

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN AND DEVELOPMENT OF SUB-6GHZ PLANAR ANTENNA FOR 5G APPLICATION

SIMON TEO YIP QUAN

B071710639 970309-03-5373

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN AND DEVELOPMENT OF SUB-6GHZ PLANAR ANTENNA FOR 5G APPLICATION

Sesi Pengajian: 2020/2021

Saya SIMON TEO YIP QUAN mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

iv

		Mengandungi mak	lumat yang berdarjah keselamatan atau
	SULIT*	kepentingan Malay	sia sebagaimana yang termaktub dalam
		AKTA RAHSIA R	ASMI 1972.
		Mengandungi mak	lumat TERHAD yang telah ditentukan
	IERHAD*	oleh organisasi/bac	lan di mana penyelidikan dijalankan.
\bowtie	TIDAK		
	TERHAD		
Yang benar,			Disahkan oleh penyelia:
	SIMON		Zuoucin
SIMON TEO YIP QUAN DR A.K.M ZAKIR HOSSAIN			
Alamat Tetap: Cop Rasmi Penyelia			
ويومرسيني تيڪنيو KOOI			
JALAN PENGKALAN CHEPANIKAL MALAYSIA MELAKA			
15400 KOTA BHARU, KELANTAN			

Tarikh: 14/02/2021

Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DESIGN AND DEVELOPMENT OF SUB-6GHZ PLANAR ANTENNA FOR 5G APPLICATION is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Automotive) with Honours. The member of the supervisory is as follow:

Mossicin Signature: Supervisor : DR A.K.M ZAKIR HOSSAIN UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRAK

Antena patch mikrostrip (MPA) adalah kelas antena rata yang selama empat dekad terakhir telah banyak dinilai dan dikembangkan. Dalam sistem komunikasi tanpa wayar, antenna ini menjadi pilihan pertama bagi pereka antena untuk digunakan di kebanyakan aplikasi. Walau bagaimanapun, sebahagian besar reka bentuk antena planar mikrostrip hanya dapat memberikan lebar jalur yang sempit dalam julat 500MHz. Terdapat juga beberapa reka bentuk antena planar mikrostrip yang rumit untuk mencapai lebar jalur lebar. Projek ini bertujuan untuk merancang dan mensimulasikan antena planar dengan lebar jalur lebar yang dapat digunakan dalam aplikasi 5G sub-6GHz dengan reka bentuk tampalan sederhana. The Rogers 3003 digunakan sebagai substrat dengan tinggi 1.55mm. Antena patch berbentuk-Z dirancang dan mensimulasikan hasilnya pada perisian CST untuk memastikan ia dapat dicadangkan. Lebar jalur lebar diperoleh dalam julat 3GHz hingga 6GHz. Corak radiasi stabil dan dapat digunakan dalam aplikasi 5G.

ABSTRACT

Microstrip patch antennas (MPA) are a class of flat antennas which in the past four decades have extensively been investigated and evolved. In the wireless communication system, they become the popular choice for those antenna designers to use in most applications. However, most of the design of the microstrip planar antenna can only provide a narrow bandwidth in the range of 500MHz. There also some design of microstrip planar antennas that are complicated to achieve wide bandwidth. This project aims to design and simulate a planar antenna with wide bandwidth that can be used in sub-6GHz 5G application with a simple patch design. The Rogers 3003 is used as the substrate with a high of 1.55mm. A Z-shape patch antenna is designed and simulates the result on the CST software to make sure it can be proposed. The wide bandwidth is obtained in the range of 3GHz to 6GHz. The radiation pattern is stable and can be used in 5G application.

DEDICATION

This thesis is dedicated to my parents and family member who give me many kinds of support and encouragement during completing this project. I also would like to dedicate my friends and supervisor that always possibly help me when I have trouble with this project

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deepest gratitude to all the outstanding people who have provided continuous support, guidance, experience, understanding and commitment to my successful project. In addition, I would like to express my heartfelt thanks to my supervisor, DR A.K.M ZAKIR HOSSAIN for his support, wiling to share his knowledge, suggestions and encouragement for helping me in completing the implementation and documentation of this project. I would like to thank every lecturer who has taught me, especially those who have given me all the knowledge, skills and tips for my research. These knowledge, skills and tips are very important for me to complete this project. In addition, I would like to thank all my friends for providing me with giving suggestions and improvements on my project. I really appreciate their guidance and cooperation. It is blessings and gracious encouragement of my parents, respected elders and my supporting colleagues that make me able to accomplish this project.

TABLE OF CONTENTS

PAGE **DECLARATION APPROVAL DEDICATION** ABSTRACT Ι ABSTRAK Π **ACKNOWLEDGEMENTS** III **TABLE OF CONTENTS** IV LIST OF TABLES LIST OF FIGURES LIST OF APPENDICES LIST OF SYMBOLS LIST OF ABBREVIATIONS **KNIKAL MALAYSIA MELAKA**

CHAPT	TER 1 IN	TRODUCTION	1	L
1.1	Introduction		1	1
1.2	Problem stateme	ent	2	2
1.3	Objectives		2	2
1.4	Project scope		3	3
1.5	Expected result		3	3
1.6	Thesis organization	on	2	1

xii

CHAPT	FER 2	LITERATURE REVIEW	5
2.1	Introduct	ion	5
2.2	The geon	netry of microstrip planar antenna	5
2.3	Related w	vork of previous paper	6
	2.3.1	A microstrip quasi-yagi antenna in 5G application	6
	2.3.2	A dipole-like antenna for sub-6GHz in 5G applications	10
	2.3.3	A simple tri-band proximity coupling fed compact antenna	13
		sub-6GHz communication applications	
	2.3.4	A dipole hybrid-mode antenna in sub-6GHz application	16
	2.3.5	A cross dipole antenna for sub-6GHz 5G base station application	20
2.4	Comparis	son of previous paper	23
2.5	Simulatio	on Software	26
	2.5.1	Scalable EM Simulation Solution, IE3D	26
	2.5.2	High- Frequency Structure Simulation (HFSS) software	27
	2.5.3	Advanced design system MALAYSIA MELAKA	27
	2.5.4	CST Studio Suite	28
CHAPT	TER 3	METHODOLOGY	28
3.1	Introduct	ion	30
3.2	Flowchar	t	30
3.3	Materials		31
	3.3.1	Rogers 3003	31
	3.3.2	Copper	32
3.4	Design of	f microstrip antenna	34

xiii

CHAPTER 4

4.1	Introduction	38
4.2	The parameters of the proposed antenna with Rogers 3003 substrate	38
4.3	The comparison of parameters of three different substrate	44
4.4	The characterization of the planar antenna and bent antenna	54

CHAPTER 5

59

5.1	Introduction	59
5.2	Conclusion	59
5.3	Recommendation	60
REFI		61
APPI	اونيوم,سيتي تيڪنيڪل مليسيا ملا لا	63
	UNIVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF TABLES

TITLE	PAGE
Comparison between the related paper	23
The general parameters of the Rogers 3003	31
The electrical properties of the copper	33
Parameters of the Z-shaped antenna	37
The comparison of the S-parameters of three different substrate	46
The comparison of VSWR response of	48
three substrates The comparison of surface current density of three substrate	50
اونيۈم سيتي تيڪنيڪل	
	TITLE Comparison between the related paper The general parameters of the Rogers 3003 The electrical properties of the copper Parameters of the Z-shaped antenna The comparison of the S-parameters of three different substrate The comparison of VSWR response of three substrates

XV

C Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 2.1	The structure of rectangular microstrip patch antenna	6
Figure 2.2	The 3D view of the microstrip Quasi-Yagi antenna	7
Figure 2.3	The S11 of the microstrip Quasi-Yagi antenna element	7
Figure 2.4	The radiation pattern of the single antenna element at	8
	frequency of 3.5GHz	
Figure 2.5	The array structure and feed position	8
Figure 2.6	The element spacing of the array	9
Figure 2.7	The reflection coefficient of the microstrip Quasi-Yagi	9
	antenna array	
Figure 2.8	The scanning angle of a linear subarray with 3dB main lobe	10
EKA	width	
Figure 2,9	The element spacing of the array	11
Figure 2.10	The result of S11 and VSWR of the proposed antenna	11
Figure 2.11	The effects of the key parameter on S11 a.) width, W1	12
Figure 2.12	The effects of the key parameter on S11 b.) Length, L1	12
Figure 2.13	The radiation patterns of the patch antenna	13
Figure 2.14	The geometry of the proposed mm-wave antenna	14
Figure 2.15	The S11 and VSWR of the proposed multi-band antenna	15
Figure 2.16	The effect of L6 on the bandwidth of the multi-band	15
	antenna	
Figure 2.17	The radiation patterns of the proposed multi-band antenna	16
Figure 2.18	The geometry of the antenna a) side view, b.) perspective	17
	view, c.) zoom in feeding dipole, tapered line, and both	
	sides of the balun	
Figure 2.19	The photograph of the antenna prototype	18
Figure 2.20	The S11 and realized gains of the antenna	18
Figure 2.21	The radiation patterns of the antenna at a.) 3.0GHz b.)	19
	4.0GHz and c.) 5.0GHz	

xvi

Figure 2.22	The geometry of the proposed antenna: a.) top view b.)	20	
	bottom view		
Figure 2.23	The two dipole element a.) top view b.) bottom view 2		
Figure 2.24	The cross dipole antenna a.) dipole elements b.) balun	22	
	structure		
Figure 2.25	The radiation patterns of the cross element	23	
Figure 2.26	The software of IE3D	26	
Figure 2.27	The software of HFSS	27	
Figure 2.28	The software of ADS	28	
Figure 2.29	The software of CST	29	
Figure 3.1	Flow chart of the project	30	
Figure 3.2	Rogers 3003	32	
Figure 3.3	The example of copper used in the microstrip antenna	33	
Figure 3.4	The top view of the Z-shaped patch antenna	36	
Figure 3.5	The back view of the antenna	36	
Figure 4.1	The S-parameters of the proposed antenna at resonance	39	
100	frequency 3.496GHz		
Figure 4.2	The VSWR of the proposed antenna at resonant frequency	39	
12	اونيوم سين تيڪنيڪ ما3.496 GHz		
Figure 4.3	The surface current density at resonance frequency 3.5GHz	40	
Figure 4.4	The surface current density at non-resonance frequency 2	40	
	GHz		
Figure 4.5	The 3D radiation pattern of the proposed antenna	42	
Figure 4.6	The 2D radiation pattern of the proposed antenna	42	
Figure 4.7	The realized gain of the proposed antenna	43	
Figure 4.8	The radiation efficiency of the proposed antenna	43	
Figure 4.9	The S-parameters of the proposed antenna with Polyimide	44	
E' 4.10		4.5	
Figure 4.10	substrate	45	
Figure 4.11	The S-parameters of the proposed antenna with three	45	
J	different substrates		

xvii

- Figure 4.12 The VSWR of proposed antenna with Polyimide substrate 47
- Figure 4.13 The VSWR of proposed antenna with PET substrate 47
- Figure 4.14 The VSWR of proposed antenna with three different 47 substrates
- Figure 4.15 The surface current density of non-resonance frequency 48 with Polyimide substrate
- Figure 4.16 The surface current density of resonance frequency with 49 Polyimide substrate
- Figure 4.17 The surface current density of non-resonance frequency 49 with PET substrate
- Figure 4.18 The surface current density of resonance frequency with 50 PET substrate
- Figure 4.19 The 3D radiation pattern of the proposed antenna with 52 Polyimide substrate
- Figure 4.20 The 3D radiation pattern of the proposed antenna with PET 52 substrate
- Figure 4.21 The 2D radiation pattern of the proposed antenna with 53 Polyimide substrate
- Figure 4.22 The 2D radiation pattern of the proposed antenna with PET 53 substrate

Figure 4.23 The comparison of realized gain of the three substrates 54

- Figure 4.24 The comparison of radiation efficiency of the three 54 substrates
- Figure 4.25Bending in XZ plane for Polyimide substrate55Figure 4.26Bending in YZ plane for Polyimide substrate55
- Figure 4.27 S-parameters for Polyimide Substrate with different 56 bending condition
- Figure 4.28Bending in XZ plane for PET substrate57Figure 4.29Bending in XZ plane for PET substrate57
- Figure 4.30 S-parameters for PET Substrate

xviii

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Appendix 1

Grant chart of this project

LIST OF SYMBOLS

GHz	Giga Hertz
MHz	Mega Hertz
Mm	Milli-meter
A/m	Current per meter

C Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

MPA	Microstrip Patch Antenna
GSM	Global System For Mobile Communication
РСВ	Printed Circuit Board
5G	Fifth Generation
LTE	Long-Term Evolution
WLAN	Wireless Local Area Network
3D WALAYS EM ADS RF	Three Dimensional Electromagnetic Advanced Design System Radio Frequency
REDIVERSI	TI TEKNIKAL MALAYSIA MELAKA
EMC	Electromagnetic compatibility
EMI	Electromagnetic interface
MWS	Micro-wave software
PET	Polyethylene

xxi

CHAPTER 1

INTRODUCTION

1.1 Background

Microstrip patch antennas (MPA) are a class of flat antennas which in the past four decades have extensively been investigated and evolved. In the wireless communication system, they become the popular choice for those antenna designers to use in most applications. Microstrip planar antenna was first developed in the early 1950s. However, in the 1970s, the idea was kept on almost 20 years only to be realized after the advancement of the Printed Circuit Board (PCB) technology. The microstrip patch antenna is a low-profile directional antenna. The microstrip patch antenna becomes familiar because it consists of some advantages for example low profile, inexpensive, simple, and can be fabricated easily in the circuit board.

According to (Balanis, 2005), due to the special characteristic of the antenna, it is popular for specific applications in satellite communications, mobile communication for Global System For Mobile Communication (GSM). The comprehensive research and evolution of microstrip antennas and arrays, leveraging the benefits, has led to the diversification of applications and the establishment of the subject as a separate entity within the broad field of microwave antennas. After many years of study, scientists had found a few ways to increase the efficiency of the microstrip planar antenna.

In Fifth Generation (5G) applications, there are two types of frequency bands which are Sub-6GHz frequency band and millimetre-wave spectrum bands. Sub-6GHz also called mid-band 5G is one of the frequency bands and it is widely used in 5G technology. Sub -6 band can cover radio frequencies in the range of 2GHz to 6GHz. The most resonant frequency of the sub-6GHz is about 3.5GHz. Sub 6GHz can cover a greater area of 5G coverage but in another way, it cannot provide higher speed downlink compare to millimetre-wave.

1.2 Problem statement

The research and study on the microstrip planar antenna in the sub6GHz 5G application had been done by the antenna designers. There are many shapes of the patch antenna that had been developed or modified by the researcher to improve the uses of the microstrip planar antenna. However, most of the design of the microstrip planar antenna can only provide a narrow bandwidth in the range of 500MHz. Besides, some design of the microstrip planar antenna is complicated to achieve wide bandwidth. It may use a lot of time and cost to develop the design and expected result. Besides, some of the design of microstrip antennas are having low efficiency.

In this project, the simple design of the patch antenna will be proposed, and the proposed antenna can provide a wide bandwidth to increase the efficiency and can be used in many wireless communication systems.

1.3 Objective

The objectives of this project are:

- 1. To design and simulate the planar antenna on PCB with wide bandwidth that can be used in sub-6GHz 5G application
- 2. To design and simulate the antenna on different flexible substrates
- 3. To develop a prototype of planar antenna

4. To bench-mark of the existing work

1.4 **Project Scope**

This project mainly focuses on the designation of the microstrip planar antenna to works in a sub6-GHz 5G application. The CST Studio Suite is used as the microwave software to design the microstrip planar antenna and simulate the result. In this project, the dielectric constant of the substrate is not the variable of choice and depends on which dielectric material the antenna is designed. The Rogers 3003 substrate with dielectric constant 3 and a thickness of 0.51 mm has been used in the microstrip planar antenna. Next, the Polyimide substrate and PET substrate are used as flexible substrates to determine the stability of the antenna. The dielectric constant of the polyimide substrate is 3.5 and the height is 0.125 mm while the PET substrate with dielectric constant 3.2 and the thickness of the substrate is 0.125 mm. Bending technique is then apply on the flexible substrate to observe the effect on the antenna performance.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

کندک

1.5 Expected results

In this project, there will be 2 sections of results to be observed, which is the simulation result and hardware result that fabricated on the PCB. The geometry of the microstrip planar antenna will be designed and the simulation result will be simulated by the microwave software. To make sure that the microstrip planar antenna able to works in the sub 6GHz 5G application, the result of the S-parameter should cover the wide bandwidth in the range of 3 to 4 GHz. The result of the directivity and gain must be good and stable. After that, the fabrication process is done according to the design of microstrip

planar antenna in the software. The S-parameters, radiation patterns, and directivity will need to be close to the simulated result to make sure that it is suitable to use in the sub 6GHz 5G application. Next, for the antenna designed on the flexible substrates which is Polyimide substrate and PET substrate, it can show the wide bandwidth that can cover from 3 to 4 GHz and show the higher efficiency compare to Rogers 3003 substrate. The proposed antenna that design on the flexible substrate will apply the bending technique to observe the result.

1.6 Thesis Organization

AALAYS/A

In this project, there will be 5 chapters provided. Chapter 1 will briefly explain the background of the project. The problem statement, objectives, and scope will be stated in this chapter. Chapter 2 will describe the related work of the project. The comparison between the previous paper will also be discussed and discuss the software to be used in this project. Next, the Chapter is the methodology of the project. In this chapter, the procedure, the materials have chosen to use and the parameters for the design will be stated to achieve the objectives of the project. Besides, Chapter 4 will show and discuss the results obtained based on the methodology step. The comparison results with the previous paper will also be discussed. Chapter 5 will conclude the overall result of the project. The suggestion to improve future research will also be discussed.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will discuss the basic design of the microstrip planar antenna. Next, the related work from the previous research paper. Besides, the comparison table about the previous paper is provided. In addition, the comparison of software applications used to design and simulate the microstrip planar antenna. Overall, this chapter summarizes current information about the microstrip planar antenna including the main theoretical and methodological findings.

2.2 The geometry of microstrip antenna

The microstrip patch antenna used to provide high resonant frequency depends on the designation of the microstrip planar antenna. The single-layer design of the microstrip planar antenna can be divided into three parts which are patch, substrate, ground plane with feeding technique. A microstrip patch antenna contains either a planar or a non-planar geometry patch on the upper side of the substrate and a ground plane on the bottom side of the substrate (Singh, 2011). The rectangular patch is the normally used microstrip antenna and used for the simplest and most challenging applications. The basic structure of a rectangular patch antenna is shown in figure 1 below.