

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

ASSESSMENT ON RAPID POWER FACTOR COMPENSATION FOR HIGH SPEED RAIL TOWARDS POWER SYSTEM STABILITY USING POWERWORLD

SOFTWARE

This report is submitted in accordance with the requirement of the Universiti Teknikal Malaysia Melaka (UTeM) for the Bachelor of Electrical Engineering Technology (Power Industry) with Honours.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA AUNI NAJIHAH BINTI MOHAMED GHAZALI

B071710646

970425065078

FACULTY OF ELECTRICAL AND ELECTRONIC ENGINEERING

TECHNOLOGY

2020

BORANG PENGESAHAN STATUS LAPORAN PROJEK SARJANA MUDA

 Tajuk: Assessment on Rapid Power Factor Compensation for High Speed Rail

 towards Power System Stability using PowerWorld Software

Sesi Pengajian: 2020

 \mathbf{X}

SULIT*

TERHAD*

Saya Auni Najihah binti Mohamed Ghazali mengaku membenarkan Laporan PSM ini disimpan di Perpustakaan Universiti Teknikal Malaysia Melaka (UTeM) dengan syarat-syarat kegunaan seperti berikut:

- 1. Laporan PSM adalah hak milik Universiti Teknikal Malaysia Melaka dan penulis.
- 2. Perpustakaan Universiti Teknikal Malaysia Melaka dibenarkan membuat salinan untuk tujuan pengajian sahaja dengan izin penulis.
- 3. Perpustakaan dibenarkan membuat salinan laporan PSM ini sebagai bahan pertukaran antara institusi pengajian tinggi.
- 4. **Sila tandakan (X) TI TEKNIKAL MALAYSIA MELAKA

keselamatan atau kepentingan Malaysia sebagaimana yang termaktub dalam AKTA RAHSIA RASMI 1972. Mengandungi maklumat TERHAD yang telah

Mengandungi

ditentukan oleh organisasi/badan di mana penyelidikan dijalankan.

maklumat yang

berdarjah

TIDAK TERHAD	
Yang benar,	Disahkan oleh penyelia:
	Pr.
Auni Najihah binti Mohamed Ghazali	ADLAN BIN ALI LECTURER DEPARTMENT OF ELECTRICAL ENGINEERING TECHNOLOGY, FACULTY OF ENGINEERING TECHNOLOGY, UNIVERSITY TECHNICAL MALAYSIA MALACCA (UTeFA)
Alamat Tetap:	Tel: +6019-3101900 email:edian@utem.euu.my Office: +606-234 6950
Lot 3610, Jalan Mergastua 28000 Tenerkiih Pahang	Cop Rasmi Penyelia
AND TEKN	
تنبڪل مليسيا Tarikh: 23/3/2021	Tarikh: 6 th April 2021
UNIVERSITI TEKNIKAL	MALAYSIA MELAKA
a Laporan PSM ini SULIT atau TERH	AD, sila lampirkan surat daripada pihak
kuasa/organisasi berkenaan dengan menyata	akan sekali sebab dan tempoh laporan PSM ini

Γ

DECLARATION

I hereby, declared this report entitled Assessment on RAPID POWER FACTOR COMPENSATION FOR HIGH SPEED RAIL TOWARDS POWER SYSTEM STABILITY USING POWERWORLD SOFTWARE is the results of my own research except as cited in references.

APPROVAL

This report is submitted to the Faculty of Electrical and Electronic Engineering Technology of Universiti Teknikal Malaysia Melaka (UTeM) as a partial fulfilment of the requirements for the degree of Bachelor of Electrical Engineering Technology (Power Industry) with Honours. The member of the supervisory is as follow:

ABSTRAK

Dalam elektrifikasi kereta api 25 kV AC dengan sistem bekalan 50 Hz rangkaian hubungan pada dasarnya mempunyai sistem ketidakseimbangan yang disebabkan oleh faktor kuasa. Keadaan faktor kuasa yang buruk boleh membahayakan utiliti elektrik. Gambaran keseluruhan kereta api berkelajuan tinggi dan isu-isu yang terlibat telah dikemukakan dalam laporan ini. Beberapa penyelesaian mitigasi faktor kuasa telah dijelaskan dalam laporan untuk mengurangkan komplikasi faktor kuasa. Laporan ini menganalisis dan menilai penyelesaian, secara teori dan praktikal dengan simulasi PowerWorld untuk mendekati penyelesaian faktor kuasa. Tujuan utama laporan ini adalah untuk mencari teknik pampasan faktor kuasa yang paling cekap dan sesuai.

TEKNIKAL MALAYSIA MELAKA

UNIVERSITI

ABSTRACT

In railway electrification of 25 kV AC with 50 Hz supply system of a contact network has essentially an unbalance system that cause by the power factor. The bad state of the power factor could harm the electrical utilities. An overview of high speed rail and the issues involved have presented in this report. Few solutions of mitigation the power factor has been describe in the report to reduce the power factor complications. This report analyses and evaluates the solution, theoretically and practically with simulation of PowerWorld in order to approach the power factor solutions. The main purpose of this report is to find the most efficient and suitable technique of power factor compensation.

TEKNIKAL MALAYSIA MELAKA

UNIVERSITI

DEDICATION

This project is wholehearted dedicated to my parents, family and Encik Adlan bin Ali. They have never give up on me whenever I demotivate while in progress of completion the report.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Allah SWT, The Almighty for the wisdom He bestowed upon me, the peace of my mind, and the strength in order to finish this project. Next to Him, I would express my gratitude for my family, especially to my mother and my father who never failed to give my full support, financially and morally. Thank you for the continuous morale – boosting, emotional support and love.

My warmest thanks goes to Encik Adlan, as my supervisor who inspired me to explore in railway industry. It is such an interesting journey with him, discovering new valuable knowledge that could be use in the future. I am lucky to have him as my supervisor as he always gives positive vibes to urge me to complete this project with my full understanding. Thank you for the encouragement and full guidance that motivates me for the completion of this project.

I also would like to acknowledge my fellow friends who never getting tired to motivate and give encouragement.

I extent my gratitude to Fakulti Teknologi Kejuruteraan Elektrikal dan Elektrik (FTKEE) and Universiti Teknikal Malaysia, Melaka (UTeM) for giving me this golden opportunity to involve in this programme.

TABLE OF CONTENTS

		PAGE
TABI	LE OF CONTENTS	ix
LIST	OF FIGURES	xiii
LIST	OF ABBREVIATIONS	XV
CHAI	PTER 1 INTRODUCTION	17
1.1	Introduction	17
1.2	Background of Project	18
1.3	Problem Statements	19
1.4	اونیون سینی تیکنیکل ملسیا Scopes of Project	20
1.5	Objectives UNIVERSITI TEKNIKAL MALAYSIA MELAKA	20
CHAI	PTER 2 LITERATTURE REVIEW	21

2.1	High Speed Railway	21
2.2	AC Railway Electrifications	22
2.2.1	Primary Supply	26
2.2.2	Electrical Substation (ESS)	27
2.3	System Operation Description	29
2.4	Model of the System	29

2.4.1	ESS Connection	30
2.4.2	Transformer	30
2.4.3	Traction System	31
2.4.4	Overhead Catenary System OCS	32
2.5	Railway Electrification Power Factor	34
2.5.1	Power Factor Issues	35
2.5.2	Power Factor Behaviour	36
2.6	Influencing Factor on Average Power Factor	37
2.6.1	Traction Transformer Capacity	38
2.6.2	Feeder Cable Length	39
2.6.3	Overhead Catenary System Length	40
2.6.4	اونيوسيتي تيڪنيڪا ملسيا ملاك	41
2.7	Methods to Compensate Power Factor	43
2.7.1	Compensation by using Capacitors	43
2.7.2	Compensation by using Active Compensation and Filter	44
2.7.3	Compensation by using Steinmetz Circuit	47

СНАР	PTER 3 METHODOLOGY	48
3.1	INTRODUCTION	48
3.2	METHODOLOGY OF RESEARCH	48
3.3	FLOWCHART	50
3.4	THEORY IN DESIGNING AC POWER RAIL DISTRIBUTION	53
3.5	EVALUATON OF CAPACITOR BANK METHOD IN COMPENSATON	
	POWER FACTOR	55
3.6	EXPECTED RESULT	57
3.7	CONCLUSION	57
СНАР	PTER 4 RESULT AND DISCUSSION	58
4.1	اونون سېنې تېکنېکا ملسيا مار	58
4.2	EXPERIMENTAL RESULT USING POWER WORLD SIMULATION	58
4.2.1	RAIL POWER DISTRIBUTION WITHOUT POWER FACTOR	
COM	PENSATION	59
4.2.2	RAIL POWER DISTRIBUTION WITH POWER FACTOR	
COM	PENSATION	60
4.3	ANALYSIS RESULT OF POWER FACTOR COMPENSATION	61
4.4	DISCUSSION OF RESULT SIMULATION	65

CHAPTER 5 CONCLUSION AND FUTURE WORK	67
5.1 INTRODUCTION	67
5.2 RESEARCH CONCLUSION	67
5.3 SIGNIFICANT RESEARCH	67
5.4 RECOMMENDATION AND FUTURE WORK FOR THIS RESEARCH	68
APPENDICES	72
POWER TRIANGLE CALCULATON	72
BUSBAR 2	73
BUSBAR 3	74
BUSBAR 4	75
اونيۈم،سيتى تيكنيكل مليسيا ملا ل ة BUSBAR <u>5</u>	76
BUSBAR 6 UNIVERSITI TEKNIKAL MALAYSIA MELAKA	77
BUSBAR 7	78
BUSBAR 8	79
BUSBAR 9	80
BUSBAR 10	81
BUSBAR 11	82
REFERENCES	69

REFERENCES

xii

LIST OF FIGURES

PAGE

TITLE

FIGURE

Figure 1: Distribution of single phase loads on the three phase network	24
Figure 2: Traction single-phase distribution on the 50 Hz three-phase net. with an ord 3 sequence	ler 25
Figure 3: Traditional Power Supply Structure with NS to Avoid Phase Mixing	25
Figure 4: Ideal Primary Supply Circuit	26
Figure 5: Simplify Single Line Drawing of 2 x 25 kV ESS	28
Figure 6: Working Principle of 2 x 25 kV Power Supply System	28
Figure 7: HSR standard configuration of 2 x 25 kV -50 Hz power supply system with	ı
single phase traction transformation	31
Figure 8: New Traction Power Supply System based on Vx Connection Transformer	32
Figure 9: The Feeding System of 2 x 25 kV AC	33
Figure 10: Power Factors of New Shangyu TSS over 24 – hours	36
Figure 11: Measure Power Factor Performance of China Railway CHR2A	36
Figure 12: Fundamental equation of Power Factor	37
Figure 13: Average Power Factor Equation	37
Figure 14: The Average Power Factor of Different Rated Traction Transformer	
Capacity	38
Figure 15: The Average Power Factor of Different Length of Feeder Cable	39

Figure 16: The Average Power Factor with Different Length of Catenary System	40
Figure 17: The Average Power Factor with Different Train Timetables	42
Figure 18: The Average Power Factor with Different Masses	42
Figure 19: Equivalent power compensation of equivalent circuit	43
Figure 20: Traction Substations schemes that Connects with the Capacitor Banks	44
Figure 21: Configurations of SVC (a) TSC + FC (b) TCR + FC	45
Figure 22: Schematic Drawing of hybrid APF and SVC	46
Figure 23: Schematic Drawing of SCC	47
Figure 24: Flowchart (a)	51
Figure 25: Flowchart (b)	52
Figure 26: AC Power Rail Distribution	54
Figure 27: Basic Circuit before Power Factor Compensation	55
Figure 28: Basic Circuit after Power Factor Compensation	56
UNIVERSITI TEKNIKAL MALAYSIA MELAKA Figure 29: Simulation before Power Factor Compensation	59
Figure 30: Simulation after Power Factor Compensation	60
Figure 31: Table of Initial Power Factor and Initial Reactive Power	61
Figure 32: Graph of Initial Power Factor	62
Figure 33: Table of Comparison of Initial and Final Power Factor	63
Figure 34: Graph of Final Power Factor	64
Figure 35: Graph of Comparison of Before and After Compensation of Power Factor	66

LIST OF ABBREVIATIONS

AC	Alternative Current
APC	Active Power Factor
ARPQC	Principal Component Analysis
ATP	Automatic Train Protection
CR	Controlled Reactor
DC	Direct Current
ESS	Electrical Substation
ETMP	Electromagnetic Transient Program
FC	Fixed Capacitor
G	Ground Feeder
HSR	High Speed Rail
HST	اوينوبرسيني نيڪ High Speed Train
HV/HC	High Voltage, High Capacity
IR	Industrial Revolution
Ν	Normal Feeder
NTG	National Transmission Grid
OCS	Overhead Catenary System
Р	Positive Feeder
PCC	Point of Common Coupling
PF	Power Factor
PFC	Power Factor Correction

PQ	Power Quality
SCC	Steinmetz Compensation Circuit
SVC	Static Var Compensation
TCF	Thyristor Controlled
TPSS	Traction Power Supply System
TSC	Thyristor Switched Capacitor

CHAPTER 1

INTRODUCTION

1.1 Introduction

As the world of technology advancing, the fourth in the line of industrial revolution (IR 4.0) are making disruptive technologies change the system on how we live and work. This phenomenon is solely focus on automation, real - time data, machine learning, and interconnectivity. One of the most vital phenomena of the industrial revolution 4.0 are the development of railway industry. Railway industry has become one of the major components of the transportation sector and it is intimately linked to the economy's growth.

Railway industry are basically about transferring passengers and goods on wheeled vehicles that are running on rails that located on tracks. It is one of the mode of transportation that has four important subsets; which are rolling stocks, tractions, signaling and communications, and electrifications. Rolling stock are the railway vehicles while track and network is a permanent infrastructure that facilitate the train to move. Nevertheless, signaling and communication is a structure that used to control railway traffic while keeping a safe distance between trains and electrifications is a system that supplies electric power to railway trains without on board prime mover.

There are more than five types of train that have been introduced, such as urban rail transit, high speed rail, commuter rail, light railway and many more. With the adaption and modification of the railway industry, we can gain a lot of benefits by becoming more flexible and increment of innovation can occur.

1.2 Background of Project

For this project with the reference to railway industry, we are merely pay particular attention to electrifications of high – speed railway. Generally, electrifications are defined as the transformation of a machine or a system for the use of electrical power. Whereas, high – speed rail is a type of rail transport that travels significantly at least 250 km/h or more.

This electric locomotive runs on the electric traction system which can either be alternate current (AC) or direct current (DC). On the AC system, traction system normally uses 25 kV AC. While on DC system, the power is 750V or 1500 V DC traction system. The supply of electrical power to move the trains with a nearly continuous conductor, that are located along the track, are designed into two forms; an overhead line and third rail. An overhead line is dangle from poles along the track or from structure, whereas third rail are mounted at track level. However, for high – speed rail application, a high voltage AC system is much more efficient. Thus, the best transmission of power for high speed train are through overhead wires.

An overhead equipment (OHE) will distribute the power through a pantograph that in contact with AC overhead contact wire that will feed to the electric locomotive. In order to get the determined voltage and frequency levels, the power is required to convert by employing rectifiers, inverters, transformer, and cyclo – converter, depends on the category of traction system and type of motors that is used for the train movement.

1.3 Problem Statements

The synchronous proliferation of the railway industry and new high – speed train in the industry, a remarkable distortions of network voltage and current in TPSS and connected power system has become the main issue. Power quality (PQ) complication can occur on the power line considering that they are directly connected to the transmission grid for high voltage. This problem would make calculation and evaluation on non – linear and dynamic natures of modern trains difficult. A contribution to an excess of reactive power consumption and distortion of an input voltage and current in electric trains could have arisen. The uneven distribution of load on different feeders are required to be considered. The grid – side quality of the power is degraded together by the factor in poor and severe unbalance power factor (PF).

These issues have been reported frequently under those circumstances of their utility power system and adverse effects on both traction electrical devices. Over and above that, the control system, rail signaling and communication, and upstream power system of a HSR also gave a remarkable affect to the PF problem. Taking this issues into consideration, it is a mandatory to improve the PF to ensure to have reliability and stability of the utility power system for HSR. Low power factor also causes huge additional energy penalty.

1.4 Scopes of Project

1.5

This project mainly focuses on compensating the power factor for high speed electric railway. The aim of this projects is to find the best solution to counter the power factor problems on high speed railways toward sustainability of railway electrification system that supply electric power to railway train.

- 1. To identify suitable method of power factor compensation for high speed rail application
- 2. To analyse methods of power factor compensation for high speed rail application using suitable simulation software
- To evaluate the most effective methods of power factor compensation for high speed rail application

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

This chapter is about the literature review as a reference that helps my project based on reading of journal or conference paper which that from there will get some knowledge and idea for my project. The journal will go through read from 5 years past. It will come out with the results and summarize of each of the paper.

2.1 High Speed Railway

High speed railways is a complex system that combine the state of the art in the many different fields not just engineering but many other related departments. This includes the infrastructure, stations, rolling stocks, operations, maintenance strategy and corresponding facilities, financing, management and marketing. The principle of all high speed rail systems worldwide is similar but they have a slight different system for every HSR in each country. Every high speed rail depends on how the interactions of their components are designed. In terms of cost and performance, the HSR system also can be differ from one country to another. This all rely on the operation criteria, cost management and their commercial approach.

High speed railway technology is getting more relevant in many countries around the world because of its benefits, such as high energy efficiency, economic performance and environmental protection. (Jiaxin Yuan et.al 2018)

Thunwa B & Komsan H. (2018) also claimed that HSR is a significance transport infrastructure development. It would make people's journey easier and more convenient, as well as enhancing social growth and advancement around the railway station, enabling the country to develop financially and prosper.

2.2 AC Railway Electrifications

High speed rail system are characterized primarily by the high power that supplies the trains that run on those power lines. To meet the necessity requirement with minimal resistive losses, an appropriate high supply voltage is required which involves the given power, a low current value and implies the use of alternating single phases.

However, as the technology of railway advancing, a study and development of $2 \ge 25$ kV system has been improved which allows transmission of power at 50kV which using a three – phase voltage system; contact line, track and feeder. High speed lines' power supply system are categorized by high specific power which implies the need to connect to very powerful high voltage network. However, this can cause extremely high cost, not only for the entire high voltage substation segment, but also specifically for the power lines. It significantly affects the overall cost of the equipment. Thus, the deployment need to be reduce. For this scenario, the choice of an industrial frequency $2 \ge 25$ kV system has the advantage of connecting the substations directly to the general three – phase network which only requires a simple transformation.

In the earliest industrial electrification, the power is more stable compare to the single – phase power that are merely high. In order to solve the unbalance power, we have to reduce the equivalent single phase load of the network in the three phase by using the same typology transformer, the 2 x 25kV module. Single phase transformer is directly linked to the three phase line with corresponding sub- station rotation of the lines.

On the other hand, by considering the electrical substation (ESS) that are linked to a three different phases of grids, this also involves the division of the traction line into separate phase voltage angles that supplied sectors. Thus, those sectors need to be isolated and segregated to neutral area. Nevertheless, traction load distribution has to be improved on the three phase of the primary line. The transformer connections are formed following the 'order 3' sequence of the voltage, by obtaining ΔU at every neutral zone that is also equal to $\Delta U = \sqrt{3} U$ as shown in Figure 1.

On the other hand, Keng – Weng Lau et.al (2016) purposed that in today's world, the 50 Hz, 25 kV AC electrified equipment is widely used in high-speed long distance railways. The power in the three – phase grid is converted into two single phase outputs in traditional traction power supply which is the substation and the locomotive supply, as shown in Figure 2.

They also describe that neutral sections (NSs) that is without power supply are crucial to avoid risk of mixing of phases since the two single phase power is a different phase. The locomotives are tending to lose power and velocity, where the traditional ac power architecture are not suitable for HSR. Taking this into the account, a new system is proposed where the locomotive loads are connected across one single phase out of substation transformer only where another phase unloaded not included as seen in Figure