

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

INVESTIGATION OF WATER FLOW TEMPERATURE ON SOLAR PANEL

KUMARAN A/L SUBRAMANIAN B071710385 960228055111

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2020

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

Tajuk: INVESTIGATION OF WATER FLOW TEMPERATURE ON SOLAR PANEL

Sesi Pengajian: 2020

MALAYS/4

Saya **Kumaran a/l Subramanian** mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X)

Mengandungi maklumat yang berdarjah keselamatan atau SULIT* kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972.

Mengandungi maklumat TERHAD yang telah ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

TIDAK

TERHAD*

TERHAD

Yang benar,

Disahkan oleh penyelia:

Kumaran a/l Subramanian Encik Zaihasraf Bin Zakaria Cop Rasmi Penyelia Alamat Tetap: No 17, Lorong 11/1 Ts. Zaihasraf bin Zakaria Pensyarah Fakulti Teknologi Kejuruteraan Elektrik dan Elektronik Universiti Teknikal Malaysia Melaka Taman Sri Mawar, 70450 Seremban, Negeri Sembilan UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Tarikh: 12 February 2021

Tarikh: 22/2/2021

*Jika Laporan PSM ini SULIT atau TERHAD, sila lampirkan surat daripada pihak berkuasa/organisasi berkenaan dengan menyatakan sekali sebab dan tempoh laporan PSM ini

DECLARATION

I hereby, declared this report entitled INVESTIGATION OF WATER FLOW TEMPERATURE ON SOLAR PANEL is the results of my own research except as cited in references.

Lunew Car. Signature: Author: Kumaran a/l Subramanian 12 February 2021 Date: **UNIVERSITI TEKNIKAL MALAYSIA MELAKA**

APPROVAL

This report is submitted to the Faculty of Mechanical and Manufacturing Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Mechanical Engineering Technology (Industrial Power) with Honours. The member of the supervisory is as follow:

ABSTRAK

Solar panels are important to focus solar energy from sunlight for the sake of generating electricity. Renewable energy power plants have an advantage over high efficiency solar panels as less number of solar panels are required for the same power output. Along with duration and temperature, temperature has a great effect on the performance of a solar panel as high temperature significantly reduces output power. So, we require more efficiency while high temperature we require a cooling system such as water. This research paper explains a practical approach to investigation of water flow temperature on the solar panel. The water cooling system is free of maintenance, easy to handle and simple in operation. But without the cooling system solar panels operate efficiently in generating electricity as long as the solar panels are kept cool by some heat sinks. Experimental results indicate appreciable enhancement in the overall output of the solar panel. Experimental readings obtained from results. Corresponding results obtained from different conditions showing improvement in efficiency are tabled and plotted.

ABSTRACT

Panel suria penting untuk memfokuskan tenaga suria dari cahaya matahari demi menjana elektrik. Loji tenaga boleh diperbaharui mempunyai kelebihan daripada panel suria kecekapan tinggi kerana bilangan panel solar yang lebih sedikit diperlukan untuk output kuasa yang sama. Seiring dengan tempoh dan suhu, suhu mempunyai pengaruh yang besar terhadap prestasi panel suria kerana suhu tinggi dapat mengurangkan daya output dengan ketara. Jadi, kita memerlukan lebih banyak kecekapan sementara suhu tinggi kita memerlukan sistem penyejukan seperti air. Makalah penyelidikan ini menjelaskan pendekatan praktikal untuk penyiasatan suhu aliran air pada panel suria. Sistem penyejukan air bebas dari penyelenggaraan, mudah dikendalikan dan mudah dikendalikan. Tetapi tanpa sistem penyejukan panel suria beroperasi dengan cekap dalam menjana elektrik selagi panel suria tetap sejuk oleh beberapa pendingin. Hasil eksperimen menunjukkan peningkatan yang ketara dalam output keseluruhan panel suria. Bacaan eksperimental yang diperoleh daripada hasil. Hasil yang sesuai yang diperoleh dari keadaan yang berbeza menunjukkan peningkatan dalam kecekapan dibentangkan dan diplot.

DEDICATION

To my beloved parents

ACKNOWLEDGEMENTS

In preparing this report, I was in contact with many people, researchers, academicians and practitioners. They have contributed towards my understanding and thought. In particular, I wish to express my sincere appreciation to my project supervisor, Encik Zaihasraf Bin Zakaria, for encouragement, guidance and friendship. Without his continued support and interest, this project would not have been the same as presented here.

Bachelor's Degree study, Librarians at Seremban Public Library. I am also indebted to my University Teknikal Malaysia Melaka, which also deserves special thanks for their assistance in supplying the relevant literature.

.....

My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

TABLE OF CONTENTS

ТАВ	LE OF CONTENTS	PAGE x
LIST	T OF TABLES	xiv
LIST	COF FIGURES	XV
LIST	T OF APPENDICES	xviii
LIST	T OF SYMBOLS	xix
LIST	T OF ABBREVIATIONS	XX
СНА	PTER 1 INTRODUCTION	1
1.1	Background	1
1.2	اونيوبرسيتي تيڪنيڪل ما Problem Statement	2
1.3	Objective ERSITI TEKNIKAL MALAYSIA MELAKA	4
1.4	Scopes of Project	5
1.5	Expected Results	5
СНА	PTER 2 LITERATURE REVIEW	6
2.1	Introduction	6
2.2	Needs for Water Cooling System for Solar Power Plant	6
2.3	Previous Related Work	7

- 2.3.1 "Enhancing the Performance of Photovoltaic Panels by Water Cooling" by K.A.Moharram, M.S.Abd-Elhad, H.A.Kandil, H.El-Sherifa.7
- 2.3.2 "Experimental Performance Investigation of Photovoltaic/Thermal (PV-T) System" by M. Ozgoren, M. H. Aksoy, C. Bakir, and S. Dogan.
- 2.3.3 "Experimental Assessment of PV Panels Front Water Cooling Strategy" by L. Dorobanţu, M. O. Popescu, C. L. Popescu, and A. Crăciunescu. 10
- 2.3.4 "Experimental Assessment of PV Module Cooling Strategies" by A.Ozemoya, A.J Swart and HCvZ Pienaar.12
- 2.3.5 "Performance Enhancement of PV Array Based On Water Spraying Technique" by Salih Mohammed Salih, Osama Ibrahim Abd, Kaleid Waleed Abid. 13 2.4 Summary Table 15 **CHAPTER 3** 17 METHODOLOGY EKNIKAL MALAYSIA MELAKA 3.1 Introduction 17 3.2 Project work plan 17 3.3 22 Project Block Diagram
- 3.4Hardware specification23

Monocrystalline Photovoltaic Panel

3.4.1

3.4.2 Copper Tube 24

23

- 3.4.3 Radiator 25
- 3.4.4 Water Pump 26

	3.4.5 Aluminium Foil Tape	27
	3.4.6 Radiator Fan	28
	3.4.7 Silicone Pipe/Hose	29
	3.4.8 Arduino Nano	30
	3.4.9 DHT22 Temperature Sensor	31
	3.4.10 Voltage Sensor	33
	3.4.11 2-Channel 5V Relay Module	33
	3.4.12 I2C 16X2 LCD Display	34
	3.4.13 2 Way Toggle Switch	35
	3.4.14 Arduino IBE	36
3.5	Project Implementation	37
3.6	اونيوس سيتي تيڪنيڪ The Operation Flowchart	38
3.7	Expected DesignTI TEKNIKAL MALAYSIA MELAKA	39
3.8	Analysis Plan	39
3.9	Summary	39
СНА	PTER 4 RESULT AND DISCUSSION	42
4.1	Introduction	42
4.2	Project Implementation Stages	42
	4.2.1 Developmet tools	43
	4.2.2 Creation of system	36

4.3	How Does the Project Works	46
4.4	Project Coding	50
4.5	Project Testing	51
4.6	Hardware Development	52
	4.6.1 Working of the monitoring system	53
4.7	Project Analysis	54
4.8	Discussion	60
	AL AVE.	
CHAP	TER 5 CONCLUSION AND FUTURE WORK	62
5.1	Introduction	62
5.2	Conclusion	62
5.3	اوینور سینی نیک Work	63

REFERENCES ER65 TI TEKNIKAL MALAYSIA MELAKA

LIST OF TABLES

TABLE	TITLE	PAGE
Table 1.1: Cor	nparison of Solar Panel With and Without Water Cooling Sy	vstem
Res	ults	2
Table 2.1: Tab	ble of Summary of previous related work	15
Table 3.1: Gar	ntt chart of project PSM 1 progress	19
Table 3.2: Gar	ntt chart of project PSM 2 progress	20
Table 4.1: Rel	ationship between Temperatures versus Voltage without Wa	ter Flow on
Sola	ar Panel System	55
Table 4.2: Rel	ationship between Temperatures versus Voltage with Water	Flow on
Sola	اونيۇم,سىيتى تېكنىكل manel System	57
UN	IVERSITI TEKNIKAL MALAYSIA MELAKA	

LIST OF FIGURES

FIGURE	TITLE	YAGE
Figure 1.1: The Eff	ficiency of Solar Panel According To The Data Collection	3
Figure 1.2: Number	r of Country Using Solar Energy	4
Figure 2.1: Constru	ct of Cooling System Using On Water Spraying	8
Figure 2.2: Calibrat	ted Copper Fine Tube Been Line Arranged Beside Solar panel	10
Figure 2.3: Front Fl	low Water Cooling System	11
Figure 2.4: Water S	Spraying Cooling System	13
Figure 2.5: Water F	Tow on Solar panel Front Surface	15
Figure 3.1: Flowch	اوينوم سيتي تيك art of overall PSM flow	21
Figure 3.2: Block d	iagram of module water flow cooling process using radiator flo	OW
process		22
Figure 3.3: Block d	iagram of controlling and monitoring system	22
Figure 3.4: Monocr	systalline Photovoltaic Panel	24
Figure 3.5: Designe	ed Copper Tube	25
Figure 3.6: Car Ra	diator	26
Figure 3.7: DC Wa	ter Pump	27
Figure 3.8: Alumin	ium Foil Tape	28

Figure 3.9: Radiator Fan	29
Figure 3.10: 3 Different Type of Silicone Pipe/Hose	30
Figure 3.11: Arduino Nano	31
Figure 3.12: DHT22 Temperature Sensor	32
Figure 3.13: Voltage Sensor	33
Figure 3.14: 2-Channel 5V Relay Module	34
Figure 3.15: I2C 16X2 LCD Display	35
Figure 3.16: 2 Way Toggle Switch	36
Figure 3.17: Figure 3.16: Arduino Software Uploading	36
Figure 3.18: The operation flow process	38
Figure 3.19: Drafting of Top View	39
اوينوم سيني تيڪني Figure 3.20: Drafting of Front View	39
Figure 3.21: Drafting of Back View KAL MALAYSIA MELAKA	40
Figure 3.22: Proteus Schematic of the circuit	40
Figure 4.1: Copper tube designed and attached using aluminium foil tape	44
Figure 4.2: Joint of two designed copper tube	44
Figure 4.3: Fins between the radiator panel	45
Figure 4.4: Water flows in water pump	45
Figure 4.5: Hardware design	47
Figure 4.6: Circuit design	47

Figure 4.7: LCD display the temperature, voltage and 'SYSTEM ON'	48
Figure 4.8: LCD display the temperature, voltage and 'SYSTEM OFF'	48
Figure 4.9: LCD display the 'ERROR! Check Connection	48
Figure 4.10: Pinout and define of libraries	50
Figure 4.11: Preparing water supply	51
Figure 4.12: Top View	52
Figure 4.13: Front View	52
Figure 4.14: Drafting of Back View	53
Figure 4.15: Solar Panel Monitoring and Controlling System	54
Figure 4.16: Relationship between Temperatures versus Voltage without V	Vater Flow on
Solar Panel System	56
Figure 4.17: Relationship between Temperatures versus Voltage with Wate	er Flow on
USolar Panel System KNIKAL MALAYSIA MELAKA	58

Figure 4.18: Relationship between Temperature with and without Water Flow on Solar

Panel System

59

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

66

Appendix 1: Arduino Code

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

PV Photovoltaic

CHAPTER 1

INTRODUCTION

1.1 Background

In the new era of Industrial Revolution 4.0, the organization in developing countries had faced the most challenging issue in renewable energy power plant. The solar energy is also most developing source in power plant because it is a clean and renewable energy source. The solar panel consists of photovoltaic (PV) cells are attained to convert solar energy from the sunlight directly to electrical energy. Sunlight is the main power of photovoltaic cells to perform its progress, therefore sunlight produce so much of heat together with sun light at daytime. Heat is one of biggest problems among solar powered plant which will decreases the efficiency, while sun light and heat cannot be separated. Many experimentation have been done to boost the efficiency of the solar cell.

In this project, the objective was to increases efficiency of the solar panel. The

purpose behind this project is to investigating of water flow temperature on the solar panel. In other word, control the temperature of the solar panel using water flow. The nowadays solar panel cooling system play a big role in maintaining the lifespan and the efficiency of the solar panel. Presently the researchers develop the solar panel which can withstand high temperature under hot sun using water cooling system which more effective. By using the water flow system in the solar panel, it can help to maintain the temperature and increases the lifetime of the solar panel. Furthermore, the water flow cooling system is much more effective to decreases high temperature to lower. The water flow cooling system is much more thermal conductive than air cooling system. Automotive industry also still using water flow system to cool down the hot engines. As well-known the solar panel consists of photovoltaic cells that connected by bus wire which will break when if the temperature too hot. Progressively, water flow on solar panel system is process of maintaining the panel and increases the efficiency of power producing under hot sun.

1.2 Problem Statement

The solar powered plants having the issues on increasing temperature. According to this case, the problem occurs on how the performance of the solar panel under a hot sun in daytime. It's been realized that the sun light bring high temperature effect the efficiency of the solar panel. The heat from sun light cannot be avoided as, know that solar panel works only under sun light. In this case, some power plant keeps producing power under high temperature with low efficiency. Other than that, increase in temperatures from certain cause that reduce lifespan of the solar panel because of damage on PV cells. Many case concerned about leaning out costs and increasing the performance of the transformer to produce power.

Table 1.1: Comparison of Solar Panel With and Without Water Cooling System Results

Output power	Without Water	With Cooling
	Cooling System	System

Power Generated (W)	66.96	78.5
Power Consumption (W)	0.0	2.16
Net Output Power (W)	66.96	76.34
Net Output Power Saving (W)	0.0	9.38
Percentage of Net Output Power Saving (%)	0.0	14.00

Figure 1.1: The Efficiency of Solar Panel According To Data Collection

Figure 1.2: Number of Country Using Solar Energy

This project is important these days because as we know power plant need to operate continuously and using solar panel is a good option. A part of cooling system for the solar panel based on water flow system that had been to a great extent unexplored ability to decrease the temperature.

1.3 Objective

The overall purpose of this project is to investigate the effect of water flow on the solar panel temperature in order to increase its efficiency. Although, there are a few objectives as shown:

- 1. To increase the efficiency of solar panel.
- 2. To reduce the temperature of the solar panel.