang dicetak pada substrat TPU mempamerkan kekonduksian yang lebih baik daripada SCI yang dicetak pada substrat PET. Terdapat pengurangan dalam kekuatan lekatan daripada ujian pengupasan dengan peningkatan beban pengisi GNP. Di samping itu, keputusan menunjukkan bahawa SCI mempamerkan kekuatan lekatan yang lebih tinggi apabila dicetak pada substrat PET berbanding substrat TPU, berkemungkinan disebabkan sifat hidrofilik bahan polimer. Penemuan sedemikian dikaitkan secara langsung dengan tahap pembasahan, berdasarkan sudut sentuhan yang diukur pada PET, yang rendah dan menghasilkan kekuatan lekatan yang tinggi. Secara keseluruhannya, dapat disimpulkan bahawa SCI yang dicetak pada substrat yang berbeza mempengaruhi sifat fungsian SCI.

ACKNOWLEDGEMENTS

Firstly, I would like to take this opportunity to express my sincere gratitude to my supervisor, Dr. Siti Hajar Binti Sheikh Md Fadzullah, whose contribution to stimulating suggestions and encouragement helped me to coordinate my project. I am grateful to her for her understanding, guidance, and insightful support in the development process.

I would also like to acknowledge with much appreciation my family and friends who invested their full support in me to complete this research.

A special thanks to Zuraimi, Andee, and Dani, postgraduate students who constantly share their knowledge and experience, primarily to experiment with this research. Appreciation is also given to all the technicians who contribute their expertise and dedicate their time to help me complete this research.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TABLE OF CONTENTS

DECLAF	RATION	3
APPROV	AL	4
DEDICA	TION	5
ABSTRA	СТ	i
ABSTRA	K	ii
ACKNO	WLEDGEMENT	iii
TABLE (OF CONTENTS	iv
LIST OF	TABLES	vi
LIST OF	FIGURES	vii
LIST OF	ABBREVIATIONS	ix
CHAPTE 1.1 1 1.2 1 1.3 (1.4 5 1.5 1	ER 1 Background Problem Statement Objectives Scope of Project Planning and Execution	1 1 2 4 4 5
СНАРТН	CR 2	7
2.1 1 2.2 5 2.3 (2.3.1 2.3.2 2.4 1	Introduction Stretchable Conductive ink Conductive Filler Metal-Based Non-Metal Based Polymer Binder	7 7 8 9 10 13
2.4.1	Epoxy	13
2.4.2	PEDOT: PSS Substrate	14
2.5	Thermoplastic Polyurethane (TPU)	15
2.5.2	Polyethylene terephthalate (PET)	17
2.6 I	Properties of Stretchable Conductive Ink	18
2.6.1	Electrical Properties of SCI	18
2.6.2	Viscosity of SCI	19
2.6.3	Mechanical properties: Adhesion analysis	20
2.6.4	Wettability	22

СНАРТ	TER 3	24					
3.1	Overview of Research	24					
3.2.	Raw Materials	26					
3.2.	1 Conductive Filler	26					
3.2.	2 Conductive Polymer Binder	27					
3.2.	3 Solvents	28					
3.2.	4 Substrate Materials	29					
3.3	SCI Preparation	30					
3.3.	1 Sample preparation for Electrical test.	34					
3.3.	2 Sample preparation for 180° Peel Test.	35					
3.4	Viscosity Test	36					
3.5	Contact Angle Test	37					
3.6	Electrical Characterization	39					
3.6.	1 Four probe point test	39					
3.7	Mechanical Characterization	40					
3.7.	1 180° Peel test	40					
СНАРТ	ER4	42					
4.1	ntroduction						
4.2	iscosity of SCI with varying filler loading						
4.3	3 Hydrophobicity study of different SCI's filler loading on PET and TPU						
4 4	substrate.	44					
4.4	Electrical Performances of different SCI's filler loading on PET and IPU	10					
15	Adhesion Derformances of different SCI's filler leading on DET and TDU	48					
4.3	Adhesion renormances of different SCI's filler loading on FET and IFO	51					
	substrate.	51					
СНАРТ	اويىۋەر سېتى ئىكىنىكى مىلىسىا ملات ₅	53					
51	Conclusion	53					
5.2	Recommendation TI TEKNIKAL MALAYSIA MELAKA	54					
2.12		51					
REFER	ENCES	55					

LIST OF TABLES

TABLE

TITLE

PAGE

1.1	PSM I Gantt chart	4
1.2	PSM II Gantt chart	5
3.1	Specification of Graphene nanoplatelets conductive filler	25
3.2	Sigma Aldrich <i>PEDOT: PSS with 1.3 wt. % dispersion in</i> H_2O	26
3.3	Specification of TPU and PET substrate	28
3.4	Graphene- PEDOT: PSS SCI formulation for different filler and polymer loading	30
3.5	PEDOT: PSS Solution	30
4.1	Graphene filler loading and viscosity of SCI	42
4.2	SCI droplet behaviour on PET and the average contact angle	44
4.3	SCI droplet behaviour on TPU and the average contact angle	45
4.4	Graphene filler loading and average sheet resistance of SCI on PET	48
	and TPU substrate	
4.5	Graphene filler loading and average maximum adhesion strength of	50
	SCI on PET and TPU substrate	

LIST OF FIGURES

TITLE

PAGE

FIGURE

2.1	Classification of conductive filler with example	7
2.2	SEM images of 0D, 1D and 2D metal-based nanomaterial	8
2.3	Comparison of electrical property for various materials	9
2.4	Diagram of manufacture of GNPs starting from natural graphite	11
2.5	Chemical structure and schematic core-shell structure of PEDOT: PSS	14
2.6	Behaviour of TPU substrate after being applied mechanical	15
2.7	Molecular Structure of Polyethylene Terephthalate PET	16
2.8	Comparison of the recommended viscosity range for different printing	19
2.9	Peel test angle	20
2.10	Contact angle according to Young's equation	22
2.11	Wettability of liquid on the substrate	22
3.1	Flow chart of the methodology	24
3.2	Sigma Aldrich PEDOT: PSS with 1.3 wt. % dispersion in H_2O	26
3.3 (a)	Dimethyl Sulfoxide	27
3.3 (b)	Ethylene Glycol	27
3.3 (c)	Triton X-100	27
3.4	Mettler Toledo Analytical Balance	30
3.5	Planetary Centrifugal Mixer (THINKY MIXER ARE-310)	31
3.6	Flow process of SCI preparation	32
3.7	Dimension of prepared sample for electrical test	33
3.8	Dimension of prepared sample for 180° peel test	34

3.9	Illustration of sample for 180° peel test	34					
3.10	Digital viscometer (MODEL 52DV)	35					
3.11	Graphene-PEDOT: PSS SCI at set level of viscometer	35					
3.12	Self-fabricated contact angle measuring tool	36					
3.13 (a)	Sample of Contact Angle-TPU	36					
3.13 (b)	Sample of Contact Angle-PET	36					
3.14 (a)	ImageJ software	37					
3.14 (b)	Contact angle measured at the right side of ink droplet	37					
3.15	Four-point probe test	38					
3.16	Illustration of probe head is placed on top of SCI surface	38					
3.17	50 N Universal Tensile Machine (SHIMADZU AGS-X-HC)	39					
3.19	Close-up view of 180° peel test sample set-up	40					
4.1	Viscosity Vs filler loading of Graphene-PEDOT: PSS SCI						
4.2	Average Contact Angle Vs Graphene-PEDOT: PSS SCI with	46					
	different GNP filler loading and substrate						
4.3	Average Sheet Resistance Vs Graphene-PEDOT: PSS SCI with	48					
	different GNP filler loading and substrate						
4.4	Average Maximum Bond Strength Vs Graphene-PEDOT: PSS SCI	51					
	with different GNP filler loading and substrate						

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF ABBREVIATIONS

PCB	Printed Circuit Boards
SCI	Stretchable Conductive Ink
LED	Light Emitting Diode
TCF	Transparent conductive film
AgNWs	Silver Nanowires
CNT	Carbon Nanotube
GNP	Graphene Nanoplatelets
TPU	Thermoplastic polyurethane
PET	Polyethylene terephthalate
SEM	Scanning Electron Microscope
0D	Zero Dimension
1D	One Dimension TEKNIKAL MALAYSIA MELAKA
3D	Three Dimension
UV	Ultra Violet
PEDOT:PSS	Poly(3,4-ethylenedioxythiophene) Polystyrene Sulfonate
DMSO	Dimethyl Sulfoxide
EG	Ethylene Glycol

LIST OF SYMBOL

°C	=	Degree Celsius
Ω	=	Ohm
sq.	=	Square
T_g	=	Glass temperature
m	=	Meter
μm	=	Micrometre
L	=	length
G	=	Correlation factor
Ι	=	Current
V	=	اويىۋىر،سىتى ئىكنىكل ملىسىيا Voltage
Rs	= 1	Sheet Resistance-EKNIKAL MALAYSIA MELAKA
MPa	=	Mega Pascal
TPa	=	Tera Pascal
θ_{eq}	=	Contact Angle
γsv	=	Solid-gas surface tension
Υsl	=	Solid-liquid surface tension
γ_{LV}	=	Liquid-gas surface tension

CHAPTER 1

INTRODUCTION

1.1 Background

Nowadays, technology is an essential part of our life. Technology has evolved in various ways, and it is certainly possible that it's getting better. People are always trying to improve everything that can benefit our lives. Without electronic devices, people's lives would be at stand fill, and nothing would get done fast enough.

The development of electronic technology is growing rapidly, especially in printed circuit boards (PCBs). PCB is the main component of the electronic system that plays a vital role to support mechanically and electrically connected electronic components using conductive pathways, tracks, or signal traces etched from copper sheets laminated onto a non-conductive substrate (Hunrath & Forest, 2009). However, PCB is a conventional rigid electronic component limited to the wearable electronic industry to open up various applications, especially healthcare, energy, and military. It is because the rigid PCB cannot be stretched and bent. Therefore, with such a growing development in electronic technology, stretchable electronic devices are the new technology that can replace the use of PCB in the wearable electronic industry and directly leads to economic growth today and has positive effects on various aspects of daily life.

Generally, the stretchable electronic devices primarily consist of stretchable conductive ink (SCI), stretchable substrate, and an electronic circuit (i.e. resistor, LED, and capacitor) (Aziz et al., 2020). According to (Ding et al., 2020), SCI is a functional material that enables the conductive ink film to have better electronic conductivity after stretching and folding. This matter is caused by the effect of this ink that would aid in the automation and refinement of the manufacture of stretchable conductors and have a significant impact on flexible electronics. Other than that, the development of SCI has enabled a broad range of applications, for instance, the production of transparent conductive films (TCFs), flexible energy harvesting and storage, and wearable sensors. Moreover, it is due to SCI attractive features; it can be compressed, twisted, and adapted to complex non-planar surfaces besides the low manufacturing cost with high output (Huang & Zhu, 2019).

The SCI is classified into metal-based (i.e. silver, Copper and AgNws), carbon-based (CNT, Graphite and Carbon black) and hybrids of metal and carbon-based (i.e. Ag-PDMS and rGO-AGNP). (D. C. Kim et al., 2020) states that all of these types' mechanical and electrical performances depend on the size and shape of filler material. The best suitable filler material for the fabrication of SCI is nanomaterials and polymers with 1D long-chain structures (D. C. Kim et al., 2020). The 1D material can form junctions between the adjacent fillers and high conductivity. However, the stretchable substrate also plays a vital role in the fabrication of the SCI. From the literature, it was argued that an unsuitable substrate could affect the behaviour of the SCI (Aziz et al., 2020).

1.2 Problem Statement

The stretchable conductive inks (SCI) have received an increasing demand, especially in wearable sensors, due to their great flexibility and expendability while maintaining conductivity at high levels. In addition, stringent performances such as electrical

and mechanical required the fillers in SCI to be shifted from metallic to nanocarbon-based materials (Graphene and CNT) due to their remarkable characteristics (Wenting Dang et al., 2017). However, the replacement of metal fillers with nanocarbon-based materials is not fully explored in their functionality, performance, and durability on the various substrates.

Moreover, determining the viscosity of newly formulated SCI is essential because viscosity is the parameter determining the suitable printing method used to print the SCI onto the substrate (Khan et al.,2020). The unsuitable printing method used may affect the evenness of the SCI towards the substrate surface (Onggar et al., 2020). Conversely, there is limited solid data on the relationship between viscosity and printing methods that can affect SCI's electrical and mechanical properties printed on substrates. Thus, the viscosity of the SCI with different filler loading will be discovered by understanding the relationship between the SCI and the printing method.

Other than that, different substrates have different interface energy. The interface energy is related to the wetting and adhesion in which the wetting phenomenon influences the quality of printing and process reliability of the SCI (Yunos et al., 2020). The wetting phenomenon can be studied through the hydrophobicity of the SCI towards the substrate. However, there is still a lack of exploration on the hydrophobicity of the SCI on the polymer substrate, especially towards thermoplastic polyurethane (TPU) and Polyethylene terephthalate (PET).

Subsequently, numerous studies have been analysed and discussed regarding the SCI's performance that used polymer as a binder. Based on the previous study, the polymer binder reduces the conductivity of the SCI due to the high resistance of the polymer binder (Mohammed & Pecht, 2016). However, the replacement of polymer binder with conductive polymer binder like PEDOT: PSS is not fully explored in terms of electrical and mechanical

performance. Furthermore, filler content and the amount of polymer binder used in newly formulated SCI is vital to discover because they are the main factors that affect the functionality of the SCI (Merilampi et al., 2010).

Hence, this study aims to perform a comprehensive material characterization that serves as a baseline using newly formulated nanocarbon-based SCI for functionality and durability with varying substrate material.

1.3 Objectives

The objectives of this project are as follows:

- 1. To examine the viscosity of the SCI with different filler loading.
- To study the hydrophobicity of the SCI with different filler loading towards varying substrates.
- 3. To evaluate the electrical and mechanical properties of the SCI with different filler loading on varying substrates

1.4 Scope of ProjectSITI TEKNIKAL MALAYSIA MELAKA

The scopes of this project are:

- i. Formulation and fabrication of SCI on TPU and PET substrates.
- ii. The viscosity of SCI with different filler loading.
- Contact angle test to determine the hydrophobicity of SCI on TPU and PET substrate.
- iv. SCI sheet resistance measurement by conducting a four-point probe test on printed SCI.
- v. SCI mechanical testing via 180° peel test.

1.5 Planning and Execution

Table 1.1 demonstrates the research planning and activities for PSM 1, including the process title selection, literature review for understanding the research related to the project, designing the experiment, report writing and submission, and finally, PSM I presentation. The research activities in PSM II started with the formulation of the samples, viscosity test, contact angle test, and then the material characterisation for electrical and mechanical properties for all samples. Lastly, all the data were analysed, and the results are discussed in this report. Research activities of PSM II are illustrated in Table1.2.

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Activities			A PART												
Research Title															
Selection										1					
Literature Review	L	m	ړم	1	2			is	is	سا	ونم	اون			
Methodology									-						
UNIVE	RS	T	TEI	KNI	KA	LN	1Al	AY.	SI/	A MI	ELA	KA			
research study															
Submission															
Progress Report															
Report Writing															
Report Submission															
PSM 1 Seminar															

Table 1.1 PSM I Gantt chart

 Table 1.2 PSM II Gantt chart

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter includes a review of several related research studies based on previous research. The main subtopics discussed in this chapter are the stretchable conductive ink (SCI), polymer binder, a conductive filler, and SCI's electrical and mechanical properties based on the previous study on this chapter.

2.2 Stretchable Conductive ink

ALAYSIA

According to Ding et al. (2020), SCI is a functional material that enables the conductive ink film to have better electronic conductivity after stretching and folding. This matter is caused by the effect of this ink that would aid in the automation and refinement of the manufacture of stretchable conductors and have a significant impact on flexible electronics. Next, the development of SCI has enabled a broad range of applications, for instance, the production of transparent conductive films (TCFs), flexible energy harvesting and storage, and wearable sensors. It is due to SCI attractive features; it can be compressed, twisted, and adapted to complex non-planar surfaces besides the low cost of manufacturing with high output (Huang & Zhu, 2019).

Subsequently, the most critical requirement of SCI is the ability to stretch after the sintering has taken place. It still maintains the electrical conductivity of the conductive filler. Furthermore, a good SCI is an ink that can strain at least 20% of its original length while maintaining electrical and mechanical performances (Mohammed & Pecht, 2016). It is a

good starting point for this nascent technology as 20% stretchability can meet many current requirements.

2.3 Conductive Filler

Conductive filler is the material used to fabricate conductive ink, which provides electrical conductivity to SCI. Therefore, the electric properties of SCI mainly depend on the type of conductive filler. However, the good conductive filler has superior inherent electrical properties: good charge transport capabilities, excellent electrical properties, inherent softness, and good mechanical properties.

There are two types of conductive used in SCI: metal-based and non-metal based. The non-metal based are divided into two, which are carbon-based and conducting polymer. Figure 2.1 shows the classification of conductive filler with examples.

Figure 2.1: Classification of conductive filler with example (Choi et al., 2019)

2.3.1 Metal-Based

Metal-based nanomaterial is widely used as a conductive filler for SCI. It is because it has highly conductive and mechanical flexibility, such as Silver, Gold, and Copper. Conversely, it can be classified into three classes which are nanoparticles (0D), nanowires (1D), and nanoflakes (2D). Figure 2.2 shows the SEM images of 0D, 1D and 2D metal-based nanomaterials.

Figure 2.2: SEM images of 0D, 1D and 2D metal-based nanomaterial (D. C. Kim et al., 2020)

Among the three-dimensional metal-based nanomaterials, nanowires (1D) are commonly used as conductive fillers in SCI since they have the highest electrical conductivity compared to 0D and 2D metal-based materials. Examples of metal-based nanowires are silver nanowires (AgNWs), copper nanowires (CuNWs) and gold nanowires (AuNWs). According to (Choi et al., 2019), all the functional nanomaterial and polymers with 1D long chain structures can form a junction between the adjacent filler. Besides, it can provide a high level of conductivity with a small volume of fillers. Therefore, it shows that the 1D shape of the material can prevent the issue of increased loading of fillers in SCI.

The AgNWs and CuNWs are dynamically used to develop stretchable conductive composites such as flexible transparent conductive films, optoelectronic devices and molecular electronics. Due to their high intrinsic electrical conductivities, facile synthesis