

DESIGN OF FIBER-TO-THE-HOME (FTTH) ACCESS NETWORK WITH REDUNDANCY FOR TAMAN IMPIAN CHEMOR IPOH BASED ON GIS NUR ARINA BINTI MADZLAN

BACHELOR OF ELECTRONIC ENGINEERING

TECHNOLOGY (TELECOMMUNICATION) WITH HONOURS

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DESIGN OF FIBER-TO-THE-HOME (FTTH) ACCESS NETWORK WITH REDUNDANCY FOR TAMAN IMPIAN CHEMOR IPOH BASED ON GIS

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronic Engineering

Technology (Telecommunication) with Honours.

NUR ARINA BINTI MADZLAN B071710187 950428-08-6132

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2021

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DESIGN OF FIBER-TO-THE-HOME (FTTH) ACCESS NETWORK WITH REDUNDANCY FOR TAMAN IMPIAN CHEMOR IPOH BASED ON GIS

Sesi Pengajian: 2020/2021 SEMESTER I

Saya NUR ARINA BINTI MADZLAN mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syaratsyarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. ******Sila tandakan (X)

SULIT*

Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam

AKTA RAHSIA RASMI 1972.

	TERHAD*	Mengandungi	maklumat TI	ERHAD yang	telah ditentul	kan oleh
		organisasi/bada	n di mana pe	nyelidikan dija	alankan.	
\boxtimes	TIDAK					
	TERHAD					
Yang	benar,		Disah	kan oleh peny	elia:	
	Aine	NT SIZ		·		
NUR A	ARINA BINTI	MADZLAN	TS. F	AKHRULLAI	H BIN IDRIS	
Alama	it Tetap:	2	Cop H	Rasmi Penyelia	ı	
No 20	B Lorong 8			FAKHRULLAH	H BIN IDRIS	
Tamar	n Impian Chem	or	Jabatan Tek Fakult i Tekr	nologi Kejuruter nologi Kejuruter	rengajar raan Elektrik dar aan Elektrik dan	n Komputer Elektronik
31200	Chemor, Ipoh	, Perak	م <u>ن</u> ظن ا	iversiti Teknikal	Malaysia Melak	a
	UNIVER	SITI TEKNI	KAL MAL	AYSIA ME	LAKA	
				47/0/0004		

Tarikh: 17 February 2021

Tarikh: 17/2/2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DESIGN OF FIBER-TO-THE-HOME (FTTH) ACCESS NETWORK WITH REDUNDANCY FOR TAMAN IMPIAN CHEMOR IPOH BASED ON GIS is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunication) with Honours. The member of the supervisory is as follow:

ABSTRAK

Rangkaian akses Fiber-to-the-home (FTTH), merujuk kepada sambungan kabel fiber optik untuk kediaman, pejabat dan kediaman individu. Ia berdasarkan komunikasi gentian optik dan dapat menghantar banyak maklumat digital seperti telefon bimbit, video dan data dengan lebih berkesan daripada kabel tembaga konvensional. Manfaat utama FTTH adalah bahawa ia memberikan kelajuan sambungan yang lebih cepat dan lebih banyak sokongan daripada konduktor pasangan berpintal, DSL atau rangkaian lain. FTTH adalah satu-satunya teknologi dengan lebar jalur yang mencukupi untuk memenuhi permintaan pelanggan, baik sekarang dan masa depan. Dalam makalah ini kami telah mengetengahkan kelebihan FTTH dengan kelebihan dan prospek masa depan dalam pembangunan infrastruktur pada tembak-menembak di Ipoh yang mempunyai pangkalan pengguna yang besar. Pendekatan mudah untuk mendapatkan pelaksanaan terbaik perisian reka bentuk rangkaian berasaskan GIS dicadangkan. Akhirnya, proses reka bentuk rangkaian merangkumi memutuskan pengedaran nod rangkaian dan laluan kabel penyambung nod yang sesuai dengan cara yang memastikan liputan maksimum seluruh rangkaian Zon kos serendah mungkin.

اونيۈم سيتي تيكنيكل مليسيا ملاك

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ABSTRACT

Fiber to home (FTTH) access network refers to fiber optic cable connections for individual homes, offices and residences. It is based on optical fiber communications and can transmit much digital information such as cell phones, video and data more effectively than conventional copper cables. The main benefit of FTTH is that it provides much faster connection speeds and more support than twisted pair conductors, DSLs or other networks. Fiber to home is the only technology with sufficient bandwidth to meet customer demand, both now and in the future. In this paper we have highlighted the advantages of FTTH with redundancy and future prospects in infrastructure development at a shootout in Ipoh which has a large user. A simple approach to get the best implementation of GIS-based network design software is proposed. Eventually, the network design process includes deciding the distribution of network nodes and the appropriate routes of node-connecting cables in a way that ensures maximum coverage of the entire network Lowest possible cost zone.

TABLE OF CONTENTS

TAB	LE OF CONTENTS	PAGE vi
LIST	OF TABLES	X
LIST	OF FIGURES	xi
СНА	PTER 1 INTRODUCTION	1
1.0	Introduction AY 3/4	1
1.1	Background study	1
1.2	Problem statement	2
1.3	Objectives	
1.4	اونيوبرسيني تيڪنيڪل مليسها ملاكئ	4
1.5	Summary ERSITI TEKNIKAL MALAYSIA MELAKA	4
СНА	PTER 2 LITERATURE REVIEW	5
2.0	Introduction	5
2.1	Geographic Information System (GIS)	5
	2.1.1 Introduction	5
	2.1.2 A Simple GIS Based Method for Designing Fiber-Network	6
	2.1.3 Monitoring Urban Growth and Land Use Change Detection With GIS.	6
	2.1.4 A GIS Based Novel Active Monitoring System for Fiber Networks viii	7

	2.1.5	Geographic Information System: Old Principles With New Capabilities.	7
	2.1.6	GIS based mapping of optical fiber cable in a part of ALWAR district,	
		Rajasthan India.	8
2.2	Fiber -	-to-the-Home (FTTH)	10
	2.2.1	Introduction.	10
	2.2.2	Fiber-To-The—Home (FTTH) Architecture for Mosul, Iraq	11
	2.2.3	Design of Fiber-To-The-Home (FTTH) Access Network and Implement	ting
	3	Online Monitoring To Increase Efficiency.	12
	2.2.4	Analysis of Refractive Index Single Mode Optical Fiber for FTTH	
	110	Application	13
	2.2.5	Gigabit Passive Optical Network (GPON)	15
	12	اونيۇم سىتي تېكنىكل مليسيا ملا	
2.3	Fiber-1	to-the-Home with Redundancy MALAYSIA MELAKA	16
	2.3.1	Introduction	16
	2.3.2	On Planning of FTTH Access Network With and Without Redundancy	17
	2.3.3	Cost vs Redundancy in FTTH Access Network: A Case Study Of A Dar	nish
		Village	18
2.4	Design	n Architecture for Fiber-to-the-Home (FTTH)	19
	2.4.1	Introduction	19

	2.4.2 Performance Analysis Of Resilient FTTH Architecture with Protection		
		Mechanism	19
	2.4.3	Design and Implementation of FTTH	21
	2.4.4	Design and Implementation of a Practical FTTH Network	22
	2.4.5 Link and Cost Optimization of FTTH network Implementation through		
		GPON technology.	23
	2.4.6	Techno-economic Planning with Difference Topologies of FTTH Acces	s
		Network with GPON Network Technologies.	24
	-	WALAYSIA MA	
2.5	Perfor	mance of Fiber-to-the-Home (FTTH)	26
	2.5.T	Introduction	26
	2.5.2	Performance Simulation of Fiber-to-the-home (FTTH) Devices Based o	n
	رك	اويونر سيتي تيڪنيڪل مليسيا ملا	27
	2.5.3	Performance Within A Fiber-to-the-home (FTTH)	28
	2.5.4	Performance Improvement of FTTH Architecture With OCDMA Techn	ique.
			30
СНАР	TER 3	METHODOLOGY	32
3.0	Introdu	uction	32
3.1	Flow c	of the Project	32
3.2	Flow C	Chart of progress for FTTH network design	34
3.3	FTTH	Network plan with Google map x	35

3.4	GPON FTTH access network architecture	36
3.5	Design of the GPON FTTH access network with redundancy	37
3.6	FTTH Network plan with Google Earth pro	40
3.7	Component of GPON FTTH access network	40
	3.7.1 Optical Distribution Cabinet (ODC)	40
	3.7.2 Fiber Access Terminal (FAT) and Fiber Access Terminal (join)	40
	3.7.3 Optical Splitter	41
	3.7.4 Optical Network Terminal (ONT)	42
3.9	Basic design FTTH access network on Optisystem	43
CH	APTER 4 RESULT AND DISCUSSION	48
4.0	Introduction	48
4.1	Actual design and distance of FTTH	48
4.2	UNIVERSITI TEKNIKAL MALAYSIA MELAKA Cost of installation for FTTH using normal or with redundancy	48
4.3	Actual distance from TM central office to user premies	50
4.4	Technical design for FTTH access network	53
4.5	FTTH system simulation layout on Optisystem	53
4.6	BER Analyser output using Optisystem	55
4.7	Discussion	67

CHAPTER 5		CONCLUSION AND RECOMMENDATION	68
5.0	Conclusion		68
5.1	Recommend	lation	69
REFF	CRENCE	REFERENCE	76
APPE	NDIX 1	GANTT CHART PSM I	79
	MA	LAYSIA	
APPE	NDIX 2	GANTT CHART PSM 2	80
		INSTALLATION FIDED CADLE TO THE USED'S HON	MEG AT
AFFE	ADIA 5	INSTALLATION FIDER CADLE TO THE USER S HOP	VIES AI
	ann.	TAMAN IMPIAN CHEMOR IPOH	81
	ملاك	اونيۆسسىتى تيكنىكل مليسيا	
	UNIVE	RSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1: Summ	ary of Geographic Information System (GIS)	10
Table 2.2: Summ	ary of design architecture for Fiber-To-The-Home (FTTH)	26
Table 2.3: Compa	arative result (Awalia, W. and Pantjawati, A.B. 2018)	28
Table 2.4: Summ	ary of performance Fiber-To-The-Home (FTTH)	31
Table 3.1: Maxin	num split ratio loss	41
Table 3.2: Refere	nce loss for link loss budget	42
Table 4.1: The di	stance of FTTH route	48
Table 4.2: Fiber 1	ength from transmitter to receiver using Google maps	50
Table 4.3: Min B	ER and Eye diagram for route A	56
UNIV Table 4.4 Min BI	ERSITI TEKNIKAL MALAYSIA MELAKA ER and Eye diagram for route B	61
Table 4.5: BER a	nalyzer for Min BER and max Q factor	66
Table 4.6: Effeec	t fiber length on Min BER for route A and B	66

LIST OF FIGURES

FIGURE TITLE	PAGE
Figure 1.1: Cellular data network in Ipoh, Perak	2
Figure 1.2: The growth in the number of user on the Internet (Lee et al., 2006) 3
Figure 2.1: Stages of GIS data collections (Grigonis, V. and Griffiths, S, 201	1) 8
Figure 2.2: Flow Chart (Sharma, .S, Singh, S.K. and Mishra, V.N, 2020)	9
Figure 2.3: PON architecture (Engineering, C., 2017)	13
Figure 2.4: Comparison: standard SMF and trench index	14
Figure 2.5: Typical GPON architecture (Cale, I. and Salihovic, A. ,2007)	15
Figure 2.6: Block diagram of 64 GPON systems. (Cale, I. and Salihovic, A.,	2007) 16
Figure 2.7: Access network topologies (Riaz, M.T et al, 2010)	17
Figure 2.8: New proposed ear topology (Haraldson, G.H. and Pedersen, J.M.,	2006) 18
Figure 2.9: New traditional tree topology(Haraldson, G.H. and Pedersen, J.M	.,2006) 19
Figure 2.10: Block diagram (Udayakumar, R., Khanaa, and Kaliyamurthie, K.	P.2013) 20
Figure 2.11: Block diagram of Ladder Network(Udayakumar, R., Khanaa, V	and
Kaliyamurthie, K.P. ,2013)	21
Figure 2.12: Basic architecture of FTTH (Manojkumar Lokhande, 2017)	22
Figure 2.13: Fiber-To-The-x (FTTx) Architecture (Kadhim, D.J. ,2013)	23
Figure 2.14: Network Topology (Abdu, N. ,2013)	24

Figure 2.15: The network connecting the Provider uses a passive splitter (Awalia, W.	•
and Pantjawati, A.B. 2018)	28
Figure 2.16: Aggregate transmission rates per day (Sargent, M. and Allman, M. 2014)	29
Figure 2.17: FTTH diagram with OCDMA technique(Swati and Prakash, D, 2019)	31
Figure 3.1: Flow Chart for design FTTH network	33
Figure 3.2: Flow Chart of progress for FTTH network design.	34
Figure 3.3: Distance A from exchange TM Chemor to Taman Chemor Impian	35
Figure 3.4: Distance B from exchange TM Chemor to Taman Chemor Impian	36
Figure 3.5: GPON FTTH access network architecture	37
Figure 3.6: Design of the GPON FTTH access network	39
Figure 3.7: FTTH Access Network with redundancy on Google map	39
Figure 3.8: Splitter 1:4 and 1:8	41
Figure 3.9: Basic design FTTH access network on Optisystem	44
Figure 3.10: Q Factor for BER analyzerAL MALAYSIA MELAKA	45
Figure 3.11: Eye Height for Eye diagram analyzer	46
Figure 3.11: Eye Height and Q Factor for Eye diagram analyzer	46
Figure 4.1: Fibre Optic Network Design for GPON from transmitter to FAT	49
Figure 4.2: Fibre Optic Network Design for GPON for A Particular Housing Area	49
Figure 4.3: Fibre Optic Network Design for GPON from OLT to ONT	50
Figure 4.4: Technical design for FTTH network	53
Figure 4.5: Transmitter section of simulated FTTH model	54

LIST OF SYMBOLS

Km	-	Kilometer
Μ	-	Meter
L	-	Length
Mbps	-	Megabits per second
dB	-	Desibel

CHAPTER 1

INTRODUCTION

1.0 Introduction

In this globalization, the Internet offers great opportunities for work, relaxation, communication, and sharing of information. The rise of the internet and its increasing popularity has contributed to a more consistent change to the world and society. Therefore, there should opening up a new virtual world and communicating easily and quickly. Online communication is not only needed for successful people but also for students and users of all ages. The increasing number of users has resulted in limited internet access and some areas do not have sufficient internet access. All users need a higher speed internet to access stable networks and internet connections. Therefore, telecommunications companies need to focus more on designing internet networks with reference to network efficiency, internet stabilization and installation costs to meet consumer needs. ERSINTEENIMAL MALAYSIA MELAKA

1.1 Background Study

According to Akshay Mukesh Kanal (2012), Home-based fiber network integration can more easily accommodate future bandwidth applications and applications than other network architectures. However, the cost of capital to install local access networks is very high. As such, providers and newcomers want to develop a network that will potentially meet the bandwidth and application requirements for the next ten or even twenty years, which will be able to accommodate as capacity increases. FTTH has the advantage of great capabilities and flexibility over other telecommunications networks.

In addition, fiber optic cables have a higher bandwidth capacity (especially upstream) than other transmitting media. The FTTH network provides a flexible and seamless communication infrastructure, along with the Internet anywhere easier and faster. Optical fiber technology enables focusing on the physical layer of the network in a manner similar to how the Internet Protocol allows for the focus on the logical layer of communication infrastructure. In tandem with the increase in Internet usage has also led to increased demand for residential bandwidth.

1.2 Problem Statement

Figure 1.1: Cellular data network in Ipoh, Perak

In this project, Taman Chemor Impian, Ipoh Perak are selected to prove the effectiveness of using GIS for the planning and design of fiber-to-the-home (FTTH) access network. However, this kind of application can only be used by some parties. As a result, the project has been using a similar application to GIS which is Google maps. In figure 1.1 shown the coverage map at Chemor, Perak show the coverage for data network only 4G. It's not enough to support the quantity of subscribers nowadays. Thus, growing demand for home internet network installation by customer.

The demand for high-speed internet access has increased dramatically due to the need for multimedia application directly to the desktop. Traffic pattern in access networks have evolved form voice and text oriented services to video and image based services. In figure 2 shows the trend of demand for internet, worldwide. This trend will require new access network that will support high-speed <100 Mbps, symmetric and guaranteed bandwidth for future video services with high-definition TV quality (Lee et al., 2006).

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Figure 1.2: The growth in the number of user on the Internet (Lee et al., 2006)

1.3 Objectives

1. To design of fiber-the-home (FTTH) with redundancy at the selected area using GIS.

2. To estimate cost of installation using normal or with redundancy.

3. To analyze the performance simulation of FTTH devices based on Optisystem.

1.4 Scope of Work

In this project, a small population area was selected to undergo the FTTH internet access test with the redundancy. For more precisely the software used is the Geographic Information System for automatic planning of FTTH access networks. This method can indicate the area needed to read geographical data for FTTH installations. GIS is often used to design, review and optimize data as it is a systematic approach to setting up infrastructure for network access. Therefore, Geographical Information Systems (GIS) is well suited for the tools used for FTTH network analysis. After the process of establishing the FTTH connection in GIS, it is transferred and analyzed using Optisystem where it calculates Q-Factor values and BER values. Power link approximation analysis is used to determine the performance of network installations before operating them on the device.

1.5 Summary

In this chapter, the design of network and simulation result will be minimize the cost installation instead optimize the efficiency and stability of internet connection. Before designing the network on Optisystem software, FTTH network architecture was required using Google maps and Google earth pro as methods to facilitate installation work. Next, by using Optisystem of the FTTH network design will be analysis the performance the FTTH network. The aim of this project to adjust whether the system is running well or not.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This chapter will highlight on the theory and information about the scope of this project based the review from the related literature journals. The information that studied from the related journal are the process design of FTTH network access using GIS and FTTH implementation. This project will be expressed through this chapter which consist of explanation for the suitable method used to design FTTH with the OptiSystem software.

2.1 Geographic Information System (GIS)

2.1.1 Introduction

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

The Geographic Information System (GIS) is a computer system designed to collect, store, query, analyze and view geospatial data. Geospatial data describes the location of spatial features and their attributes. A GIS includes the hardware , software , data, people, and organizational components. In the 1980s GIS flourished, prompted by the introduction of personal computers (PCs) and graphical user interfaces. Now GIS is an essential tool in resource management, emergency planning, crime analysis, public health, land record management, precision farming and many other fields. An significant trend is the convergence of GIS desktops and web and mobile technologies, which has already resulted in