DESIGN AND EVALUATION OF ERGONOMIC GRIP HANDLE FOR MANUAL CARRYING OF LONG METAL BAR

DESIGN AND EVALUATION OF ERGONOMIC GRIP HANDLE FOR MANUAL CARRYING OF LONG METAL BAR

LIEW JEE SENG B051710100 960922-13-5437

FACULTY OF MANUFACTURING ENGINEERING 2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN AND EVALUATION OF ERGONOMIC GRIP HANDLE FOR MANUAL CARRYING OF LONG METAL BAR

Sesi Pengajian: 2020/2021 Semester 2

Saya LIEW JEE SENG (960922-13-5437)

mengaku membenarkan Laporan Projek Sarjana Muda (PSM) ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. *Sila tandakan ($\sqrt{}$)

SULIT(Mengandungi maklumat yang berdarjah keselamatan atau kepentingan
Malaysiasebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/ badan di mana penyelidikan dijalankan)

TIDAK TERHAD

TFU)	TFF SFNG
LILW	ILL SLIVG

Alamat Tetap: <u>No 23, Pasar Siburan Batu 17,</u>

Jalan Kuching Serian,

_94200, Kuching, Sarawak._____

Tarikh: ____15/07/2021______

Disahkan oleh:

DR. ISA BIN HALIM Lacture Engineering Universit Ternina Malaysia Melaka

Cop Rasmi:

Tarikh: ____<u>15/07/2021</u>

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini perlu dikelaskan sebagai SULIT atau TERHAD.

DECLARATION

I hereby, declared this report entitled "Design and Evaluation of Ergonomic Grip Handle for Manual Carrying of Long Metal Bar" is the result of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of Universiti Teknikal Malaysia Melaka as a partial fulfilment of the requirement for Degree of Manufacturing Engineering (Hons). The member of the supervisory committee is as follow:

ABSTRAK

Aktiviti pengendalian bahan secara manual biasanya dilakukan oleh pekerja di pelbagai industri seperti pembinaan, pembuatan, pertanian, dan automotif. Biasanya, pengendalian bahan manual seperti pemindahan logam panjang akan dilakukan secara manual oleh dua pekerja kerana kos buruh yang rendah. Sekiranya permintaan logam panjang tinggi, pekerja mungkin mengalami 'gangguan otot-berangka disebabkan kerja' kerana proses pemindahan yang berulang-ulang. Dalam keadaan terburuk, logam panjang bergovang dan beravun semasa proses permindahan. Oleh itu, ini akan menyebabkan pergerakan tidak stabil pada logam pajang semasa proses pemindahan dan mempengaruhi kekuatan genggaman tangan pekerja. Objektif kajian ini bertujuan menentukan keperluan reka bentuk dan kehendak pengguna bagi pemegang cengkaman ergonomik untuk membawa bar logam panjang secara manual, merancang pemegang cengkaman ergonomik berdasarkan keperluan rekabentuk dan kehendak pengguna serta membuat dan menilai prestasi prototaip ketika membawa bar logam panjang secara manual. Terdapat 50 peserta terlibat dalam pengukuran data antropometrik untuk merancang pemegang cengkaman ergonomik. Tinjauan soal selidik dilakukan untuk menentukan keperluan pengguna. Setelah itu, "Quality Function Deployment" diaplikasikan untuk menganalisis hubungan antara keperluan pengguna dan spesifikasi kejuruteraan pemegang cengkaman. Beberapa lakaran dilukis berdasarkan hasil yang diperoleh dari QFD. "Pugh Conceptual Selection" digunakan untuk memilih konsep yang terbaik bagi menghasilkan lukisan kejuruteraan dan prototaip. "System Usability Scale" digunakan untuk menilai kebolehgunaan prototaip. Hasil pengujian kebolehgunaan adalah 77.08 dari 100 telah ditakrifkan prototaip sebagai "baik". Tambahan pula, "Carry Analysis" disimulasikan dengan megggunakan perisian "CATIA" dan hasil membawa bar logam panjang menggunakan tangan berbanding menggunakan prototaip ialah 231.831 N dan 283.718 N. Oleh itu, membawa logam panjang dengan pemegang cengkaman ergonomik tidak melebihi jarak menegak tangan dan disimpulkan prototaip dapat membantu pengguna atau pekerja semasa proses pemindahan logam panjang secara manual serta memenuhi keperluan ergonomik.

ABSTRACT

Manual materials handling (MMH) activities are typically performed by workers in various industries such as construction, manufacturing, agricultural, and automotive. Usually, MMH associated with transferring of long metal bar will be carried out manually by two workers due to relative low labour cost. If the demand for metal bar is high, worker might be suffered from the Work-Related Musculoskeletal Disorder due to repetitive transferring process. In worst case scenario, long metal bar may be wobble and swing during the carrying process. Hence, it may lead to unstable motion on the metal bar while transferring process and affect the hand grip strength of workers. The objectives of this study were to identify the design requirements and user's requirements of an ergonomic grip handle for manual carrying long metal bar, design an ergonomic grip handle based on the design requirements and user's requirements as well as to fabricate and evaluate the performance of the grip handle prototype in manual carrying of long metal bar. There were 50 participants involved in anthropometric data measurement for designing the grip handle. A questionnaire survey was performed to determine users' requirements. Subsequently, Quality Function Deployment (QFD) was applied to analyze the correlation between users' requirements and engineering specification of the grip handle. Few sketches were created based on the result obtained from the QFD. Pugh Conceptual Selection was developed to choose the best design. The best selected conceptual design was converted into engineering drawing and a prototype was fabricated. The System Usability Scale was applied to evaluate the usability of the prototype. The result on usability testing is 77.08 out of 100 which defined the prototype as "Good". Additionally, carrying analysis was simulated by using CATIA software, the results of carrying a long metal bar using bare hand versus using the prototype are 231.831 N and 283.718 N, respectively. Hence, carrying long metal bar with the ergonomic grip handle will not exceed the standard of hand vertical distance. Therefore, this study concluded that the grip handle prototype was able to assist users or workers to perform manual carrying of long metal bar that fulfil to ergonomics requirements.

DEDICATION

Special dedication to my beloved family and friends for giving me support, encouragement, and understandings Thank You So Much & Love You All Forever

ACKNOWLEDGEMENT

First of all, I would like to thank the committee of Bachelor Degree Project, FYP UTeM for conducting and coordinating this project for all final year students. It provides me the opportunity to learn, understand and implement the syllabus and knowledge gained throughout the four years of study. I would also like to thank my supervisor, Dr. Isa bin Halim who guided me patiently throughout the project and given me advice and ideas to improve my project. With the help of my supervisor, Dr. Isa, my Final Year Project would not go this well and smoothly. I would also like to convey my thanks to all of the assistant engineers and students that I had asked for assistance, because they always being patient in giving me advices and guidance that helps me a lot throughout my data collection and fabrication of prototype. Last but not least, a special appreciation to my family as they always show their greatest support in every way and my friends who always give me supports and assistance whenever I need them.

TABLE OF CONTENT

ABSTRAK	Ι
ABSTRACT	II
DEDICATION	III
ACKNOWLEDGEMENT	IV
TABLE OF CONTENT	V
	īv
LIST OF TABLES	IA
LIST OF FIGURES	Х
LIST OF ABBREVIATIONS	XIII
LIST OF SYMBOLS	XIV
	1
1.1 Background of Study	1
1.2 Problem Statement	3
1.2.1 Safety and ergonomic issues on manual transferring the long metal bar	5
1.2.2 Load is wobbling or swinging	7
1.3 Objectives DSITI TEKNIKAL MALAYSIA MELAKA	7
1.4 Scope of Study	8
1.5 Significance of Study	8
1.6 Organization of The Report	9
1.7 SUMMARY	9
2. CHAPTER 2	11
2.1 Ergonomics	11
2.1.1 Manual material handling	12
2.1.2 Hand tool	12
2.2 Hand Tool Design Requirement	13
2.2.1 Ergonomic design of hand tool	13
2.2.2 Handle diamter	15
2.2.3 Handle length	16
2.2.4 Handle shape	16
2.2.5 Tool weight	16

2.3 Design on Ergonomic Grip Handle	17
2.3.1 Survey	17
2.3.2 Quality function deployment (QFD)	17
2.3.3 Sketching	19
2.2.4 Pugh concept selection	19
2.2.5 Engineering drawing	20
2.2.6 Finite element analysis (FEA)	20
2.4 Evaluation of Effectiveness Prototype	22
2.4.1 Usability of prototype	22
2.4.2 Measurement muscle activity on prototype	23
2.4.3 Contact force on palm	24
2.4.4 Time study	24
2.4.5 Carry analysis	25
2.5 Differences Between Previous Studies and Current Study	26
2.7 Summary	27
3. CHAPTER 3	28
3.1 Demographic and Anthropometric Data Collection	28
3.1.1 Participants	28
3.1.2 Equipment	29
3.1.3 Confirmation of sample size	30
3.1.4 Data collection via online survey form	31
3.1.5 Data collection procedure	31
3.1.6 Statistical analysis of data IKAL MALAYSIA MELAKA	33
3.1.6.1 Descriptive statistical analysis	33
3.2 Design of Ergonomic Grip Handle	33
3.2.1 Survey	33
3.2.2 Quality function deployment (QFD)	34
3.2.3 Sketching on conceptual design	35
3.2.4 Pugh concept selection	36
3.2.5 CAD drawing	37
3.2.6 Material selection	38
3.2.6.1 Handle	38
3.2.6.2 Linkage	39
3.2.7 Finite element analysis (FEA)	40
3.2.8 Wobbling measurement	41
3.3 Fabrication of Prototype	41
3.3.1 Handle	42
	vi

3.3.1.1 Cutting	42
3.3.1.2 Bending	42
3.3.1.3 Welding	42
3.3.1.4 Drilling	43
3.3.2 Linkage	43
3.3.3 Structure tree	44
3.3.4 Bill of material	45
3.4 Evaluation on Prototype	47
3.4.1 Usability on prototype	47
3.4.2 Carry analysis	48
3.5 Quality Analysis	50
3.6 Summary	50
4. CHAPTER 4	52
4.1 Participants' Demographic and Anthropometric	52
4.1.1 Demographic data of participants	52
4.1.2 Percentile of the anthropometric data with 5 th , 50 th and 95 th	54
4.1.2.1 Percentile of the anthropometric data male participants	54
4.1.2.2 Percentile of the anthropometric data female participants	55
4.1.3 Grip handle dimensional based on the percentile of anthropometric data	56
4.1.3.1 Knuckle height until middle fingertip (handle length)	56
4.1.3.2 Hand breadth (handle width)	57
4.1.3.3 Grip breadth inside diameter and thumb length (handle shape and diamet	er) 57
4.1.3.4 Knuckle height (grip handle length) ALAYSIA MELAKA	58
4.2 Grip Handle Design	59
4.2.1 Quality Function deployment	59
4.2.2 Conceptual design	64
4.2.3 Pugh concept selection	65
4.2.3.1 Concept screening	66
4.2.3.2 Concept scoring	67
4.2.4 Ergonomic grip handle prototype	67
4.2.5 Finite element analysis (FEA)	69
4.2.5.1 Von misses' stress (equivalent stress)	69
4.2.5.2 Deflection (total deformation)	70
4.2.5.3 Safety factor	71
4.2.6 Wobbling measurement	72
4.3 Evaluation on Prototype	73
4.3.1 Usability on prototype	73
	vii
	• **

4.3.	2 Carry analysis	76
5. CH4	APTER 5	79
5.1	Design Ergonomic Grip Handle Based on the Anthropometric Data	79
5.2	Ergonomic Design of Grip Handle	80
5.3	Evaluation on the Grip Handle Prototype	80
5.4	Recommendations and Suggestion	81
5.5	Sustainable Design and Development	82
5.6	Complexity	83
5.6	Lifelong Learning	83
6. REF	FERANCES	84
7. APF	PENDIXES	89
Appen	dix A	89
Appen	dix B	91
Appen	dix C	98
	مريد بي مريد	

LIST OF TABLES

TABLE 2.1: PUGH CONCEPT EVALUATION ON COCONUT DEHUSKING MACHINE	20
TABLE 2.2: DIFFERENCES BETWEEN THE PREVIOUS STUDIES AND THE CURRENT STUDY	27
TABLE 3.1: TRANSLATING OF HANDLE DESIGN	39
TABLE 3.2: MATERIAL PROPERTIES (HANDLE DESIGN)	39
TABLE 3.3: MATERIAL RANKING (HANDLE DESIGN)	39
TABLE 3.4: TRANSLATING OF LINKAGE DESIGN	40
TABLE 3.5: MATERIAL PROPERTIES (LINKAGE DESIGN)	40
TABLE 3.6: MATERIAL RANKING (LINKAGE DESIGN)	40
TABLE 3.7: B ILL OF MATERIAL OF THE GRIP HANDLE	45
TABLE 4.1 : DESCRIPTIVE STATISTICS ANALYSIS OF HEIGHT AND WEIGHT OF MALE	53
TABLE 4.2: DESCRIPTIVE STATISTICS ANALYSIS OF HEIGHT AND WEIGHT OF FEMALE	53
TABLE 4.3: THE PERCENTILES' VALUES OF MALE ACCORDING TO THE ANTHROPOMETRIC DATA	55
TABLE 4.4 THE PERCENTILES' VALUES OF FEMALE ACCORDING TO THE ANTHROPOMETRIC DATA	56
TABLE 4.5: RELATIONSHIP BETWEEN THE USER'S REQUIREMENTS AND ENGINEERING	
SPECIFICATION	61
TABLE 4.6: CONCEPT SCREENING	66
TABLE 4.7: CONCEPT SCORING	67
TABLE 4.8: SCORE OF SUS QUESTIONS FROM PARTICIPANTS	74
TABLE 4.9: EVALUATION ON THE USABILITY OF THE PROTOTYPE	75
TABLE 4.10: SCORE RESULT ON SUS FROM PARTICIPANTS	75

LIST OF FIGURES

FIGURE 1.1: MANUAL HANDLING OBJECT	2
FIGURE 1.2: MANUAL HANDLING LONG METAL BAR	4
FIGURE 1.3: TREND OF OVER – EXERTION IN LIFTING OBJECT	4
FIGURE 1.4: WORKER IS UNABLE TO GRIP THE METAL BAR FIRMLY WITHOUT A PROPER GRIP	
HANDLE	5
FIGURE 1.5: BRUISED MUSCLES	6
FIGURE 1.6: WORK-RELATED MUSCULOSKELETAL DISORDER	6
FIGURE 1.7: OBJECT WOBBLING DUE TO THE LONG GRIPPING DISTANCE BETWEEN THE WORKER	rs 7
FIGURE 1.8: ORGANIZATION OF STUDY	9
FIGURE 2.1: DESCRIPTIVE STATISTICS FOR MEN' HANDS	14
FIGURE 2.2: DESCRIPTIVE STATISTICS FOR WOMEN' HANDS	14
FIGURE 2.3: TOTAL MEAN VALUE TABLE FOR MEN' HAND SHAPE	15
FIGURE 2.4: TOTAL MEAN VALUE TABLE FOR WOMEN' HAND SHAPE	15
FIGURE 2.5: HOQ OF CUTTING BOARD SETS	18
FIGURE 2.6: FEA ON ALUMINIUM ALLOY	21
FIGURE 2.7: FEA ON CAST CARBON STEEL	21
FIGURE 2.8: FEA ON PLAIN IRON	22
FIGURE 2.9: SYSTEM USABILITY SCALE	23
FIGURE 2.10: CONTACT FORCE BETWEEN GRIP FORCE AND PUSH FORCE	24
FIGURE 2.11: POSTURE CARRYING A CYLINDER	25
FIGURE 2.12: CARRY ANALYSIS RESULT BY MEN	26
FIGURE 3.1: MEASURING TAPE	29
FIGURE 3.2: HUMAN ANTHROPOMETRIC PARAMETERS	30
FIGURE 3.3: SAMPLE SIZE CALCULATION	30
FIGURE 3.4: KNUCKLE UNTIL MIDDLE FINGER	32
FIGURE 3.5: HAND BREADTH	32
FIGURE 3.6: THUMB LENGTH	32
FIGURE 3.7: GRIP BREATH INSIDE DIAMETER	32
FIGURE 3.8: KNUCKLE HEIGHT (KNUCKLE TO FLOOR)	32
FIGURE 3.9: GOOGLE SURVEY FORM	34
FIGURE 3.10: TEMPLATE OF QUALITY FUNCTION DEPLOYMENT	35
FIGURE 3.11: INITIAL CONCEPTUAL DESIGN	36

FIGURE 3.12: TEMPLATE OF PUGH CONCEPT SELECTION	37
FIGURE 3.13: ERGONOMIC GRIP HANDLE DESIGN	38
FIGURE 3.14: THE CALCULATION OF THE WEIGHT OF THE LONG METAL BAR	41
FIGURE 3.15: BOMAR STG 230 DG BANDSAW	42
FIGURE 3.16 : CUTTING PROCESS	42
FIGURE 3.17: THE WELDING BETWEEN THE STAINLESS-STEEL HOLLOW AND FLAT BAR	43
FIGURE 3.18: GATE VERTICAL MILLING MACHINE	43
FIGURE 3.19: HAAS VOP-B CNC MILLING MACHINE	44
FIGURE 3.20: CNC MILLING PROCESS	44
FIGURE 3.21: PRODUCT STRUCTURE TREE OF THE GRIP HANDLE	45
FIGURE 3.22: TESTING OF USABILITY USING QUESTIONNAIRE FEEDBACK, ADAPTED FROM	THE SUS
	48
FIGURE 3.23: USABILITY INDICATOR TABLE	48
FIGURE 3.24: THE POSTURE CARRYING THE LONG METAL BAR WITH BARE HAND	49
FIGURE 3.25: THE POSTURE CARRYING THE LONG METAL BAR WITH GRIP HANDLE	49
FIGURE 4.1: GENDER OF PARTICIPANTS	53
FIGURE 4.2: PERCENTILE KNUCKLE UNTIL MIDDLE FINGERTIP	56
FIGURE 4.3: PERCENTILE HAND BREADTH	57
FIGURE 4.4: PERCENTILE GRIP BREADTH INSIDE DIAMETER	58
FIGURE 4.5: PERCENTILE THUMB LENGTH	58
FIGURE 4.6: PERCENTILE KNUCKLE HEIGHT	59
FIGURE 4.7: QFD FOR GRIP HANDLE DESIGN	60
FIGURE 4.8: GRIP HANDLE NOT FIT AND FIT TO THE KNUCKLE HEIGHT OF USER	62
FIGURE 4.9: MATERIAL USED TO FABRICATE THE PROTOTYPE	63
FIGURE 4.10: HANDLE SIZE FIT TO THE USER PALM HAND	63
FIGURE 4.11: CONCEPTUAL DESIGN 1	64
FIGURE 4.12: CONCEPTUAL DESIGN 2	64
FIGURE 4.13: CONCEPTUAL DESIGN 3	65
FIGURE 4.14: CONCEPTUAL DESIGN 4	65
FIGURE 4.15: ERGONOMIC GRIP HANDLE BY INVENTOR DRAWING SOFTWARE	68
FIGURE 4.16: ERGONOMIC GRIP HANDLE PROTOTY PE	68
FIGURE 4.17: VON MISSES' STRESS (EQUIVALENT STRESS)	70
FIGURE 4.18: DEFLECTION (TOTAL DEFORMATION)	71
FIGURE 4.19: SAFETY FACTOR	72
FIGURE 4.20: WOBBLING CONDITION (DEFLECTION)	73
FIGURE 4.21: INDICATOR OF SCORE SUS	76
FIGURE 4.22: CARRYING THE LONG METAL BAR WITH BARE HAND AND RESULT CARRY AN	ALYSIS 77

Figure 4.23: Carrying the long metal bar with grip handle and the result carry

ANALYSIS

78

LIST OF ABBREVIATIONS

CAD	- Computer-Aided Design				
EMG	-	- Electromyography			
FEA	-	- Finite Element Analysis			
FKP	-	Faculty of Manufacturing Engineering			
MMH	-	- Manual Material Handling			
MSD	- Musculoskeletal Disorder				
QFD	-	Quality Functional Deployment			
SOCSO	- Society Security Organisation Malaysia				
SUS	- System Usability Scale				
UTeM	- 16	Universiti Teknikal Malaysia Melaka			
WRMSD	T SOAT TERUITA	Work-Related Musculoskeletal Disorder			
	ملاك	ويؤم سيتى بيكنيكل مليسيا			

LIST OF SYMBOLS

mm	-	millimetre
cm	-	centimetre
kg	-	kilogram
m	-	meter
MPa	-	Megapascal
GPa	-	Gigapascal
Ν	-	Newton
MPa.mo.5	-	Megapascal square root meter

CHAPTER 1 INTRODUCTION

This chapter introduces the background of the study which is related to manual materials handling such as transferring the long metal bar. It has been recognized as one of the common tasks in manufacturing industries and construction sites. Besides, the problem statements of the study are the safety and ergonomic issues during the process of transferring the long metal bar. The objective of the study is to design and evaluate an ergonomic grip handle for manual transferring the long metal bar. The scope and significance of the study will be shown followed by a summary that summarizes the whole chapter.

1.1 Background of Study

Material handling is an invariable part of any manufacturing or service operation' (Rajesh, 2016). For instance, material handling tasks take place in almost all the field including manufacturing, construction, agriculture, workshop, hardware store, etc. Among the example above, material handling tasks is the most frequently occurred at manufacturing industries and construction sites such as transferring the long metal bar, steel plate, etc.

Manual material handling (MMH) can be defined as transfers an object or material either by lifting, lowering, carrying, pushing, or pulling. According to (Rajesh, 2016), Two out of every five workplace injuries reported to the Health and Safety Executive are due to manual handling. Hence, the manual handling handbook is very important to training the workers to follow the standard operating procedure while manual handling an object or material. Even though the safe manual handling method would not make people stronger or able to life a greater load, but it can provide the safe and standard procedure for manual

handling an object or material instead to prevent accidents and injuries happen. Figure 1.1 shows the manual handling object.

Figure 1.1: Manual handling object

The metal bar also knows as blank, slug, or billet which is a common material used for manufacturing industries and construction sites. There are several sizes of metal bars which are round, square, hexagon, etc. In manufacturing industries, the metal bars can be fabricated to become a part of the product while in construction sites it is used to develop good bond strengths with concrete on the building. In manufacturing industries, the long metal bar will be manufacture by the traditional manufacturing process to become a part of the product. The traditional manufacturing process involves cutting, milling, drilling, turning, etc. Normally, the long metal bar is stored at the warehouse before sending it to the traditional manufacturing process. If the requirement of the long metal bar to fabricate the product, not a huge portion, generally the long metal bar will be transferred to the machine for the process manually. Hence, the workers manually carrying the long metal bar with a bare hand. Without the dedicated tool support when carrying, can result in strain and fatigue in the hand and arm muscle.

At the construction site, the unloading of the long metal bar from the lorry will be done manually by workers. Due to the huge capacity of the long metal used at the construction site, so the worker must repeat the transferring process of the long metal bar until fully unload. When workers transferring the long metal bar by hand without supportive tools which have the probability to occur safety issues such as the long metal slip and fall from the hand. Besides, the prolonged manual carrying the long metal bar without dedicated tools to risk the factor related to Work-Related Musculoskeletal Disorder (WRMSD). Work-related musculoskeletal disorders (WRMSDs), defined as a subset of musculoskeletal disorders (MSDs) that arise out of occupational exposures, may lead to work restriction, work-time loss, or consequently cause work leave (Kathy Cheng et al., 2013). 'WRMSD pain is related to the muscles, nerves, tendons, joints, cartilages, and spinal discs associated with exposure to risk factors in the workplace' (Irurhe et al., 2013). Hence, ergonomics play an important role in the workplace to prevent injuries to occur. According to the workplace safety and health report 2019 from the Ministry of Manpower Singapore, the total cases of MSDs are 326 and 293 in the year 2018 and 2019, respectively. The major cause is due to the forceful exertions by manual handling activities. The cases of MSDs mostly took place in industries of manufacturing and construction. Also, according to the report at Great Britain showed the average prevalence rate of WRMSD across all industries was 1,130 cases per 100,000 workers and construction with a rate of 2,020 cases per 100,000 workers averaged over the period 2017/18-2019/20. The main cause of MSDs due to manual handling activities such as lifting a heavy load and improper manual handling method.

Nowadays, there are many types of equipment and hand tools have been designed and fabricated in the market instead to assist industrial practitioners to minimize occupational health risk and work efficiency in lifting and transferring the long metal bar. However, the equipment and hand tools designed which lack ergonomic cause the users' risk to MSDs while manual material handling activities. Hence, ergonomic studies must be conducted to design the grip handle based on Malaysia anthropometric data and strength. This study aims to design and fabricate a high-fidelity prototype of a grip handle for lifting and carrying a long metal bar to improve grip performance, usability, and work efficiency.

1.2 Problem Statement

The long metal bar is a common material used at construction site and manufacturing industries. Normally, all the carrying and transferring of the long metal bar process conduct manually by the workers. Hence, there are many problems and issues that occur if manual carrying and transferring the long metal bar without a proper assist device. Figure 1.2 shows the workers manually carrying the long metal bar.

Figure 1.2: Manual handling long metal bar

From the annual report of the Social Security Organization (SOCSO) in Malaysia, the accident of over-exertion in lifting objects had been analysed in figure 1.3. From the trend, the accident occurs in the gender of male involved more than female because handling the long metal bar is heavy duty. From year 2014 to year 2017, the number of accidents increase steadily and decrease slightly from year 2017 to year 2018.

Figure 1.3: Trend of over - exertion in lifting object