# DESIGN AND FABRICATION OF MICROSTRIP SPLIT RING ANTENNA



# UNIVERSITI TEKNIKAL MALAYSIA MELAKA 2021



# DESIGN AND FABRICATION OF MICROSTRIP SPLIT RING ANTENNA



This report is submitted in partial fulfilment of the requirements for the degree of Bachelor of Electronic Engineering Technology (Telecommunications) with Honours

Faculty of Electrical and Electronic Engineering Technology.

2021





# UNIVERSITI TEKNIKAL MALAYSIA MELAKA

# BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: "Design And Fabrication Of Microstrip Split Ring Antenna"

Sesi Pengajian: 2020/2021

ALAYSIA

Saya NURASHIKIN BINTI ROSNAN mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syaratsyarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. \*\*Sila tandakan (X)

iii

| SULIT*                                                   | Mengandungi maklumat yang berdarjah keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972. |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| TERHAD*                                                  | Mengandungi maklumat TERHAD yang telah ditentukan oleh<br>organisasi/badan di mana penyelidikan dijalankan.                        |  |  |
| TIDAK                                                    |                                                                                                                                    |  |  |
| TERHAD<br>Yang benar,<br><i>ashiku</i><br>NURASHIKIN BIN | Disahkan oleh penyelia:<br>Mulhli<br>TI ROSNAN NURULHALIM BIN HASSIM                                                               |  |  |
|                                                          | Alamat Tetap: Cop Rasmi Penyelia                                                                                                   |  |  |
| Lot 100 Kampung D<br>70400 Ampangan Se                   | Jabatan Teknologi Kejuruteraan Elektronik dan Komputer                                                                             |  |  |
| Negeri Sembilan                                          |                                                                                                                                    |  |  |
| Tarikh: 9 Feb. 2021                                      | Tarikh: 9 Feb. 2021                                                                                                                |  |  |

\*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan

iv

# DECLARATION

I hereby, declared this report entitled "Design And Fabrication Of Microstrip Split Ring Antenna" is the results of my own research except as cited in references.



v

# APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electronics Engineering Technology (Telecommunications) with Honours. The member of the supervisory is as follow:



1 wasan

Signature:

Co-supervisor:

DR. A K M ZAKIR HOSSAIN

# ABSTRAK

Antena mikrostrip banyak digunakan dalam aplikasi sistem telekomunikasi. Antena mikrostrip mempunyai kelebihan iaitu bersaiz kecil, kos yang rendah dan mudah untuk di fabrikasi. Walau bagaimanapun, antena ini mempunyai kekurangan seperti lebar jalur yang sempit, gain yang rendah, dan efisiensinya yang rendah. Masalah paling serius yang dihadapi antena mikrostrip adalah lebar jalur yang terhad. Dalam Projek Akhir ini, antena cincin perpecahan mikrostrip (Microstrip Split Ring Antenna) akan dihasilkan untuk meningkatkan lebar jalur dan memastikan bahawa antena dapat beroperasi dalam jangkauan lebar jalur 300 MHz hingga 3 GHz pada frekuensi rendah. Antena terlebih dahulu akan disimulasikan dalam perisian CST Microwave Studio 2019 sehingga memenuhi spesifikasi yang diinginkan, setelah itu antena akan difabrikasi pada PCB. Setelah difabrikasi, parameter antena akan dianalisis dengan menggunakan Network Analyzer.

vii

# ABSTRACT

Microstrip antennas are widely used for applications in telecommunications system. Microstrip antennas have the advantage of being small in size, low cost and easy to fabricate. These antennas, however, have disadvantages such as limited bandwidth, low gain and low performance. The most serious problem faced by microstrip antennas is their limited bandwidth. The microstrip split ring antenna will be designed in this Final Project to increase the bandwidth and ensure that the antenna will work at low frequency at 300 MHz until 3 GHz of bandwidth. The designed antenna will be simulated in CST Microwave Studio 2019 software until it reaches the necessary requirements and then the antenna will be fabricated on the PCB. After fabrication, the parameter of the antenna will be analysed by using Network Analyser.

viii

## **DEDICATION**

I dedicate this project to my creator God Almighty, He was my source of strength and inspiration throughout the journey in completing this project. This project is also dedicated to my supervisor Encik Nurulhalim Bin Hassim, who has help me through completing this project. I would also like to thank my family members who have given so much moral support in completing this project. In addition, I also like to thank, Dr. A M Zakir Hossain and my colleagues for their generous support and cooperation in making this project a success.



#### ACKNOWLEDGEMENTS

Alhamdulillah, thank and praise to Allah the Almighty because with His permission I was able to complete this Bachelor Degree Project. During the course of this project, I have gained many valuable and meaningful experiences in my lives as a student. The experience I have gained while working on this project will be used when working. It was a meaningful experience of my lives. As a result, I have gained a lot more information and knowledge on this project on how to designed the antenna to achieve the required parameters.

On this occasion, I would like to thank all those involved in making this assignment possible. Especially to my supervisor, Nurulhalim Bin Hassim as he has given a lot of guidance throughout the course of this project. His guidance has helped me a lot in completing this design project.

Therefore, I would also like to thank my family members who have given so much moral support in completing this project. In addition, I also like to thank, Dr. A M Zakir Hossain and my colleagues for their generous support and cooperation in making this project a success. This speech also addressed to all those who have been involved in this project either directly or indirectly. I appreciate all the help you have given to me because without your help and support, this project would not have been possible.

Х

# TABLE OF CONTENTS

| CHAI  | PTER 1 INTRODUCTION                            | PAGE<br>1 |
|-------|------------------------------------------------|-----------|
| 1.1   | Background                                     | 1         |
| 1.2   | Problem Statement                              | 2         |
| 1.3   | Objective                                      | 2         |
| 1.4   | Scope of Study                                 | 2         |
| CHAI  | PTER 2 LITERATURE REVIEW                       | 3         |
| 2.1   | Introduction                                   | 3         |
| 2.2   | اونيوسيتي تيڪنيڪ Basic of Antenna Theory       | 3         |
| 2.3   | Previous Related Research IKAL MALAYSIA MELAKA | 4         |
| 2.4   | Microstrip Antenna                             | 13        |
| 2.4.1 | Patch                                          | 15        |
| 2.4.2 | Dielectric Substrate                           | 15        |
| 2.4.3 | Ground Plane                                   | 15        |
| 2.4.4 | Microstrip Antenna Parameters                  | 15        |
| 2.4.5 | Voltage Standing Wave Ratio (VSWR)             | 16        |

| 2.4.6  | Return Loss       | 16 |
|--------|-------------------|----|
| 2.4.7  | Bandwidth         | 17 |
| 2.4.8  | Radiation Pattern | 17 |
| 2.4.9  | Gain              | 18 |
| 2.4.10 | Directivity       | 19 |
| 2.4.11 | Polarization      | 20 |

| CHAI  | PTER 3 METHODOLOGY                                       | 21 |
|-------|----------------------------------------------------------|----|
| 3.1   | Introduction                                             | 21 |
| 3.2   | Antenna Design                                           | 21 |
| 3.3   | Tools and Software Required                              | 23 |
| 3.4   | اويور سيني بيڪيا مارڪ                                    | 23 |
| 3.5   | UNIVERSITI TEKNIKAL MALAYSIA MELAKA<br>Antenna Substrate | 23 |
| 3.6   | Project Design                                           | 24 |
| 3.6.1 | Antenna Simulation                                       | 25 |
| 3.6.2 | CST Microwave Studio Design                              | 26 |
| 3.7   | Equation for Split Ring Resonator Antenna                | 30 |
| 3.8   | Expected Result                                          | 31 |

xii

| CHAI  | PTER 4         | <b>RESULT AND DISCUSSION</b>                           | 32 |
|-------|----------------|--------------------------------------------------------|----|
| 4.1   | Introduction   |                                                        | 32 |
| 4.2   | Antenna Ana    | a lys is                                               | 32 |
| 4.3   | Antenna Str    | ucture                                                 | 35 |
| 4.4   | Result and E   | Discussion                                             | 37 |
| 4.5   | 1D Result      |                                                        | 37 |
| 4.5.1 | IA III         | Return Loss of Microstrip Split Ring Resonator Antenna | 37 |
| 4.5.2 | and the second | Voltage Standing Wave Ratio (VSWR)                     | 40 |
| 4.5.3 | 1 TEK          | Radiation Efficiency                                   | 41 |
| 4.5.4 | SUSAINI        | Absolute Directivity                                   | 41 |
| 4.5.5 | املاك          | اونيوس سيتي نيڪ يو Absolute Value                      | 42 |
| 4.5.6 | UNIVE          | Realized Gain                                          | 42 |
| 4.6   | 2D Result      |                                                        | 43 |
| 4.6.1 |                | E-Field                                                | 43 |
| 4.6.2 |                | H-Field Radiation Pattern                              | 47 |
| 4.6.3 |                | Surface current                                        | 50 |
| 4.7   | 3 D Result     |                                                        | 54 |
| 4.7.1 |                | Far-filed Result                                       | 55 |

xiii

| CHAI | IER5 CONCLUSSION      | /1 |
|------|-----------------------|----|
| 5.1  | Introduction          | 71 |
| 5.2  | Conclusion            | 71 |
| 5.3  | Future Recommendation | 72 |

NOT LIGGTON

# REFERENCES



75

**m** 1



xiv

# **TABLE OF FIGURE**

| Figure 2.4.1-1 Layout design for finite ground plane                                                                                                                        | 4  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.4.1-2 Return Loss graph and Phase plot for 3.24 GHz                                                                                                                | 5  |
| Figure 2.4.1-3 Infinite ground plane graph                                                                                                                                  | 5  |
| Figure 2.4.1-4 (a) Antenna ground with novel SRR, (b) Corner feed line, (c) Prototype                                                                                       | e  |
| of the antenna, (d) The process of antenna designed.                                                                                                                        | 6  |
| Figure 2.4.1-5 Antenna surface current distribution at (a) 3.4 GHz and (b) 4.2 GHz<br>Figure 2.4.1-6 Radiation patterns (a) 3D pattern at 3.4GHz, (b) 3D pattern at 4.2GHz, | 7  |
| (c) pattern for LHCP at 3.4GHz, (d) pattern for RHCP at 3.4 GHz, (e) measured E-pla                                                                                         |    |
| pattern at 3.4GHz, (f) measured H-plane pattern at 3.4GHz                                                                                                                   | 8  |
| Figure 2.4.1-7 Schematic Diagram                                                                                                                                            | 9  |
| Figure 2.4.1-8 Electric field distribution<br>UNIVERSITI TEKNIKAL MALAYSIA MELAKA                                                                                           | 10 |
| Figure 2.4.1-9 Stimulated 3D radiation patterns at 16.58 GHz and antenna gain                                                                                               | 10 |
| Figure 2.4.1-10 The printed ridge gap waveguide                                                                                                                             | 12 |
| Figure 2.4.1-1 Various forms of Microstrip patch antennas                                                                                                                   | 14 |
| Figure 2.4.1-2 Microstrip Patch Antenna Structure                                                                                                                           | 14 |
| Figure 2.4.8-1 Radiation Pattern of a Generic Directional Antenna                                                                                                           | 18 |
| Figure 2.4.11-1 Flow Chart                                                                                                                                                  | 22 |
| Figure 2.4.11-1 Split Ring Antenna                                                                                                                                          | 24 |

XV

| Figure 3.6.2-1 Substrate Parameter                                                 | 26 |
|------------------------------------------------------------------------------------|----|
| Figure 3.6.2-2 Ring Parameter                                                      | 27 |
| Figure 3.6.2-3 Microstrip line on Substrate Patch                                  | 27 |
| Figure 3.6.2-4 Partial Ground Plane                                                | 28 |
| Figure 3.6.2-5 Waveguide Port                                                      | 29 |
| Figure 3.6.2-1 Split Ring Resonator Antenna with Full Ground Plane                 | 33 |
| Figure 3.6.2-2 Return loss for Split Ring Resonator Antenna with Full Ground Plane | 33 |
| Figure 3.6.2-3 Antenna Structure                                                   | 34 |
| Figure 3.6.2-4 S-Parameter                                                         | 34 |
| Figure 3.6.2-1 Design of Microstrip Split Ring Resonator with Partial Ground       | 35 |
| Figure 3.6.2-2 Back View Partial Ground Plane of Microstrip Split Ring Antenna     | 35 |
| Figure 4.5.1-1 Return Loss of Microstrip Split Ring Resonator Antenna              | 37 |
| Figure 4.5.1-2 Return Loss and Resonant Frequency for Microstrip Split Ring        |    |
| Antenna                                                                            | 38 |
| Figure 4.5.2-1 Voltage Standing Wave Ratio                                         | 40 |
| Figure 4.5.3-1 Radiation Efficiency in linear                                      | 41 |
| Figure 4.5.4-1 Absolute Directivity Graph                                          | 41 |
| Figure 4.5.5-1 Absolute Value Graph for Microstrip Split Ring Resonator Antenna    | 42 |
| Figure 4.5.6-1 Realized Gain graph for Microstrip Split Ring Resonator Antenna     | 42 |
|                                                                                    |    |

| Figure 4.6.1-1 E-field Radiation Pattern                                 | 43 |
|--------------------------------------------------------------------------|----|
| Figure 4.6.1-2 E-field radiation pattern for 1.39 GHz                    | 44 |
| Figure 4.6.1-3 E-field radiation pattern at 2.22 GHz                     | 45 |
| Figure 4.6.1-4 E-field radiation pattern at operating frequency 30.3 GHz | 46 |
| Figure 4.6.2-1 H-field Radiation Pattern at 0.59 GHz                     | 47 |
| Figure 4.6.2-2 H-field radiation pattern at 1.39 GHz                     | 48 |
| Figure 4.6.2-3 H-field radiation pattern for 2.22 GHz                    | 49 |
| Figure 4.6.2-4 H-field radiation pattern for 3.03 GHz                    | 50 |
| Figure 4.6.3-1 Surface current for 0.59 GHz                              | 51 |
| Figure 4.6.3-2 Surface current at 1.39 GHz                               | 52 |
| Figure 4.6.3-3 Surface current for 2.22 GHz                              | 53 |
| Figure 4.6.3-4 Surface current at 3.03 GHz MALAYSIA MELAKA               | 54 |
| Figure 4.7.1-1 Far-field Directivity (Phi=90) for 0.59 GHz               | 55 |
| Figure 4.7.1-2 Far-field Directivity (Phi=0) at 0.59                     | 56 |
| Figure 4.7.1-3 Far-filed Gain (Phi=90) at 0.59 GHz                       | 57 |
| Figure 4.7.1-4 Far-field Gain (Phi=0) at 0.59 GHz                        | 57 |
| Figure 4.7.1-5 Directivity 3D at 0.59 GHz                                | 58 |
| Figure 4.7.1-6 Gain 3D at 0.59 GHz                                       | 59 |
| Figure 4.7.1-7 Far-field Directivity (Phi=90) for 1.39 GHz<br>xvii       | 59 |

| Figure 4.7.1-8 Far-field Directivity (Phi=0) for 1.39 GHz   | 60 |
|-------------------------------------------------------------|----|
| Figure 4.7.1-9 Far-filed Gain (Phi=90) at 1.39 GHz          | 61 |
| Figure 4.7.1-10 Far-field Gain (Phi=0) at 1.39 GHz          | 61 |
| Figure 4.7.1-11 Directivity 3D at 01.39 GHz                 | 62 |
| Figure 4.7.1-12 Gain 3D at 01.39 GHz                        | 63 |
| Figure 4.7.1-13 Far-field Directivity (Phi=90) for 2.22 GHz | 63 |
| Figure 4.7.1-14 Far-field Directivity (Phi=0) for 2.22 GHz  | 64 |
| Figure 4.7.1-15 Far-field Gain (Phi=90) for 2.22 GHz        | 65 |
| Figure 4.7.1-16 Far-field Gain (Phi=0) for 2.22 GHz         | 65 |
| Figure 4.7.1-17 Directivity 3D at 2.22 GHz                  | 66 |
| اوبنوم سبتي نيڪن GHz 3D at 2.22 GHz                         | 66 |
| Figure 4.7.1-19 Far-field Directivity (Phi=90) for 3.03 GHz | 67 |
| Figure 4.7.1-20 Far-field Directivity (Phi=0) for 3.03 GHz  | 68 |
| Figure 4.7.1-21 Far-field Gain (Phi=90) for 3.03 GHz        | 68 |
| Figure 4.7.1-22 Far-field Gain (Phi=0) for 3.03 GHz         | 69 |
| Figure 4.7.1-23 Directivity 3D at 3.03 GHz                  | 70 |
| Figure 4.7.1-24 Gain 3D at 3.03 GHz                         | 70 |

xviii

# TABLE OF TABLE

| Table 1 Split Ring Resonator Antenna Parameter.                 | 6  |
|-----------------------------------------------------------------|----|
| Table 2 Antenna parameter                                       | 9  |
| Table 3 Dimension of the antenna (all dimension in mm)          | 11 |
| Table 4 Substrate specification                                 | 24 |
| Table 5 Substrate parameters                                    | 24 |
| Table 6 Ring parameters                                         | 24 |
| Table 7 Substrate specification                                 | 36 |
| Table 8 Substrate Parameter                                     | 36 |
| Table 9 Ring 1 parameters                                       | 36 |
| Table 10 Ring 2 Parameter                                       | 37 |
| UNIVERSITI TEKNIKAL MALAYSIA MELAKA<br>Table 11 Bandwidth Value | 38 |
|                                                                 | 50 |
| Table 12 Voltage Standing Wave Ratio value (VSWR)               | 40 |

xix

## **CHAPTER 1**

#### INTRODUCTION

## 1.1 Background

The microstrip antennas has evolved in communication systems, this antenna can be seen used in radar systems, satellite communications, GPS Systems (Global Positioning Systems), even in telephone systems. This antenna structure consists of a patch on both side of the structure. Situated in between the patch antenna and ground plane is the dielectric material.

The microstrip antennas are preferred compared to other types of antenna because it is small and thin, lightweight, easily fabricated, capable of producing both a linear polarization and circular polarization by using a simple rationing, easy to integrate with other electronic devices, and affordable prices (Ali *et al.*, 2017). In addition, these microstrip antennas use the feeding rationing technique that is patched directly to them through the microstrip feed line. In addition to its advantages, the microstrip antennas also have weaknesses such as narrow bandwidth, limited gain and relatively low power handling capabilities. Therefore, in this final task this Microstrip Ring antenna will be designed with the intent to increase the bandwidth to achieve the objectives of the project.

# 1.2 Problem Statement

The previous designs of microstrip split ring antenna were able to work at high frequency, however it was found to be unsuitable for lower frequency applications within the mega-hertz (MHz) region. Nevertheless, the structure has pointed to be improved especially the limited gain, return loss, and narrow bandwidth in order for it to work for energy harvesting application.

# 1.3 Objective

- To design and simulate Microstrip Split Ring Antenna with a frequency range from 300MHz to 3GHz for RF Energy Harvesting.
- To fabricate the Microstrip Split Ring Antenna on PCB.
- To benchmark the design with existing work.

# يتي تيڪنيڪل ملي Scope of Study

- UNIVERSITI TEKNIKAL MALAYSIA MELAKA The antenna acts as a Receiver
- The antenna should work between the bandwidth of 300MHz to 3GHz
- The return loss (S11) should less than -10dB
- The radiation pattern and surface current analysis will be investigated.

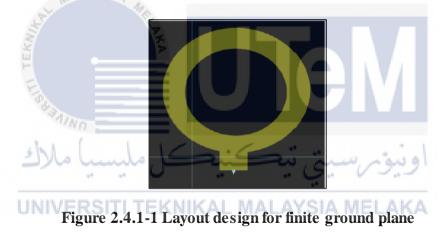
# **CHAPTER 2**

#### LITERATURE REVIEW

## 2.1 Introduction

To solve problems, that arise in the first chapter. Comparisons between other literature review are performed based on the current available antenna parameters. The purpose of this literature is to bring a clear understanding of the concept of a design an project.

# 2.2 Basic of Antenna Theory


The antenna was first introduced by Thomas Edison in 1885. Later in 1888, Heinrich Hertz testified to James Clerk Maxwell's theory of the existence of electromagnetic waves. Antennas is an important component in electrical wave communication system. The electromagnetic radiation signal travels at the speed of light in a free space and has a lower transmission loss at high frequency when compared to the same signal transmitted through the conductor cable. In the microwave communication system, antennas will transmit signal from one location to another without the need of a cable connection. The receiving side antenna will receive the signal transmitted by the transmitter and transmit the signal to other parts of the receiving circuit such as the filtering circuit.

# 2.3 Previous Related Research

Divyabharathi stated that FR4 substrate and feed line strip are used to reduce antenna production cost (Divyabharathi *et al.*, 2019). A strip line feed can be used in micro strip antenna to gain a lower radiation loss and less dispersion.

The author proposed that a circular ring antenna is suitable for wideband application and the design consist of finite ground plane structure. The type and size of the substrate able to control gain and bandwidth received by the antenna.

This paper presents the frequency designed for the antenna is in a range of 2 GHz until 5 GHz. It is stated that the antenna was designed by using ADS 2014 Software.



The bottom layer is designed with a thickness of 1.6 mm while the dielectric constant is 4.4. The author stated that different dielectric can be used to get a better performance.

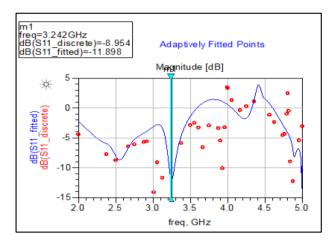
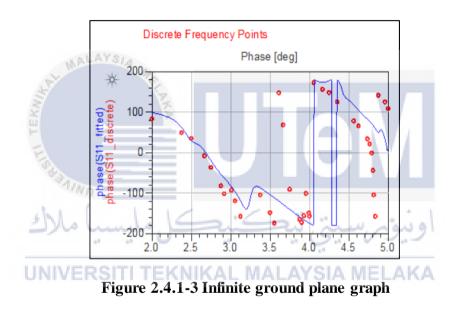




Figure 2.4.1-2 Return Loss graph and Phase plot for 3.24 GHz



At operating frequency 3.24 GHz, the return loss obtained is -11.898 dB. According the result from the studied, the return loss will be better if it greater than -10 dB.

Pirooj (Pirooj *et al.*, 2017) proposed that split ring resonator. By using a dual-band characteristic, the wide bandwidth can be achieved. The author stated that the antenna with a bi-directional pattern has a circular polarization of 2.9 GHz to 3.65 GHZ with a bandwidth of 2 GHz until 3.6 GHz. The author stated that the used of FR4 in the designed reduced the cost. The dielectric of substrate is  $\varepsilon_r = 4.4$  and the thickness is 1.6mm.

5