

EVALUATION OF MECHANICAL PROPERTIES IN THERMOPLASTIC POLYMER NATURAL RUBBER FILLED WITH HYBRID FILLERS

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

by

AZAM SHAH BIN AHMAD B051710177 960604-01-5237

FACULTY OF MANUFACTURING ENGINEERING 2021

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: EVALUATION OF MECHANICAL PROPERTIES IN THERMOPLASTIC POLYMER NATURAL RUBBER FILLED WITH HYBRID FILLERS

Sesi Pengajian: 2020/2021 Semester 2

Saya AZAM SHAH BIN AHMAD (960604-01-5237)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT

(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972) LINIV

TERHAD

(Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK ŢERHAD

Alamat Tetap: No 19, Jln Aliff Harmoni 6/10, Taman Damansara Aliff 81200 Johor Bahru,

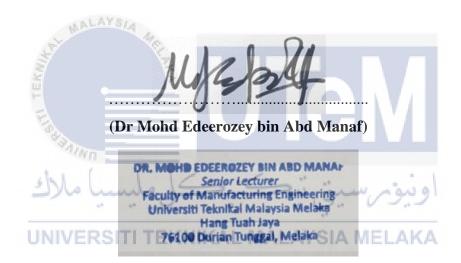
Johor Darul Takzim Tarikh: 15th September 2021 Disahkan oleh:

Cop Rasmi:

DR. MOHD EDEEROZEY BIN ABD MANAH Senior Lecturer Faculty of Manufacturing Engineering Universiti Teknikal Malaysia Melaka Hang Tuah Jaya 76109 Durian Tunggal, Melaka

Tarikh: 15th September 2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.


DECLARATION

I hereby, declared this report entitled "Evaluation of Mechanical Properties in Thermoplastic Polymer Natural Rubber Filled With Hybrid Fillers" is the result of my own research except as cited in references.

Signature Author's Name : AZAM SHAH BIN AHMAD : 15th September 2021 Date UNIVERSITI TEKNIKAL MALAYSIA MELAKA

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow:

ABSTRAK

Penggunaan barangan elektronik yang meningkat masa kini telah menyebabkan berlakunya satu pencemaran baru iaitu gangguan frekuensi radio atau gangguan elektromagnetik yang boleh menyebabkan gangguan pada alatan elektronik dan juga komponen dalamannya. Perkara ini berlaku dalam semua sektor termasuk industri, tentera, komersial dan sektor pengguna. Oleh itu, penggunaan pelindung elektromagnetik diperlukan bagi mencegah pencemaran ini daripada berlaku. Pengisi tambahan nano yang akan digunakan dalam kajian ini adalah nanotiub karbon (CNT) dan nanoplatelet grafen (GNP). Bahan-bahan ini akan dicampur ke dalam gabungan karbon hitam (CB) bagi mengkaji bagaimana kesan hidbridisasi ke atas tingkah laku polipropelina (PP) dan getah asli (NR) termoplastik elastomer. PP/NR pada 75/25 dijangka mempunyai kekuatan impak yang lebih tinggi tetapi mempunyai kekuatan tegangan, modulus keanjalan dan kekerasan yang lebih rendah berbanding PP asli sahaja. PP/NR pada 75/25 bersama 30 phr karbon hitam dan 1 phr CNT dan GNP. Berdasarkan tinjauan kritikal, fokus utama adalah pada sifat mekanikal dan fizikal sesebuah komposit. Terdapat dua jenis gabungan hibrid pengisi nano yang digunakan iaitu CB/CNT dan CB/GNP. Berdasarkan keputusan yang beralasan, PP/NR yang berhibrid pengisi nano CB/CNT mempunyai kekuatan tegangan yang sama seperti CB/GNP, modulus kenjalan yang lebih baik dan kekuatan impak yang lebih baik berbanding CB/GNP. Sementara itu, CB/GNP mempunyai kekerasan yang lebih baik. Konklusi ini disokong oleh analisis mikroskop electron pengimbas (SEM) dan difraksi sinar-x (XRD)

ABSTRACT

Growth in electronic devices nowadays has created a new form of pollution which is radio frequency interference (RFI) or electromagnetic interference (EMI) that can cause equipment to malfunction and cause interference towards the components. This is applicable in all sectors such as industrial, military, commercial and consumer sectors. Therefore, the usage of EMI shielding is needed to prevent this pollution from occurring is needed. The nanofillers that is used in this study are graphene nanoplatelet (GNP) and carbon nanotube (CNT). They will be employed in combination with carbon black to evaluate how the hybridization affects the properties of PP/NR thermoplastic elastomers. PP/NR of 75/25 is predicted to have better impact strength but have lower tensile, Young's modulus and hardness compared to pure PP. PP/NR composition is at 75/25 with 30 phr of carbon black and 1 phr of CNT and GNP. In the evaluation based on critical review, the main focus is the mechanical and physical properties of the composites. There are two different pair of hybrid fillers which is CB/CNT and CB/GNP. In the postulated result, PP/NR with hybrid fillers of CB/CNT has the same tensile strength as CB/GNP blend, better Young's modulus, and better impact strength compared to CB/GNP. Meanwhile CB/GNP has better hardness. The conclusion is supported by the scanning electron microscopy and X-Ray Diffraction analysis.

DEDICATION

Only

my beloved father, Ahmad bin Daud

my appreciated mother, Afizah binti Ahmad

my adored brothers, Muhammad Haziq and Izzat Harith

my dearest best friends

for giving me moral support, financial support, cooperation, encouragement and also

understanding

Thank You So Much & Love You All Forever

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ACKNOWLEDGEMENT

Alhamdulillah, thanks to ALLAH the Almighty for giving me the opportunity to complete this final year project successfully. Two semesters have been allocated to me to complete this project under the supervision of my keen supervisor, Dr. Mohd Edeerozey Bin Abd Manaf. I would like to express my highest gratitude to him for all his guidance and continuous supports throughout the project period. He has been a very supportive supervisor and willing to share his knowledge, in order to ensure that I could learn and understand every single thing in this project. My gratitude is also extended to my parents and family who have been giving me endless moral support. Last but not least my appreciation to all my friends, thanks for all the supports and motivations that help me to complete this project with a successful ending. Not to forget to those who directly or indirectly involved in giving me the opportunity to learn and complete this project.

TABLE OF CONTENT

Abstrak	i	
Abstract	ii	
Dedication	iii	
Acknowledgement	iv	
Table of Contents	v	
List of Tables	ix	
List of Figures	X	
List of Abbreviation		
List of Symbols		
اونىۋىرسىتى تىكنىكل ملىسىا ملاك		
CHAPTER 1: INTRODUCTION UNIVERSITI TEKNIKAL MALAYSIA MELAKA		
1.1 Background of Study	1	
1.2 Problem Statement	3	
1.3 Objectives	4	
1.4 Scope	5	
1.5 Significant of Study	5	
1.6 Organization of Report	6	

CHAPTER 2: LITERATURE REVIEW

2.1	Introd	uction	7
2.2	Electro	omagnetic Interference (EMI) Shielding	7
	2.2.1	EMI Shielding Materials	9

	2.2.2	Polymer Composite as EMI Shielding Material			
2.3	Classification of Composite				
	2.3.1	Basic Element of Composite	13		
		2.3.1.1 Matrix	13		
		2.3.1.2 Reinforcement	13		
2.4	Filler		14		
	2.4.1	Conventional Fillers	15		
	2.4.2	Types of Conductive Fillers	15		
	2.4.3	Functionalization of Conductive Filler	16		
	2.4.4	Advantages of Functionalization	17		
2.5	Graphene Nanoplatelets				
	2.5.1	Properties of Graphene Nanoplatelets	20		
		2.5.1.1 Density of Graphene Nanoplatelets	20		
		2.5.1.2 Optical Transparency of Graphene Nanoplatelets	21		
		2.5.1.3 Thermal Conductivity of Graphene Nanoplatelets	21		
		2.5.1.4 Electrical Conductivity of Graphene Nanoplatelets	22		
	2.5.2	Application of Graphene Nanoplatelets	22		
2.6	Thermoplastics 2				
2.7	Rubbe		24		
	2.7.1	Natural Rubber	25		
	_				

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 3: METHODOLOGY

3.1	Introduction		
3.2	Process Flowchart		
3.3	Mater	als	28
	3.3.1	Polypropylene	28
	3.3.2	Natural Rubber	29
	3.3.3	Carbon Black	30
	3.3.4	Graphene Nanoplatelets	31
	3.3.5	Carbon Nanotubes	32
3.4	Sampl	e Preparation	33
	3.4.1	Formulation	33

	3.4.2	Sonication	33			
	3.4.3	Melt Mixing				
	3.4.4	4 Hot Compression				
	3.4.5	Sample Shaping	36			
		3.4.5.1 Sample Shaping for Tensile Test	36			
3.5	Chara	cterization and Testing	37			
	3.5.1	Particle Size Analysis	37			
	3.5.2	Mechanical Testing	38			
		3.5.2.1 Tensile Test and Young's Modulus	39			
		3.5.2.2 Hardness Test	39			
		3.5.2.3 Impact Test	40			
	3.5.3	X-Ray Diffraction	41			
	3.5.4	Swelling Test	42			
3.6	Morph	nological Analysis	43			
CHA	3.6.1 PTER 4	Scanning Electron Microscopy	43			
4.1	Introd	uction	45			
4.2	Charae	cterisation of Fillers	45			
	4.2.1	Particle Size Analysis (PSA) _ MALAYSIA MELAKA	45			
	4.2.2	Scanning Electron Microscopy (SEM)	47			
	4.2.3	X-Ray Diffraction (XRD)	49			
4.3	Mecha	anical Properties of Composite	52			
	4.3.1	Tensile Test	52			
	4.3.2	Young's Modulus	56			
	4.3.3	Hardness Test	60			
	4.3.4	Impact Test	64			
4.4	Swelli	ng Test	68			
4.5	Morph	nological Analysis	72			
	4.5.1	Scanning Electron Microscopy (Composite)	72			

CHAPTER 5: CONCLUSION AND RECOMMENDATION

5.1	Conclusion	75
5.2	Recommendation	77
5.3	Sustainable Design and Development	77
5.4	Complexity	78
5.5	Life Long Learning and Basic Entrepreneurship	78

REFERENCES

LIST OF TABLES

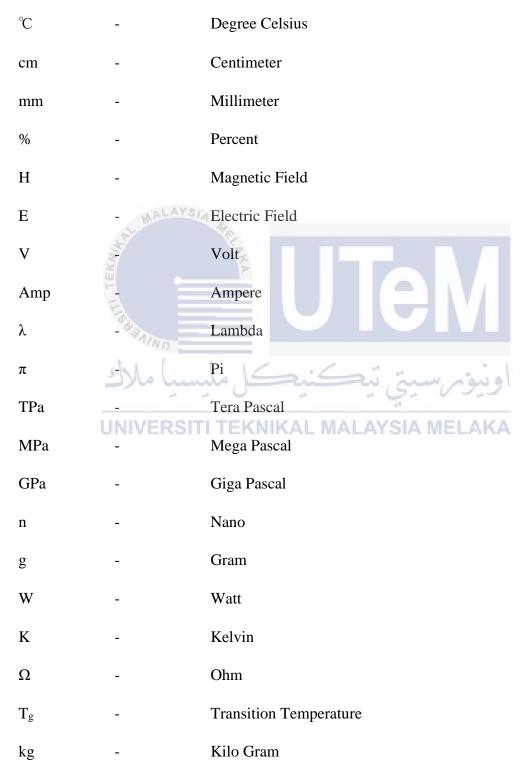
2.1	Electrical Conductivity of Metals	10
2.2	Classification of Thermoplastics	24
3.1	Properties of Polypropylene	28
3.2	Properties of Natural Rubber	29
3.3	Properties of Graphene Nanoplatelets	31
3.4	Properties of Carbon Nanotubes	32
3.5	Raw Material Formulation and Compositions	33
3.6	Number of Test Run	38
	اونيومرسيتي تيكنيكل مليسيا ملاك	
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

1.1	Shielded and Non-Shielded Cable from EMI	2
2.1	Electromagnetic Radiation Vector	8
2.2	The Classification of Composites	12
2.3	Scanning Probe Microscopy of Graphene Honeycomb Lattice Pattern	19
2.4	Type of Graphene-Based Polymer Composites	20
2.5	Photograph of Graphene in Transmitted Light	21
2.6	Application of Graphene-Based Polymer Composites	23
3.1	Research Methodology Flow Chart	27
3.2	Polypropylene Beads	29
3.3	Natural Rubber	29
3.4	Structure of Carbon Black	30
3.5	Carbon Black N220	30
3.6	Chemical Structure of Carbon Black	31
3.7	Carbon Nanotube Powder	32
3.8	Ultra-Sonication Probe	34
3.9	Internal Mixer	35
3.10	Hydraulic Press Machine	36
3.11	Hydraulic Press	37

3.12	Dumb Bell Shape Puncher		
3.13	Dumb Bell Shape	37	
3.14	Particle Size Analyzer	38	
3.15	Universal Tensile Machine	39	
3.16	Shore A Durometer	40	
3.17	Sample for Hardness Test	40	
3.18	Charpy Test	41	
3.19	X-Ray Diffraction Machine	41	
3.20	Dip Sample in Toluene	42	
3.21	Toluene Solution	42	
3.22	Coated sample	44	
3.23	Scanning Electron Microscopy	44	
4.1	Particle Size Distribution for Carbon Black (CB)	46	
4.2	Particle Size Distribution for Carbon Nanotube (CNT) 40		
4.3	Particle Size Distribution for Graphene Nanoplatelets (GNP)	47	
4.4	SEM for CB particle; (a) 1000x; (b) 3000x	47	
4.5	SEM for CNT particle; (a) 1000x; (b) 3000x	48	
4.6	SEM for GNP particle; (a) 1000x; (b) 3000x	48	
4.7	X-Ray Diffraction (XRD) of PP/NR	49	
4.8	X-Ray Diffraction of Carbon Black	50	
4.9	X-Ray Diffraction for CNT	50	
4.10	X-Ray Diffraction of GNP	51	
4.11	Predicted Tensile Test for PP/NR	52	

4.12	Predicted Tensile Test with additional of CB	53	
4.13	Predicted Tensile Test with additional of CNT		
4.14	Predicted Tensile Test for additional of GNP		
4.15	Predicted Young's Modulus of PP/NR	56	
4.16	Predicted Young's Modulus with Additional of CB	57	
4.17	Predicted Young's Modulus with Additional of CNT	58	
4.18	Predicted Young's Modulus with Additional of GNP	59	
4.19	Prediction of Hardness of PP/NR	60	
4.20	Prediction of Hardness with Additional of Carbon Black	61	
4.21	Prediction of Hardness with additional of CNT	62	
4.22	Prediction of Hardness with additional of GNP	63	
4.23	Prediction of Impact Strength of PP/NR	64	
4.24	Predicted Impact Strength with Additional of CB	65	
4.25	Predicted Impact Strength with Additional of CNT	66	
4.26	Predicted Impact Strength with Additional of GNP	67	
4.27	Predicted Swelling Ratio of PP/NR	68	
4.28	Prediction of Swelling Ratio with Additional of CB	69	
4.29	Prediction of Swelling Ratio with additional of CNT	70	
4.30	Prediction of Swelling Ratio with Additional of GNP	71	
4.31	Scanning electron micrograph of (a) unfilled PP (b) 70/30 PP/ENR and (c) 40/60 PP/ENR at magnification of 500x (d) 40/60 PP/ENR at magnification of 5000x	72	
4.32	Morphology of natural rubber compound with filler CB (a) non filler, (b) filled CB	73	


- 4.33 SEM Micrograph of TPNR/MWNTs of 1%
- 4.34 SEM Micrograph of (a) LLDPE/RR (75/25) with no filler(b) 3 wt% of GNPs

LIST OF ABBREVIATIONS

LIST OF SYMBOLS

μ	-	Micro
ASTM	-	American Society for Testing and Materials
min	-	Minute
Q	-	Mass of Toluene Absorbed in each Rubber Compound
phr	-	Parts Per Hundred Rubber

CHAPTER 1

INTRODUCTION

This chapter contains the background, problem statements, objectives and scope of the study, as well as the organization of the report.

1.1. Background of Study

Electromagnetic interference is the unwanted noise that occurs when a supersensitive electronic device receives an electromagnetic radiation emitted from the usage of electronic devices such as laptop, microwaves, speaker and phones too. This noise is undesirable as it will affect the overall performance of the electronic devices. A striking example of that is the dysfunction of pacemakers when in the vicinity of certain electronic device. The unnecessary EMI is an electromagnetic disturbance that affects the unit, transmission channel, or system performance. It is also called as radio frequency interference (RFI) when the interference is in the radio frequency spectrum. This problem occurs in operation of any electrical devices when the proximity of the electromagnetic field to the spectrum of radio frequencies derived from other electronic devices.

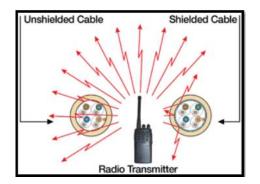


Figure 1.1: Shielded and non-shielded cable from EMI.

Furthermore, interference also frequently happened to mobile phone, aircraft and medication too. Electromagnetic interference (EMI) occurring to medical devices has been widely established (Klein AA, 2003), but its clinical consequences remain controversial (Myerson SG, 2003). The electromagnetic interference (EMI) also occurs when making a call when noise from the cellphone handshaking with the communication tower. In military sector, EMI can cause jamming of enemy radio tower network to disable their communication which is considered as a useful EMI. The EMI can cause disturbance of communication between control tower and their aircraft.

This will also increase the demand for injection moldable thermoplastic for the housing of the component. The features and specifications require improvement, making them lighter, smaller and better at preventing electromagnetic interference (EMI). The fact that plastic is not able to replace metal as a conductive material due to the electrical conductivity, one application where conductivity requirement is not as severe as in electromagnetic interference (EMI) shielding (Grady, 2011). To prevent system failure, most electronic gadgets need to be shielded from electromagnetic interference (EMI). Due to its lightweight, low cost and ease of process, the housing of the unit is typically made of plastic. However, most of the plastic cannot prevent electromagnetic interference (EMI) from occurring. As a result, plastic housing, especially in the electronics and communications industries, has posed some serious problems. Since communication devices have become increasingly sensitive, dense, and abundant, EMI shielding has become one of the most important concerns in optical-electronic packaging.

On top of that, the main solution to this particular problem is the electrical conductive properties in plastics are required to ensure adequate EMI shielding to enhance the EMI shielding for the electronic housing of a device. The current available techniques for EMI shielding are including conductive sprays, conductive fillers, electro-plating or electrolysis-plating on housing surface, modification of electrical properties during molding stage and other metallization process (M. Murt, 1990). Among these methods, the most popular for EMI shielding is compound plastics with discontinuous electronic conductive fillers, such as metal particles, metal flakes, stainless fiber, graphitized carbon particles, graphitized carbon fibers, and metal-coated glass and carbon fibers (J. Bell et al, 1992).

Conductive polymer is recommended which small volume fractions of electrically conductive filler are added into a non-conducting polymer matrix such as engineering polymers through melt blending process (Jou et al, 2001). Carbon black/fibres was one of the first materials used for the purpose of conductive filler. Since carbon black is a semiconductor, the typical resistivity of carbon black is in range of 20-0.5 Ω cm and when used as a filler in polymer matrix composites it endowed the compound with conductive properties (Guo et. al.,2013). So, there is other material that can be used as conductive filler such as carbon nanotube and graphene nanoplatelets.

اونيۈمرسيتي تيڪنيڪل مليسيا ملاك

1.2. Problem Statement TEKNIKAL MALAYSIA MELAKA

In modern era nowadays, the market for electronic devices has been growing rapidly in various fields, such as military, entertainment, industrial and medical. Electromagnetic interference (EMI) or radio frequency interference (RFI) that is not really necessary can cause plenty of issues, such as system interference and failure, as a result of this situation. Since EMI usually occur in daily routine such as noise on microphones from the cell phones, distortion of television broadcast reception and interference of radio frequency. Most of electronic gadget must be protected against these EMI and electrostatic discharge (ESD) especially in sectors involved. Thus, development of EMI shielding using thermoplastic elastomer with nanofillers as housing component is introduced in order to prevent EMI from occurring. Besides its lightweight and easy to shape characteristics, the usage of elastomers such as polypropylene integrated with nanofillers can reduce and eliminate seam and has better properties than normal metal EMI shielding material that is heavy and expose to corrosion. In order to become EMI shielding materials, thermoplastic elastomer added with various conductive filler such as carbon black, carbon nanotube and graphene nanoplatelets which allows current flow and can both absorb and reflect EMI.

Generally, thermoplastics elastomer is not a good electrically conductive material. Metal is the most common and suitable material for EMI shielding which metal has a very high electrical conductivity (106 Siemens/cm). However, the disadvantages of the usage of metal are the weight of the metal itself which is heavy will increase the weight of the whole product compared to plastics. Other than that, there is also a possibility of corrosion of metal could occur in a certain amount of time. This can be solved by providing metal coating but it will be costly. The electrical conductivity can be improved with additional carbon black, carbon nanotube and graphene nanoplatelets. Therefore, the main objective of the research is to study the impact of additional nanofillers on the thermoplastic elastomer to be used as EMI shielding.

اونيونر سيتي تيڪنيڪل مليسيا ملاك 1.3. Objectives UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The overall objective of this study is to evaluate the mechanical properties in thermoplastic polymer natural rubber filled with nanofillers such as carbon black, carbon nanotubes and graphene nanoplatelets. There are several objectives listed below that need to be achieved in this study:

- To postulate the effect of NR content to the physical and mechanical properties of PP/NR thermoplastic elastomer.
- **2.** To predict the impact of filler hybridization on the physical and mechanical properties of the thermoplastic elastomer.
- **3.** To correlate the morphological properties of the nanofiller filled PP/NR composites with their mechanical behavior.