

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

DEVELOPMENT OF WIRELESS SIDS DETECTION SYSTEM FOR INFANT

This report is submitted in accordance with the requirement of the Universiti

Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electronics Engineering

Technology with Honours.

MALAYSIA

HIND BINTI KHALIL B071711013 981220016452

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING TECHNOLOGY

2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: DEVELOPMENT OF WIRELESS SIDS DETECTION SYSTEM FOR INFANT

Sesi Pengajian: 2020

Saya HIND BINTI KHALIL mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

		Mengandungi	maklumat	yang	berdarjah	keselamatan	atau
	SULIT*	kepentingan Malaysia sebagaimana yang termaktub dalam AKTA					
	SCLIT	RAHSIA RAS	MI 1972.				
	TERHAD*	Mengandungi	maklumat T	TERHA	D yang tel	ah ditentukan	oleh
		organisasi/bada	an di mana p	enyelid	likan dijalar	ıkan.	
\boxtimes	TIDAK						
	TERHAD						
Yang benar,			Disa	hkan o	leh penyelia	a:	
	Hind	W. C. S.			J.		
HIND BINTI KHALIL DR HASLINAH BINTI MOHD NASIR				IR			
Alamat Tetap:			Cop	Rasmi	Penyelia		
NO.223 JALAN TEMENGGONG DR. HASLINAH BINTI MOHD NASIR							
AHMADJNIVERSITITEKNIKAL MALAYS A University Telephronisk dan Komputer							
84000, MUAR							
ЈОНО	R						

Tarikh: 15 January 2021 Tarikh: 1 Mac 2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled DEVELOPMENT OF WIRELESS SIDS

DETECTION SYSTEM FOR INFANT is the results of my own research except as cited in references.

Signature:	Hind
Author:	HIND BINTI KHALIL
Date:	15 January 2021
مليسياً ملاك	اونيوسيتي تيكنيك
UNIVERSITI TE	KNIKAL MALAYSIA MELAKA

APPROVAL

This report is submitted to the Faculty of Electrical and Electronics Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronics Engineering Technology with Honours. The member of the supervisory is as follow:

Signature:	
Supervisor: DR HASLINAH BINTI MO	HD NASIR
سيتي تيكنيكل مليسيا ملاك UNIV Signature: TEKNIKAL MAriffy SIA M	اونیوس MELAKA

Co-supervisor:

MR NOOR MOHD ARIFF BIN BRAHIN

ABSTRAK

Pada masa kini, salah satu masalah utama yang dihadapi oleh kebanyakan ibu bapa adalah penjagaan bayi. Ibu bapa tidak dapat mengesan atau memantau bayi secara berterusan. Ibu bapa memerlukan alat pemantauan bayi yang dapat mengawasi keadaan bayi dengan lebih tepat. Berdasarkan pemerhatian, alat pemantauan bayi yang paling popular adalah kamera video, mikrofon atau gabungan kedua-duanya. Batasan terbesar ialah ibu bapa mungkin tidak mengetahui sama ada bayi tersebut mengalami kejadian SIDS. Sistem ini dirancang untuk mengembangkan sistem pemantauan bayi yang dapat memberi peringatan kepada ibu bapa. Sistem dengan kemampuan tanpa wayar dengan mengesan jika bayi mengalami degupan jantung yang tidak normal, penggera akan mencetuskan ibu bapa. Lebih-lebih lagi, sistem ini adalah untuk mensimulasikan sistem melalui simulasi dengan menggunakan data degupan jantung dari pangkalan data. Ini kerana Arduino bertindak sebagai mikrokontroler sistem dan akan mengesan corak degupan jantung yang tidak normal dari pangkalan data. Sistem ini akan membantu ibu bapa atau penjaga untuk memantau pergerakan bayi malah dengan mengurangkan kadar kematian bayi.

ABSTRACT

Nowadays, one of the most major problems facing many parents today is child care. Parents cannot detect or monitor the infants constantly. Parent needs a baby monitor that can keep track of an infant's condition more accurately. Based on the observations, most popular baby monitors are either a video camera, a microphone or a combination of both. The biggest limitation is that parents may not know whether the baby is experiencing a SIDS incident. This system is designed to develop detection system for infant which able to give alarm to the parents. System with wireless capabilities by detecting if the infant is experiencing an abnormal heart rate, a buzzer will trigger the parents. Moreover, this system is to simulate the system directly through sensor by using a pulse rate sensor in beats per minute. It is because Arduino acted as the microcontroller of the system and will detect abnormal heart rate pattern from sensor. This system will help parents or guardian to detect abnormal heart beat level whereby decreasing the rate of infant mortality.

DEDICATION

Specially dedicated to my beloved dad, Khalil bin Abd Aziz, my friends and my fiancé,
Muhammad Bajrai bin Ahmad who has been with me through all the years and those
people who helped and encouraged me during my educational journey.

ACKNOWLEDGEMENTS

With His permission, I would like to express my gratitude to Allah that I am done with my project and that it has been successful and smooth. Alhamdulillah, His Willingness has allowed me to complete the Bachelor Degree Project in decent time.

I would like to take this opportunity to express gratitude to my dedicated supervisor, Dr Haslinah Binti Mohd Nasir for her guide that help this project at every stage and getting things done by sharing his valuable ideas, time and knowledge. I would also like to thank my co supervisor, Mr Noor Mohd Ariff Bin Brahin and other lecturers whom had helped directly or indirectly thus making this project a reality.

Not forgotten are my best colleagues for their openhandedly and compassionately guided, assisted, and supported to make this project successful. My deepest thanks to my dearest UNIVERSITI TEKNIKAL MALAYSIA MELAKA family and fiancé which always support and pray on me throughout this project. Their blessing gave me the high-spirit and strength to lift me up and face any problems that had occurred and overcome it appropriately.

The great cooperation, kind heartedness and readiness to share worth experiences that have been shown by all of them will be always appreciated and treasured by me, thank you.

TABLE OF CONTENTS

	PAGE
TABLE OF CONTENTS	X
LIST OF TABLES	xivv
LIST OF FIGURES	xv
LIST OF APPENDICES	xviii
LIST OF SYMBOLS	xviiii
LIST OF ABBREVIATIONS	xix
CHAPTER 1 INTRODUCTION	
1.1 Background	20
1.2 Problem Statement	22
1.3 Objectives RSITI TEKNIKAL MALAYSIA MELAKA	23
1.4 Scope of Research	24
1.5 Report Organization	25
CHAPTER 2 LITERATURE REVIEW	
2.1 Past Related Works	26
2.1.1 Baby monitoring system using image processing and IoT	26
2.1.2 Raspberry Pi-based smart infant monitoring system	28
2.1.3 Baby monitoring system using sensor and wireless camera	30

	2.1.4 IoT baby monitor	32
	2.1.5 The baby monitoring room prototype model using IoT	33
2.2	Infant's Conditions	36
	2.3.1 Heart rate	36
	2.3.2 SIDS	37
2.3	Approach	38
	2.3.1 Internet of Things (IoT)	38
	2.3.2 GSM smart baby monitor	39
2.4	Microntroller	40
	2.4.1 Raspberry Pi	40
	2.4.2 Arduino	41
	2.4.3 PIC16F877	42
2.5	Sensors	43
	2.5.1 Sound detection sensor	43
	2.5.2 PIR sensor	44
	2.5.3 Temperature and humidity sensor	45
	2.5.4 Heart beat sensor	46
2.6	Summary	47
~ ****		
CHA	APTER 3 METHODOLOGY	
3.1	System Work Flow	48
3.2	Software Development	50
	3.2.1 IDE	50

	3.2.2 Application	52
3.3	Hardware Development	53
	3.3.1 Microcontroller	53
	3.3.2 LCD 16×2	54
	3.3.3 Sensor	55
	3.3.4 Buzzer	56
	3.3.5 Potentiometer	57
	3.3.6 Wireless Communication	57
3.4	Summary	58
CHA	APTER 4 RESULTS & DISCUSSION	
4.1	Sensor Functionality	59
4.2	Hardware Implementation	63
4.3	Hardware Testing	65
4.4	UNIVERSITI TEKNIKAL MALAYSIA MELAKA Android Application	71
4.5	Summary	74
СНА	APTER 5 CONCLUSIONS	
5.1	Conclusion	75
5.2	Limitations	76
3.4	Future Recommendations	77

REFERENCES	78
APPENDICES	80

LIST OF TABLES

TABLE	TITLE	PAGE
Table 2.1	Comparison between all current research	35
Table 2.2	Comparison between heart rate and sleeping rate	37
Table 4.1	Code for pulse sensor	61
Table 4.2	Setup code for heart rate detection	65
Table 4.3	Infant heart rate level	67
Table 4.4	Display for OKAY heart rate level	68
Table 4.5	Display for HELP heart rate level	69
Table 4.6	Display for DANGER heart rate level	70
Table 4.7	Setup code for Bluetooth	71
	اونيوسيتي تيكنيكل مليسيا ملاك	

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF FIGURES

FIGURE	TITLE	PAGE
Figure 1.1:	Block diagram for baby monitoring system	24
Figure 2.1:	System Block Diagram	27
Figure 2.2:	The proposed smart infant monitoring system	29
Figure 2.3:	Block diagram of the system	31
Figure 2.4:	Final design pictorial diagram	32
Figure 2.5:	Baby room scenario	34
Figure 2.6:	Internet of Things (IoT)	38
Figure 2.7:	Raspberry Pi	40
Figure 2.8:	اونيورسيتي تيكنيك ONU Arduino UNO	41
Figure 2.9: N	VPICI6F877 EKNIKAL MALAYSIA MELAKA	42
Figure 2.10:	Sound detection sensor	43
Figure 2.11:	PIR sensor	44
Figure 2.12:	Temperature and humidity sensor	45
Figure 2.13:	Heart beat sensor	46
Figure 3.1:	System flowchart	49
Figure 3.2:	IDE Software Interface	51
Figure 3.3:	Blynk Application Interface	52
Figure 3.4:	Arduino UNO	53

Figure 3.5:	LCD 16×2	54
Figure 3.6:	Pulse sensor	55
Figure 3.7:	Piezo Electronic buzzer	56
Figure 3.8:	1k Potentiometer	57
Figure 3.9:	HC-05 Bluetooth	57
Figure 4.1:	Circuit drawing between pulse sensor and Arduino	59
Figure 4.2:	Circuit connection between pulse sensor and Arduino	60
Figure 4.3:	Serial monitor display for pulse sensor	61
Figure 4.4:	LCD display for pulse sensor	62
Figure 4.5:	Circuit drawing between LCD and Arduino	63
Figure 4.6:	Serial monitor display for LCD	63
Figure 4.7.	Circuit connection between LCD and Arduino	64
Figure 4.8:	Serial monitor display for Bluetooth	72
Figure 4.9	Blynk application interface	73

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Project Coding	80

LIST OF SYMBOLS

°C Degree Celsius

bpm Beats per minute

LIST OF ABBREVIATIONS

RPi Raspberry Pi

IoT Internet of Things

GSM Global System for Mobile Communication

LCD Liquid Crystal Display

LED Light Emitting Diode

SIDS Sudden Infant Death Syndrome

SIUDs Sudden Infant Unexpected Death Syndrome

SMS Short message service

PIR Passive Infrared

ECG Electrocardiograph

IDE Integrated Development Environment

CPU Central Processing Unit

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CHAPTER 1

INTRODUCTION

1.1 Background

Infant mortality is the death of an infant below the age of 12 months. In each 1,000 live births the infant mortality number is the rate of infant deaths. Infant mortality has several different causes, from infection to genetic disorders or accidents. In 2018, Malaysia's infant death rate was 6.7 dying for every 1,000 live deliveries. Thus, 5 most significant reason of mortality for infants were; birth defects, premature birth, birth defects, SIDS and pregnancy complications and injuries.

In 2019, Malaysia's infant death rate was 5.750 deaths per 1 000 live deliveries, with **UNIVERSITI TEKNIKAL MALAYSIA MELAKA** decreased of 2.53% from 2018. The exact reason of SIDS is unknown and cannot be explained after a thorough case investigation including post-mortem, scene investigation, and infant's clinical history. Deficiencies in the cortex, that is the area of brain that regulates sleeping and breathing anticipation are considered to be related to SIDS.

A term used to define any sudden death unexpected death is Sudden Infant Death Syndrome (SIDS). SIDS is also an expression used to represent any sudden and abrupt death happens during infancy. This is also one of the main causes of infant mortality between the ages of one until 12 months. Thanks to expertise of various organizations, the number of death from SIDS has dropped to the lower rate. [1]

SIDS is a subcategory from Sudden Infant Unexpected Death Syndrome (SIUDs). After several analysis SIUDs can be assigned to cause of death in infant such as suffocation, asphyxia, trapping, positioning, ingestion, metabolic and traumatic diseases. The difference between SIDS and SIUDs, especially those that happens during an unnoticed sleep time. Along the whole process of the research, all cases will be labelled to as SIDS. Since this research is more focused on developing system detection for infant wirelessly.

1.2 Problem Statement

Parents need a baby detection system that capable of monitoring and detecting an infant's heart rate more accurately. Most popular baby monitors are often a camera, a video recorder or even a variation between both. The biggest limitation is that parents may not know whether the infant is experiencing a SIDS incident.

Usually SIDS happens when parents and infant are sleeping together on any surface such as; bed, couch or nursing chair. During this time, parents are not aware of their infant's condition. Even though cameras and microphones are equipped, it cannot warn parents when SIDS is happening. It is inevitable this causes a longer reaction time from the parents that may in turn lead to losing life.

With wireless Infant Detection System, it can help parents to look after infant's heart rate when they are out of sight. Also being able to keep track of infant's condition will give parents a feeling of comfort that results in better night's sleep, which every parents or guardian can use.

This research will detect SIDS by detecting infant's heart rate using sensor and send the data to parents via wireless and trigger the parents if abnormal heart rate happens. The sensors will sense, connected to microcontroller and warn parents immediately. This will advantage and benefits infants in terms of safety issue. Therefore, the chance of SIDS happens is reduced by providing a wireless infant detection system. [3]

1.3 Objectives

The objectives of this research works are:

• To develop a wireless detection system for infant.

System with wireless capabilities by detecting whether the infant is experiencing an irregular heart rate, a buzzer will trigger parents or guardian wirelessly. In situation of SIDS, the parents will response immediately by producing an alert, resulting in a life saved.

• To validate the system using the pulse rate sensor.

Arduino UNO acted as the microcontroller of the system and needs to be programmed in order to control the system. It will detect abnormal heart rate level and show parents their infant's current status and heart rate in bpm. The Bluetooth is use to communicate through application notifications as soon as abnormality heart rate is detected.

1.4 Scope of Research

This part explains about the scope of work for this project. To obtain the objective of this project, HC-05 Bluetooth can be used to send notifications to the parents. A wireless connection based on application is programmed in order to host and notify infant's heart rate through the parent's smartphone. It will initiate connection with the device by communicating through Android. The sensor is placed to detect infant's heart rate and warn the parents if there is presence of unusual heart rate. Therefore, buzzer will be generated to trigger parents and results to turn on LED.

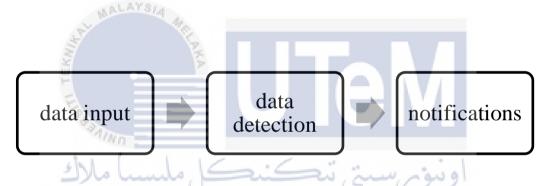


Figure 1.1: Block diagram for baby detection system
UNIVERSITITEKNIKAL MALAYSIA MELAKA