
TWO WHEEL SELF-BALANCING WITH DYNAMIC

STABILIZING

AINA FAKHIRA BINTI AHMAD

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

TWO WHEEL SELF-BALANCING WITH DYNAMIC

STABILIZING

This report is submitted in accordance with the requirement of the Universiti

Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering

Technology with Honours.

by

AINA FAKHIRA BINTI AHMAD

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2021

i

Tajuk: TWO WHEEL SELF-BALANCING WITH DYNAMIC STABILIZING

Sesi Pengajian: 2019

Saya AINA FAKHIRA BINTI AHMAD mengaku membenarkan Laporan PSM ini

disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-

syarat kegunaan seperti berikut:

1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.

2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk

tujuan pengajian sahaja dengan izin penulis.

3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran

antara institusi pengajian tinggi.

4. **Sila tandakan (X)

☐ SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau

kepentingan Malaysia sebagaimana yang termaktub dalam AKTA

RAHSIA RASMI 1972.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

ii

☐ TERHAD*

Mengandungi maklumat TERHAD yang telah ditentukan oleh

organisasi/badan di mana penyelidikan dijalankan.

☒ TIDAK

TERHAD

Yang benar, Disahkan oleh penyelia:

.. ..

AINA FAKHIRA BINTI AHMAD IZADORA BINTI MUSTAFFA

Alamat Tetap: Cop Rasmi Penyelia

Tarikh:13/2/2021 Tarikh:

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

perlu dikelaskan sebagai SULIT atau TERHAD.

iii

DECLARATION

I hereby, declared this report entitled TWO WHEEL SELF-BALANCING WITH

DYNAMIC STABILIZING is the results of my own research except as cited in

references.

Signature: ……………………………………

Author : AINA FAKHIRA BINTI AHMAD

Date: 13/2/2021

iv

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering

Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of

the requirements for the degree of Bachelor of Electronics Engineering Technology with

Honours. The member of the supervisory is as follow:

Signature: ……………………………………………….

Supervisor : IZADORA BINTI MUSTAFFA

v

ABSTRAK

Robot pengimbang diri dua roda stabil secara dinamik, tetapi tidak stabil secara

statik, berdasarkan sistem pendulum terbalik. Pelbagai teori mekanik dan kawalan terlibat

dalam robot. Projek ini menerangkan model robot pengimbang diri dua roda, menggunakan

PID untuk merancang pengawal robot, dan menerapkan pengawal robot. Unit pengukuran

inersia (IMU) digunakan dalam projek ini, yang menggabungkan pengukuran pecutan dan

giroskop untuk mengukur dan mendapatkan sudut kemiringan robot. Untuk membetulkan

ralat antara titik tetap sasaran dan sudut kemiringan sebenar, pengawal PID diterapkan

dan mengubah kelajuan motor dc dengan tepat untuk menstabilkan robot.

vi

ABSTRACT

The two-wheeled self-balancing robot is dynamically stable, but statically unstable,

based on an inverted pendulum system. Various mechanics and control theories are involved

in the robot. This project describes the model of the two wheeled self-balancing robot, uses

PID to design the robot controller, and implements the robot controller. An inertial

measurement unit (IMU) is used in this project, which combined the measurement of the

accelerometer and gyroscope to measure and obtain a robot's tilt angle. To correct the error

between the target fixed point and the real tilt angle, the PID controller is applied and

changes the dc motor speed appropriately to stabilize the robot.

vii

DEDICATION

To my supportive and beloved parents Ahmad Bin Taha and Maslona Binti Halpi.

viii

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful

First and foremost, I would like to thank and praise Allah the Almighty, my Creator, my

Sustainer, for everything I received since the beginning of my life. I would like to extend my

appreciation to Universiti Teknikal Malaysia Melaka (UTeM) for providing the research

platform.

Secondly, thanks to my beloved supervisor, Mrs. Izadora Mustaffa for all the knowledge,

advice, guidance, ideas, critics, and feedback as well as for supporting me in doing this

project. All the guidance was very helpful to complete my project.

I also would like to express my gratitude to my parents, Ahmad Bin Taha and Maslona Binti

Halpi for motivating me along with the progress of this project. Not forgetting, my beloved

friends Mohd Asyraf Bin Aman, Nurfarinah Binti Wilfred, Nur Fatin Nabila, Hind Binti

Khalil, and others who have given me moral support and advice to help me throughout the

project including the lecture

ix

TABLE OF CONTENTS

PAGE

LIST OF TABLES xii

LIST OF FIGURES xiii

LIST OF SYMBOLS AND ABBREVIATIONS xvi

LIST OF APPENDICES xv

 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objective 3

1.4 Scope of work 3

1.5 Thesis Outline 3

1.6 Conclusion 4

 5

2.1 Introduction 5

2.2 Two wheel self-balancing 5

2.2.1 Two-wheeled balancing robot controller designed using PID 5

2.2.2 Modelling, Simulation, and Optimal Control for Two-Wheeled Self-

Balancing Robot 6

x

2.2.3 Control System for a Self-Balancing Robot 6

2.2.4 Movement Control of Two Wheels Balancing Robot using Cascaded

PID Controller 7

2.2.5 Nonlinear dynamics modelling and simulation of two-wheeled Self-

balancing vehicle 7

2.2.6 The prototype of self-balancing two-wheeler 8

2.2.7 Design and implementation of a self-balancing robot 8

2.2.8 Robust navigational control of a two-wheeled self-balancing robot in

a sensed environment. 8

2.2.9 Control system in open-source FPGA for a self-balancing robot

Juan 9

2.2.10 Adaptive observer-based output feedback control for a two-wheeled

self-balancing robot 9

2.3 Conclusion 10

 12

3.1 Introduction 12

3.2 Hardware Implementation 14

3.2.1 Arduino UNO 15

3.2.2 MPU6050 Sensor 17

3.2.3 MPU6050 Sensor 19

3.2.4 Motor driver L298N 20

xi

3.3 Software Implementation 21

3.3.1 Integrated Development Environment (IDE) 21

3.3.2 Processing 22

3.3.3 PID controller 23

3.3.4 Coding Implementation 24

3.4 Conclusion 29

 30

4.1 Introduction 30

4.2 Hardware overview 30

4.3 Result 32

4.4 Project analysis 33

4.5 Discussion 37

4.6 Conclusion 38

 39

5.1 Conclusion 39

5.2 Future Project Recommendations 40

REFERENCES 41

APPENDICES 43

xii

LIST OF TABLES

TABLE TITLE PAGE

Table 2.1 Summary of the literature review 12

xiii

LIST OF FIGURES

FIGURE TITLE PAGE

Figure 3.1 Flow chart of the project 13

Figure 3.2 Block diagram of the hardware 14

Figure 3.3 Circuit diagram of the hardware 15

Figure 3.4 Arduino Uno 16

Figure 3.5 Arduino Uno to ATmega328 Pin Mapping 16

Figure 3.6 MPU6050 sensor 17

Figure 3.7 The connection between the MPU6050 sensor and Arduino 18

Figure 3.8 Servo motor 19

Figure 3.9 The connection between the DC motor and motor driver 19

Figure 3.10 Motor driver L298N 20

Figure 3.11 Connection between the Arduino and motor driver 20

Figure 3.12 processing 22

Figure 3.13 Setpoint and actual tilt angle 23

Figure 3.14 Flow chart of the coding 24

Figure 4.1 Side view of two wheel self-balancing vehicle 31

Figure 4.2 Top view of two wheel self-balancing vehicle 31

Figure 4.3 The two wheel vehicle balance itself without stand 32

Figure 4.4 Yaw pitch and roll reading. Left collum: yaw value. 33

xiv

 Middle column: pitch value. Right column: roll value

Figure 4.5 Reading standing upright condition to falling forward 34

Figure 4.6 Reading of falling forward condition 35

Figure 4.7 Reading of falling backward condition 36

xv

LIST OF APPENDICES

APPENDIX TITLE PAGE

APPENDIX A Project coding 47

APPENDIX B Schematic of Arduino Uno Microcontroller Board 52

APPENDIX C Schematic MPU6050 Board 53

APPENDIX D Block diagram of project 54

APPENDIX E Circuit diagram of the project 55

APPENDIX F Gantt chart 56

xvi

LIST OF SYMBOLS AND ABREVIATIONS

PID - Proportional Integral Derivative

LQR - Linear Quadratic Regulator

FLC - Fuzzy Logic Controller

SMC - Sliding Mode Controller

IMU - Inertial Measurement Unit

DC - Direct Current

TWSBR - Two-wheeled self-balancing robot

SE - Sensed Environment

FPGA - Field-programmable gate array

PWM - Pulse width modulation

USB - Universal Serial Bus

ICSP - In Circuit Serial Programming

V - Voltage

GND - Ground

INT - Interrupt

SDA - Serial Data

SCL - Serial Clock

IC - Integrated circuit

IDE - Integrated Development Environment

2D - Two-dimensional

3D - Three-dimensional

Ypr - Yaw, pitch, roll

Kp - proportional gain

Kd - derivative gain

Ki - integral gain

DMPP - Digital Motion Processor

GSM - Global system for mobile communication

1

INTRODUCTION

1.1 Introduction

A significant type of mobile robot is a two-wheeled self-balancing robot. Adjusting

robots infers the capacity of the robot without falling to adjust on its two wheels. Unlike

many other control systems, the inverted pendulum mechanism is naturally unstable.

Therefore to achieve equilibrium in this unstable state, the system has to be controlled. A

two-wheeled balancing robot is simply an inverted pendulum system that standing upright

upon two wheels.

The self-balancing robot has the benefits of being lightweight, compact, and low-

cost, unlike other mobile robots, and has been used extensively for various events. As a

special case of the inverted pendulum, the two-wheeled self-balancing robot has complex,

multivariable, unstable, and nonlinear characteristics. The research of two wheeled

balancing robots has increased in recent years to the invention of the Segway human

transporter program. This unique project consists of robot modeling, developing a

Proportional-Integral-Derivative (PID) controller, and implementing a two-wheeled robot

controller.

2

1.2 Problem Statement

Mobile robots are now rapidly deployed that are used in a wide range of

applications, which include discovery, search and rescue, dangerous area industrial

equipment, and entertainment. While robots can move over obstacles, they are more

complicated to construct and control because of the higher number of degrees of freedom.

Wheeled robots are much more energy consuming, tend to have simple mechanical parts and

a simple dynamic relative to the ground contact, and to have a driving force for wheeled

robots. Static equilibrium can be accomplished by robots with at least three axes, making

dynamics simpler.

Naturally, the inverted pendulum system is unstable. Therefore to monitor the

system, an effective control system methodology and procedure need to be investigated. An

application of the inverted pendulum that involves a controller to maintain its upright

position is the two wheel balancing robot. To do this, it is important to build and implement

a controller on the robot to stabilize the inverted pendulum.

The robot is fundamentally unstable and it will roll around the wheels' rotation axis

without external control and ultimately fall. Various types of controls have been

implemented on two wheeled balancing robots, including Linear Quadratic Regulator

(LQR), Pole-Placement Controller and Fuzzy Logic Controller (FLC), and Sliding Mode

Controller (SMC). Although several publications have simulated results, experimental

results are notably lacking for both linear and nonlinear controllers.

3

1.3 Objective

To achieve this goal, the objectives are formulated as follows;

1. To design a prototype of two wheel self-balancing robot.

2. To develop a prototype of two wheel self-balancing robot.

3. To analyze the performance of the chosen self-balancing method.

1.4 Scope of work

The scope of the project focuses on the development of a balancing system for a

two-wheel vehicle prototype, the robot's creations using PID, and applies the interface of the

robot. The system would be able to support itself without having to stand. An inertial

measurement unit (IMU) is used to combines gyroscope and acceleration sensor to assess

and acquire the tilt angle of the device. The PID controller corrects the mistake between the

specified reference point and the true inclination angle.

1.5 Thesis Outline

Chapter 1, which is the overview, discusses the project context, problem statement,

and project goals, the complexity of the project, and the importance of this project.

Chapter 2 which is the literature review represented the literature review and

quotation from any references regarding any information related to this project. The

reference for equipment performance is also included in this segment.

A more detailed explanation of this project was covered in Chapter 3 which is the

methodology. This chapter also provides information on process flow within this project.

4

Because the outcome of this experiment, followed by many reviews, is explained

in Chapter 4.

The conclusion of Chapter 5 was based on the cumulative phase that took place in

this project from the beginning to the completion of this project, followed by potential

guidance from this project.

1.6 Conclusion

This project focuses on developing the balancing system for a two-wheel vehicle

prototype. This chapter explains the introduction, the statement of the problem, the objective,

and the scope. This is an important chapter where we define and consider a solution to the

problem. Other than that, a goal that could direct us to smoothly complete the project.

Finally, the scope is relevant when we list the basic component and project feature which set

the project limit. The next chapter will be a summary of literature consisting of 10 articles

as sources for our project.

5

LITERATURE REVIEW

2.1 Introduction

A significant type of mobile robot is a two-wheel self-balancing robot. Robot

stability ensures a robot may balance its two wheels without falling. In this chapter, the

literature review related to self-balancing, existing two-wheel self-balancing, and the

hardware that fits to run the two-wheel self-balancing.

2.2 Two wheel self-balancing

2.2.1 Two-wheeled balancing robot controller designed using PID

Two-wheeled self-balancing robot is dynamically stable but physically unstable,

based on an inverted pendulum design. The robot incorporates numerous theories of physics

and power. An inertial measuring unit (IMU) is used in this project which combines

accelerometer and gyroscope measurement to estimate and obtain the robot's tilt angle.

To fix the error between the target fixed point and the real tilt angle, the PID

controller is used to adjust the dc motor speed to stabilize the robot accordingly. The result

shows that the Control system can manage the robot appropriately with certain limitations.

The model's simulation result is compared with the hardware developed and controller

output is evaluated and discussed. (Suhardi, 2015).

6

2.2.2 Modelling, Simulation, and Optimal Control for Two-Wheeled Self-Balancing

Robot

This paper deals with the two-wheeled self-balancing robot system as the object of

research that uses the method of the Newtonian mechanic's equation for deriving the

dynamic equation.

The linear state-space model approximates the non-linear system in the region of

operation to the degree that the system operates only around the operating point and the

signals involved are small. Based on the mathematical model of the system, the LQR

controller is programmed to control the angle of inclination of the system and the angle of

direction so that the system can be managed to shift to the desired location. The output of

the control strategy shall be checked and presented using the Matlab / Simulink software.

(Asali et al., 2017)

2.2.3 Control System for a Self-Balancing Robot

The purpose of this project is to investigate the efficacy of various control

algorithms in a home-made robot called Bimbo, such as Proportional, Integral, and

Derivative (PID), pole placement, adaptive control, among others. The algorithm, applied to

the location, was also evaluated. The robot was built with motion and position control

modules. A Kalman filter was used to acquire a roll angle from the Inertial Measurement

Unit (IMU).

Other than that, the system was introduced to read encoders and to control the two

motors. A device variable control mechanism was created by Bluetooth communication,

which allows any robot variable to be continuously monitored, enabling the device and the

7

control variables to be checked in real-time. A PID is implemented by the chosen solution,

continuously updating the relation by a "location algorithm." To order the path of Bimbo

navigation, a human control interface has been developed.(Martins & Nunes, 2017)

2.2.4 Movement Control of Two Wheels Balancing Robot using Cascaded PID

Controller

The movement of control balancing robots is the subject of this paper. The robot is

designed to move from the android device according to remote input. Three controls will be

designed, the first to control the balance of the robot, the second to control the distance

controller for the control of forwarding or backward movement, and the last to navigate or

steer.

To make the robot remain balanced when moving, both balancing and distance

control will be cascaded. This cascaded PID control will correct the angle error of the

balancing controller by using the distance controller speed error. (Pratama et al., 2016)

2.2.5 Nonlinear dynamics modelling and simulation of two-wheeled Self-balancing

vehicle

In this project, the cycle trajectory is used to analyze the device dynamics. The

Lyapunov exponent trajectory and the system cycle can further explain the process model.

Finally, simulation results ensure that the PID controller can maintain stability effectively

and have a certain effect on the self-balancing two-wheeled vehicle framework. (Liu et al.,

2016)

8

2.2.6 The prototype of self-balancing two-wheeler

The project concentrated on a two-wheeler bike development concept which is

validated with the aid of a prototype. The project deals with a prototype research project to

get a gyroscopic effect. The concept is a two-wheel vehicle in which the imparted revolving

disks function as a gyroscope to create a counterbalancing force, i.e. gyroscopic effect when

either side of the vehicle's configuration loses equilibrium. So, the vehicle stabilizes itself.

(Patil et al., 2017)

2.2.7 Design and implementation of a self-balancing robot

With a fixed tilt error of 5 degrees, a self-balancing robot was able to balance

smoothly. The robot will carry some 0.3 kg of payloads. Diverse studies have calculated the

optimal angle of tilt for balancing. The robot will shift forward and backward continuously

within a spectrum of -3 cm and +3 cm across the equilibrium area to align itself on the flat

surfaces. Used as a robot actuator, DC motor with higher torque. The angle of inclination

fed manually into the machine or using intelligence. (Shaon, Bhowmik and Bhawmick,

2018)

2.2.8 Robust navigational control of a two-wheeled self-balancing robot in a sensed

environment.

This research upgraded handheld pendulum robot, named a two-wheeled self-

balancing robot (TWSBR), utilizing a compact 32-bit microcontroller in a sensed

environment (SE) dependent Proportional-Derivative Proportional-Integral (PD-PI) control

device.

9

The robot retains a balance with two wheels and a Kalman filter algorithm-based

PD-PI controller during the navigation process and can stabilize when avoiding acute and

complex obstacles in the sensed area. With ultrasonic waves, the Proportional (P) control is

used to apply turn control in SE to avoid obstacles. (Iwendi et al., 2019)

2.2.9 Control system in open-source FPGA for a self-balancing robot Juan

This paper introduces a robotics framework that was developed entirely using free

FPGA tools. Developed, built, and programmed an inverted pendulum robot that integrates

the iCE40HX4K-TQ144 Lattice using open FPGA tools such as Ice Studio and the IceZum

Alhambra board. A PD control algorithm that directs two DC motors uses perception from

an ultrasonic sensor. All the modules had been synthesized as proof of concept in an FPGA.

Their experimental work shows positive results and conduct. (Cerezo, Morales, and Plaza,

2019).

2.2.10 Adaptive observer-based output feedback control for a two-wheeled self-

balancing robot

This paper provides for the two-wheeled self-balancing robot with an adaptive high

gain control system. Adaptive observer use guarantees estimation of the joint state and the

unknown parameter (actual body weight). Lyapunov research has carried out the

convergence of the adaptive observer-dependent performance input controller. The

simulation findings demonstrate both the performance of the suggested observer and the

monitoring control scheme added to the self-balancing robot on two-wheelers. In future

10

research, we must bear in mind that the robot's self-balancing fundamentals are also

compromised by unknown time-varying disturbances, and will make the control method

more robust fur (Jmel et al., 2020)

2.3 Conclusion

The overview of two-wheel self-balancing had been studied in this chapter

including the past research on the two-wheel self-balancing system and the hardware related

to this project. The development and design from several authors used different types of

ideas and designs to simulate the system to achieve the objective. Other than that, it also had

been made over the years to choose the best system that can be used and what can be improve

to create simple yet two-wheel self-balancing.

11

No Author Year Title Microcontroller Sensor Function

1. Suhardi 2015 Two-wheeled balancing

robot controller designed

using PID

PID controller IMU sensor Two-wheeled

self-balancing

2. Asali et

al

2017 Modeling, Simulation, and

Optimal Control for Two-

Wheeled Self-Balancing

Robot

1.LQR

controller

2.PID controller

Pendulum Two-wheeled

self-balancing

3. Martins

& Nunes

2017 Control System for a Self-

Balancing Robot

PID controller IMU sensor Two-wheeled

self-balancing

4. Pratama 2016 Movement Control of Two

Wheels Balancing Robot

using Cascaded PID

Controller

PID Controller IMU sensor Two-wheeled

self-balancing

5. Yunping

Liu

2016 Nonlinear dynamics

modeling and simulation

of two-wheeled

self-balancing vehicle

PID controller

accelerometer

sensor

Two-wheel

self-balancing

6. Ching

Lung

Chang

2017

Using Reinforcement

Learning to Achieve

Two-Wheeled Self

Balancing Control

Arduino Uno

-gyroscope

sensor

-

accelerometer

sensor

Two-wheel

self-balancing

7. Bhowmi

k and

Bhawmi

ck

2018

Design and

implementation of a self-

balancing robot

Arduino Uno

-gyroscope

sensor

-

accelerometer

sensor

self-balancing

robot

8. Ji-Hyun

Park

2018

Development of a self-

balancing robot with a

control moment gyroscope

Arduino Uno

-gyroscope

sensor

-inclinometer

sensor

Two-wheel

self-balancing

9. Sergio

Tamayo-

Le´ on

2018

Self-Stabilization of a

Riderless Bicycle With a

Control Moment

Gyroscope via Model-

based Active Disturbance

Rejection Control

Arduino Uno

-gyroscope

sensor

Two-wheel

self-balancing

10. Mr.

Aneesh

Kulkarni

2019

Self-Balancing Robot

Arduino Uno

-Inertial

Measurement

Units (IMU)

- Robot

balancing

Table 2.1: summary of the literature review

12

METHODOLOGY

3.1 Introduction

As several types of research had been made based on previous studies, the hardware

to use is chosen to run and complete this project. In the methodology section, the flow of the

project, how the device runs, and what hardware that uses are stated. This methodology is

important to plan the project flow until the project runs successfully. Also, the progress on

completing the report documentation can be planned.

The flow chart of the project, which starts with a literature review of the data set

was included in subjects related to two-wheeled self-balancing. The next step is to model the

inverted pendulum after evaluating all the materials, as it presents a basic concept for this

initiative. The next thing is to build the hardware and manufacture it. The method involves

constructing the robot's foundation and body. This is accompanied by the implementation

and hardware integration of software algorithms. Finally, for performance enhancement, the

robot will be checked and fine-tuned.

13

Figure 3.1: Flow chart of the project

14

3.2 Hardware Implementation

The Figure below is a description of two-wheel Self-Balancing Robot components

and activity using dynamic stabilization techniques. The key components of this two-wheel

self-balancing robot's circuit are inertial. The MPU6050 sensor, Arduino controller, and the

servo motor DC.

The total block diagram of the electronic balancing robot system is seen in Figure

3.2. The IMU is used to calculate the angular rate and acceleration of the two-wheel and

transform the result into the form of digital. Further analysis of the raw inputs from the IMU

is to achieve the tilt angle of the robot. To balance the two wheels, this angle of inclination

is then fed into the PID algorithm controller to produce the correct velocity for the DC motor.

Figure 3.2: Block diagram of the hardware

15

This two-wheel self-balancing robot system uses Arduino and MPU6050 to connect

the Arduino with MPU6050 and link the motors to Driver Motor Board. The complete circuit

is powered by a 7.4V li-ion battery. Below shown the circuit diagram.

Figure 3.3: Circuit diagram of the hardware

3.2.1 Arduino UNO

Microcontroller Board, Arduino Uno is based on an 8-bit ATmega328P

microcontroller. In addition to ATmega328P, it is composed of other microcontroller support

components such as serial communication, voltage regulator, crystal oscillator, etc. Arduino

Uno has input/output pins with 14 optical (6 and is used as a PWM output), 6 analog entry

pins, USB interface, ICSP header, reset button, and Power barrel jack.

16

Figure 3.4: Arduino Uno

Using pin Mode, (digital Read) (and digital Write) (functions in the programming

of Arduino, The 14 optical input/output pins may be used as output pins or input pins. Each

pin shall operate at 5Vand is capable of supplying or receiving has a maximum current of

40mA and has a detached internal pull-up resistor of 20-50 K Ohms.

Figure 3.5: Arduino Uno to ATmega328 Pin Mapping

17

3.2.2 MPU6050 Sensor

To resolve the problem of measuring sounds and the drawbacks of measures from

either the accelerometer or gyroscope alone, we would need to integrate the measures from

both the accelerometer and the gyroscope in a practical manner so that we can use the

strengths of both sensors to produce a more precise result than either test alone.

Figure 3.6: MPU6050 sensor

Through the I2C protocol, MPU6050 communicates with Arduino. The MPU6050

connects with Arduino as shown in the diagram below. If you have a 5V pin in the MPU

6050 module then can connect it to the 5V pin in Arduino. If not, then need to attach it to

the 3.3V pin. Next, the Arduino's GND is attached to MPU6050's GND.

18

Figure 3.7: The connection between the MPU6050 sensor and Arduino

The software that we are going to run here also benefits from the interrupt button

of the Arduino. Connect Arduino’s digital pin 2 (interrupt pin 0) to the pin marked with an

INT on the MPU 6050 Last, set up I2C lines. To do so, connect the pin marked as SDA on

the MPU 6050 to the Arduino analog pin 4 (SDA), and the pin marked as SCL on the Arduino

analog pin 5 (SCL) on the MPU 6050.

19

3.2.3 MPU6050 Sensor

Figure 3.8: Servo motor

The servo motor is used in this self-balancing robot as a component that detects the

tire to resist movement so as not to fall. The IMU sensor detects falls even and will send to

the microcontroller and subsequently, the servo motor will be able to resist the current of the

falling event at an approximate angle. So that the situation is stable again.

Figure 3.9: The connection between the DC motor and motor driver

20

3.2.4 Motor driver L298N

Figure 3.10: Motor driver L298N

In this project, the L298N module is used where it has a very well-known L298

Motor driver IC, which is the main part of this module. To control the speed of DC motors,

this module uses the PWM system. The module will allow the speed and direction of two

DC motors to be controlled. It can power motors that are between 5 to 35V and up to 2A in

operation. The module has an on-board regulator that helps to provide a 5V production. The

Arduino or external power supply will power the module from 5 to 35V.

Figure 3.11: Connection between the Arduino and motor driver

21

The input and activate pins (ENA, IN1, IN2, IN3, IN4, and ENB) of the L298N

module are connected to six Arduino digital output pins (5, 6, 7, 8, 9, and 10) for the

connexion between the Arduino and this L298N module. Note that output pins 5 and 10 of

the Arduino are both PWM-enabled.

3.3 Software Implementation

This section discusses the equilibrium of the two wheel self-balancing robot and

the nature of the PID controller algorithm. Software development is the toughest part of the

project and takes the most time.

3.3.1 Integrated Development Environment (IDE)

The open-source Arduino Software (IDE) encourages the writing and transfer of

code to the computer. It is operating on all Windows, Mac OS X, and Linux. The framework

is written in Java and based on other open-source tools and production. It can be used with

any Arduino board using this software. This software can be used to program any operation

that needs to be performed. The threshold level of the IMU sensor is set in this software to

determine normal events and fall events.

22

3.3.2 Processing

Processing software is being used to display the sensor's 3d image, keep on reading,

and display the 3D version of the MPU6050 data. Processing, but for a couple of features, is

close to Arduino. Processing is mostly used in 2D/3D designs for visualizing details and

producing them. The processing code (MPUTeapot) is performed by pressing the 'Run'

symbol button. A thin, plane-like entity is about to emerge. Wait for around 10 seconds to

stabilize the value of the MPU 6050. The 3D model of the MPU 6050 could be seen after

that moves in compliance with the sensor.

Figure 3.12: processing

To achieve an accurate location value from the sensor, the value of both the

accelerometer and the gyroscope must be used, since the values of the accelerometer have

noise issues and the values of the gyroscope continue to drift across time. So we're going to

have to mix that to get the value of yaw pitch and roll of our robot, which we're going to use

just the value of yaw.

23

3.3.3 PID controller

The control algorithm used to keep its equilibrium point on the self-balancing two-

wheel robot was the PID controller. The Additive, PID controller was known as the 3-word

controller. The PID controller can be a control loop feedback mechanism that is commonly

used in the industry. The controller helps to adjust and correct the error between the

calculated process and thus the target process and the output correction steps to manage the

system accordingly. This controller must be operated regularly enough and at the same time

within the controllable range of the machine.

Figure 3.13: Setpoint and actual tilt angle

The setpoint and real tilt angle of the two-wheeled robot are seen in the diagram.

The error is that the true tilt angle varies from the ideal tilt angle (setpoint). The PID

controller includes, as its name implies, three parts, which are the proportional term, the

integral term, and the derivative term. These words have various effects on the DC motor's

reaction. The robot's setpoint must be 0° to stabilize the robot.

The real angle is the time-to-time instantaneous angle of the robot. The Inertial

Measurement Unit (IMU), which generates dc output, determines this actual angle. We

obtained the error by comparing it with the target setpoint, obtaining the difference between

24

the expected setpoint and the real angle. The error is then fed into the controller of the PID.

To drive the DC motor, the PID controller can process, measure, and produce the exact

output to reach equilibrium in the right way.

3.3.4 Coding Implementation

Below is the flow chart of the coding, is as below, and will explain each function in this

coding. The full coding has been attach at appendix.

Figure 3.14: Flow chart of the coding

25

First, the libraries needed for the execution of this program are included. The built-

in I2C library, PID library, and MPU6050 library are included, which can be downloaded

from the GitHub website.

The variables needed to get the data from the sensor MPU6050 are then declared.

Analyze all gravity vector and quaternion values, then calculate the yaw pitch and roll weight

of the bot. The ypr [3] float array will carry the final answer.

Next comes the most critical section of the code, and this is where those spend a

long time tuning for an accurate set of values. If the robot is built with a very high center of

gravity and the modules are arranged symmetrically (which is not, in most cases), the set-

point value will be 180. Otherwise, attach the robot to Arduino Serial Monitor and tilt until

it finds the right balance spot, read the value on the serial monitor, so this is the value of the

fixed point. The value of Kp, Kd, and Ki should be adjusted as per the robot. There would

be no two identical bots with the same values of Kp, Kd, and Ki, and there would be no relief

from it.

26

In the next row, configure the PID algorithm by adding input, output, setpoint, Kp,

Ki, and Kd parameters to the input variables. Fixed the set-point Kp, Ki, and Kd values in

the above code snippet from these. The input value will become the actual yaw value read

from the MPU6050 sensor and the output value will become the value calculated by the PID

algorithm. The PID algorithm gives the final output that can be used to adjust the value of

the input to be close to the point range.

Initializing the MPU6050 inside of the void configuration feature by configuring

the DMPP (Digital Motion Processor). It will allow us to integrate the data from the

Accelerometer with data from the Gyroscope to provide Yaw, Pitch, and Roll with a

consistent value. Each MPU6050 sensor does have its offset values and can measure the

offset value of the sensor using this Arduino schematic and change the following lines in the

software accordingly.

27

Then, enable the Digital PWM pins used to attach the motors to them. There are

D6, D9, D10, and D11 in this case. So, enable these pins by default, as the output pins render

them LOW.

Check if the data from the MPU6050 is ready for reading within the main loop

feature. If yes, then use it to measure the PID value and then display on the serial monitor

the PID input and output value only to test how the PID reacts. Decide if the bot needs to

step forward or backward or stand still depending on the performance value.

Since we expect that when the bot is upright, the MPU6050 will return 180. When

the bot drops to the front, we will get positive correction values and if the bot drops to the

back, we will get negative values. So, to move the bot forward or backward, test for this state

and call the necessary functions.

28

The output vector of the PID also affects how fast the motor needs to be turned. If

the bot may be about to fall, make a slight adjustment by slowly spinning the wheel. We

increase the speed of the motor if these slight correction dint work and even if the bot is

falling. By the PI algorithm, the importance of how quickly the wheels spin can be

determined.

29

3.4 Conclusion

To conclude, the correct method must be used to make the project a success.

Hardware must also be selected wisely to ensure that the circuit or system developed is

functioning properly. Other than that, software interfaces are often essential to ensure that

the hardware is working as programmed correctly. So the entire process of this project has

already been identified and seen well. There is still scope for improvement, however, to

make this project more efficient and efficient. The team needs to plan a structured time table

to ensure that each operation is performed in due time.

30

RESULT AND ANALISYS

4.1 Introduction

In this chapter, the results of this project will be evaluated and debated. Other than

that, to achieve the purpose or objectives of this project, which is to build a two-wheel self-

balancing robot using a dynamic stabilization technique, the outcome of a failing event will

be evaluated. This segment will also clarify the flow of the project method.

4.2 Hardware overview

This project is made to balance the two-wheeled self-balancing robot, which is the

robot's ability to balance two wheels without falling. The hardware used is included Arduino

Uno, sensor MPU6050, motor, and motor driver. Each component involved in the detection

of falling action of the robot and then act to balance the two wheels under certain conditions.

31

Finished hardware with casing

Figure 4.1: Side view of two wheel self-balancing vehicle

Figure 4.2: Top view of two wheel self-balancing vehicle

Motor driver L298N

Battery

3v-6v TT gear motor

Arduino UNO

Sensor MPU6050

32

4.3 Result

The result is as the Figure below:

Figure 4.3: The two wheel vehicle balance itself without stand

Based on the Figure above, the two-wheel self-balancing robot balances itself on

two wheels being able to move around without overturning. A "closed-loop feedback

control" system is used by self-balancing robots; this shows that real-time motion sensor

data is used to control the motors and quickly compensate for any tilting motion to hold the

robot upright.

The control algorithm was used to maintain the balance of the PID controller on the

autonomous two-wheel self-balancing robot. A three-term controller is well known as the

proportional, integral, and derivative (PID) controller. An error from the device is an input

33

to the controller. The additive, integral, and derivative constants of Kp, Ki, and Kd are

referred to as (the three terms get multiplied by these constants respectively).

When the robot is about to fall, the wheels rotate with a speed corresponding to the

angle of fall in the inclined direction to correct the inclination. It is possible to do this by

calculating the tilt angle. This is accomplished by a gyroscope and an accelerometer that

shows the robot's correct orientation. This is fed back to the Arduino with the support of the

feedback element, and the motor and the wheels together prevent the robot from collapsing

with a corrective element. This ensures an upright robot stands.

4.4 Project analysis

The serial monitor on the software IDE will display the output value of the

MPU6050 sensor which depends on the position of the sensor. The first column is the yaw

output value, followed by the pitch output value and then the output roll value. roll is a

horizontal axis, the pitch is a vertical axis and yaw is a perpendicular axis to the pitch and

roll axis that allows the sensor to detect 3-dimensional states.

34

Figure 4.4: Yaw pitch and roll reading. Left collum: yaw value. Middle column:

pitch value. Right column: roll value

The serial monitor of the IDE software display the input and output values for the

PID algorithm are shown in the input => output format. The input value are the current yaw

value read from the MPU6050 sensor and the output value are the value determined by the

PID algorithm. The 'F' alphabet means that the bot is falling forward, and 'R' means that the

bot is falling backward and moving in reverse.

Figure 4.5: Reading standing upright condition to falling forward

The Figure above shows the value when the robot in an upright position. the

position of the two wheels changes from standing upright to leaning forward. The serial

monitor shows that both wheels are moving forward by displaying the letter "F". The input

value is at 179.62 while the offset key in the encoding is 179.55. The offset value means that

35

the value of two wheels perpendicular to the ground means that it is a stable value of two

wheels.

Next is the falling forward condition where the input and output value is as below in the

serial monitor:

Figure 4.6: Reading of falling forward condition

The Figure above shows the reading value when the robot falls forward. what we

can observe is that when the situation falls forward, the serial monitor shows that both wheels

are moving forward by displaying the letter "F". The input value is at 209 which is greater

than the setpoint value which is 179.55. when the input value is greater than the setpoint

value, it means the robot falls forward. motors and wheels also respond by moving forward

when receiving a signal from a sensor to prevent the robot from falling with a correction

element from the PID. This is because to ensure the robot is upright and does not fall.

36

Next is the falling backward condition where the input and output value is as below in the

serial monitor:

Figure 4.8: Reading of falling backward condition

The Figure above shows the reading value when the robot falls backward. what we

can observe is that when the backward state falls, the serial monitor shows that both wheels

are pointing forward by displaying the letter "R". The input value is 152 which is less than

the setpoint value which is 179.55. When the input value is less than the setpoint value, it

means the robot falls backward. motors and wheels also respond by moving backward when

receiving a signal from a sensor to prevent the robot from falling with a correction element

from the PID. This is because to ensure the robot is upright and does not fall.

Data from the MPU6050 can be read in the main loop function in encoding. Then

it is used to calculate the PID value and then show the input and output values of the PID on

37

the serial monitor just to confirm how the PID responds. After that, it is determined based

on the output value, whether the two wheels should step forward or backward or stop.

This is when the robot is upright, the MPU6050 will return 179.55. When the robot

falls forward, we get a value greater than 179.55 and if the ship falls backward, we get a

value smaller than 179.55. Therefore, to move the robot forward or backward, it detects this

condition and calls the required function.

4.5 Discussion

From the analysis, the input value which is the value of yaw plays a major role in

determining whether the two wheels are falling state or not. In the IDE software, the input

reading can be observed on the serial monitor. In the serial monitor, there are two columns

which are input and output, which is input is the value of yaw and output is the value

determined by the PID algorithm. These values of yaw will be read by Arduino Uno

microcontroller which when it exceeds the specific threshold of the sensor it will transmit

the information to move the wheel either forward or backward.

The reading of value three exis yaw, pitch, and raw depend on how the sensor was

placed. So, If the direction of the sensing axis matches the value offset (perpendicular to the

ground) which is 179.55, the two wheels are balanced well. Then if the value of yaw is

below 179.55, it is mean the two wheels are falling backward. The serial monitor will display

the alphabet "R" to show that the two wheels are falling backward. Then, the motor and

wheel will rotate backward together to prevent the two wheels from collapsing with a

corrective element to ensure the two wheel to stay balance.

as well as forward conditions when the value of yaw is exceeded 179.55, it is mean

the two wheels are falling forward. The serial monitor will display the alphabet "F" to show

38

that the two wheels are falling backward. Then, the motor and wheel will rotate forward

together to prevent the two wheels from collapsing with a corrective element to ensure the

two wheel to stay balance.

The Arduino microcontroller act as the medium to detect input and generates output

for the system. The IDE software is used to sketch the code to program the board to run the

system. In the project, the function used to make the falling event more precise is from the

value of yaw from the sensor. Sox this system can detect the real falling event and false

falling event.

4.6 Conclusion

The outcome of that project performance was evaluated and discussed at the end of

this chapter. The value output for the PID algorithm was the parameter evaluated in this

section when standing upright, falling forward, falling backward, and stopping. However, to

make this project more effective and realistic, there are still improvements that can be made.

39

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

This two wheel self-balancing vehicle is balancing itself on two wheels without a

stand. A "closed-loop feedback control" system is used for self-balancing vehicles; this

ensures that the Arduino UNO as a microcontroller and sensor MPU6050 is used to control

the engines in real-time data from the balancing sensor and easily compensate for any tilting

movement to hold the two wheels upright. This project is using sensor MPU6050 to design

and develop a system that can detect falling action.

The IDE software was also used to draw the code for this project, where it was

important to select the precise function and the counter function used for this project. The

goal of this project was successfully achieved during the project progress time, where the

performance electronics used for this project were studied and the design and production of

this project was a complete success.

40

5.2 Future Project Recommendations

Several improvements can be made to this project to make it more usable and

sophisticate. First is by connecting the GSM module with the Arduino microcontroller

wirelessly. It can be achieved by using a Bluetooth device that consumes low power and

short distances that consume low power and short distances. By adding Bluetooth, this two-

wheel can be controlled by using the application which is MIT application. So, this two-

wheel can be used at the restaurant as a waiter to serve food for example.

Then, a two-wheel self-balancing system modelling and simulation with a different

control principle is strongly recommended. A low noise reference voltage circuit board can

be used to monitor the conversion by supplying an exact reference voltage to the

microcontroller. Reduces erratic reference voltage and noise in the data conversion process.

Dc motor with encoder is preferred as the encoder motor usually has a high torque

and speed requirement compared to the dc motor. The encoder can be used to receive inputs

to evaluate and control the speed of the engine very precisely. Othet than that, the diameter

of the wheel can be expanded to improve the moment of friction and traction on the floor.

However, improved balancing efficiency can be predicted for future work on the update and

advice mentioned above.

41

REFERENCES

Martins, R. S., and Nunes, F. (2017) 'Control System for a Self-Balancing Robot', (Project

I), pp. 297–302.

 (Martins and Nunes, 2017)Martins, R. S., and Nunes, F. (2017) 'Control System for a

SelfBalancing Robot', (Project I), pp. 297–302.

 (Pratama, Binugroho and Ardilla, 2016)Pratama, D., Binugroho, E. H. and Ardilla, F. (2016)

'Movement control of two wheels balancing robot using cascaded PID controller',

Proceedings - 2015 International Electronics Symposium: Emerging Technology in

Electronic and Information, IES 2015, pp. 94–99. DOI: 10.1109/ELECSYM.2015.7380821.

(Liu et al., 2016)Liu, Y. et al. (2016) 'Nonlinear dynamics modeling and simulation of two

wheeled self-balancing vehicle', International Journal of Advanced Robotic Systems, 13(6),

pp. 1–9. DOI: 10.1177/1729881416673725. (Patil et al., 2017)

Patil, R. et al. (2017) ‘Prototype of Self-Balancing Two Wheeler’, 7th International

Conference on Recent Trends in Engineering Science and Management (ICRTESM-17), 1,

pp. 466–471.

(Shaon, Bhowmik and Bhawmick, 2018)Shaon, A. K. M. A. S., Bhowmik, S. and

Bhawmick, B. K. (2018) ‘DESIGN AND IMPLEMENTATION OF A SELF-BALANCING

ROBOT ICMERE2017-PI-294 DESIGN AND IMPLEMENTATION OF A SELF-

BALANCING ROBOT’, (February).

(Iwendi et al., 2019)Iwendi, C. et al. (2019) 'Robust Navigational Control of a Two-Wheeled

Self-Balancing Robot in a Sensed Environment', IEEE Access, 7, pp. 82337–82348. DOI:

10.1109/ACCESS.2019.2923916.

42

(Cerezo, Morales and Plaza, 2019)Cerezo, J. O., Morales, E. C. and Plaza, J. M. C. (2019)

'Control system in open-source FPGA for a self-balancing robot', Electronics (Switzerland),

8(2), pp. 1–19. DOI: 10.3390/electronics8020198. (Jmel et al., 2020)

Jmel, I. et al. (2020) ‘Adaptive Observer-Based Output Feedback Control for Two-Wheeled

Self-Balancing Robot’, 2020. (Son and Anh, 2014)

Son, N. N., and Anh, H. P. H. (2014) 'Adaptive backstepping self-balancing control of a two-

wheel electric scooter', International Journal of Advanced Robotic Systems, 11, pp. 1–11.

DOI: 10.5772/59100.

(Fang, 2014)Fang, J. (2014) 'The LQR controller design of two-wheeled self-balancing robot

based on the particle swarm optimization algorithm', Mathematical Problems in Engineering,

2014. DOI: 10.1155/2014/729095.

 Maker Pro. 2021. How To Interface Arduino And The MPU 6050 Sensor | Arduino. [online]

Available at: [Accessed 5 January 2021]. Electronicwings.com. 2021. MPU6050 Interfacing

With Arduino UNO | Arduino. [online] Available at: [Accessed 5 January 2021].

Robots, P., 2021. The MPU6050 Explained. [online] Programming Robots. Available at:

[Accessed 5 January 2021]. Robots, I., 2021. Introduction To Self-Balancing Robots |

Chillibasket. [online] chillibasket. Available at: [Accessed 5 January 2021].

Robots, P., 2021. The MPU6050 Explained. [online] Programming Robots. Available at:

[Accessed 5 January 2021]. Elektor. 2021. Balbot: A Self-Balancing Robot. [online]

Available at: [Accessed 6 January 2021]

43

APPENDICES

APPENDIX A: Project coding

#include "I2Cdev.h" //

https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

#include <PID_v1.h> //From https://github.com/br3ttb/Arduino-PID-

Library/blob/master/PID_v1.h

#include "MPU6050_6Axis_MotionApps20.h"

//https://github.com/jrowberg/i2cdevlib/tree/master/Arduino/MPU6050

MPU6050 mpu;

// MPU control/status vars

bool dmpReady = false; // set true if DMP init was successful

uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU

uint8_t devStatus; // return status after each device operation (0 = success, !0 =

error)

uint16_t packetSize; // expected DMP packet size (default is 42 bytes)

uint16_t fifoCount; // count of all bytes currently in FIFO

uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars

44

Quaternion q; // [w, x, y, z] quaternion container

VectorFloat gravity; // [x, y, z] gravity vector

float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector

/*********Tune these 4 values for your BOT*********/

double setpoint= 179.55; //set the value when the bot is perpendicular to ground using

serial monitor.

//###

//Change those Values according to your Design

//###

double Kp = 22; //Set this first

double Kd = 0.8; //Set this secound

double Ki = 180; //Finally set this

//##

double input, output;

PID pid(&input, &output, &setpoint, Kp, Ki, Kd, DIRECT);

45

volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone

high

void dmpDataReady()

{

 mpuInterrupt = true;

}

void setup() {

 Serial.begin(115200);

 // initialize device

 Serial.println(F("Initializing I2C devices..."));

 mpu.initialize();

 // verify connection

 Serial.println(F("Testing device connections..."));

 Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") :

F("MPU6050 connection failed"));

 // load and configure the DMP

 devStatus = mpu.dmpInitialize();

 // supply your own gyro offsets here, scaled for min sensitivity

46

 mpu.setXGyroOffset(63);

 mpu.setYGyroOffset(-18);

 mpu.setZGyroOffset(39);

 mpu.setZAccelOffset(1013);

 // make sure it worked (returns 0 if so)

 if (devStatus == 0)

 {

 // turn on the DMP, now that it's ready

 Serial.println(F("Enabling DMP..."));

 mpu.setDMPEnabled(true);

 // enable Arduino interrupt detection

 Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));

 attachInterrupt(0, dmpDataReady, RISING);

 mpuIntStatus = mpu.getIntStatus();

 // set our DMP Ready flag so the main loop() function knows it's okay to use it

 Serial.println(F("DMP ready! Waiting for first interrupt..."));

 dmpReady = true;

 // get expected DMP packet size for later comparison

 packetSize = mpu.dmpGetFIFOPacketSize();

47

 //setup PID

 pid.SetMode(AUTOMATIC);

 pid.SetSampleTime(10);

 pid.SetOutputLimits(-255, 255);

 }

 Else

 {

 // ERROR!

 // 1 = initial memory load failed

 // 2 = DMP configuration updates failed

 // (if it's going to break, usually the code will be 1)

 Serial.print(F("DMP Initialization failed (code "));

 Serial.print(devStatus);

 Serial.println(F(")"));

 }

//Initialise the Motor outpu pins

 pinMode (6, OUTPUT);

 pinMode (9, OUTPUT);

 pinMode (10, OUTPUT);

 pinMode (11, OUTPUT);

48

//By default turn off both the motors

 analogWrite(6,LOW);

 analogWrite(9,LOW);

 analogWrite(10,LOW);

 analogWrite(11,LOW);

void loop() {

 // if programming failed, don't try to do anything

 if (!dmpReady) return;

 // wait for MPU interrupt or extra packet(s) available

 while (!mpuInterrupt && fifoCount < packetSize)

 {

 //no mpu data - performing PID calculations and output to motors

 pid.Compute();

 //Print the value of Input and Output on the serial monitor to check how it is

working.

 Serial.print(input); Serial.print(" =>"); Serial.println(output);

 if (input>150 && input<215){//If the Bot is falling

 if (output>0) //Falling towards front

49

 Forward(); //Rotate the wheels forward

 else if (output<0) //Falling towards back

 Reverse(); //Rotate the wheels backward

 }

 else //If Bot not falling

 Stop(); //Hold the wheels still

 }

 // reset interrupt flag and get INT_STATUS byte

 mpuInterrupt = false;

 mpuIntStatus = mpu.getIntStatus();

 // get current FIFO count

 fifoCount = mpu.getFIFOCount();

 // check for overflow (this should never happen unless our code is too inefficient)

 if ((mpuIntStatus & 0x10) || fifoCount == 1024)

 {

 // reset so we can continue cleanly

 mpu.resetFIFO();

 Serial.println(F("FIFO overflow!"));

 // otherwise, check for DMP data ready interrupt (this should happen frequently)

 }

 else if (mpuIntStatus & 0x02)

50

 {

 // wait for correct available data length, should be a VERY short wait

 while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

 // read a packet from FIFO

 mpu.getFIFOBytes(fifoBuffer, packetSize);

 // track FIFO count here in case there is > 1 packet available

 // (this lets us immediately read more without waiting for an interrupt)

 fifoCount -= packetSize;

 mpu.dmpGetQuaternion(&q, fifoBuffer); //get value for q

 mpu.dmpGetGravity(&gravity, &q); //get value for gravity

 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); //get value for ypr

 input = ypr[1] * 180/M_PI + 180;

 }

}

void Reverse() //Code to rotate the wheel forward

{

 analogWrite(6,0);

 analogWrite(9,output*-1);

 analogWrite(10,output*-1);

51

 analogWrite(11,0);

 Serial.print("F"); //Debugging information

}

void Forward() //Code to rotate the wheel Backward

{

 analogWrite(6,output);

 analogWrite(9,0);

 analogWrite(10,0);

 analogWrite(11,output);

 Serial.print("R");

}

void Stop() //Code to stop both the wheels

{

 analogWrite(6,0);

 analogWrite(9,0);

 analogWrite(10,0);

 analogWrite(11,0);

 Serial.print("S");

}

52

APPENDIX B: Schematic of Arduino Uno Microcontroller Board

53

APPENDIX C: Schematic MPU6050 Board

54

APPENDIX D: Block diagram of the project

55

APPENDIX E: Circuit diagram of the project

56

APPENDIX F: Gantt chart

57

